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Abstract

This study aims to predict the dimensional quality of Direct Energy Deposition (DED) process on
single and multi-track which are basis for the final product via machine learning. DED is a complex
process of spraying powder onto a substrate and melting the material through a laser. Many process
parameters (Laser power, Powder feed rate, etc.) affect output quality such as geometry (width, height,
angle), mechanical properties (relative density, tensile strength, etc.). In order to see this effect, the DOE
method, in which only one result is correlated with multiple factors, is used before, but machine learning
is more effective in additive manufacturing in which multiple qualities needs to be predicted
simultaneously.

In this study, a predictive model was generated through machine learning by using process parameters
(Laser power, Powder feed rate, Coaxial gas) and dimensional qualities(Width, Height, Angle for single
track, Height for multi-track) for the input and output data, respectively. After collecting the data, we
trained the model using the five algorithms, Support Vector Machine(SVM), Random Forest(RF),
Gradient Boosting Regression Tree(GBRT), and Artificial Neural Network(ANN), most commonly
used as regression models in machine learning. After examining and comparing each generated
prediction model through a goodness-of-fit test, the model generated using ANN was finally selected.
When the selected model predicted the height of the multi-track most prominently, the r-square was as
high as 96.63%. Afterwards, more than 4000 new datasets were created to derive optimal process
parameter that met the dimensional objectives. The results are 300 W, 3.7 g/min, and 6 1/min for laser
power, powder feed rate, and coaxial gas, respectively.

By using machine learning to predict output more accurately and faster than conventional methods,
optimal process variables can be effectively derived in terms of time and cost. And, ultimately, it can
be a cornerstone in researching future technologies that change process parameters in real time and

monitor output results.



WUMisT
ULSAN NATIONAL INSTITUTE OF
SCIENCE AND TECHNOLOGY



Contents

AADSITACT c.evveoeeeee ettt ss st et s s8R [
COMERTILS w..oveovererceseeee st et ss s es ettt as s e85 i
LAST OF FIZUIE 1ottt sttt sttt sttt ili
LAST OF TADIES ...vvvveviveieriesiesieiisies st ss s st sss sttt s sttt sans iv
L. TIEEOAUCTION oottt ettt bnes 1
1.1 BACKEIOUNG ..ottt st bbbt sneas 1

1.2 RESEAICN ODJECTIVE. ...ttt ettt ae bbb ae e banes 2

1.3 OULHINE ..ottt 3

2. BaCKZIOUNA TESCAICH ......vvecvieeiiieiiieisie ettt s s s bbb b ssssnsssnsessnsnes 4
2.1 Classification Of MEtAl AM..........cocveueurieriereieieiineireise et ssess st ss s ssse s sasssseens 4

2.2 Process parameters in DED ..ottt ettt st 6
2.2.1 Study of process parameter in SUS3TOL.........ooiueiiriirireeireeireeiree et 8

2.3 Classification of Machine Learning Regression AIZOrithms...........occveeernieeneninesinisineesinsssssssnnens 8

2.4 PLEVIOUS WOTK . ..ocvtriteierieeiiecieiisie ettt sttt ss s s st nnes 13

3. MEtNOAOIOZY ..ottt sttt bbbt s s ssenses 22
3.1 Experiment equipment and material USEd...........c..ceuevevivrrurreereieriineieeessessssiseesesse s sessessssessessansns 22

3.2 DAtA SCLECTION ..ottt ss sttt st st 23

3.3 Data collection and POSt-PrOCESSINE.........cvureurureeureeirieirieiree st tsestsesssess et bsesssess st seeasseens 25

3.4 Generating predictive MOAEL ... ...ttt sees 27
3.4.1 Predictive model of Multiple Linear Regression(MLR)........ccccocoirriurrereeriererneeesennensensinnnns 28

3.4.2 Predictive model of Support Vector Regression(SVR) ........ccceivirreeeeeneernerneieseneensensnnnns 28

3.4.3 Predictive model of Gradient Boosting Regression(GBR)......c.cocvcveuvevececneinencccncencnnee 30

3.4.4 Predictive model of Random Forest Regression(RFR).........ccvvvevriernrineiereineseieienens 31

3.4.5 Predictive model of Artificial Neural NetWork(ANN) .......cccccevervrrrirreeneenrererreiesessensssnnans 32

A RESUIL .ottt AR na s 34
5. Conclusion and CONITDULION.........ceuvurieieeirerieieieieeeieesie ettt sa st s s s eeassens 37
RETETEICE ....cvvveeere sttt bbb s bbb s bbb s s s ssnsanen 39
Appendix A : MX-600 SPECITICALION.........cevvieereereereritesieeeeseese s iesesses st s eeseesessas s s sesesessassassessessssessassanes 42
Appendix B : Fatigue test result in previous WOTK ........c.cececencreneeincnineeneeeeneiseiseeeeeseseisessesessesenne 42
Appendix C : Dimensional quality data from all paramters..........coeeeveureureerereeenerneineereneeneneiseeseeeeeeene 43
Appendix D : Python code of AIGOTItRIMS .........ccouiviviiveeeeieeieicreeeeese st ses s seses e sessessassanes 48
Appendix E : Model comparison(ANN vs MLR) using scatter and plot........c..cccoeveeeeeererverrerneeereerennennans 49



List of Figure

Figure 1.1 3D Printing metal market size 2014 — 2025 ......cocovoiiiieiiiereene e 1

Figure 1.2 3D model of single track(a), multi-track(b), and 3d object(C)......cc.ccerrvrivererierirrerieenennenn 2

Figure 1.3 FIOW Of @XPEIIMENL.....c.viiiiiiiriiieiisiisie e r e nne e 3

Figure 2.1 The schematic diagram of Powder Bed Fusion(PBF) .........cccccooiiiiiiiiiiie 5

Figure 2.2 The schematic diagram of Direct Energy Deposition(DED)..........cccccovviiiiiiiiiiiiniieiee, 6

Figure 2.3 The schematic illustration of classification and regression in ML ..........cccccovvieieiiinnennne. 9

Figure 2.4 Surface plot melt pool depth.........c.cociiiiiiiiiiii e 9

Figure 2.5 The schematic illustration of SUPPOIt VECLOT T€EIESSION .....veeverrvriiiiiriieiee e 10
Figure 2.4 Single regreSSION tr. ... .ccuuiitiiiiiiiieiee e stee st ettt ettt e e be e sbe e b e sbeeseneanneans 11
Figure 2.5 Structure of Artificial Neural NetWork(ANN).......ccociiiiiiienieiiesie e 12
Figure 2.6 3D model of dOUDIE PIPE ....ccvviiiiiiiiiiiiie e 13
Figure 2.7 Experiment process of process parameter OptimiZation .............ceevveeeeenieereeseesinesinesnesnes 14
Figure 2.8 Actual deposited dimension and cross-section of single track ............ccoceviriiienenieenennenn 15
Figure 2.9 Width and Height of single track according to Laser POWEr ........cccccovvrveieienieneneenneneenn 16
Figure 2.10 Width and Height of single track according to powder feed rate at 350W............cccuenee. 16
Figure 2.11 Width and Height of single track according to Coaxial gas rate...........cceccevveverereeinennnnn 17
Figure 2.12 Actual deposited MUItI-traCK.........ccuiiiiiiieie e 17
Figure 2.13 Cross section of MUI-racK.......ccoiiiiiiiiieic e 18
Figure 2.14 Actual deposited cube SPECIMENS ........cvvvrveeiviriiiiieie ettt 19
Figure 2.15 (a)Tensile, (b)Impact, (c)Fatigue specimens of optimal parameter ............ccccererverernnenn 20
Figure 2.16 S-N curve of fatiZUe LEST.....ccuuiieiririiiie it ne e 21
Figure 2.17 (a)Direct energy deposition of prototype and (b)final prototype..........ccceeveerverierienienne. 21
Figure 3.1 InSstek IMX =000 .........coitiiiiiiiiiieiie ettt r e b sbe e sae e e e neaes 22
Figure 3.2 SEM image of SUS3TOL POWAET ......ccveiiiriiiiiiiieeesieee e 23
Figure 3.3 The schematic illustration of support VECtor TE€ZIeSSION ......evvvervirrereerrereenresreeeesre e 24
Figure 3.4 Deposition of (a)single track and (b)multi-track .........cccccoovvriveniiinieiie e 26
Figure 3.5 Cross section of (a)single track and (b)multi-track ...........ccoooiiiiiiiniiiiii e, 26

Figure 4.1 Scatter of multi-track height between actual and predicted value in (a)ANN and (b)MLR.35
Figure 4.2 Plot of multi-track height value in () ANN and (D)MLR ........ccccooviiiiiiiiiiceeee 35



List of Tables

Table 2.1.1 Classification of Metal Additive Manufacturing...........ccoccvvvveiininieninenie e 4
Table 2.2 Process parameter in DED ..........cooioiiiiiiiiice e 7
Table 2.3 Process parameter study of SUS316L in DED........ccccooviiiiiniiciineeree e 8
Table 2.4 Value 0f ProCeSS PATAMETET ...vevuvviiiiieiiieiiieiesieessieeesaeesbeeessreesbeesnbee e sbeessbeeestaessbeeeseseesnees 14
Table 2.5 Optimal process parameter of single track..........ccoceviiiiiiiiini e 17

Table 2.6 Width and Height of Single and multi-track according to powder feed rate at 350W,71/min18

Table 2.7 Dimension of cube specimens according to powder feed rate ...........c.cccevcvereiiieeiiniieniene. 19
Table 2.8 Relative density of cube specimens according to powder feed rate..........cccoceevvvevieiieinennne. 19
Table 2.9 Final Optimal ProCess ParamEter........c.ceiuierueereeiieiieareeieesieesteestee et sreesreesreeseeesanesnnesnnes 20
Table 2.10 Result of Tensile test and comparison to Castings .........ccevveererrerriiiriiieiiene e 20
Table 2.11 Result of Impact test and comparison to Castings.........ccuerveererriiriienieieieenee e see e 20
Table 3.1 Particle size 0f SUS3TOL POWAET ....ccviiiviiiiieiieiie ittt 23
Table 3.2 Classification and range of Input data...........c.ceviiiiiiinieinc e 23
Table 3.3 Target value of OULPUL dALA........ciiieeiiiieee e e 25
Table 3.4 Set Of INPUL AALA ......veiveeiiiicie et bbb e nenre e 25
Table 3.5 FOrmation Of datal.........cccoiiiiiiiiieiiiie e ne e 27
Table 3.6 Normalized and randomly shuffled data ............ccoceiiiiiiininii e 27
Table 3.7 Model accuracy 0f MLR ........ccoiiiiiiiiiie et 28
Table 3.8 Model accuracy Of SVR .....ociiiiiiiii e e 29
Table 3.9 Model accuracy of GBR.........ccciiiiiii e 30
Table 3.10 Model accuracy of REFR .......cciiiiiiiiii e 31
Table 3.11 Model accuracy 0f ANN........oiiiiiiiiiieiie ettt b e sb e sb e seee s esaneens 32
Table 4.1 Comparison MOAEl ACCUTACY ........ccoviiriieiiiirieie e 34
Table 4.2 Description of optimal predictive model............ccoiviiiiiniiiic e 36
Table 4.3 Optimal process parameter from ANN predictive model...........cccoovvvveriiiiiiiinnie 36



1. Introduction

1.1 Background

"In order for the manufacturing industry to survive, we need to build an Al analytics platform to
improve maintenance costs and productivity," said Altmann, chief executive officer at SAS(Statistical
Analysis System). The manufacturing sector, which was classified as secondary industry, changed its
meaning with the advent of the fourth industry, called industry 4.0. Nowadays, the efficient
management of vast data and fast decision-making determines the business of the enterprise, so the
manufacturing sector also faced the reality of ‘Digital transformation’, starting with the 4th industrial
revolution. This revolution is important to the existing manufacturing technology, but it is even more
important for the additive manufacturing technology, which is considered an essential technology of
the Industry 4.0 with the strength of multi-category small-volume production.[1]

AM is a technology that creates 3d shapes by joining layers based on 3d data. The AM is classified
according to the material used, its form, and the methods of joining. In addition, since the category of
materials is wide, various materials can be used[2-3]. Typical examples are plastic, ceramics,
composites, metal and glass. Among them, the method of using metal is called metal AM, and this
technology is applied to various industries such as automobile, aerospace, shipbuilding, and medical.
According to statistics from ‘Grandviewresearch’, it can be seen that the market size of metal AM is
rapidly increasing. The most popular methods of Metal AM are Powder Bed Fusion (PBF) and Direct
Energy Deposition (DED), and also called Selective Laser Melting (SLM) and Direct Metal Laser

Sintering (DMLS) respectively[2-3].
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Figure 1.1 3D Printing metal market size 2014 — 2025

Since the method of Metal AM is basically a method of melting and joining metals and operating in
an automated manner, it is important to set various process variables and external factors such as
1



internal temperature or material quality. In order to deal with such a complicated process, research
using various analysis methods has been conducted.

Recently, research on applying Artificial Intelligence(Al) technology to Metal AM in connection
with the 4th Industrial Revolution is actively underway. Machine Learning(ML), a sub-area of Al,
trains data through algorithms based on statistics and creates models between data. Therefore, it is
used in metal AM to make models for predicting the quality of defects and mechanical properties[4-
6]. Popular example is to predict defects such as delamination and splatters in products by
Convolutional Neural Network(CNN) images analysis using data obtained using a thermal imaging

camera. There is research[7].

1.2 Research objective

The aim of study is to generate a predictive model of dimensional quality using machine learning to
analyze the correlation between key process parameters and geometrical qualities. In DED process,
various process parameters influence many geometrical qualities. Among them, Three key process
parameters, Laser power(LP), Powder feed rate(PFR), Coaxial gas rate(CGR), were selected to conduct
the experiment. Grounded on the fact that Multi-track is aggregations of single track and 3D object is
aggregations of multi-track, Geometrical quality of single and multi-track is directly related to the
quality of the printed product. By analyzing relationship between key process parameters and
geometrical qualities of single track and multi- track, appropriate process parameters can be set
according to the desired quality. Furthermore, this study can be used as a basic study in creating
predictive models for dimensional quality as well as other qualities such as micro-structure or

mechanical properties.

a.

Figure 1.2 3D model of single track(a), multi-track(b), and 3d object(c)



1.3 Outline

This paper consists of a total of four chapters. Chapter 1 describes the introduction and purpose of
this research. In Chapter 2, we will describe the techniques and machine learning algorithms used in
the study, and previous research that motivated this study. In Chapter 3, the experimental equipment
and materials used will be explained, and then the data collection method and data structure will be
explained. After that, we will apply the data to the four algorithms to create a model and compare the
results. After comparison, we will select the final predictive model and find the desired target process

parameter. In the final chapter, we will discuss conclusions, contributions, and future work.
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2. Background research

2.1 Classification of metal AM

In order to classify metal additive manufacturing, there are mainly three criteria. The first is how the
material is prepared and based on this method, it is largely classified into Powder Bed Fusion (PBF)
and Direct Energy Deposition (DED).[8]. And the other two criteria are classified according to the type
of material used and the type of energy source. The type of materials used are typically powder and

wire, and energy sources are laser and electron beam[9].

Powder Laser Selective Laser Sintering(SLS)
PBF  Powder Laser Selective Laser Melting(SLM)
Powder  Electron Beam Electron Beam Melting(EBM)
Powder Laser Direct Metal Tooling(DMT)
Powder Laser Direct Metal Deposition(DMD)
Powder Laser Laser Engineered Net Shaping(LENS)
DED
Wire Laser Wire Laser Additive Manufacturing(WLAM)
Wire Plasma Arc Wire Arc Additive Manufacturing(WAAM)
Wire Electron Beam Electron Beam freeform Fabrication(EBF)

Table2.1.1 Classification of Metal Additive Manufacturing



Powder Bed Fusion(PBF)

PBF using metal powder as a material is generally divided into a place for supplying powder and a
bed for supplying an energy source to melt the powder. After supplying the energy source to the powder
applied to the bed and solidifying it, the bed goes down one layer, and the powder is coated with a roller
again and the process of irradiating and solidification is repeated to create a 3D shape. The mot popular
PBF technologies are Selective Laser Melting(SLM) in which powder is melted using a Co2 laser as an
energy source, and a similar method is an Electron Beam Melting(EBM) using an electron beam as an

energy source.[10-12].

Scanner
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Figure 2.1 The schematic diagram of Powder Bed Fusion(PBF)

Direct Energy Deposition(DED)

In Direct Energy Deposition, a melt pool is instantaneously generated by irradiating a high-power laser
beam or an electron beam onto a metal surface. At the same time, a 3d shape is produced while supplying
metal powder or wire. DED technology is also classified into various types such as Direct Metal
Tooling(DMT), Laser Engineered Net Shaping(LENS), Direct Metal Deposition(DMD), Electron Beam
Additive Manufacturing(EBAM), and Wire Arc Additive Manufacturing(WAAM) depending on the

type of material or energy source used in the same way as PBF[13-15]. The main difference from the



PBF method is that the PBF fills the powder bed with all the powder, while the DED method supplies
powder or wire only to the parts to be stacked. The advantages of DED are, first of all, that metal
powders used in general industries are available and there are no restrictions on the types, so the range
of materials available is wide, such as Titanium, Inconel, Hastelloy, Stainless steel and Copper-Nickel
alloys. In addition, it is possible to laminate with a larger area than other additive manufacturing
technologies, and it is possible to manufacture with excellent mechanical quality with accurate and fine
structure because the melting between materials is perfectly achieved. However, since the surface
quality of the resulting product is poorer than the PBF method, there is a disadvantage that post-

processing is required.
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Figure 2.2 The schematic diagram of Direct Energy Deposition(DED). Reprinted permission from
ref 17. © 2016 Elsevier B.V.

2.2 Process parameters in DED

In the DED process, process parameters play a very important role in creating 3d shapes. The
process parameters are the input values that must be set on the machine before operating the
equipment. The important variables in the DED process are laser power(LP), powder feed rate(PFR),
scanning speed(SS) and coaxial gas rate(CGR). The reason process parameters are important is that

they have a great influence on the quality of the manufactured product, mechanical properties, micro



structure, dimension and other qualities. The magnitude of the effect of each process parameters on

the output result is also different and can vary depending on the material and the equipment used. For

this reason, research on the correlation between process variables and output quality is actively

underway.

Process

Description
parameter
L aser Powder is spilled from the nozzle, and a laser beam with high
power (W) power is irradiated the melt the metal powder.

Powder feed
rate(g/min)

The amount of powder that flows down per minute.

Scanning
speed(mm/min)

the velocity of travel of a nozzle.

Hatching
space(mm)

The overlapping distance between a track and a track.

Beam
diameter(mm)

The diameter of the laser beam being investigated.

It serves to spread the powder evenly with gases sprayed on

CoaX|qI both sides of the nozzle and to prevent the occurrence of
gas(l/min)
plasma.
Powder Small quantities of gas used to spray powder to avoid
gas(l/min) entrapment in shafts; not affecting laminated geometry.

Table 2.2 Process parameter in DED

As an example of related research, Izadi et al. [18] divided the energy density (the product of the

scan speed, hatching distance, and layer thickness divided by laser power) into a total of nine levels in

the DED process to study the correlation with various qualities. The correlation between variables

with dimensional quality, porosity, and compressive stiffness was studied. They concluded that it was

difficult to explain the correlation with nine data.



2.2.1 Study of process parameter in SUS316L

SUS316L is an ultra-low carbon steel and has high temperature strength and excellent intergranular
corrosion resistance in a welded state. For this reason, SUS316L is widely used in the metal AM field
regardless of the method in powder or wire form. As shown in Table 2.3 below, it can be seen that the
experiment is carried out by varying the process parameters according to the equipment used or the

experiment goal. In other words, the process variable should be set differently according to the

environment of use or the quality of materials, and it is important that these data are accumulated.

Powder Process parameter
Size Laser Power Scanning Powder Feed Coaxial
- % speed. rate. gas
[mm/min] [g/min] [l/min]
[19] 2018 300-1000 127-1143 0.9-28.8
" [20] 2019 45-150  500-900 ' 39 Co28
" 21] 0 2017 150600 450 2.5 ' '
2] 2011 4575 180-360  300-900  1.5-45 '
23] 2016 " 1280-2000  800-1250  11-18 4875
' [24] 2017 44149 360 978 10 ' '
" [25] 2019 2253 900 850 45 6

Table 2.3 Process parameter study of SUS316L in DED

2.3 Classification of Machine Learning Regression Algorithms

Machine learning(ML) can be classified into three types: supervised learning, non-supervised
learning and reinforced learning. Among them, supervised learning is one of the most widely and
successfully used machine learning methods. It has input and output data and is used to predict and
output from a given input. Classification and regression are typical examples of supervised learning.
Classification is to predict one of several predefined class labels. Face recognition, number
discrimination, etc. are famous examples. The classification is divided into binary classification
divided into two classes and multiple classification classified into three or more classes. Regression is
the prediction of a continuous number or floating point number. This includes algorithms for
predicting stock prices and making profits.[26-27]. The main difference between classification and
regression is whether the results you want to predict are continuity. To apply these techniques to Metal

AM, regression should be used to predict dimensional values with continuity as in the subject of this



study, and classification should be used to predict defects through images.[28]. Therefore, in order to

make good use of machine learning, it is important for the user to accurately recognize the problem to

be solved, determine what data to collect and refine, and choose which algorithm to use.
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Figure 2.3 The schematic illustration of classification and regression in ML

Multiple Linear Regression(MLR)

Multiple linear regression(MLR) is an extension of linear regression that linearly expresses the
relationship of the dependent variable y to the independent variable x, and linearly expresses the

relationship of one dependent variable for two or more independent variables.
y= W0+W1x1+W2x2+"'+ann+E
Cheng et al.[29] studied the correlation between process variables and depth of melt-pool through

simulation of stacking thin layers of Ti-6Al-4V with Electron Beam Additive Manufacturing (EBAM)

technology. After setting the scanning speed, beam power, and beam diameter as independent

variables and generating a total of 64 samples, the correlation with depth was analyzed through MLR.

Diameter = 0.4 mm

Depth (um)

Velocity (mmis) Power (w)

Figure 2.4 surface plot melt pool depth
9



Support Vector Regression(SVR)

Support Vector Machine is a machine learning method proposed by Vapnik (1996) that can solve
classification or regression problems. Among them, the algorithm used when using the regression
problem is called SVR. To explain SVR, you need to know the concept of Margin. You can think of
Margin as a road for explaining data. In the case of classification, for example, it is to learn to
maximize the width of a function generated to classify two types of data. At this time, samples located
at the margins of are called support vectors. To go back to the problem of regression, regression can
be thought of as the opposite of classification. In the case of classification, if the objective function is
to maximize the width of the road, in the case of regression, the objective function can be set to
explain the data while minimizing the width of the road. There are several hyper-parameters that must
be defined to create the SVR model. First, there are Kernels that help to explain the data by
converting it into a straight line by raising one dimension of the data. In addition, there are gammas
that control how much the model will be affected by the dimension and C values that determine the

width of the road.

Y & :
® Fitted by SVR

O Support Vector
® Data point

- flx)+
’y {X)*E

Figure 2.5 The schematic illustration of support vector regression

Reprinted permission from ref.33 © 2020 Springer Nature Switzerland AG

Gradient Boosting Regression(GBR)
Before explaining the gradient boosting regression(GBR), I will describe the decision tree. Decision
trees are an analysis method in which decision rules are represented in a tree structure to classify or

predict the entire data into several subgroups. In the decision tree, the upper node is called the parent

10



node, the lower node is called the child node, and the node that is no longer branching is called the
terminal node. It is important to select classification variables at every step of forming a tree structure
from a parent node to a child node. The classification variable in the upper node is selected such that

the homogeneity within the node and the heterogeneity between the nodes become the largest.
(a) b,

Ry R,
b,
X; Ra
b,
Ry Rs
X b
(b) Xy< b, |
1
X;< by X< by
o e
R, Rs R,
R, R,

Figure 2.6 Single regression tree

Reprinted permission from ref.34 Copyright © 2015 Elsevier Ltd.

GBR is an ensemble method, one of the machine learning techniques that combines many decision
trees into a powerful model. This is an algorithm that adds a new tree in the direction of reducing the
error between the predicted value and the target value of the previous tree. To this end, the loss
function is defined and the tree to be added next is corrected for the value to be predicted using the
gradient descent method. Important parameters are n_estimator, which specifies the number of trees,
and learning_rate, which controls how strongly the error of the previous tree is corrected[35]. The
larger n_estimator, the more likely the model is to become more complex and overfitting, and the
lower the learning_rate, the more trees need to be added to create a model of similar complexity.

Therefore, it is efficient to adjust the n_estimators first and then find the appropriate learning_rate.

Random Forest Regression

Random Forest Regression (RFR) is one of the ensemble techniques, such as GBR, and is a machine
learning technique that randomly mixes different decision trees to find prediction values. An
important parameter is n_estimator, which determines the number of trees. RFR does not require data
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post-processing and parameter tuning is not complicated, but its performance is excellent. So, It has

been applied in various fields.

Artificial Neural Network(ANN)

An Artificial Neural Network(ANN) means a neural network artificially constructed based on the
working principle of a human neuron to train a computer. Basically, one neuron receives an input (X),
creates an output (Y), and delivers it to the next neuron. In practice, it is passed using an activation
function to produce an effective form of output. The result of multiplying the input value X by the

weight W and adding Bias is the formula for the result[37].

N
Y = f(z XiWyi + 6))
=1

t

6, = j™ node bias

f(w) = activation function

Input layer Hidden layers i Output layer

‘/i 0
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Figure 2.7 Structure of Artificial Neural Network(ANN)

As shown in the figure 2.5 above, the artificial neural network is divided into an input layer, a hidden
layer, and an output layer. The input layer refers to a layer of neurons in which data is initially set, and
the hidden layer is a layer of neurons that is literally hidden without data being revealed. The output
layer is the neuron layer that contains the learned data we want to obtain. Neurons all have various

combinations of weights and bias values, and control the weights and bias values during transmission.
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However, if data is simply transferred from the input to the output, optimization of the data does not
work well. If an error occurs in the target value, the weight is updated and the optimization is

performed while the previous error is transmitted.[38].

2.4 Previous work

Since this study is an extension of the previous study, I will explain the previous study first. . The
research topic was to develop a DED process for 10% cost reduction of double pipe manufacturing for
ships. The double pipe is a passage through which LNG gas flows in the vessel, and is doubled to
withstand the pressure, and is connected by a bridge between the pipes. The conventional
manufacturing process is to manufacture two pipes and weld the inner bridge by welding. When the
two pipes were connected by welding, a person had to work directly, and the space between the pipes
was small, making it difficult to work. When it was manufactured using the DED process, it was
possible to reduce the cost by uniting the existing complex production methods into one. In addition,
in the DED method using an expensive metal powder, the optimization of process parameters was also

conducted to reduce costs.

Bridge

Figure 2.8 3D model of double pipe
13



Process parameter optimization

In order to achieve the objectives of the study, optimization studies of DED process parameters were
conducted for SUS316L used for double pipe manufacturing. Laser power (LP), powder feed rate (PFR),
and coaxial gas rate (CGR) were selected as key process parameters. Using the DOE technique, the
variables were divided into a certain level to measure the results of single track, multi-track, and cube
for each process variable. First, for the most important indicator, dimensional accuracy, the range of
process variables was narrowed according to the dimensional quality of single track and multi-track,
and 3d shapes were stacked to observe microstructure. Subsequently, various mechanical property tests

were conducted to confirm the final selected process parameters.

/ / Single U‘ﬂril =¥ Dimension
| Laser power |
| Powder feed rate | = ‘M/ Overlap U'El =#  Dimension |

| Coaxial gas rate |
' / e | - Dimension| Defects |
Relative density
) |

Optimal process parameter

‘ Tensile test | Impact test | Fatigue test

Figure 2.9 Experiment process of process parameter optimization

Single track

Three process parameter (LP, PFR, and CGR) were selected for each of the six levels with reference
to the literature, resulting in a total of 216 data sets. Based on the generated data, a total of 216 single
track samples were produced, and the cross section was photographed under a microscope to measure

width and height.

Laser power Powder feed rate Coaxial gas rate

[W] [g/min] [1/min]

350 3.5 4
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450 4.5 5

550 55 6
650 6.5 7
750 7.5 8
850 8.5 9

Table 2.4 Value of process parameter

Figure 2.10 Actual deposited (a)dimension and (b)cross-section of single track

The target value of the dimensions of the single track was 0.8 to 1.0 mm in width and 0.17 mm in
height. Since it is difficult to intuitively understand the correlation between process parameters and
results, one process at a time method was used to compare the results with each process parameter. First,
we confirmed the result of height and width for laser power that was intuitively easy to grasp. The laser
power corresponding to the targeted dimension was confirmed to be 350W. Next, when the powder feed
rate was 350~8.5 at 350W, the result was confirmed and satisfactory at 4.5 and 5.5. Lastly, in the case
of coaxial gas, it was not possible to grasp the correlation with the result, so we consulted the equipment
company and selected it as 7. Therefore, the primary process parameters were narrowed to 350 W, 4.5

to 5.5 g/min, 7 I/min.

15



Height [mm]

S
B
o

I
IS
(]

L ]
035 ®
[ ]
0.3 ¢ ° . L [ J
o o0 ® o o°

025 v ® * & o ". ]
02 ° oo b )

. q’. o ° [ ] "
0.15 '.'.0: "" o

[ ] [ ] ° L

0.1
0.05

0

0.8 14 1.6 1.8

Width [mm)]
Laser Power [W] ®350 450 #550 #650 @750 @850
Figure 2.11 Width and Height of single track according to Laser power

0.300

0250 ®
T * 9 00

0.200 oo °
E ¢ ° ®e
%ﬂ s °
= 0.150 o L
= °

. .
LR B
0.100 . e
®
0.050
0.800 0.850 0.900 0.950 1.000 1.050 1.100 1.150 1.200
Width [mm)]

®350,3.5 35045 350,55 350,6.5 ©350,7.5 @350,8.5
Laser power [W], Powder feed rate [g/min]

1.250

Figure 2.12 Width and Height of single track according to powder feed rate at 350W
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Figure 2.13 Width and Height of single track according to Coaxial gas rate

Laser power Powder feed rate Coaxial gas rate

(W] [g/min] [/min]

350 45,55 7

Table 2.5 Optimal process parameter of single track

Multi-track

For more accurate results, the data set was created by resetting the powder feed rate of the 1st optimal
process parameter at 0.1 intervals. In the case of multi-track, the target value was 0.25mm in height,
and the powder feed rate satisfying this was selected as 4.5,4.8. Since the values of laser powder and

coaxial gas rate were determined in a single track, the second optimal parameters were selected as 350W,
4.5,4.8g/min, and 71/min.

Figure 2.14 Actual deposited multi-track
17



Deposition direction

Figure 2.15 Cross section of multi-track

PER Single [mm] Multi [mm]
[g/min] Width Height Width Height
45 0.978 0.133 11.327 0.252
4.6 0.950 0.148 10.916 0.212
4.7 1.125 0.123 11.150 0.246
4.8 0.940 0.168 11.168 0.256
4.9 0.973 0.150 11.159 0.268
5.0 1.005 0.138 11.093 0.199
5.1 1.035 0.173 11.110 0.376
5.2 0.995 0.140 10.888 0.335
5.3 0.968 0.125 11.056 0.293
5.4 1.073 0.185 11.056 0.279
5.5 0.948 0.160 11.047 0.326

Table 2.6 Width and Height of Single and multi-track according to powder feed rate at 350W,71/min

Cube

Cube specimens were made for a total of four data by adding 4.2 and 5.1 to the secondary optimal
parameters, 4.5 and 4.8. The cube was made of 20*20*20 (mm) size, and relative density was added in
addition to the dimensional precision as the target value. As shown in the Figure 2.14, in the 3D shape,
the relative density was measured by observing the microstructure on the YZ and XZ cross section. As
a result, 4.8 having the highest relative density was selected as the final powder feed rate, except 5.1,
which did not satisfy the dimensions. Therefore, the final optimal parameters were determined to be

350 W, 4.8 g/min, 7 /min.
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Figure 2.16 Actual deposited cube specimens

PFR[g/min]

Length [nm] | 21.06 21.13 21.16 21.25

" width [mm] | 2111 21.13 21.23 21.29

" Height[mm] | 2018 | 2004 | 2017 19.95

Table 2.7 Dimension of cube specimens according to powder feed rate

Relative density

PFR [g/min]
XY plane YZ plane
Max. Max.
99.978 99.979
4.2 99.9554 - 99.974 -
Min. Min.
99.937 99.959
Max. Max. '
99.962 99.985
45 99.9296 - 99.9704 -
Min. Min.
99.902 99.954
Max. Max.
99.994 99.995
4.8 99.9862 : 99.9872 :
Min. Min.
99.981 99.981
Max. Max.
99.997 99.985
5.1 99.9902 - 99.977 -
Min. Min.
99.983 99.959

Table 2.8 Relative density of cube specimens according to powder feed rate
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Laser power Powder feed rate Coaxial gas rate

[W] [9/min] [1/min]
350 4.8 7
Table 2.9 Final Optimal process parameter

Mechanical Properties validation and printing

As a final process parameter, specimens were tested for mechanical properties verification. The test
was conducted in a total of three tests: tensile test, impact test, and fatigue test. The test results were
compared with test results of specimens produced by casting and rolling. The ultimate tensile strength
of the specimen produced by the DED method was 577.04MPa, which was greater than the casting
specimen strengths of 515 MPa. The result of the impact test was that the specimen produced by the
DED method had an Absorption energy of 140J, which was higher than the 103J, Absorption energy of
Castings.

Condition UTS(Mpa) YS(Mpa) Elongation(%o)

Tensile
test

48gimin | 577.04(+1.57) | 413.54(+0.99) | 50.31(+2.79)

Castings ’ 515 60

Table 2.10 Result of Tensile test and comparison to Castings

Absorption energy
)

140.37(+0.93)

Condition

4.8 g/min

Casting 103

Table 2.11 Result of Impact test and comparison to Castings

A total of 27 samples were prepared for the fatigue test, and the frequency was set to 27hz and
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proceeded to 107cycles. As aresult, the fatigue limit was measured to be 300 MPa. According to ASTM
A276, 35% of tensile strength based on 107cycles is fatigue limit. Therefore, the fatigue limit of the
specimen made of DED is higher than the fatigue limit of the existing manufacturing method, 175 MPa.
As a result of the three tests, when manufactured in DED as the optimal process parameter, better
mechanical properties than the existing products were derived in all tests, and finally, the prototype was

completed. The powder required to make the prototype was 8 kg in total and the gas was 901.

450

Stress(MPa)

250 , r , Saniun e
10° 10° 10° 10° 10 10
Number of cycles to failure(N)

Figure 2.18 S-N curve of fatigue test

Limitation and motivation from previous work

In this study, there were many limitations in the method of setting process parameters. The first is the
accuracy of the data. The analysis method called one factor at a time was used to understand the
correlation with various quality according to the three key variables (LP, PFR, CGR). In this method, it

is difficult to find the reliability of data because it is viewed in one-to-one in analyzing the relationship
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between various data. For example, in the case of CGR, the relationship between the variable and the
height and width of the single track was not found.

The other, I think, is inefficient in terms of time. In the previous study, appropriate process variables
were selected through the dimensional quality of a single track. The laser power that satisfies the target
was clearly classified as 350W, so it was possible to quickly identify the remaining process variables.
However, more data will generally be needed because not all data can produce this result. Since data in
most manufacturing fields takes a long time to collect, an efficient analysis method in terms of time will
be required.

These problems can be solved by using a machine learning technique that can generate a predictive
model using relatively little data and grasp the correlation between various data at once. These reasons

motivated me to start this study.

3. Methodology

3.1 Experiment equipment and material used
Equipment

The equipment used in this study is the insstek MX-600 in Figure 3.1. The MX-600 is capable of 5-
axis processing, can use various metal powders, and can spray up to three powders simultaneously. As
an energy source, Co2 fiber laser can be used and output of up to 1kW is possible. Build size is

450*600*350(mm) and it is possible to deposit large area than other metal 3d printers. Therefore, it is

mainly used for repairing of molds and aviation parts.

Figure 3.1 Insstek MX-600
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Material

The metal powder used is SUS316L made in a spherical shape. The size of the particles is described
as D10, D50, D90, which means less than 48pm, 48-150pum, 150pum or more, respectively. The particle
size of the powder used in the experiment was 3.1% D10, 94.9% D50 and 2% D90. The density of the

powder is 4.61g/cm3 and the composition is shown in the Table 3.2 below.

D10 D50 D90

less than 48pum(3.1%) 48-150pm(94.9%) 150um or more(2%)
Table 3.1 Particle size of SUS316L powder

Element Fe Cr Ni Mo Mn Si C P

Content Bal. 17.52 11.01 2.04 0.83 0.59 0.014 0.014
Table 3.2 Composition of SUS316L powder

D000
D 0000706, ¢
) L G000 N

Figure 3.2 SEM image of SUS316L powder

3.2 Data selection

Input data

This study is to generate a predictive model by grasping the correlation between process variables and
dimensional quality through machine learning. Therefore, the input data were selected as three process
variables (Laser power, Powder feed rate, Coaxial gas) that have a great influence on the dimension.
Due to the characteristics of the equipment, the range of input data is limited. Laser power is up to 1kW,

powder feed rate is up to 10g/min, and coaxial gas rate is up to 10//min.

Input data Range

0~1000

Laser power

(W]
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Powder feed rate

[g/min] 0-10
Coaxial gas N
[1/min] 0~10

Table 3.2 Classification and range of Input data

Output data
In order to produce a 3d shape using DED, the 3D CAD file must be sliced in units of layers and

converted into G-code. Magics for insstek was used as the conversion program.

Since the 3D shape is aggregations of layers, it was selected as the dimensional quality of the layer as
out put data. Since the layer thickness of the equipment used in this study is set to a fixed value of 25um,
the target multi-track height was selected as 25um. In addition, since the layer is aggregations of single
tracks, the dimension of the single track was also selected as output data. Since the width of the single
track is the beam diameter of the laser, which is the energy source, it was selected from 0.8 to 1.0mm.
The height was selected to be 0.17 or less because the single track are stacked by hitting each other as
much as hatching space and should be deposited to be 25um layer thickness. Lastly, since the shape of
the single track also affects the layer thickness, the angle was selected as the target dimension and the

value was set to 15 degrees.

Layer thickness : 0.25mm

Beam Diameter :
Laser 0.8mm

beam
Single track T E >
T, 0.8~1.0(mm)

Multi track

Less than 0.17(mm)

“ 0.25(mm)

e

Multi layer

Figure 3.3 The schematic illustration of support vector regression
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Target Dimension

Height(single track) Less than 0.17mm

Width(single track) 0.8~1.0mm
Angle Mean(single track) 15 degree

Height(Multi track) 0.25mm

Table 3.3 Target value of output data

3.3 Data collection and post-processing

As in the previous study, the three process parameters were divided into 6 levels, and a total of 216
input data sets were created to deposit single tracks and multi tracks. It was deposited on the same
material SUS316L 150*%150*10(mm) size substrate. The single track was printed in 10mm and the
Multi-track was 10*10mm. After printing, it was cut with a wire cutting machine to pass through the
center of the shape, and the cross section was photographed using a microscope to collect the output
data set, which are Height(single track), Width(single track), Angle Mean(single track), and
Height(Multi-track).

Laser power Powder feed rate Coaxial gas rate
[W] [g/min] [I/min]
350 35 4
450 4.5 5
550 55 6
650 6.5 7
750 7.5 8
850 8.5 9

Table 3.4 Set of input data

25



Figure 3.5 Cross section of (a)single track and (b)multi-track

Post processing of data

The following data are abbreviated, and LP, PFR, and CGR indicate laser power, powder feed rate,
and coaxial gas rate, respectively, and are input data. The rest of the data is output data, and S and M
next to the data name mean single track and multi-track, respectively.

Because the variance and average between the data are different, standardize the data using a standard
scaler and randomize the data to increase the learning rate of the algorithm. And finally, in order to train

and verify the model, the data was divided into 70% of training data and 30% of training data.
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LP PFR CGR Width(%) Height{S} Angle_Mean Height{M)

0 350 35 4 1.158 0.135 16.25 0.2216
1 350 35 5 1.155 0155 14.80 0.2489
2 350 35 6 1.200 D162 19.00 0.2593
3 350 35 T 1.215 01580 19.20 0.2073
4 350 35 ] 1.185 D158 22.30 0.1923

211 250 85 5 1.642 0.235 17.95 0.9930
212 850 85 i1 1.553 0.243 21.35 0.9580
213 830 385 7 1.513 0.250 23.00 0.5590
214 350 8.5 ] 1.513 0.350 3710 0.7960
215 850 85 9 1.520 D408 41.70 0.7170

Table 3.5 Formation of data

LP PFR CGR  Width(3) Height(S) Angle_Mean Height{M)

14 1515537 -0273097 -0.240411 -2.032093 -1.502572 -0.578354 -1.016727
138 0267679 1.480339 -1.430843  0.635645 0517252 -0.60770T 1627803
122 0267679 -0.273097 -0.240411  0.753189 0.020084 0.825720 -0.486082

56 -0.921131 0307715 -0.240411  -1.127515  -0.363363 0.346280 -0.242508
185 1.456490 -1.434722 15449356  0.344340 -0.446049 -0.813182 -0.966708

203 1456490 0307715 1.544936 1187590 0517252 0135814 03403234
137 0267679 0888527 1.54493% 0267681 1.138736 0.540397 0557812
72 -0326726 -1.434722 -1.430643  0.446552 -1.191330 -0.504970 -0.931478
140 0267679 1.469339 -0.240411 -0192274 19155092 0.497940  0.962321
37 -0921131 -1.434722 -0.835527 -0.958865 -1.657943 -0.710444  -0.676157

Table 3.6 Normalized and randomly shuffled data

3.4 Generating predictive model

Goodness-of-fit test

The goodness-of-fit test is a statistical hypothesis that shows how well the generated prediction model
fits the data, that is, how well it describes the data. There are various methods of these tests, but in this

study, the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), R-square, and Mean
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Absolute Percentage Error (MAPE), which are mainly used to verify the accuracy of the regression

model, are used.

n
1
MAE= =) |y, —¥
nZD’L yl
i=1
100 %
MAPE = —Z|u|
nEl

1% .
RMSE = = (i~ 9)
i=1
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3.4.1 Predictive model of Multiple Linear Regression(MLR)

Multiple Linear Regression creates a single model through the Least square method without any

R?=1-

parameters, so one result is derived. And the shape of the model is linear and it is a model for each

output without considering the correlation between the target outputs.

MAE
Width Height Angle mean Height(M)
0.06596 0.02338 7.0393 0.06653
Width Height Angle mean Height(M)
5.009 12.119 29.063 14.8044
Width Height Angle mean Height(M)
0.08535 0.03202 9.0018 0.08565
Width Height Angle mean Height(M)
0.8491 0.7028 0.4069 0.8512

Table 3.7 Model accuracy of MLR

3.4.2 Predictive model of Support Vector Regression(SVR)

Since the data type is non-linear, the RBF kernel was used, and the model was designed by changing
the important values of C and y. SVR is also a model that does not take into account correlation between

outputs like MLR. Although it is difficult to fully explain the change of each result value by the
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parameters of the SVR, the error was small when the C value was 2 rather than 1 and the error tended

to decrease as the y value increased. When all indicators are put together, the best model for the data is

when C is 2 and y is 0.2.

C| Yy Width | Height Angle | Height Width | Height Angle | Helght
mean (M) mean ™M)
1 0.01 0.07814 0.02302 7.3597 0.06561 0.09848  0.0328 9.745  0.09292
1 0.02 0.07194 0.02201 7.0937 0.05741 0.09216 0.03115 9.4779  0.0815
1 0.05 0.06749 0.02063 6.9709  0.0496  0.08675 0.0287  9.2624  0.07054
1 0.07 0.0675 0.02001 7.0257  0.0474 0.08671 0.02737 9.2531  0.06802
1 0.1 0.06791 0.01987  6.938  0.04475 0.08749 0.02652  9.0753  0.06623
1 0.2 0.06816 0.02008 6.7351 0.03868 0.08799 0.02625 8.7338  0.05815
1 03 0.06818 0.01989 6.7095 0.03745 0.08907 0.02625 8.7991  0.05409
2 0.01 0.07085 0.02257 7.0951 0.06107 0.09092 0.03172 9.4177  0.08583
2 0.02 0.06768 0.0216  6.9384 0.05279 0.08734 0.0304  9.2676  0.07526
2 0.05 0.06641 0.01965 7.0612 0.04713 0.08507 0.02702 9.2727  0.06749
2 0.07 0.06693 0.01953 6.9977 0.04516 0.08541 0.02621 9.1195  0.06536
2 0.1 0.06642 0.01963 6.8728  0.0411 0.0849  0.02583  8.8946  0.0617
2 0.2 0.06671 0.01949 6.6878 0.03684 0.08792 0.0249  8.7154 0.05513
2 03 0.06867 0.0197  6.5003 0.03686 0.09082 0.02539  8.6693  0.05088
R-squared
C| Y Width | Height Angle | Height Width | Height Angle | Height
mean ™M) mean ™M)

0.01 07991  0.6881 03049 0.8249 6.0169  11.56  29.132 12.7191
0.02 08241 0.7187 03425 0.8653 54883 11.0516 27.706  11.3205
0.05 08441 07612 0372  0.899 51397 10.0615 27.3519  9.8599
0.07 08442 0.78292 0.3733  0.9061  5.1243  9.7883  27.6451  9.467

0.1 08415 0.79607 03972 0911 51332 9.8674 27.6365 8.9161
0.2 08396 0.8002 0.4417 09314 51655 10345 26.8106 7.6277
0.3 08357 0.8002 0.4333 09406 51586 10.3233 26.4469  7.6067
0.01 8288 0.7083 03508  0.8506 53998 11.3996 28.0189 11.9977
0.02 0842 07321 03713  0.8851  5.1404  10.803 27.2688 10.4039

N N | | | | | | e
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0.05 085014 0.7883 03706  0.9076  5.0543  9.6503 27.8337  9.444
0.07 08489  0.8008 03913 09133 50858  9.7004 27.8862  9.0059
0.1 08507 0.80666 0.4209 09228 50457 99113 27424  8.1173
0.2 08399 0.8203 0.44406 0.9383  5.0036 10.1618 26.4746  7.4063

0.3 08292 08131 0.4499 09475  5.1875 10.3426 255044  7.7532
Table 3.8 Model accuracy of SVR

NN N NN

3.4.3 Predictive model of Gradient Boosting Regression(GBR)

GBR, like SVR, is non-linear and does not consider the correlation between outputs. The optimal
model was derived by adjusting the estimator representing the tree number of the model. The result

shows that the error gradually decreases from 10 estimators, and then increases again from the moment

it exceeds 50-60. The optimal model was selected when the number of trees was 60.

Estimator

Angle | Height Angle | Height

Width | Height Width | Height

mean ™M) mean ™M)
10 0.09957 0.02697 7.0856  0.09598 0.1236  0.03768  8.8946  0.1181
20 0.07862 0.02341 5.8938 0.06114 0.1004 0.03278 7.5496  0.0767
30 0.07381 0.02067  5.791  0.04541 0.09626 0.0292  7.4752 0.05684
50 0.07157 0.01985 5.6132  0.03061 0.09491 0.02673  7.2568  0.03932
60 0.07228 0.01982  5.5649 0.02786 0.09638 0.02658 7.1932  0.03619
80 0.07303 0.01956  5.6465 0.02507 0.09919 0.02604  7.1827 0.034
90 0.07368 0.01945 5.7247 0.02378 0.1006  0.02573  7.2753  0.03265

100 0.07457 0.01968 5.7937  0.02335 0.1018 0.02615 7.3377 0.03218
150 0.07995 0.0199 5.79391 0.02402 0.10784 0.02634 7.3981  0.03303
200 0.08247 0.0199 57014 0.02446 0.1099 0.02622 7.2978  0.03383
250 0.08563 0.02023  5.662 0.025 0.114  0.02654 7.2564 0.03503
300 0.08757 0.02048 5.8433  0.02658 0.1161 0.02668 7.42109 0.03664
400 0.09068 0.02077 6.0019 0.02794 0.1195 0.02712  7.5432  0.03755
500 0.09172  0.02102  6.0616  0.02907 0.1206  0.02744 7.6026  0.03873

Estimator
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- mean M) mean ™M)

10 0.6836  0.5883  0.4209 0.7167  7.7976 14.5495 28.1337  22.664
20 0.7909  0.6886  0.5828 0.88073  6.0159 123714 23.5355 13.6804
30 0.80812 0.75282  0.591  0.93448 55986 10.8533 22.8449 9.8911
50 0.81348 0.7928  0.6145 0.9686 54197 10.4729 222395 6.6978
60 0.80764 0.7951  0.6212 09734 54494 104042 22.1641 6.1767
80 0.7962  0.8034  0.6224 09765 54647 102139 222982 5.7374
90 0.7904  0.808  0.6126 09783 54901 10.1487 22466  5.4924
100 0.785  0.8017  0.6059 09789 55425 102269 22.7395 5.4331
150 0.7591  0.7988  0.5994  0.9778  5.9609 10.2453 22.9484 5.6738
200 0.7494  0.8006  0.6102  0.9767  6.1551 10.2375 23.0451  5.8531
250 0.73063  0.7958  0.6146 09751  6.4108 10.4107 23.0823 6.0133
300 0.7206  0.7936  0.5969 09727  6.5761 10.5399 24.1102  6.2915
400 0.7042  0.7867  0.5835  0.9714  6.8366 10.6557 25.1005 6.5124
500 0.6986  0.7817 05769  0.9695 69176 10.7794 253472  6.7378

Table 3.9 Model accuracy of GBR

3.4.4 Predictive model of Random Forest Regression(RFR)

The main parameter of the RFR is an estimator that shows the number of trees in the same way as
GBR. However, RFR is a method of generating an optimal model when considering correlations among
multiple outputs. Since the RFR randomly generates a tree and moves toward the target, the error is

almost the same when the estimator is 30 or more. The most suitable parameter among them is when

the estimator is 300.

Estimator

Height Angle

Height

Width | Height Height

(M) mean M)
10 0.08745 0.02335 5.5891 0.04703 0.1145  0.0294  7.5258  0.05936
20 0.09367 0.02062  5.534  0.04636  0.121  0.02791 7.4382  0.05743
30 0.08289 0.02132 5.1442 0.03832  0.115  0.02728 6.8777 0.04979
50 0.08759 0.02125 5.4112 0.03975 0.1167 0.02636  7.2367  0.05006

100 0.08362 0.02021 5.2308 0.03972 0.1094 0.02642 7.0837 0.05094
150 0.08666 0.01972 52984 0.04063 0.1124  0.02589 7.1662 0.05164
200 0.08648 0.02018  5.291  0.04249 0.113  0.02648  7.272  0.05315
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250 0.08611 0.01952 5.0811 0.04043 0.11422 0.0258 69181 0.05204
300 0.08413 0.01954 5.0798 0.04154 0.1114 0.02553 6.8472  0.0525
400 0.08616 0.02009 5.1474 0.04044 0.1122  0.0258  6.9429 0.05175
500 0.08505 0.01994 5.1448 0.04054 0.1116  0.02621  7.0588  0.05138
600 0.08469 0.01976 5.1713  0.04124  0.1114  0.02599 7.0486  0.05276
700 0.08524 0.01989 5.2059 0.04027 0.1127 0.02578 7.0244  0.0507
800 0.08523 0.01989 5.1609 0.04082 0.1122  0.02613 7.0159 0.05196

R-squared

Estimator

Angle | Height Angle | Height

Height Width | Height

mean ™M) mean M)

10 0.7282  0.7495  0.5854  0.9285  6.6803 12.6966 22.1262 10.5385
20 0.6966  0.7741 0.595 0.9331 7.2041 10.7439 21.5411 10.4072
30 0.7257  0.7843  0.6537  0.9497  6.2547 11.3031 21.1428  8.6847
50 0.7179  0.7985  0.6167  0.9491 6.6912  11.2858 21.9982  9.1533
100 0.7518  0.7976  0.6327  0.9473  6.3447 10.6361 21.1051 9.1389
150 0.7383  0.8057  0.6241 0.9459  6.5838 10.5165 21.3562 9.0794
200 0.7352  0.7967  0.6129  0.9427  6.5679 10.7165 21.3006 9.5798
250 0.7298 0.807 0.6497 0.945 6.5484 10.3733 20.4225  9.183

300 0.7428 0.811 0.6568  0.9441 6.3732 10.4164 20.6038 9.3452
400 0.7388  0.8071 0.6471 0.9457  6.5706 10.7422 20.7076  9.1593
500 0.742 0.8008  0.6353  0.9464  6.4635 10.5102 20.8038  9.0937
600 0.743 0.8042  0.6363  0.9435  6.4343 104268 20.8085 9.174

700 0.7369  0.8073  0.6388  0.9477  6.4734 10.5082 21.0292 9.1181

800 0.7392 0.802 0.6397  0.9452  6.4702 10.5538 20.8002 9.1947

Table 3.10 Model accuracy of RFR

3.4.5 Predictive model of Artificial Neural Network(ANN)

ANN is a non-linear model and updates the weights considering the correlation with the outputs. The
most important parameters are the number of hidden layers and the number of nodes. Because of the
small amount of data, the number of hidden layers was set to 2 and 3, and the number of nodes was
gradually increased from 4 to 24 to create a model. As a result, the accuracy was highest when the

number of hidden layers was 2 and the number of nodes was 24.
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mean M) mean ™)
4--4 0.0827  0.02767 7.2784 0.07199 0.1114 0.03871  9.1967  0.08715
8--8 0.0641  0.02706  6.8654 0.06563 0.08401 0.0379  8.7345  0.08233
10--10 0.06662 0.02333  6.7019 0.04827 0.08479 0.03067 8.4517 0.06381
12--12 0.06562 0.02011 6.6244  0.04674 0.08547 0.02738 83811 0.06154
16--16 0.06418 0.02122  6.2677 0.04533 0.08485 0.02781  8.007  0.06138
20--20 0.06354 0.02044 6.3972  0.04191 0.08558  0.0268  8.0659  0.05715
24--24 0.06355 0.01976  6.1552  0.03184 0.08403  0.0252  7.8497 0.04076
4--4--4 0.0901 0.03233  7.0484 0.06845 0.1125 0.04154 9.0177  0.08074
8--8--8 0.07356 0.02308  6.6955  0.0465 0.09147 0.03144 8.4087 0.05972
10--10--10  0.06799 0.02399  6.289  0.06511 0.08827 0.03194 8.0967  0.08093
12--12--12  0.06739 0.02396 6.4442  0.04629 0.09027 0.03135 8208  0.06093
16--16--16 0.06686  0.022 6.5151 0.04332  0.0875 0.02865 8.3897 0.05772
20--20--20 0.06712 0.02307 6.3981 0.03623 0.09418 0.02885  8.204  0.04543

24--24--24 0.06395 0.02207  6.129  0.04403 0.08525 0.02743 7.93133 0.05657

R-squared

Angle Height

M)

Angle | Height

(M)

Width | Height Width | Height

mean mean

4--4 0.7425 05657 03809  0.846  6.0506 14.1589 30.9837 16.1824
8--8 0.8538  0.5835 0.44163 0.8625 4.8543 13.4591 28.1867 14.3407
10--10 08511  0.7272 04772 09174  5.0492 122681 27.5617  9.411
12--12 08487 0.7827 04858  0.9232  4.9451 10.3061 26.8972  9.7401
16--16 08509 0.7758  0.5307 0.9236  4.8077 112461 263519 8.7439
2020 08483  0.7917 05238 09337  4.7705 10.8469 27.6148 8.5106
2424 08537  0.8159 0549 09663  4.8611 11.0795 26.8977  6.503
4-4-4 07375 04997 040483 0.8678  7.011  16.0303 28.7002 15.4592
8--8-8 08267 07134 04825 09276 56071 11.6734 273321  9.9769
10--10-10 08386  0.7042  0.5201  0.8671  5.1354 12.2463 26.6216 14.5711
12--12-12° 08312 0715 05069  0.9247 5.0686  12.482 26.7822  8.9912
16--16-16 (8414  0.762  0.4848 09324 50699 11.725 27.9058  8.5565
20--20--20 (8163  0.7587  0.5073  0.9581  5.078 125217 27.866  7.5703

24--24--24 (8495 0.78188 0.5396 09351  4.8181 11.7526 25.576  9.2317
Table 3.11 Model accuracy of ANN
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4. Result

Comparison of predictive models

MLR SVR GBR RFR ANN
_ _ Estimator Estimator Hidden layer
=2,y =02 =60 =300 node = 24--24

Width 006596 006671 007228 08413  0.06355

Height  0.02338 0.01949 0.01982 0.01954 0.01976

s 7.0393 6.6878 5.5649 50798 6.1552
mean
Height (06655 003684 002786  goa154 | 0.03184
(M)
Width 0.08535 0.08792 0.09638 0.1114 0.08403
Height 0.03202 0.0249 0.02658 0.02553 0.0252
Angle
9.0018 8.7154 7.1932 6.8472 7.8497
mean
Height  cocs 005513 0.03619 0.0525 0.04076
M)
Width 0.8491 0.8399 0.80764 0.7428 0.8537
Height 0.7028 0.8203 0.7951 0.811 0.8159
R-squared
4 Angle
0.4069 0.44406 0.6212 0.6568 0.549
mean
Height
g 0.8512 0.9383 0.9734 0.9441 0.9663
M)
Width 5.009 5.0036 5.4494 6.3732 4.8611
Height 12.119 10.1618 10.4042 10.4164 11.0795
Angle
8 29.063 26.4746 22.1641 20.6038 26.8977
mean
Height
(l\f) 14.8044 7.4063 6.1767 9.3452 6.503

Table 4.1 Comparison model accuracy
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The optimal model was selected and compared among 5 regression models of MLR, SVR, GBR, RFR,
and ANN. The values of MAE, RMSE, and MAPE indicate errors, so the lower is better, and the higher
the R-square is, the better the prediction model because it is an indicator for evaluating the fit of the
model. Although the results are not the best in all indicators, we can draw the conclusion that the model

generated using the Artificial Neural Network (ANN) algorithm is better suited to explain the data in

this study than other models.
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Figure 4.1 Scatter of multi-track height between actual and predicted value in (a)ANN and (b)MLR.
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Figure 4.2 Plot of multi-track height value in (a)ANN and (b)MLR.

In particular, when predicting the height of the multi-track, a large difference occurred between MLR
and ANN. As shown in figure 4.1 above, it can be seen that the ANN model is a straight line with the
actual value and the predicted value almost identical, but in the MLR model it appears in the form of a
curve. And in figure 4.2, you can see that in some samples in the MLR model, prediction is made with
a large difference from the actual value.

Therefore, the optimal model was finally created using the ANN algorithm, and this model has 2
hidden layers and 24 nodes each. ReLU was used as the activation function and Adam was used as the

optimizer. The model was trained with a total of 200 epochs and a batch of 20 sizes.
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Artificial Neural Network(ANN)

Activation Optimizer Hidden layer node Epochs Batch
ReLU Adam 24-24 200 20
Performance(R-square)
Width(S) Height(S) Height(M) Angle
85.37% 81.59% 96.63% 54.9%

Table 4.2 Description of optimal predictive model

In the previous study, laser power, powder feed rate, and coaxial gas rate were derived as 350W,
4.8g/min, and 71/min, respectively. At that time, the range of laser power was experimented at 350 to
850 at 100 intervals, but the result was that the dimension target of width was not satisfied above 350W.
So, through the newly created prediction model, it was checked whether there are other optimal process
parameters through range that were not used in the previous study.

Laser Power was set to 210~300 at intervals of 10, and the powder feed rate was set to 4.8 in the
previous study, and it was set in 0.1 units from 0.1 to 4.8 with the goal of finding a parameter lower
than this number. The coaxial gas rate was set from 1 to 9 in 1 unit. A total of 4320 new data were
extracted and input to the prediction model, and 42 parameters satisfied target dimension, and among
them, the variables closest to the target were predicted to be 300W, 3.7g/min, and 61/min. It was lower
in all values than the variables predicted by the existing method, especially in the case of powder feed
rate, it was more than 1g. As mentioned in chapter 2. above, the amount of powder consumed when
producing the prototype of the double tube was 8 kg. However, if it is manufactured through new

process parameters, it can be produced by saving about 2kg of powder.

Laser power Powder feed rate Coaxial gas rate

[W] [g/min] [/min]

300 3.7 6

Table 4.3 Optimal process parameter from ANN predictive model
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5. Conclusion and contribution

The one factor at a time analysis technique used in the previous process parameter optimization study
is inaccurate and inefficient in time. To solve this problem, this study aims to create a model that predicts

dimensional quality by applying machine learning to the DED process.

The 3D shape is aggregation of layers. Therefore, it can be said that the quality of a layer is important
in manufacturing a product in additive manufacturing. To create a model that predicts the dimensional
quality of a layer, three key process parameter (Laser Power, Powder Feed Rate, and Coaxial Gas) are
set as input data, and the dimensional quality of single track and multi-track (Width, Height, Angle,
Height(M)) as output data to perform the experiment. A total of 216 input data sets were created by
setting the input data to 6 levels in total, and SUS316L powder was deposited on a substrate using an

insstek MX-600 device to obtain output data for the data set.

In order to analyze the correlation between the data obtained through experiments, the data were pre-
processed with a standard scaler and trained with five machine learning algorithms. As a result of
training, the model trained with the ANN algorithm had the highest accuracy. When predicting the
height of a multi-track, the accuracy was the highest with an R-square value of 96.63%. Optimal process
parameter satisfying the target dimension were derived by inputting more than 4000 new datasets into
this predictive model. The results are 300 W, 3.7 g/min, and 6 I/min for laser power, powder feed rate,

and coaxial gas, respectively.

One factor at a time analysis technique was used or simple linear regression was used for optimizing
process parameter so far. However, additive manufacturing technology is a complex process that has a
number of process parameters to consider and those parameters have a great influence on product
qualities. Therefore, the existing method of analyzing the correlation with one-to-one is not only
significantly lower in accuracy, but also requires a large number of samples, which is inefficient in terms

of time and cost.

In this complex process, training a model with data using machine learning techniques will be a great
advantage in many ways. Although this study was a model development that predicts only dimensional
quality, it is possible to develop a model that predicts microstructure or mechanical properties based on
this study. Finally, these models are combined to complete an ideal process system that can monitor and

control product quality in real time.
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Appendix A : MX-600 specification

Machine size 2000(W)x2900(L)*x2550(H) mm
Machine weight 6,500kg
Laser type Ytterbium Fiber laser
Laser Power Max. 1kW
Gas Argon(>99.999%)
X/Y/Z Stroke 450/600/380 mm
X/Y/Z Max. Traverse speed 200/200/150 mm/s
Tilt/Rotating Table(A/C) -100~+5°/360°

Table A.1 Technical data

Appendix B : Fatigue test result in previous work

Stress

Mpaj | 400 | 400 | 400 375 375 375 375 375 350

C{T\Ic]'e 1715 | 2100 | 2102 | 6255 | 6749 | 8310 | 11255 | 14312 | 31982
Stress

IMpaj | 350 | 350 | 350 350 325 325 325 325 325

C[T\Ic]‘e 35518 | 40637 | 46955 | 71554 | 180027 | 192692 | 272047 | 455880 | 496700
Stress

My | 325 | 325 | % 325 300 300 300 300 300

C&c]‘e 576603 | 828896 | 1000000 | 1072200 | 1000000 | 1323491 | 8549370 | 10000000 | 10000000

Table B.1 Result of fatigue test
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Appendix C : Dimensional quality data from all

paramters
Laser Powder Coaxial Width of Height of Angle Mean value Height of
Power | Feed Rate | Gas Rate | single track | single track of single track multi-track

[W] [g/min] [/min] [mm] [mml] [degree] [mm]
350 3.5 4 1.1575 0.135 16.25 0.2216
350 3.5 5 1.155 0.155 14.8 0.2489
350 3.5 6 1.2 0.1675 19 0.2598
350 3.5 7 1.215 0.18 19.2 0.2073
350 3.5 8 1.195 0.1875 223 0.1928
350 3.5 9 1.18 0.1925 26.7 0.1708
350 4.5 4 1.11 0.095 12.1 0.29

350 4.5 5 1.185 0.1025 11 0.238
350 4.5 6 1.1575 0.1225 16.1 0.162
350 4.5 7 1.025 0.1125 15.2 0.11

350 4.5 8 1.105 0.1125 15.45 0.189
350 4.5 9 1.0925 0.095 11.35 0.17

350 5.5 4 0.915 0.0875 12.9 0.374
350 5.5 5 1.0025 0.1175 13.9 0.323
350 5.5 6 0.9025 0.1 21.05 0.278
350 5.5 7 0.99 0.1175 23.35 0.256
350 5.5 8 0.975 0.11 20.75 0.253
350 5.5 9 1.045 0.1275 22.05 0.258
350 6.5 4 1.0975 0.1525 23.7 0.452
350 6.5 5 1.04 0.1875 26.2 0.433
350 6.5 6 1.095 0.16 38.05 0.353
350 6.5 7 0.93 0.1375 29.1 0.344
350 6.5 8 0.9375 0.125 25.6 0.289
350 6.5 9 1.01 0.14 23.4 0.235
350 7.5 4 0.9425 0.1675 28.75 0.7

350 7.5 5 1.0925 0.2 23.55 0.58

350 7.5 6 0.9575 0.2075 36.35 0.56

350 7.5 7 0.9325 0.2 28.05 0.5

350 7.5 8 0.945 0.2 27.8 0.41

350 7.5 9 0.995 0.195 29.15 0.38

350 8.5 4 0.9775 0.215 53.4 0.621
350 8.5 5 0.99 0.215 43.08 0.551
350 8.5 6 0.9925 0.2475 50.6 0.479
350 8.5 7 0.96 0.215 45.05 0.45

350 8.5 8 0.935 0.215 43 0.42

350 8.5 9 1.075 0.19 40.75 0.356
450 3.5 4 1.12 0.135 20.65 0.3998
450 3.5 5 1.185 0.1675 19.7 0.3563
450 3.5 6 1.2225 0.22 21.45 0.3028
450 3.5 7 1.1875 0.1725 19.35 0.2802
450 3.5 8 1.0975 0.1725 21 0.2283
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450 3.5 9 1.2475 0.185 28.3 0.1931
450 4.5 4 0.95 0.0975 11.5 0.362
450 4.5 5 0.91 0.12 16.2 0.34

450 4.5 6 1.305 0.1525 18.45 0.289
450 4.5 7 1.345 0.1575 17.4 0.272
450 4.5 8 1.1675 0.1375 21.25 0.263
450 4.5 9 1.3875 0.145 13.4 0.211

450 5.5 4 1.1175 0.12 25.5 0.454
450 5.5 5 1.3075 0.145 25.4 0.403
450 5.5 6 1.1825 0.1625 26.05 0.375
450 5.5 7 1.1275 0.16 25.95 0.376
450 5.5 8 1.14 0.185 23.05 0.347
450 5.5 9 1.2 0.11 19.85 0.32

450 6.5 4 1.2175 0.1475 17.8 0.503
450 6.5 5 1.0425 0.1425 31.7 0.485
450 6.5 6 1.08 0.1725 30.5 0.456
450 6.5 7 1.1525 0.175 32.05 0.421
450 6.5 8 1.0775 0.1775 51.35 0.403
450 6.5 9 1.1475 0.1675 294 0.355
450 7.5 4 1.0575 0.205 22.75 0.64

450 7.5 5 1.1975 0.2425 22.85 0.64

450 7.5 6 1.245 0.1975 23.05 0.58

450 7.5 7 1.225 0.18 23.75 0.52

450 7.5 8 1.08 0.1775 38.8 0.47

450 7.5 9 1.08 0.19 57.9 0.45

450 8.5 4 1.2525 0.2225 27.25 0.796
450 8.5 5 1.1125 0.245 28.15 0.667
450 8.5 6 1.0475 0.2225 27.1 0.659
450 8.5 7 1.0825 0.245 31.6 0.543
450 8.5 8 1.0725 0.255 24.95 0.483
450 8.5 9 1.1525 0.195 18.6 0.435
550 3.5 4 1.1925 0.1525 21.8 0.2976
550 3.5 5 1.4725 0.175 15.05 0.3301
550 3.5 6 1.205 0.1825 20.7 0.2908
550 3.5 7 1.085 0.175 27.6 0.2792
550 3.5 8 1.165 0.1625 19.95 0.2196
550 3.5 9 1.185 0.1875 21.65 0.2158
550 4.5 4 1.26 0.0875 12.55 0.412
550 4.5 5 1.4425 0.11 15.2 0.374
550 4.5 6 1.24 0.135 19.45 0.365
550 4.5 7 1.1575 0.1275 19.75 0.304
550 4.5 8 1.245 0.1175 17.7 0.284
550 4.5 9 1.29 0.1175 14.2 0.26

550 5.5 4 1.21 0.155 26.75 0.571
550 5.5 5 1.2475 0.1575 30.25 0.453
550 5.5 6 1.265 0.175 25.1 0.396
550 5.5 7 1.1975 0.1575 32.5 0.429
550 5.5 8 1.2625 0.165 30.75 0.352
550 5.5 9 1.2075 0.175 27.2 0.299
550 6.5 4 1.3725 0.175 26.65 0.659
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550 6.5 5 1.5 0.1775 27.4 0.599
550 6.5 6 1.2625 0.2 34.75 0.575
550 6.5 7 1.1575 0.2 43.35 0.557
550 6.5 8 1.29 0.2125 30.95 0.498
550 6.5 9 1.24 0.2175 35.5 0.458
550 7.5 4 1.355 0.19 27.2 0.79
550 7.5 5 1.21 0.2125 45.4 0.79
550 7.5 6 1.1825 0.2225 38.75 0.7
550 7.5 7 1.21 0.2325 58.35 0.64
550 7.5 8 1.0975 0.2125 48.55 0.64
550 7.5 9 1.15 0.2225 45.8 0.55
550 8.5 4 1.155 0.2425 22.75 0.798
550 8.5 5 1.3725 0.2575 21.9 0.73
550 8.5 6 1.08 0.2425 33.1 0.658
550 8.5 7 1.225 0.2675 22.75 0.608
550 8.5 8 1.1975 0.2675 23.1 0.547
550 8.5 9 1.19 0.2425 25.3 0.516
650 3.5 4 1.2775 0.1325 14.9 0.3445
650 3.5 5 1.155 0.155 23.95 0.353
650 3.5 6 1.125 0.1725 29.6 0.2849
650 3.5 7 1.125 0.1675 22.75 0.2686
650 3.5 8 1.36 0.16 16.75 0.2316
650 3.5 9 1.19 0.155 19.65 0.2143
650 4.5 4 1.1375 0.105 14.45 0.46
650 4.5 5 1.405 0.1225 22.3 0.384
650 4.5 6 1.3625 0.14 13.6 0.357
650 4.5 7 1.32 0.1375 16.85 0.329
650 4.5 8 1.26 0.1125 10.6 0.29
650 4.5 9 1.26 0.1425 16.75 0.279
650 5.5 4 1.41 0.195 29.2 0.548
650 5.5 5 1.26 0.1675 46.6 0.477
650 5.5 6 1.4475 0.1975 354 0.4
650 5.5 7 1.455 0.205 22.9 0.403
650 5.5 8 1.35 0.2 29.1 0.377
650 5.5 9 1.3725 0.205 27.95 0.342
650 6.5 4 1.35 0.185 33.05 0.712
650 6.5 5 1.45 0.2225 44.15 0.637
650 6.5 6 1.4 0.2275 31.8 0.577
650 6.5 7 1.32 0.22 36.75 0.523
650 6.5 8 1.2675 0.22 36.65 0.507
650 6.5 9 1.4 0.22 31.85 0.496
650 7.5 4 1.295 0.2275 38.7 0.86
650 7.5 5 1.36 0.255 31.45 0.91
650 7.5 6 1.405 0.2975 50.95 0.86
650 7.5 7 1.2875 0.2625 41.3 0.71
650 7.5 8 1.3875 0.2875 39.55 0.65
650 7.5 9 1.3525 0.27 35.55 0.64
650 8.5 4 1.425 0.23 20.75 0.886
650 8.5 5 1.2525 0.295 27.1 0.803
650 8.5 6 1.2625 0.32 32.05 0.733
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650 8.5 7 1.2275 0.3175 40.2 0.712
650 8.5 8 1.38 0.305 30.15 0.632
650 8.5 9 1.5125 0.2975 31.45 0.58
750 3.5 4 1.205 0.12 13.25 0.4535
750 3.5 5 1.2 0.1625 17.1 0.3756
750 3.5 6 1.0525 0.175 27.8 0.3594
750 3.5 7 1.045 0.1625 19.15 0.3179
750 3.5 8 1.18 0.1475 19.4 0.3062
750 3.5 9 1.185 0.1875 26.2 0.2935
750 4.5 4 1.1975 0.0875 12.1 0.532
750 4.5 5 1.345 0.115 16.75 0.466
750 4.5 6 1.2175 0.13 14 0.429
750 4.5 7 1.2025 0.145 22.7 0.375
750 4.5 8 1.1075 0.1025 17.05 0.359
750 4.5 9 1.0675 0.09 12.75 0.329
750 5.5 4 1.605 0.1925 27.1 0.665
750 5.5 5 1.47 0.235 40.45 0.575
750 5.5 6 1.4675 0.2425 39.55 0.55
750 5.5 7 1.38 0.275 41.15 0.47
750 5.5 8 1.64 0.2425 24.55 0.406
750 5.5 9 1.31 0.2325 42.75 0.34
750 6.5 4 1.595 0.1675 19.5 0.777
750 6.5 5 1.3125 0.27 25.65 0.726
750 6.5 6 1.44 0.2975 31.25 0.657
750 6.5 7 1.3025 0.325 37.25 0.61
750 6.5 8 1.205 0.2975 25.25 0.555
750 6.5 9 1.235 0.2775 28.35 0.519
750 7.5 4 1.415 0.2775 39.8 1.14
750 7.5 5 1.5325 0.295 41.75 1.09
750 7.5 6 1.415 0.305 54.1 0.98
750 7.5 7 1.2825 0.3525 59.95 1
750 7.5 8 1.3625 0.305 55.9 0.86
750 7.5 9 1.355 0.3375 49.1 0.7
750 8.5 4 1.56 0.2775 27.1 1.117
750 8.5 5 1.47 0.27 25.3 0.98
750 8.5 6 1.32 0.315 30.45 0.869
750 8.5 7 1.3025 0.345 31.9 0.754
750 8.5 8 1.43 0.37 39.05 0.707
750 8.5 9 1.29 0.37 34.9 0.643
850 3.5 4 1.29 0.1575 15.3 0.4532
850 3.5 5 1.07 0.1325 15.05 0.4207
850 3.5 6 1.3675 0.1475 13.6 0.3976
850 3.5 7 1.1425 0.1675 16.4 0.3785
850 3.5 8 1.1275 0.1475 22.2 0.3531
850 3.5 9 1.18 0.14 18.65 0.2895
850 4.5 4 1.2525 0.1225 19.1 0.514
850 4.5 5 1.3725 0.1425 12.75 0.428
850 4.5 6 1.32 0.13 16.9 0.414
850 4.5 7 1.315 0.1275 16.8 0.394
850 4.5 8 1.2375 0.1325 16.15 0.363
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850 4.5 9 1.305 0.1325 15.05 0.332
850 5.5 4 1.535 0.16 16.85 0.594
850 5.5 5 1.5875 0.16 28.35 0.619
850 5.5 6 1.51 0.1825 42.7 0.526
850 5.5 7 1.525 0.21 343 0.482
850 5.5 8 1.36 0.235 333 0.4

850 5.5 9 1.3575 0.2375 32.1 0.367
850 6.5 4 1.8025 0.2275 14.3 0.879
850 6.5 5 1.675 0.2075 13.7 0.769
850 6.5 6 1.6625 0.2375 19.7 0.746
850 6.5 7 1.505 0.2425 18 0.671
850 6.5 8 1.5275 0.27 29.3 0.647
850 6.5 9 1.5325 0.23 28.35 0.59
850 7.5 4 1.6325 0.1925 23.45 1.21

850 7.5 5 1.64 0.22 39.45 1.08
850 7.5 6 1.3675 0.2325 30.8 1.06
850 7.5 7 1.5875 0.255 28.1 0.97
850 7.5 8 1.4 0.2475 354 0.95
850 7.5 9 1.2975 0.31 49.7 0.86
850 8.5 4 1.54 0.2125 20.95 1.119
850 8.5 5 1.6475 0.235 17.95 0.993
850 8.5 6 1.5525 0.2425 21.35 0.958
850 8.5 7 1.5125 0.25 23 0.899
850 8.5 8 1.5125 0.35 37.1 0.796
850 8.5 9 1.52 0.4075 41.7 0.717

Table C.1 Full data set
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Appendix D : Python code of Algorithms

&£ Buitinfa Linagr Ragrascioni8La)

model = LinearPegression()

# Summart Vactor Asgrascionf§vE)

model = MultiQutputRegressor(SYRikernel="rbf",
gamma=0.3,
C=z.01)

# Bradiant Foocting Ragrascion{888)

parans = {'n_estimatars’: GO0,
“learnina_rate’ : 0.1,
“loss': st
reg = MultiQutputPegressor{ensenble.GradientBoost ingPegressar({++params))

# Aangom Forast Aegraceioni8FA)

reg = RandomForestRegressor(n_estinators = 800)

# Artificial Maural Matwark AM)

model = Sequentiall)

model . add{Dense(?4, input_din=3, kernel_initializer="normal’, activation=relu ]}

model . add{Dense(24, activation='relu’})

model . add{Dense(d, activation="linear )}

model . summary ()

model.compile{loss="nse’, optimizer="Adam’', metrics=["mse’, mae'])

}})—history = model.fit{i_train, v_train, epochs=200, batch_size=20, verbose=1, walidation_split=0.2)

Figure D.1 Python Code of all algorithms used
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Appendix E : Model comparison(ANN vs MLR) using
scatter and plot
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Figure E.1 Scatter of single track width between actual and predicted value in (a)ANN and (b)MLR.
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Figure E.3 Plot of single-track height value in (a)ANN and (b)MLR.
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Figure E.5 Plot of single-track angle value in (a)ANN and (b)MLR.
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