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Abstract

Stock prices are treated as non-stationary and time-variant data, because of gen-

erated by interest of various market participants. Also, research on stock prediction

methods has conducted only their own individual or whole historical stock data,

ignoring the fact that each price of financial instruments has a mutual organic rela-

tionship. Although recent research, propose adversarial learning methods to improve

the generalization of the predictive model, but how to employ the correlated impacts

of multiple dataset still remains an open problem. To solve this problem, we explore

how to improve stock prediction performance by exploring multiple data. We intro-

duce multi-task clustering method to incorporate highly correlated individual stock

price data. The proposed method has extensively experimented with actual finan-

cial instrument data. Our novel methods outperform the previous state-of-the-art

method with an average 1.66% improvement with respect to accuracy.



iv



Contents

Contents v

List of Figures vii

List of Tables viii

I. Introduction 1

1.1 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Aim of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Organization of This thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

II. Multi-task clustering for stock selection to enhance prediction performance over

multi data 4

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 AutoRegressor Integrated Moving Average (ARIMA) . . . . . . . . . . . . 4

2.1.2 Recurrent Neural Networks (RNNs) . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Gated Recurrent Units (GRUs) . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.4 Long Short Term Memory networks (LSTMs) . . . . . . . . . . . . . . . . 7

2.1.5 Correlation and Covariance between individual stocks . . . . . . . . . . . . 8

2.1.6 Granger causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.7 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.8 K-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.9 Hilbert-Schmidt Independence Criterion (HSIC) . . . . . . . . . . . . . . . 11

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Adv-ALSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Clustering - Hierarchical clustering (HC) affinity matrix (Correlation, HSIC) 15

2.3.2 Selection top s neighbors from affinity matrix (Correlation, HSIC) . . . . . 18

2.3.3 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Performance comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.2 Market simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

III. Conclusion 26

IV. Acknowledgement 27

Appendix 29

References 32

vi



List of Figures

2.1 Structure of Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Structure of Gated Recurrent Units, fully gated version . . . . . . . . . . . . . . . 6

2.3 LSTM gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Illustration of hierarchical clustering steps . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Illustration of hierarchical clustering in dendrogram . . . . . . . . . . . . . . . . . 10

2.6 Illustration of K means clustering. Each example is assigned to the centroid kj

closest to it. Then, Kmeans calculate the average of the objects assigned to the

centroid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 A graphical structure of the Adv-ALSTM (baseline). . . . . . . . . . . . . . . . . 14

2.8 Overview of proposed method (Selecting methods). . . . . . . . . . . . . . . . . . 14

2.9 Architecture of Hierarchical clustering (HC) affinity matrix (Correlation, HSIC) . 15

2.10 (Left) Correlation matrix over 20 stocks (out of 87), (Right) An example of cor-

relation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.11 A comparison between the daily (normalized with z-score, reflected 87 samples of

mean) adjusted closed price for Home Depot (HD)/Amgen (AMGN) (left) and

Home Depot (HD) / Booking Holding (PCLN) (right) during 2013.01 2̃014.12.

The correlation of HD AMGN and MO PFE are 0.63 and -0.26, respectively. . . 16

2.12 Dendrogram of Hierarchical clustering results . . . . . . . . . . . . . . . . . . . . 17

2.13 (Top) trends of UNH, MSFT, APPL in cluster 1, (Middle) trends of XOM, BP,

TOT in cluster 1, (Bottom) Comparison of farthest distance from HC . . . . . . 18

2.14 Architecture of choosing n neighbor affinity matrix . . . . . . . . . . . . . . . . . 19

2.15 Training methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.16 Dendrogram of clustering results based on threshold . . . . . . . . . . . . . . . . 22

2.17 (Left) price trends of Danaher and Honeywell company, (Right) Stock lists of

bi-directional causalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.18 Cumulative Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



List of Tables

2.1 Generated features the end of day stock price . . . . . . . . . . . . . . . . . . . . 13

2.2 Performance of the same industries. the average performance underperform Adv-

ALSTM method (0.572, ACC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Result on hierarchical clustering. See fig. 2.12 to match colors in this table index 17

2.4 Explanation of S&P500 dataset. There are 87 assets removed weekends, public

holidays and lack historical prices. Also, we adapt Feng’s split train, validation

and test ways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Performance comparison on five different methods . . . . . . . . . . . . . . . . . . 22

2.6 Comparison in 2 affinity matrices. 3 number of clusters outperform other # of

cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Comparison in 2 affinity matrices. Selecting top 40 neighbors outperform with

respect to Acc and F1 score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Lists of companies. Ticker is a symbol that arrangements of characters represent-

ing particular securities listed on an exchange or otherwise traded publicly. . . . . 31

viii



CHAPTER I

Introduction

Predictions and analysis of stock price determine the value of cooperation and various finan-

cial instruments. The understanding broad stock market is an important parts to both global

economy and the growth of the overall industry. The finance market participants which is both

investors and industry are interested in the nature value of stock. And they originally want to

know whether stocks go up or down after a specific time. It’s cruel not only to raise funds to

expand their business, but also to let the market profound as liquidity provider. However, it

is considered one of the most difficult issues because the features of stock prices and indices

are noisy and non-stationary. [1, 2]. There have been many studies on many theoretical and

experimental challenges.

Most conventional quantitative trading methods are based on historical transaction data

such as price and volume. The most important of these is the Efficient Market Hypothesis

(EMH) [3], the hypothesis assumes that in an efficient market, the stock market price fully

reflects available information about the market and its components, so there is an opportunity

to get excessive profit cases. However, EMH assumes that all investors are aware of all available

information in exactly the same way, and no one can achieve greater profitability than other

investors with the same amount of investment funds under an efficient market hypothesis. Despite

the theoretical wide acceptance of EMH, numerous studies have attempted to disprove the

effective market hypothesis experimentally, and empirical evidence has revealed that the stock

market is predictable. [4–6].
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Traditional approaches to time series prediction use parametric statistical models such as

Auto Regressive Moving Average (ARMA), Auto Regressive Integrated Moving Average (ARIMA)

and vector automatic regression to find the best estimates. [7–10]. They concluded that the

ARIMA model has special potential in short-term forecasting. These quantitative economic

models are convenient for explaining and evaluating the relationship between variables by sta-

tistical inference, but there are some limitations in financial time series analysis. First, they

can’t capture the nonlinear nature of the stock price because they assume a model structure of

a linear form. Also, it is assumed that the time series is noisy and has time-varying variability,

while the variance is constant. [11,12].

There have been many attempts to solve nonlinear relationships in financial instruments

using computer science fields. Recently, neural networks have been shown to be remark perfor-

mance in predicting future stock price. Many researches and applications of neural networks have

demonstrated their merits with respect to classical methods. Also, deep neural networks (DNNs)

outperform conventional methods [13–15]. Many successful applications have shown that DNN

can be a useful technique for predicting stock prices because the underlying relationships are un-

known or difficult to describe, but can capture subtle functional relationships between empirical

data.

In recent studies, long short-term memory (LSTM) network, which is appropriately struc-

tured to learn temporal patterns, is extensively utilized for various task of time-series anal-

yses [16]. LSTM is advantageous over the conventional Recurrent neural nets (RNNs) as it

overcomes the problem of vanishing gradients and as it can effectively learn long-term depen-

dencies through memory cells and gates. If data are given, suitable data-dependent patterns are

automatically detected within data proposed an LSTM-based system to predict stock returns

and tested it in the U.S and Chinese stock market [17, 18]. They used historical price data of

the stock and market indexes for sequential learning. Numerical results confirmed a promising

predictive power of LSTMs, which result in an improvement of forecasting accuracy than be-

fore [19, 20]. For financial time series analyses using deep neural networks (DNNs), we should

be concerned about the problem of over-fitting as data are not sufficient [21, 22]. In a year, the

number of data points that we could collect on a daily basis was only approximately 252. DNNs

are promising approaches with enhanced representation power as they learn highly complex

nonlinear relationships between variables [23,24].
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1.1 Statement of the problem

However, previous methods proposed training historical data of individual stock itself or

all stocks to enhance prediction performance [17, 25, 26]. But the stock markets are driven by

behavior of various market participants, as perhaps the most important of many variables influ-

encing price [27]. For these reasons, it’s not reasonable to utilize limited methods. To overcome

this issue, studies have conducted with financial news data [28–30]. Also, there is another way

to clarify how stock markets move organically and affect mutually. In other words, stock price

movements are results of multiple factors such as macro-economy, financial situation of a com-

pany, investors’ sentiments, etc. And financial time series contain high noise. To predict stock

price movement, features containing useful information are needed, so feature extraction and

selection play significant roles in stock price movement prediction. By doing this, we are able to

set those datasets into features to train proposed model. One of the novel method is clustering

to link each stock as a close neighbor. Thus, it is to investigate the correlation structure within

U.S stock exchange (NYSE) and obtain hierarchical structures with dendrograms based on the

correlations among individual stocks.

1.2 Aim of Research

The objects of research are to investigate quantifying cross-correlation in terms of supporting

the performance of individual stock predictions, as well as understanding the collective behavior

between components of a complex system.

1.3 Organization of This thesis

This thesis is described as follows. Chapter II describes our proposed methods, Multi-task

clustering for stock selection to enhance prediction performance over multi data. First, we re-

views related work and backgrounds. Second, we show our experiments settings such as dataset,

baselines, evaluation methods. After that, we explain the details of our proposed methods which

is consisting of portfolio under clustering methods and results qualitatively and quantitatively.

Finally, in chapter III concludes this thesis with a summary and future work.
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CHAPTER II

Multi-task clustering for stock selection to

enhance prediction performance over multi data

2.1 Related Work

2.1.1 AutoRegressor Integrated Moving Average (ARIMA)

An autoregressive integrated moving average model (ARIMA) is a form of regression analysis

that gauges the strength of one dependent variable relative to other changing variables. The

model’s goal is to predict future securities or financial market moves by examining the differences

between values in the series instead of through actual values.

An ARIMA model can be understood by outlining each of its components as follows:

• Autoregression (AR) refers to a model that shows a changing variable that regresses on

its own lagged, or prior, values.

• Integrated (I) represents the differencing of raw observations to allow for the time series

to become stationary, i.e., data values are replaced by the difference between the data

values and the previous values.

• Moving average (MA) incorporates the dependency between an observation and a resid-

ual error from a moving average model applied to lagged observations.

Each component functions as a parameter with a standard notation. For ARIMA models, a

standard notation would be ARIMA with p, d, and q, where integer values substitute for the
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parameters to indicate the type of ARIMA model used. The parameters can be defined as:

• p the number of lag observations in the model; also known as the lag order.

• d the number of times that the raw observations are differences; also known as the degree

of differencing.

• q the size of the moving average window; also known as the order of the moving average.

In an autoregressive integrated moving average model, the data are differenced in order to make

it stationary. A model that shows stationarity is one that shows there is constancy to the data

over time. Most economic and market data show trends, so the purpose of differencing is to

remove any trends or seasonal structures.

2.1.2 Recurrent Neural Networks (RNNs)

Traditional neural networks lack the ability to address future inputs based on the ones in the

past. For example, a traditional neural network cannot predict the next word in the sequence

based on the previous sequences. However, a recurrent neural network (RNN) most definitely

can. Recurrent Neural networks, as the name suggests are recurring. Therefore, they execute in

loops allowing the information to persist. In fig. 2.1.2, we have a neural network that takes the

A

ℎ𝑡

𝑋𝑡

= A

ℎ𝑜

𝑋𝑜

A

ℎ1

𝑋1

A

ℎ2

𝑋2

A

ℎ𝑡

𝑋𝑡

Figure 2.1: Structure of Recurrent neural networks

input xt and gives use the output ht. Therefore, the information is passed from one step to the

successive step. This recurrent neural network, when unfolded can be considered to be copies of

the same network that passes information to the next state. RNNs allow us to perform modeling

over a sequence or a chain of vectors. These sequences can be either input, output or even both.

2.1.3 Gated Recurrent Units (GRUs)

Gated recurrent unit (GRUs) is part of a specific model of recurrent neural network that

intends to use connections through a sequence of nodes to perform machine learning tasks

5



associated with memory and clustering, for instance, in speech recognition. Gated recurrent

units help to adjust neural network input weights to solve the vanishing gradient problem that

is a common issue with recurrent neural networks. The key idea of GRUs is that the gradient

X +

ො𝑦𝑡

ℎ𝑡ℎ𝑡−1

𝜎 𝜎 𝑡𝑎𝑛ℎ

𝑙 − 1
෠ℎ𝑡

XX

𝑋𝑡

Figure 2.2: Structure of Gated Recurrent Units, fully gated version

chains do not vanish due to the length of sequences. This is done by allowing the model to

pass values completely through the cells. The architecture of GRU is described in fig. 2.1.3. The

model is defined as the following:

zt = σ
(
W (z)xt + U (z)ht−1 + b(z)

)
rt = σ

(
W (r)xt + U (r)ht−1 + b(r)

)
ht = tanh

(
W (h)xt + U (h)ht−1 ◦ rt + b(h)

)
ht = (1∞zt) ◦ ht∗1 + zt ◦ h̃t

◦ is used as the Hadamard product, which is just a fancier name for element-wise multiplica-

tion. σ(x) is the Sigmoid function which is defined as σ(x) = 1
1+e−x . Both the Sigmoid function

and the Hyperbolic Tangent function (tanh) are used to squish the values between 0 and 1.

zt functions as a filter for the previous state. If zt is low (near 0), then a lot of the previous

state is reused. The input at the current state xt does not influence the output a lot. If zt is

high, then the output at the current step is influenced a lot by the current input xt, but it is not

influenced a lot by the previous state ht−1. rt functions as forget gate (or reset gate). It allows

the cell to forget certain parts of the state.
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2.1.4 Long Short Term Memory networks (LSTMs)

Long Short-Term Memory (LSTM) networks are a modified version of Recurrent Neural

Networks (RNNs), which makes it easier to remember past data in memory. Recurrent Neural

Network is a generalization of feed-forward neural network that has an internal memory. RNN

is recurrent in nature as it performs the same function for every input of data while the output

of the current input depends on the past one computation. After producing the output, it is

copied and sent back into the recurrent network. However, RNNs suffer from Gradient vanishing

and exploding problems. Also, it cannot process very long sequences if using tanh or relu as an

activation function. The vanishing gradient problem of RNN is resolved. LSTM is well-suited to

classify, process and predict time series given time lags of unknown duration. It trains the model

by using back-propagation. On LSTM networks, three gates are present (see fig.2.1.4):

X +

𝜎 𝑡𝑎𝑛ℎ 𝜎

X

𝜎

X

𝑡𝑎𝑛ℎ

ℎ𝑡−1

𝑋𝑡−1

X +

𝜎 𝑡𝑎𝑛ℎ 𝜎

X

𝜎

X

𝑡𝑎𝑛ℎ

ℎ𝑡

𝑋𝑡

X +

𝜎 𝑡𝑎𝑛ℎ 𝜎

X

𝜎

X

𝑡𝑎𝑛ℎ

ℎ𝑡+1

𝑋𝑡+1

A A

: Forget Gate

: Input Gate

: Output Gate

Cell state

Figure 2.3: LSTM gates

• forget gate shows what details to be discarded from the block. It is decided by the

sigmoid (σ) function. It looks at the previous state (ht−1) and the content input (Xt)

and outputs a number between 0 (discard) and 1 (keep) for each number in the cell state

Ct−1. ft = σ (Wf · [ht−1,xt] + bf )

• Input gate discovers which value from input should be used to modify the memory.

Sigmoid function decides which values to let through 0,1. And tanh function gives weight

to the values which are passed deciding their level of importance ranging from -1 to 1.
it = σ (Wi · [ht−1,xt] + bi)

C̃t = tanh (WC · [ht−1,xt] + bC)

• Output gate is that the input and the memory of the block is used to decide the

output. And tanh function gives weight to the values which are passed deciding their

level of importance ranging from -1 to 1 and multiplied with output of sigmoid.

ot = σ (Wo [ht−1,xt] + bo)
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ht = ot ∗ tanh (Ct)

LSTMs is a network where cell state and hidden state are recursively obtained. Therefore, the

gradient of the cell state and the gradient of the hidden state are affected by the gradient value of

the previous point. LSTMs is well suited to capture sequential information from temporal data

and has shown advantages in machine translation, speech recognition, and image captioning etc.

2.1.5 Correlation and Covariance between individual stocks

Correlation is a statistical technique for measuring and describing the relationship between

two variables. There are examples that the two variable weights, X1, and length, X2. Screening

this data indicates that there is a relationship between the measured quantities, assuming the

population is reasonable. A taller person is usually heavier than a shorter person. Two statistical

measurements that help to assess the relationship between two random variables are covariance

and correlation [31]. The covariance can be defined as:

COV (X1,X2) = E [(X1 − µ1) (X2 − µ2)] (II.1)

where µ1 = E (X1) , i.e. the expected value of X1, and µ2 = E (X2) . If X2 tends to be large

when X1 is large and small when X1 is small, then X1 and X2 will have a positive covariance.

On the other hand, if X2 is small, X2 is large, and if X1 is small, X2 is large, then X1 and X2

Has negative covariance. Covariance measures the associative direction, but the values are unit-

specific, making comparison difficult. To measure the association strength independently, the

covariance must be normalized with respect to the variance of the measurement variables. The

correlation between the two variables reflects the degree to which the variables are related. The

most common correlation measure is Pearson’s Correlation. The correlation coefficient between

the two variables X1 and X2 is in this case given by

ρi,j =
COV (X1,X2)√
V (X1)V (X2)

(II.2)

where V (Xi) is the variance of varible Xi. Pearson’s correlation reflects the degree of linearity

between the two variables. The range is +1 to -1. A correlation of +1 means that there is a com-

plete positive linear relationship between the variables. A correlation of -1 indicates that there

is a complete negative linear relationship between the variables, and 0 indicates no correlation.

Joint movement between individual stocks and stocks and certain market indices plays an

important role in finance. 2.11 shows a comparison of different stock trends and correlation

metrics.
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2.1.6 Granger causality

Granger causality (G-causality) is a popular method for studying casual links between ran-

dom variables [32]. Specifically, suppose that the spike train of neuron i at time bin m can be

predicted given the neuron’s own firing history and that of another neuron j using the bivariate

auto-regressive model:

Si(m∆) =

K∑
k=1

Aii(k)Si((m− k)∆) +

K∑
k=1

Aij(k)Sj((m− k)∆) + εi|j(m∆) (II.3)

where K is the maximum number of lags (model order) and A represents the linear regression

coefficients obtained by minimizing the squared prediction error εi|j when Sj is used to predict

Si. Neuron j is said to Granger-causality neuron if the inclusion of Si in II.3 reduces the variance

of the prediction error.

The null hypothesis is that the y does not Granger causality x. A user specifies the two series,

x and y, along with the significance level and the maximum number of lags to be considered.

The function chooses the optimal lag length for x and y based on the Bayesian Information

Criterion. The function produces the F-statistic for the Granger Causality Test along with the

corresponding critical value. We reject the null hypothesis that y does not Granger causality x

if the F-statistic is greater than the critical value.

2.1.7 Hierarchical Clustering

HC (Hierarchical Clustering) is an algorithm that groups similar objects into groups called

clusters. The endpoint is a set of clusters, where each cluster is different from other clusters,

and the objects within each cluster are similar. The aim of HC is finding the best step at each

cluster fusion (greedy algorithm) which is done exactly but resulting in a potentially sub-optimal

solution. In a cohesive or bottom-up clustering method, each observation is assigned to its own

cluster. Then HC calculates the similarity (e.g. distance) between each cluster and join the two

most similar clusters. Finally, HC repeats steps 2 and 3 until only one cluster remains. Before

any clustering is performed, it is required to determine the proximity matrix containing the

distance between each point using a distance function. Then, the matrix is updated to display

the distance between each cluster. Details are illustrated in the diagrams below:

In 2.1.7, HC starts by treating each observation as a separate cluster. Then, it repeatedly

executes the following two steps: (1) identify the two clusters that are closest together, and (2)

merge the two most similar clusters. This iterative process continues until all the clusters are

9
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Figure 2.4: Illustration of hierarchical clustering steps

merged together. Finally, The main The main output of Hierarchical Clustering is a dendrogram,

which shows the hierarchical relationship between the clusters in 2.5:

A
B

C

D

E
F

A B C D E F

Dendrogram

Figure 2.5: Illustration of hierarchical clustering in dendrogram

2.1.8 K-Means Clustering

K-means clustering is a simple unsupervised learning algorithm that is used to solve clustering

problems. It follows a simple procedure of classifying a given data set into a number of clusters,

defined by the letter "k," which is fixed beforehand. The clusters are then positioned as points

and all observations or data points are associated with the nearest cluster, computed, adjusted

and then the process starts over using the new adjustments until a desired result is reached.

It is used mainly in statistics and can be applied to almost any branch of study. For exam-

ple, in marketing, it can be used to group different demographics of people into simple groups

that make it easier for marketers to target. Astronomers use it to sift through huge amounts

of astronomical data; since they cannot analyze each object one by one, they need a way to

10



statistically find points of interest for observation and investigation. Given a set of observations

𝑘1

𝑘2

𝑘3

Figure 2.6: Illustration of K means clustering. Each example is assigned to the centroid kj closest
to it. Then, Kmeans calculate the average of the objects assigned to the centroid.

(x1,x2, . . . ,xn), here each observation is a d-dimensional real vector, k-means clustering aims

to partition the n observations into k(≤ n) sets S = {S1,S2, . . . ,Sk} so as to minimize the

within-cluster sum of squares (WCSS) (i.e. variance). Formally, the objective is to find:

arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖2 = arg min
S

k∑
i=1

|Si|VarSi (II.4)

where µi is the mean of points in Si This is equivalent to minimizing the pairwise squared

deviations of points in the same cluster:

arg min
s

k∑
i=1

1

2 |Si|
∑

x,y∈Si

‖x− y‖2 (II.5)

The equivalence can be deduced from identity
∑

r=S1
‖x− µi‖2 =

∑
r+r∈S1

(x− µi) (µi − y).

Because the total variance is constant, this is equivalent to maximizing the sum of squared

deviations between points in different clusters (between-cluster sum of squares), which follows

from the law of total variance.

2.1.9 Hilbert-Schmidt Independence Criterion (HSIC)

The Hilbert-Schmidt independence criterion (HSIC), introduced by Gretton et al [33]. HSIC

is a useful method for testing if two random variables are independent. The root of the idea is

that while Cov(A,B) = 0 does not imply that two random variables A and B are independent,

11



having Cov(s(A), t(B)) = 0 for all bounded continuous functions s and does actually imply

independence [34]. Since going over all bounded continuous functions is not tractable, Gretton

et al [33] propose evaluating sups∈F,t∈GC ov [s(x), t(y)] where F,G are universal Reproducing

Kernel Hilbert Spaces (RKHS). This allows for a tractable computation and is equivalent in

terms of the independence property. Gretton et al. [33] then introduced HSIC as an upper

bound to HSIC is a non-parametric method that does not assume a specific noise distribution

for ε [33].

Consider two random variables X and Y , residing in two metric spaces X and Y with a

joint distribution on them, and two separable RKHSs F and G on X and Y respectively. HSIC is

defined as the Hilbert Schmidt norm of the cross covariance operator:

HSIC(X,Y ;F,G) ≡ ‖Cxy‖2HS

Gretton et al. [33] show that:

HSIC(X,Y ;F,G) ≥ sup
s∈F,t∈G

Cov[s(x), t(y)]

We now state Theorem 4 of Gretton et al. [33] ) which shows the properties of HSIC as an

independence test:

Theorem 1 (Gretton et al. [33], Theorem 4). Denote by F and G RKHSs both with universal

kernels. k, l respectively on compact domains X and Y. Assume without loss of generality that

‖s‖∞ ≤ 1 for all s ∈ F and likewise ‖t‖∞ ≤ 1 for all t ∈ G Then the following holds: ‖Cxy‖2HS =

0 ⇔ XY Let {(xi, yi)}ni=1 be i.i.d. samples from the joint distribution on X× Y. The empirical

estimate of HSIC is given by:

ĤSIC {(xi, yi)}ni=1 ;F,G
)

=
1

(n− 1)2
trKHLH

where Ki,j = k (xi,xj) ,Li,j = l (yi, yj) are kernel matrices for the kernels k and l respectively,

andHi,j = δi,j− 1
n is a centering matrix. The main result of Gretton et al. [8] is that the empirical

estimate ĤSIC converges to HSIC at a rate of O
(

1
n1/2

)
, and its bias is of order O

(
1
n

)
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2.2 Background

2.2.1 Adv-ALSTM

We follow Adversarial Attentive LSTM (Adv-ALSTM) [35] as background. The main con-

tributions of the proposed method are that investigation of generalization difficulty of stock

prediction. They suggest that adversarial learning reaches more generalizable and robust. They

adapt that Adversarial Perturbation (AP) is the direction that leads to LSTMs with an attention

method to increase performance of stock forecasting and the largest changes in the model predic-

tion. Adversarial training is proposed to account for the stochastic property of the stock market

to learn stock movement prediction model. Their adversarial method for the Attentive LSTM

model is an expressive model for temporal data. When the proposed method adds perturbations

to the prediction features in last hidden layer, it is possible to optimize the perturbations to

make them draw a decision boundary from the model’s output as much as possible.

Before we explore Adv-ALSTM methods, they define the predictive function to set the for-

mula for stock movement forecasting operations as ŷs = f (Xs; Θ) which maps a stock (s) from

its temporal features (Xs) to the label space. In other words, the function f with parameters Θ

aims to predict the movement of stock s at the next time-step from the sequential features Xs

in the latest T time-steps. Xs = [xs
1, · · · ,xs

T ] ∈ RD×T is a matrix which represents the sequen-

tial input features (e.g., open and close prices, as detailed in Table 2.1 ) in the lag of past T

time-steps, where D is the dimension of features. Assuming that we have S stocks, Adv-ALSTM

Generated features Formula
open_close, high_close, low_close e.g., open_close= opent/closet -1

t_close, t_adj_close e.g., t_close=closet/closet−1 -1

5day, 10day, 15day, 20day, 25day, 30day e.g., 5− day =
∑4

i=0 adj−closet−i /5
adj−closet

-1

Table 2.1: Generated features the end of day stock price

learn the prediction function by fitting the ground truth labels y =
[
y1, · · · , yS

]
∈ RS , where

ys ∈ (1/−1) is the label of stock s in the next time-step. They then formally define the problem

as:

Input: given training dataset {(Xs, ys)}
Output: A prediction function f (Xs; Θ) , predicting the movement of stock s in the fol-

lowing time-step.

Instead of directly making prediction from last hidden layer in LSTM, they adapted adver-

sarial examples (AEs). AE is a malicious input created by adding intentional perturbations to

the function of clean data. The perturbation named as an AP (Adversarial Perturbation) cannot

be applied directly to stock predictions in the direction that brings the largest change in the
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Training

Figure 2.7: A graphical structure of the Adv-ALSTM (baseline).

model prediction. (See Fig. 2.7). Perturbation calculations can be time consuming as they rely

on the calculation of gradients for inputs (due to back-propagation through the time step of

the LSTM layer). Also, given the fact that the gradients of the input depend on different time

steps, there may be unintended interactions between the perturbations of different time steps

that cannot be controlled. To solve these problems, they propose to link APs from last hidden

layers.

2.3 Proposed method

Figure 2.8: Overview of proposed method (Selecting methods).

Fig. 2.8 show that the overall structure of our proposed method. First, we normalize raw

data, End of day individual stock price with z-score [36]. Normalization is standardizing each

data or changing it to make it easier to compare with others. Second, we adopt 2 types affinity

matrices with HSIC and Pearson correlation methods. In addition, we propose Selecting Method

to group related stocks using choosing top s neighbors or Hierarchical clustering.
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𝑛*𝑛 affinity matrix𝑛 Stock prices
End of day (EOD)

n

1

Clustering

Figure 2.9: Architecture of Hierarchical clustering (HC) affinity matrix (Correlation, HSIC)

2.3.1 Clustering - Hierarchical clustering (HC) affinity matrix (Correlation,

HSIC)

We generate distance matrix based on both Pearson correlation coefficient and HSIC is

used [37]. And we demonstrate correlations method for stock adjusted closed price in Fig. 2.10.

Fig. 2.9 show that structure of affinity matrices methods with Hierarchical clustering (HC).

m grouped stocks based on HC are trained as Adv-ALSTM.

HD SNP D AMGN WFC HRG V PFE PEP CHL HON SRE XOM UNH IEP GE MO PICO DIS SLB

HD

SNP

D

AMGN

WFC

HRG
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SLB

0.24

0.16 0.17

0.69 0.02 0.25

0.17 0.03 0.39 0.15

0.07 0.27 0.67 0.45 0.32

0.05 0.30 0.54 0.25 0.35 0.50

0.28 0.17 0.44 0.04 0.26 0.27 0.46

0.62 0.07 0.28 0.35 0.20 0.13 0.42 0.63

0.56 0.03 0.56 0.45 0.41 0.21 0.41 0.40 0.48

0.09 0.06 0.63 0.15 0.63 0.53 0.78 0.32 0.37 0.53

0.35 0.19 0.58 0.53 0.71 0.49 0.19 0.25 0.47 0.12 0.40

0.41 0.05 0.10 0.62 0.31 0.14 0.20 0.01 0.27 0.67 0.28 0.12

0.48 0.01 0.24 0.59 0.65 0.37 0.23 0.22 0.33 0.16 0.42 0.65 0.21

0.04 0.08 0.37 0.13 0.11 0.55 0.61 0.60 0.42 0.18 0.45 0.12 0.08 0.09

0.29 0.21 0.31 0.26 0.14 0.35 0.53 0.45 0.44 0.49 0.57 0.09 0.43 0.04 0.65

0.67 0.04 0.06 0.45 0.31 0.11 0.23 0.58 0.86 0.36 0.26 0.60 0.23 0.41 0.30 0.36

0.44 0.25 0.15 0.22 0.35 0.04 0.33 0.71 0.77 0.37 0.17 0.52 0.02 0.35 0.31 0.29 0.76

0.30 0.26 0.52 0.39 0.69 0.48 0.44 0.13 0.21 0.30 0.52 0.71 0.19 0.43 0.07 0.05 0.40 0.37

0.48 0.47 0.32 0.19 0.44 0.31 0.06 0.14 0.10 0.36 0.44 0.38 0.21 0.24 0.07 0.23 0.14 0.15 0.22

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
HD SNP D AMGN WFC HRG V PFE PEP CHL

HD 1.00 0.59 0.63 0.88 0.75 0.70 0.64 0.25 0.86 0.66

SNP 0.59 1.00 0.81 0.68 0.81 0.83 0.63 0.43 0.76 0.37

D 0.63 0.81 1.00 0.77 0.89 0.93 0.87 0.69 0.69 0.14

AMGN 0.88 0.68 0.77 1.00 0.77 0.83 0.73 0.45 0.78 0.59

WFC 0.75 0.81 0.89 0.77 1.00 0.87 0.83 0.45 0.83 0.27

HRG 0.70 0.83 0.93 0.83 0.87 1.00 0.86 0.62 0.72 0.29

V 0.64 0.63 0.87 0.73 0.83 0.86 1.00 0.68 0.57 0.10

PFE 0.25 0.43 0.69 0.45 0.45 0.62 0.68 1.00 0.19 0.23

PEP 0.86 0.76 0.69 0.78 0.83 0.72 0.57 0.19 1.00 0.61

CHL 0.66 0.37 0.14 0.59 0.27 0.29 0.10 0.23 0.61 1.00

Figure 2.10: (Left) Correlation matrix over 20 stocks (out of 87), (Right) An example of corre-
lation matrix

Also we compare and plot graphs to check the correlation matrix classifies relationships of

each stock trend. In addition, we identify which stocks belong to which industries. The correlation

coefficient between the stocks in fig. 2.11 is determined over the 420 trading days of 2 years

using (see in fig. 2.10 left). The result agrees with the visual impression of the compared time

series. The difference in co-movement is hardly surprising, given the fact that both Depot (HD)

and Amgen (AMGN) main business activity is consumer goods and healthcare, respectively.

Also many studies show that both consumer goods and healthcare sectors (especially, pharma)

have been high correlated [38]. Therefore, it is likely to be affected by cross-industry factors.

However, HD (Home Depot) and PCLN (Booking Holding) belong to the same industry, so they

are less likely to make similar moves. The correlation coefficient reflects only the degree of linear
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Figure 2.11: A comparison between the daily (normalized with z-score, reflected 87 samples
of mean) adjusted closed price for Home Depot (HD)/Amgen (AMGN) (left) and Home Depot
(HD) / Booking Holding (PCLN) (right) during 2013.01 2̃014.12. The correlation of HD AMGN
and MO PFE are 0.63 and -0.26, respectively.

relationship between the movements of two different stocks. The information of this matrix can

be explained by many possible reasons. First, industries producing the same inventories tend

to form groups, because they are competitors and affected by the same environment in the

stock exchange. And the existence of complementary among firms, IT industries can be a clear

example. Intel develops processors used by computers designed by IBM and HP, while they use

programs designed by Microsoft.

Industry Acc F1 Mcc
Information Technology 0.5444 0.4949 0.1216

Healthcare 0.5501 0.4658 0.1188
Utilities 0.5659 0.6348 0.1288
Concumer 0.5313 0.4595 0.1186
Industrials 0.5500 0.4362 0.1130
Financials 0.5844 0.5238 0.1583
Energy 0.5643 0.2878 0.1271

Telecommunication Services 0.6033 0.4000 0.2180
Average performace 0.5617 0.4629 0.1380

Table 2.2: Performance of the same industries. the average performance underperform Adv-
ALSTM method (0.572, ACC)

However, stocks in the same industry group are not always correlated (see. Fig. 2.11). This is

because the current classification of industries is not perfect and is still in the research phase [39].

Moreover, we select stocks between the same industries to check performance in table 2.2.

Because it is needed to consider identifying appropriate groups of stocks, we adapt Hierar-

chical clustering (HC) methods. HC do initial clustering and construct a dendrogram, where the
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Figure 2.12: Dendrogram of Hierarchical clustering results

centroid clustering is used and the similarity is computed by the Euclidean distance between

features. Table 2.3 shows the results of HC at 3 cluster. We also compare the performance of

HC quantitatively and qualitatively.

Fig. 2.12 is illustrated each of stock distance on dendrogram. We can easily understand how

each stock has relationships. Fig. 2.13 show that how well HC clustered. We select and plot

several stocks to visualize the performance of clusters. It’s obvious stocks in the same industry

are highly correlated and has similar trends. But stocks in different industries are less correlated

than same industry. We show that the HC is well-performed. The need to calculate the distance

Stock list

Cluster 1
(skyblue)

BP, XOM,TOT, UTX,IEP, BA, MA,SPLP,GE, UPS, PCLN, DHR, V, GOOG,
JPM,BAC,AGFS,CODI,D,HON,HRG,CMCSA,LMT,FB,SNP,SLB,BUD,ORCL,
RDS-B,CAT,MDT,MMM,WFC,DIS,SRE,GD,NVS,NGG,MRK,NEE,REX,JNJ
,MSFT,AAPL,CHTR,UNH,ABBV,TSM,PPL,AEP,DUK, PEP,INTC,MO,
BRK-A,AMGN,CELG,HD,PG

Cluster 2
(pink) PICO,PM,MCD,BSAC,TM,HSBC

Cluster 3
(yellow)

C,BBL,BHP,BCH,PFE,AMZN,ABB,CVX,UL,UN,CHL,CSCO,WMT,
EXC,SO,PCG,T,VZ,BABA,PTR,KO,SNY

Table 2.3: Result on hierarchical clustering. See fig. 2.12 to match colors in this table index

between different stocks in the financial market has been mentioned. We adopt the dendrogram

constructed into m groups. This multivariate analysis method is designed to extract information

about the number of key factors that characterize the dynamics of the investigated system and

the composition of groups in which the market is essentially organized.

We apply the groups into multi-task learning to a problem of stock prediction. We consider
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Figure 2.13: (Top) trends of UNH, MSFT, APPL in cluster 1, (Middle) trends of XOM, BP,
TOT in cluster 1, (Bottom) Comparison of farthest distance from HC

87 assets, listed in S&P500 from the NYSE. Finally, we plug into our baseline algorithms, Adv-

LSTM.

2.3.2 Selection top s neighbors from affinity matrix (Correlation, HSIC)

We also introduce another selecting method which is selection top s neighbors from an affinity

matrix using correlation or HSIC and utilize adjusted closing price from end of day with n stocks.
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Figure 2.14: Architecture of choosing n neighbor affinity matrix

Adjusted closing price amends a stock’s closing price to accurately reflect that stock’s value after

accounting for any corporate actions such as dividends and distributions and rights offerings etc.

It is considered to be the true price of that stock and is often used when examining historical

returns or performing a detailed analysis of historical returns. We generate affinity matrices with

correlation or HSIC and select a stock for sorting descending order. After that, our proposed

method chooses s+1 stocks. In addition, we experiment with additional method based on affinity

neighbor. Fig. 2.14 show that process of affinity neighbor method. This is a technique to search

for a stock. After sorting the correlation with the stock in descending order, select n with high

correlation. Selected n stocks are used for learning together and the method is repeated 87 times.

For example, we extracted 5 stocks (Microsoft, Amazon, Britsh petroleum, Walmart, ACE) that

have a high correlation with Apple, the first stock, and trained them together. This method also

outperforms Adv-ALSTM model at HSIC matrix selected top 40 high correlated neighbors. The

details are described in table 2.7.

Affinity Matrix

Stock A

Stock C

Prediction AModel A

n

Selecting Method

𝑛 Stock prices
End of day (EOD)

Stock B
Prediction BModel B

Group a

Stock E

Stock D

Group b

Model C

Model D

Model E

…

Prediction C

Prediction E

Prediction D

…

Figure 2.15: Training methods

Fig. 2.15 is described as a sequence of our training methods. Note that each stock has their

weight and share the weight parameters in a same group.
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2.3.3 Loss function

The baseline, Adv-ALSTM has objective function Γ as follow:

S∑
i=1

l (ys, ŷs) +
α

2
‖Θ‖2F , l (ys, ŷs) = max (0, 1− ysŷs)

The first term is a hinge loss, which is widely used for optimizing classification models (more

reasons of choosing it is further explained at the end of the section). The second term is a

regularized on the trainable parameters to prevent overfitting. However, we know that simple

hinge loss leads convergence and performance than proposed by baseline loss function with

various experiments. Thus, we adopt hinge loss in all experiments.

2.4 Experiments

2.4.1 Experimental Settings

Dataset We also follow Feng [35] dataset to compare performance results exactly. We adopt

to predict the Standard & Poor’s 500 (S&P 500) index and its individual stocks listed on the

New York Stock Exchange (NYSE) from ACL18 [40]. ACL18 contains 87 high-trade-volume in

U.S stock market. Detailed statistics of training, development (tuning) and test sets are shown

in table 2.4. Also, ACL18 is end of day (EOD) data and each stock has 5 open, high, low, close,

Train Validation Test
# of day 654 77 121

#of positive/negative GT 331 / 323 46 / 31 64 / 57

Time interval Jan.01.2014
∼Aug.01.2015

Aug.02.2015
∼Oct.02.2015

Oct.02.2015
∼Jan.01.2016

Table 2.4: Explanation of S&P500 dataset. There are 87 assets removed weekends, public holidays
and lack historical prices. Also, we adapt Feng’s split train, validation and test ways.

volume, adjusted close price (OHLCV). We only use adjusted closing price to generate affinity

matrices. But, we utilized all columns to build the model (Details are described in table. 2.1).

Baselines We compare prediction performance on same dataset as follow:

• LSTM is Long Short Term Memory networks [41]. We tune three hyper-parameters, num-

ber of hidden units (U), lag size (T );

• ALSTM is the Attentive LSTM [42], which is optimized with normal training. Similar as

LSTM, we also tune U , T ;

20



• Adv-LSTM is proposed by Feng [35]. It is also same as ALSTM;

Evaluation methods We evaluate the prediction performance with three metrics, Accuracy

(Acc), F1 score [43], and Matthews Correlation Coefficient (MCC) [44] of which the ranges are

in [0, 100] and [ -1, 1]. These methods are used as a statistical measure of how well a binary

classification test correctly identifies. The formulas for evaluation are as follows:

• Accuracy is the number of correctly predicted data points out of all the data points. it

is defined as the number of true positives and true negatives divided by the number of

true positives, true negatives, false positives, and false negatives. A true positive or true

negative is a data point that the algorithm correctly classified as true or false, respectively.

Accuracy can be formulated as = TP+TN
TP+TN+FP+FN

• F1-score is a measure of a test’s accuracy. It considers both the precision p and the recall

r of the test to compute the score: p is the number of correct positive results divided by

the number of all positive results returned by the classifier, and r is the number of correct

positive results divided by the number of all relevant samples. F1-score can be formulated

as 2× 1
1

Precision+
1

Recall
= 2× Precision × Recall

Precision+ Recall

• MCC takes into account true and false positives and negatives and is generally regarded as

a balanced measure which can be used even if the classes are of very different sizes.[3] The

MCC is in essence a correlation coefficient between the observed and predicted binary clas-

sifications; it returns a value between 1 and +1. A coefficient of +1 represents a perfect pre-

diction, 0 no better than random prediction and 1 indicates total disagreement between pre-

diction and observation. MCC can be formulated as TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

where, TP = True positive; FP = False positive; TN = True negative; FN = False negative;

Precision= TP
TP+FP ; Recall = TP

TP+FN .

The higher the value of the metric, the better the performance. Also, we valid our performance

by running market simulation.

2.5 Results

2.5.1 Performance comparison

Table 2.5 show the prediction performance of compared methods on test dataset regarding

Acc, F1 score and MCC, respectively. When we see table 2.5, there are several observations:

Table 2.5 show the prediction performance of comparing methods on the test dataset regard-

ing Acc, F1 score and MCC, respectively. When we see table 2.5, there are several observations:
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HC Adv-ALSTM on 3 number of clusters yield the best performance in Acc and MCC ways.

HC Adv-ALSTM improve performance 1.66% and 40.3% on test data with Acc and MCC,

respectively. Our proposed method obviously enhances prediction performance in terms of effec-

tiveness of underlying data [45]. In table 2.5, we show that the average test performance when

Methods Acc F1 score MCC Remarks
LSTM [17] 0.53 0.5124 0.0674±5e-3
ALSTM [42] 0.54 0.5324 0.1043±7e-3

Adv-ALSTM [35] 0.5720±—- 0.5542 0.1483±—–
HSIC adv-ALSTM 0.5767±0.011 0.5917 0.1219 Top 40 neighbors from HSIC
HC adv-ALSTM 0.5825±0.005 0.5663 0.1886 3 number of cluster

Table 2.5: Performance comparison on five different methods

the method performed best in the verification set at 10 different runs. HSIC and HC stand

for Hilbert-Schmidt Independence Criteria and Hierarchical Clustering, respectively. Also, our

experiments on various numbers of clusters. HC, ends when all clusters are connected. We can

control the number of clusters by setting thresholds. Fig. 2.16 are examples dendrograms based

on different threshold.

Figure 2.16: Dendrogram of clustering results based on threshold

Most of the performance is yielded on correlation matrix (See in table 2.6). Results of Acc

and MCC evaluation on 3 clusters are the best. But cluster 8 outperform other clusters in F1

score.

Correlation matrix HSIC matrix
number of Test Acc F1 score MCC Test Acc F1 score MCC
cluster3 0.5825 0.5663 0.1886 0.5533 0.4871 0.1175
cluster4 0.5765 0.5463 0.1525 0.5644 0.4869 0.1178
cluster5 0.5623 0.5423 0.1454 0.5613 0.5047 0.1181
cluster8 0.5686 0.5797 0.1299 0.5613 0.4961 0.1119

Table 2.6: Comparison in 2 affinity matrices. 3 number of clusters outperform other # of cluster.
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Correlation HSIC
Top s neighors Acc F1 Mcc Acc F1 Mcc

10 0.5669 0.5065 0.1170 0.5548 0.5124 0.1024
20 0.5643 0.5161 0.1273 0.5577 0.5254 0.1244
30 0.5612 0.5205 0.1264 0.5579 0.5123 0.1232
40 0.5462 0.4704 0.1253 0.5767 0.5917 0.1219

Table 2.7: Comparison in 2 affinity matrices. Selecting top 40 neighbors outperform with respect
to Acc and F1 score.

We also compare the performance with selections s neighbors. Table 2.7 show the perfor-

mance with 2 types affinity matrices. Selecting top 40 neighbors outperform other number of

neighbors with respect to Acc and F1 score. From table 2.7 and 2.6, we need to investigate

causality between 2 stocks. We adopt Granger causality method. We check causality for 87

Figure 2.17: (Left) price trends of Danaher and Honeywell company, (Right) Stock lists of bi-
directional causalities

stocks and there are 11 bi-directional causalities. Although most of the stocks are same indus-

try, DHR (Danaher), HON (Honeywell) are not same industry. However, the stock trends are

highly correlated (see fig. 2.17). But we can find clues in the financial report for 2 companies,

10-K in 2015. DHR and HON are similar market caps (44th and 48th, respectively). Danaher

produces retail, commercial, petroleum, environmental monitoring and leak detection system.

In case of HON produce Refinery materials (equipment) and consulting services to efficiently

produce petroleum. we can see Honeywell is producing parts that require Danaher.

2.5.2 Market simulation

To further evaluate the performance of our proposed method for extreme market prediction,

we simulate a prediction-based trading to test whether the predictions made by the methods can

make profit. We test our performance real stock trading in a virtual market simulator and follow
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Dyckman [46]’s strategy, which copies the behavior that a virtual market participants use our

model to get earns in a simple way. If the model predicts that the price of the stock will increase

the next step, the virtual trader will take a long position, vice versa. All strategic returns in

this section are calculated as transaction costs and slippage, and in the real world, we can focus

on the predictive power of the model itself. Thus, We set transaction costs (taxes, commissions)

as $0.00311 per a stock and slippage as 0.15% for each transaction. We follow rules of U.S.

Securities and Exchange Commission (SEC) and Goldman Sachs [47, 48]. Cumulative rate of

return is the aggregate amount that the investment has gained or lost over time, independent of

the period of time involved. Accuracy of models can only measure the ability of the classification-

based prediction, which correspond to ranges of future return, while what actually matters in

market practice is the profitability, which is correlated to the amount of rise or fall.For example,

profit made by two correctly predicted samples maybe absorbed by loss caused by one incorrectly

predicted sample, if the actual amount of the rise or fall in the future of the incorrectly predicted

sample is sufficiently large. cumulative returns can be formulated as follow:

∑n
n=0

(
Πt

t=0
Rtnt+1,n

Rtnt,n
− 1
)

totalnumberofstock
,Rtnt =

Pricet,n
Price t−1,n

(II.6)

When our proposed method well predict, Returns can be calculated as positive ratio, vice versa.

After that, we product the return ratios step by step and record those. We simulate virtual

investment during 3 months (Oct.02.2015 ∼ Jan.01.2016).

To compare against conventional momentum strategies in the finance market, we also adopt

the following benchmarks:

• Long or short only strategies means that output of prediction is all positive (1, up) or

negative (-1, down).

• Randomly chosen ground truth is randomly buy and sell strategy

• Moving Average Convergence Divergence (MACD) indicator is a trading indicator used in

technical analysis of stock prices, created by Gerald Appel [49]. It is designed to reveal

changes in the strength, direction, momentum, and duration of a trend in a stock’s price.

In Fig. 2.18, our proposed method outperform both previous state-the-of-art method and tech-

nical strategy and baseline, Adv-ALSTM. Also, cumulative returns for random, all long and

short strategies is less than 1.00%. In addition, we can see from 2.18 that all prediction-based

simulations are significantly more profitable than the randomly buy and sell strategy We can

see that referring to the cumulative rate of return chart for performance comparison to show
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Figure 2.18: Cumulative Returns

the effect of predicted performance on 1.6 % improvement. However, Adv-LSTM and MACD

strategies yield 1.1% and 1.04, respectively. Thus enhancing prediction performance as 1.6% is

meaningful. It implies that prediction models involved can capture suitable trading points to

make profits. Among these prediction models,all simulations based on predictions from machine

learning and deep learning models result in better returns than others. If we have 10 million

dollar, out excess return is approximately $600,000. Knowing the real rate of return of invest-

ments is also important. We can conclude from these results that models using deep learning

methodologies have better capabilities of capturing profitable and stable signals than traditional

methods.
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CHAPTER III

Conclusion

We show that hierarchical clustering is meaningful for enhancing stock prediction perfor-

mance by selecting a topological space for clusters of stocks traded on a stock market. It also

describes the research of affective factors, by defining a specific group of stocks. The space and

the hierarchical structure regarded with it, is achieved by using information on historical stock

price only. This result means that historical stock prices have valuable and detectable economic

information. Also, our proposed method outperforms Adv-ALSTM. Besides, the performance

by considering both qualitative and quantitative features in financial reports is better than that

of only considering the qualitative or quantitative features. In the future, we would like to in-

vestigate the effect of other industry detail features of global factors and industry instead of

using historical dataset and local feature. Finally, in the perspective of the predicting direction

of stock price, it will be worth to adopt the representative feature to make a classifier in the

future.
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Appendix

Ticker Name Industries
AAPL Apple Inc. Information Technology
ABBV AbbVie Inc. Healthcare
AEP American Electric Power Utilities

AMGN Amgen Inc. Healthcare
AMZN Amazon.com Inc. Consumer goods
BA Boeing Company Industrials
BAC Bank of America Corp Financials
C Citigroup Inc. Financials

CAT Caterpillar Inc. Industrials
CELG Celgene Corp. Healthcare
CHTR Charter Communications Consumer goods
CMCSA Comcast Corp. Consumer goods
CSCO Cisco Systems Information Technology
CVX Chevron Corp. Energy
D Dominion Energy Utilities

DHR Danaher Corp. Healthcare
DIS The Walt Disney Company Consumer goods
DUK Duke Energy Utilities
EXC Exelon Corp. Utilities
FB Facebook, Inc. Information Technology
GD General Dynamics Industrials
GE General Electric Industrials
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GOOG Alphabet Inc Class C Information Technology
HD Home Depot Consumer goods
HON Honeywell Int’l Inc. Industrials
INTC Intel Corp. Information Technology
JNJ Johnson & Johnson Healthcare
JPM JPMorgan Chase & Co. Financials
KO Coca-Cola Company (The) Consumer goods
LMT Lockheed Martin Corp. Industrials
MA Mastercard Inc. Information Technology
MCD McDonald’s Corp. Consumer goods
MDT Medtronic plc Healthcare
MMM 3M Company Industrials
MO Altria Group Inc Consumer goods
MRK Merck & Co. Healthcare
MSFT Microsoft Corp. Information Technology
NEE NextEra Energy Utilities
ORCL Oracle Corp. Information Technology
PCG PG&E Corp. Utilities
PEP PepsiCo Inc. Consumer goods
PFE Pfizer Inc. Healthcare
PG Procter & Gamble Consumer goods
PM Philip Morris International Consumer goods
PPL PPL Corp. Utilities
SLB Schlumberger Ltd. Energy
SO Southern Co. Utilities
SRE Sempra Energy Utilities
T AT&T Inc. Telecommunication Services

UNH United Health Group Inc. Healthcare
UPS United Parcel Service Industrials
UTX United Technologies Industrials
V Visa Inc. Information Technology
VZ Verizon Communications Telecommunication Services

WFC Wells Fargo Financials
WMT Wal-Mart Stores Consumer goods
XOM Exxon Mobil Corp. Energy
ABB ABB Ltd Industrials
AGFS AgroFresh Consumer goods
BABA Alibaba Consumer goods
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BBL BHP Basic Materials
BCH Banco de Chile Financials
BHP BHP Group Basic Materials
BP BP p.l.c. Energy

BRK-A Berkshire Hathaway Financials
BSAC Banco Santander-Chile Financials
BUD Anheuser-Busch Consumer goods
CHL China Mobile Telecommunication Services
CODI Compass Diversified Industrials
HRG Heritage NOLA Bancorp Financials
HSBC HSBC Holdings Financials
IEP Icahn Enterprise Industrials
NGG National Grid Utilities
NVS Novartis AG Healthcare
PCLN Booking Holding Consumer goods
PICO PICO Holdings Utilities
PTR PetroChina Energy
RDS-B Royal Dutch Shell Energy
REX REX American Resources Energy
SNP China Petroleum Energy
SNY Sanofi Healthcare
SPLP Steel Partners Holdings Industrials
TM Toyota Consumer goods
TOT TOTAL Energy
TSM Taiwan Semiconductor Manufacturing Information Technology
UL The Unilever Group (UK) Consumer goods
UN The Unilever Group (Netherlands) Consumer goods

Table 4.1: Lists of companies. Ticker is a symbol that arrange-
ments of characters representing particular securities listed on
an exchange or otherwise traded publicly.

We adopt Industry Classification Benchmark (ICB) methods by Dow Jones Index (DJI). The

ICB is classified into 10 industries and 18 super-sectors. Our dataset consist of 9 industries and

14 sectors. To simplify the problem, we utilize only 9 industries information.
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