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Abstract 

 

When a critical event occurs, it is often necessary to provide appropriate explanations. Previously, 

several theoretical and empirical foundations which discover causes and effects in temporal data have 

been established. However, for textual data, a simple causality modeling is not enough to handle 

variations in natural languages. To address the challenges in textual causality modeling, we annotate 

and create a large causality text dataset, called ‘Causal Rationale of Stock Price Changes’ (CR-SPC) to 

fine-tune pre-trained language models. Our dataset includes 283K sentences from the 10-K annual 

reports of the U.S. companies, and sentence-level labels, from which we observe diverse patterns of 

causality from each industrial sector for stock price changes. Because of this diversity and an imbalance 

in training data across sectors, BERT+fine-tune baseline on Sector-only data shows a biased 

performance. We propose to transfer from related sectors, implemented as a two-stage fine tuning 

framework. First-stage fine tuning transfers from related sector, to overcome the limited training 

resource, then the second stage follows to fine tune for the given sector. Our proposed framework yields 

significantly improved results for detecting causal rationale from industrial sectors with low amounts 

of data. Furthermore, we generate labels for 382K unlabeled sentences and augment the size of the 

dataset by self-training on CR-SPC dataset. 
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Chapter I 

 

Introduction 

 

Many critical decisions on future events may require appropriate explanations of decisions based on 

accurate predictions. Justifying the predictive statements is directly related to identifying the temporal 

causes of the events. That is, when one could observe an event which is an apparent cause of a desired 

outcome, one can decide with confidence on future events. 

There has been extensive research in extracting causes of events in numerical data. As an example, 

Granger cause finds linear temporal dependence between two (or more) temporal sequences (Bressler 

& Seth, 2011). Shapley values discover the contributions of individual input attributes when a decision 

is made by a complex function or system (Shapley, 1971). Such techniques can also be used to explain 

(numerical) causes of decisions made by automated systems, e.g. Robo-advisers in financial services 

(Hwang et al., 2016; Karuna, 2019; Lloyd et al., 2014). 

However, human uses various types of information such as numerical and textual inputs when 

making an important decision. As an example, analysts write summarized reports by extracting 

important (causal) information from multiple textual sources such as conference calls, annual reports, 

earning statements and markets reports.  

In this paper, we consider fine-tuning of pre-trained Neural language models (NLMs), which have 

been state-of-the-arts for many Natural Language Processing (NLP) tasks. For example, pre-trained 

NLMs such as Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2018) 

and A Lite BERT (ALBERT) (Lan et al., 2019) demonstrate outstanding performance in some tasks 

such as answering questions and computing conditional probabilities of a masked word in a sentence. 

However, NLMs require large training datasets to achieve human level performance. Currently, there 

is not enough data to detect causality from textual information. 

Our first contribution is to collect sufficient annotations to achieve reasonable performance of 

BERT+fine-tune, which represents fine-tuning of pre-trained BERT Base model. 

1) We collect 283K sentences from the 10-K annual reports of the U.S. companies maintained by 

the Securities and Exchange Commission (SEC) and manually label individual sentences, whether the 

sentences explain the cause of certain stock price changes (increase or decrease). We name the 283K 

pairs of a sentence and a corresponding label as ‘Causal Rationale of Stock Price Changes’ (CR-SPC). 

Our CR-SPC dataset is built on an unprecedented scale with guides of experts in the financial field. 

This dataset is useful to extract main causes of its financial events, from annual reports written officially 

from most U.S. public companies. Thus, individual investors can save efforts to read a huge amount of 

reports by themselves. 
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However, we find collecting the dataset alone does not solve the problem. One challenge we observe 

in the process of annotation is a diverse causality, that, we find diverse causalities over different 

industrial sectors. Another is an imbalanced training, where the number of data for each industrial 

sector varies, and so thus Average Precision (AP) of BERT+fine-tune on Sector-only data which means 

data of a single sector from the CR-SPC dataset. Thus, we need to build a model carefully, as applying 

a common model to all sectors does not work in our problem setting.  

2) We propose a two-stage fine-tuning, where first stage aims to distill knowledge from related 

sectors, followed by the second stage fine tuning for the specific sector. Table 5 shows that, we can 

overcome the lack of data in a specific class (Sectors 2 and 5) with a two-stage fine-tuning. The 

proposed method yields 83.78% and 90.19% in AP for Sectors 2 and 5 respectively, which are 

significant increases compared to 63.82% and 66.05% in AP of BERT+fine-tune on Sector-only data.  

3) Our last contribution is to augment the size of data to reduce the annotating costs and overcome 

annotator sensitivity by adding 382K pseudo labeled data. The quality of annotated labels varies over 

who annotators are, from the experts in financial fields to students who read an annual report on the 

first time. We overcome this issue by selecting matched labels with high-quality annotators. We 

compare the test performance between models for a specific sector, in which one is trained with pseudo 

labels and high-quality labeled data, and the other one is trained with low-quality and high-quality 

labeled data together. As a result, in the case of Sector 10, we achieve 87.27% in AP from the pseudo 

labels aggregated model, compared to 73.58% in AP from low-quality labels aggregated model. 
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Chapter II 

 

Background 

 

2.1 Bidirectional Encoder Representations from Transformers (BERT) 

Traditional word embedding representation such as word2vec (Mikolov et al., 2013) or GloVe 

(Pennington et al., 2014) is generated by context-free models, therefore a word that has two different 

meanings still have the same representation in the traditional word embeddings. BERT is an 

unsupervised language representation, which is pre-trained on a large corpus, including the entire 

English Wikipedia and the book corpus (Y. Zhu et al., 2015). Given a sentence, random words are 

masked out and BERT looks words before and after the masked word to help predict what the word is. 

The bidirectionality helps BERT to understand the true meaning of a language. As a result, pre-trained 

BERT shows the state-of-the-art performances on many Natural Language Processing (NLP) tasks. 

Thus, for a specific NLP task, we only have to fine-tune the pre-trained BERT by adding just few 

additional output layers. 

2.2 Semi-supervised Learning 

Language modeling tasks require large training datasets to achieve human level performance. Typically, 

those datasets require human annotators for labeling, thus they are difficult and expensive to obtain. 

Semi-supervised learning has invaluable benefits in many neural language modeling tasks. It can utilize 

labeled and unlabeled data together to achieve better performance than using labeled data alone. In other 

words, we can replace some part of human annotation with unlabeled data. Therefore, semi-supervised 

learning reduces the annotation effort. 

Semi-supervised learning has several different methods. Those different techniques are self-training, 

probabilistic generative models, co-training, graph-based models, semi-supervised support vector 

machines, and so on (X. Zhu & Goldberg, 2009). In this paper, we will focus on self-training as a semi-

supervised learning technique. 

Self-training is defined as the learning process that uses its own predictions to teach itself. Therefore, 

it is often called as self-teaching or bootstrapping. The major advantages of self-training are its 

simplicity and the fact that the choice of teacher model is open. However, if there exist early mistakes 

made by the initial teacher model, those mistakes are reinforced by generating incorrect labeled data 

repeatedly. To overcome this problem, various heuristics (e.g., adding noise) have been proposed. 
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2.3 Local Interpretable Model-Agnostic Explanations (LIME) 

LIME is an explanation method that makes the predictions of a classifier interpretable by learning an 

interpretable model locally around the prediction (Ribeiro et al., 2016).  

In this section, we describe the explanation system, LIME. Before we explain details about LIME, 

we define terms for future reference. In many NLP tasks, words or sentences are transcribed into vector 

representations. A vector is composed of a fixed size of numbers and it makes a machine understand 

human languages. However, those vector representations are not easy to understand for human users. 

Thus, LIME needs to explain classifiers in human understandable representations such as words, instead 

of lists of numbers. The term, x represents the original features (e.g., vector), whereas x’ is a human 

understandable version of the original features (e.g., presence or absence of words in a sentence). When 

z’ is given as a perturbed sample, we recover the sample back to the original representation z.  

We first look into the way of obtaining explanation, then we will describe how to obtain elements 

in detail. Let 𝑔 be an explanatory model and G be a class of possible interpretable models (e.g., linear 

models or decision trees). f stands for an original predictor model. Ω(𝑔) is a measure of complexity of 

the explanation model where 𝑔 ϵ 𝐺. 𝜋𝑥(𝑧) denotes as a proximity measure between instance z to x. In 

order to ensure interpretability and local fidelity of LIME, LIME produces an explanation by 

minimizing the following:  

ξ(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑔∈𝐺ℒ(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔)                    (2.3.1) 

Since we want a model-agnostic explainer, the locality-aware loss ℒ(𝑓, 𝑔, 𝜋𝑥)  is minimized 

without making any assumptions on f. Thus, we approximate the loss by drawing samples which are 

weighted by πx(𝑧) . Distance function D can be either cosine distance or L2 distance, 

where σ stands for width. The loss and weight are defined as follows: 

ℒ(𝑓, 𝑔, 𝜋𝑥) = ∑ 𝜋𝑥(𝑧)(𝑓(𝑧) − 𝑔(𝑧′))
2

𝑧,𝑧′∈𝑍              (2.3.2) 

πx(𝑧) = 𝑒𝑥𝑝(−𝐷(𝑥,𝑧)2∕𝜎2)                           (2.3.3) 
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Chapter III 

 

Related Work 

 

Rationale is a reason that causes a particular belief or phenomena. Extracting rationale is invaluable 

when decision has to be made. Research on extracting rationale from text has been tried with various 

types of text documents (Blanco et al., 2008; Girju, 2003; Ittoo & Bouma, 2011; Khoo et al., 2000). A 

model detecting and identifying rationale from chat messages was suggested in (Alkadhi et al., 2017). 

Bug reports from Chrome web browser were used as main sources to extract rationale (Rogers et al., 

2012). Also, patent documents were utilized to discover design rationale (Liang et al., 2012). To extract 

causal textual structures, one may consider a rule based system where specific words such as ‘due to’, 

‘owing to’ and ‘affects’ are listed to identify sentences including causal information for prediction 

(Chang & Choi, 2006; Girju et al., 2002; Sakai et al., 2015). Girju et al. (2002) used the inter-noun 

phrase causal relation to improve the question answering performance. To extract inter-noun phrase 

causal relations, they used the cue phrase filter. Chang and Choi (2006) used lexical patterns as a filter 

to find causality candidates and proposed cue phrase confidence score for a better causality extraction. 

However, such a rule-based system is vulnerable to lexical and syntactic variations of natural languages. 

Pre-trained language models such as BERT have achieved the state-of-the-art performance in many 

NLP tasks. In addition, there has been many researches on distilling knowledge from pre-trained models 

for a specific task (Jiao et al., 2019; Sun et al., 2019; Tang et al., 2019). 

Training a deep learning model by weakly annotated data is an active research area in both image 

(Papandreou et al., 2015) and natural language domain (Lin et al., 2012). Semi-supervised learning 

combining labeled and unlabeled data has been tried in text classification. A semi-supervised method 

has been proposed to learn embedding of small text areas in unlabeled data (Johnson & Zhang, 2015). 

In (Dai & Le, 2015), authors showed using unlabeled data from related tasks improved the 

generalization of a supervised model. Self-training is also widely used in text classification when only 

a small set of labeled data is available (Ko & Seo, 2009; Pavlinek & Podgorelec, 2017).  
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Chapter IV 

 

Causal Rationale of Stock Price Changes Dataset (CR-SPC) 

 

According to SEC, “the Electronic Data Gathering, Analysis, and Retrieval system (EDGAR) 

(Securities & Commission, n.d.), performs automated collection, validation, indexing, acceptance, and 

forwarding of submissions by companies and others who are required by law to file forms with the US 

Securities and Exchange Commission (SEC).” 

Our goal is to collect sentences containing appropriate reasons of (possibly future) stock price 

changes. Future stock price is usually affected by the past performance and the future expectation of 

firms based on the history. Therefore, we assume that it is desirable to providing the textual causes of 

company's financial performance when predicting the future stock price. 

4.1 Management's Discussion and Analysis (MD&A) 

MD&A is located in item 7 at a 10-K report. The MD&A provides the company's perspective on its 

operations and financial results of the prior year. Therefore, this section is the primary source of 

information about what causes their financial results during the last year.  

Thus, we focus on and extract the MD&A section from 10-K reports. We collect MD&A of reports 

filed in 1997 and 2017. MD&A of 1997 is gathered from the existing MD&A data repository (Kogan 

et al., 2009) and 2017's is downloaded directly from the SEC system.  

4.2 Sentence Extraction 

Our goal is to detect causal rationale from a given text in a sentence level. Thus, we need to annotate 

individual sentences for more than a thousand of reports. In order to reduce the cost of annotation, we 

extract possible causal sentences with causal expressions. Then, we annotate for individual industrial 

sectors. 

Sentences that we want to collect should include causes and reasons of a certain financial 

performance. In the MD&A section, sentences explaining reasons often contain causal expressions like 

‘due to’, ‘result in’, and ‘attributable to’. We assume that some causal sentences describe financial 

performance when they have performance-related words such as ‘increase’ and ‘decrease’. To extract 

almost possible explainable sentences inclusively, we use thirteen keywords and expressions; 1) result 

from, 2) result of, 3) increase, 4) contract, 5) because of, 6) decrease, 7) significant, 8) due to, 9) decline, 

10) net sale, 11) caused, 12) negative and 13) impact. 
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4.3 Data Annotation of Industrial Categories 

Different industries have their own fields of interests which affect changes in stock prices. Thus, we 

need to carefully select what the main reasons are among the extracted sentences. In the process of 

annotation, we find sentences containing specific causal factors for each sector. Those diverse 

causalities make ordinary BERT+fine-tune harder to learn causal rationales from individual sectors. In 

this section, how to divide annual reports into twelve categories, and unique causal factors we find for 

each sector is described. 

The Standard Industrial Classification (SIC) classified the U.S. companies based on their primary 

business. We divide 10-K reports into twelve sub-categories which is predefined from (French, n.d.) 

with respect to the SIC codes. These twelve categories are 1) consumer non-durables, 2) consumer 

durables, 3) manufacturing, 4) energy, 5) chemicals, 6) business equipment, 7) telephone, 8) utilities, 

9) shops, 10) health, 11) finance and 12) others. All sectors are numbered in this order.  

Observation: Causal Diversity of Individual Sectors 

The consumer non-durable sector includes food, tobacco, textiles, apparel, leather and toy companies. 

This business sector's revenue is mainly affected by the fluctuation of materials costs. 

The consumer durable sector consists of cars, TV's, furniture and household appliance companies. 

This business sector's revenue is affected by exchange rate fluctuations as there are many companies 

export goods. The sales volume of products has a main impact on the profit. 

The manufacturing sector is composed of machinery, trucks, planes, office furniture, paper, and 

printing companies. The sales volume of products is a main factor in this business sector. Many 

companies in this business sector sell their products to other companies, so the accomplishments of 

contract determine the sales volume. 

The energy sector contains oil, gas producing, and coal extraction companies. Oil and gas 

production are important factors in explaining the main financial performance because it determines 

the volume of sales. 

For the chemical business sector, the raw material price and sale price are main reasons affecting 

the change in financial performances.  

The business equipment sector is composed of computer, software and electronic equipment 

companies. Research and development expenses are related to creating new products or services. In 

particular of high technology companies, they usually spend a lot of expense in research and 

development. Therefore, this should be considered as the main factor of the company's revenue. 
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The telephone sector contains telephone and television transmission companies. The Utilities sector 

contains gas and electric companies. Their revenues mainly depend on subscription fee and usage, so 

the growth in the number of customers is most important in these sectors. 

The shop sector is composed of wholesale, retail and some service companies like laundries, repair. 

In this sector, a change in the number of shops is contributing the revenue. 

The health sector consists of health care, medical equipment, and drug companies. Main factors of 

this sector are research and development revenue. 

In the finance sector, interest income or investment income, which is not important in other sectors, 

is considered to be an important factor. 

The last sector contains mines, construction, building maintenance, transportation, hotels, bus 

service and entertainment companies. Most of companies in this sector heavily depend on service 

revenue, service related information like service income, service expense and contract should be 

explained in this sector. 

Explanation of changes in net income, net sales, operating income, revenue, and gross profit is 

typically common to all sectors. However, each business sector has its own main factor as described 

above. Therefore, labeling with different standards is desired. The number of sentences from each sector 

is shown in Table 1. Examples of sentence containing main factors are shown in Table 2. Examples of 

non-causal rationales are shown in Table 3. 

 

 1 2 3 4 5 6 7 8 9 10 11 12 Total 

Causes 1,145 346 1,528 497 283 2,505 721 490 1,424 563 558 1,072 11,132 

Non-

Causes 
18,959 7,255 33,485 15,054 4,750 57,292 21,538 19,398 31,698 19,529 25,014 18,386 272,358 

Total 20,104 7,601 35,013 15,551 5,033 59,797 22,259 19,888 33,122 20,092 25,572 19,458 283,490 

# of Doc 140 61 248 79 36 379 76 55 138 127 119 126 1,584 

Ratio of 

Causes (%) 
5.7 4.55 4.36 3.2 5.62 4.19 3.24 2.46 4.3 2.8 2.18 5.51 3.93 

Table 1. Dataset (CR-SPC) Composition: Number of sentences and documents in each sector. 
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Sector of Industry Example [Document] 

Consumer Non-Durables The gross profit margin as a percentage of sales improved from 44.3% 

in Fiscal Year 1995 to 46.8% in Fiscal Year 1996, principally due to 

lower green coffee and material costs, and lower plant overhead costs. 

[Brothers Gourmet Coffees, Inc., July, 1997] 

Consumer Durables The sales increase for fiscal 1996 was principally due to improved sales 

of buses and ambulances. [Collins Industries, Inc., January, 1997] 

Manufacturing The increase in 1996 net sales was due primarily to increases in sales 

revenues recognized on the contracts to construct the first five Sealift 

ships, the Icebreaker and the forebodies for four double-hulled product 

tankers, which collectively accounted for 63% of the Company's 1996 

net sales revenue. [Avondale Industries, Inc., March, 1997] 

Energy Gas revenue increased $32.9 million or 81% because of a 39% price 

increase combined with a 30% increase in production. [Cross Timbers 

Oil Co., March, 1997] 

Chemicals Loss of margin was principally due to sales price decreases and raw 

material price increases in the pyridine and related businesses, and 

higher manufacturing costs due to weather related problems in the first 

quarter 1994. [Cambrex Corp., March, 1997] 

Business Equipment Research and development expenses increased from $10.1 million (2% 

of net revenues) in fiscal 1995 to $34.6 million (21% of net revenues) 

in fiscal 1996 due to the increase in Software development resulting 

from the acquisition of the three Software studios in calendar 1995. 

[Acclaim Entertainment, Inc., November, 1997] 

Telephone Revenue from cable television operations increased by $90,713 or 

24.6%, over the corresponding year ended May 31, 1996 as a result of 

regulated price increases, increases in the number of cable television 

subscribers and acquisitions. [Century Communications Corp., August, 

1997] 

Utilities Gas operating revenues increased $36.7 million, or 21.0%, due to 

increased volumes as a result of customer growth and higher gas costs.  

[WPS Resources Corp., March, 1997] 

Shops Aggregate sales generated by franchised stores increased by 

$10,001,000, or 13.1%, to $86,485,000 for calendar year ended 

December 31, 1995, as compared to $76,484,000 for the same period in 

1994, due to an increase of the number of franchised stores, as well as 

higher sales volume per store. [Sterling Vision, Inc., April, 1997] 

Health The increase in research and development expenses in 1996 and 1995 

was due primarily to higher expenditures for the Actiq Cancer Pain 

Program, new product development and other expenditures for product 

development, including clinical trials. [Anesta Corp., March, 1997] 

Finance Mortgage investment income decreased for 1995 as compared to 1994 

primarily due to the assignment to HUD of the mortgage on El Lago 

Apartments in June 1995.  [American Insured Mortgage Investors 

Series 85 L P, March, 1997] 

Others The Company's largest revenue source is from the marketing and 

administration of extended vehicle service contracts (“VSCs”) under 

the EasyCare(R) name, which provided 99% of revenues for 1996. 

[Automobile Protection Corp-APCO, March, 1997] 

Table 2. Examples of causal rationale sentences by each sector. 
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Sector of Industry Example [Document] 

Consumer Non-Durables Total general and administrative costs decreased by $79,000 in 1995 

due primarily to the absence of a management fee for 1995. [Highwater 

Ethanol, LLC, January, 2017] 

Consumer Durables Bank borrowings during 1995 were attributable to the Silver Furniture 

acquisition and the refinancing of Silver Furniture's bank indebtedness. 

[Chromcraft Revington, Inc., March, 1997] 

Manufacturing Because components are sold directly to the Company's manufacturing 

sources, the Company is not aware of the precise quantities sourced 

from particular suppliers.  [Fossil, Inc., March, 1997] 

Energy Due to the apparent age of the material, no fine or enforcement action 

is expected. [Arabian Shield Development Co, March, 1997] 

Chemicals Due to personnel additions to the department, employee wages 

increased approximately $56,700 in 1996. [American Vanguard Corp., 

March, 1997] 

Business Equipment Due to a variety of factors including differences in relational database 

product performance across wide area networks, differences in speed of 

various communication links, differences in hardware platform 

performance, and other factors, there is a limited ability to accurately 

predict product performance under certain of these environments. 

[Peoplesoft, Inc., March, 1997] 

Telephone Cost of services related to the wireless telephone operations during the 

year ended May 31, 1996 was $26,129, an increase of $3,977 or 18.0% 

as compared to the year ended May 31, 1995. [Century 

Communications Corp., August, 1997] 

Utilities The remainder of the increase was attributable to increases in ad 

valorem taxes, repair and maintenance expense mainly related to the 

WCLSF and the employee incentive plan which rewards certain of 

Tejas' employees with bonuses when the company achieves certain 

annual financial growth targets. [Tejas Gas Corp., March, 1997] 

Shops The Board may increase or decrease the number of shares under the 

Program or terminate the Program in its discretion at any time. [Boise 

Cascade Co., February, 2017] 

Health The 1995 results were also negatively impacted by a reduction of the 

Company's income tax benefit resulting from reserves established 

related to the expiration of certain state operating losses. [American 

White Cross Inc., April, 1997] 

Finance In the last three years, inflation has not had a significant impact on the 

Company because of the relatively low inflation rate. [Weeks Corp., 

March, 1997] 

Others In addition, the timing of revenue is difficult to forecast because the 

Company's sales cycle is relatively long. [Claremont Technology Group 

Inc., September, 1997] 

Table 3. Examples of non-causal rationale sentences by each sector. 
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4.4 Annotator Sensitivity 

Inspired by Kappa (Cohen, 1960), we use agreement as an indicator of annotator quality and keep cross-

annotator agreement high to ensure annotation quality. We use a set of expert annotators and selectively 

keep annotations from annotators correlating with their judgement. 

The classification performance, highly depends on the quality of a dataset we collected. If labeling 

is not consistent over the dataset, automatically trained models (e.g., deep neural network models) will 

suffer non-stable training. Since we collect annotations from experts and non-experts, there are some 

discrepancy between labels from annotators. In order to handle this issue, we select labels from a set of 

expert annotators. We regard these labels as a standard and train a model with these labels alone. We 

call this model as an initial teacher model. Then, we apply this teacher model to documents that are 

labeled from the other annotators. If all labels in a single MD&A document match with predictions of 

the teacher model, we add them to a training set. We build another teacher model with newly added 

training set again and apply this model to the rest of other documents. We repeat this process until no 

matched document is found. As a result, we collect 1,584 10-K reports and 283,490 sentences. Among 

sentences we collect, 11,132 sentences contain causes of financial performance and 272,358 sentences 

do not contain causes. 
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Chapter V 

 

Methods to Train Causal Rationale 

 

As described in the Section 4.3, CR-SPC dataset consists of twelve different industrial sectors. Each 

industrial sector possesses its own field of interests with respect to reasons of stock price changes. Thus, 

we need to build a model that predicts appropriate causal rationales from each industrial sector. 

In this paper, we have following two research questions: (1) how can we utilize a set of dataset 

which belongs to other classes in order to accurately predict causal rationale for a certain class, (2) how 

can we exploit unlabeled data to improve the performance of Causal NLMs.  

5.1 Two-stage Fine-tuning 

This section tests a hypothesis if two-stage fine-tuning helps to predict different causal rationales of 

stock price changes for each sector better than using Sector-only data alone. 

We observe that different industry sectors contain different causal rationales of stock price changes. 

Therefore, training each sector individually is required for a better classification. However, the number 

of data for each industry sector is between 5K and 60K, in which some sectors do not contain enough 

data to detect causal rationale precisely.  

 

Figure 1. Overview of a two-stage fine-tuning framework. 

Thus, we propose a two-stage fine-tuning network for a better prediction. In a two-stage fine-tuning 

network, we first fine-tune a pre-trained NLM with all sector data except for a class that we want to 

train eventually. Then we secondly fine-tune the NLM with a certain sector data. In this way, we can 

overcome the lack of data and make NLMs to learn global features and domain features together 

effectively. Figure 1 shows the overview of our two-stage fine-tuning framework. 
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5.2 Semi-Supervision using Self-Training 

 

Figure 2. Flow of self-training process. 

This section tests a hypothesis if pseudo-labeling unlabeled contributes to learning, by adding 382K to 

our 283K dataset. Collecting labeled data is expensive and time consuming. In particular, to annotate 

financial reports, annotators need to have the domain knowledge of financial fields. This makes 

annotating process harder and expensive compared to other task annotation. Thus, we present an auto-

annotation method based on NLMs trained with self-training.  

We hypothesize that additional unlabeled data may improve the performance of causal extraction 

of NLMs when the pseudo labels are carefully selected. To examine our hypothesis, we suggest a self-

training network.  

Our self-training network consists of three steps: 1) train a NLM with a two-stage fine-tuning on 

labeled sentences as described in Section 5.1, 2) generate pseudo labels on unlabeled sentences of a 

certain industry sector by using the NLM as a teacher model, and 3) train a student NLM that is 

initialized with weights from 1st fine-tuning on the combination of labeled sentences and pseudo labeled 

sentences.  

In order to proceed with the self-training network, we need pseudo labels for unlabeled data. Given 

a Causal NLM trained with labeled data, predictions on unlabeled data is made. At this time, we regard 

this trained model as a teacher model. The teacher model gives us the probability of causality on each 

sentence. We use this probability of each sentence as a pseudo label for the unlabeled sentence. As 

described in Section 4.4, collecting additional labels at the same time as keeping cross-annotator high 

is hard and expensive. Thus, we can collect more consistent data by applying self-training on unlabeled 

data. Figure 2 shows the flow of the self-training process.  
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Chapter VI 

 

Experimental Results 

 

This section first describes the details of our experimental setting. Then we address the following 

research questions: 

1) Is our CR-SPC dataset sufficient to achieve reasonable performance of Causal NLMs? How 

many annotations do we need to train Causal NLMs stable? 

2) Which Causal NLMs work on the CR-SPC dataset best? 

3) Does our two-stage fine-tuning framework outperform ‘Sector-only’ and ‘1st fine-tuning’ 

models on extracting causal sentences from a specific industrial sector? 

4) Do additional pseudo labels work better than low quality labels from non-expert annotators? 

5) Do people perceive generated summaries from Causal NLMs as ones written by human?  

6) How does our proposed model predict sentences differently compared to other models? Does 

the two-stage fine-tuning framework have advantages of using it over other models? 

6.1 Experimental Settings 

We conduct experiments on our CR-SPC dataset consisting of sentences and corresponding labels 

in supervised learning, and the combination of labeled 283K and unlabeled 382K sentences in semi-

supervised learning. In supervised learning, we split our 283K dataset into train, validation and test sets 

with the ratio of 81% / 9% / 10%. For training of individual sectors, the same ratio of train/validation/test 

sets is applied to each sector. We use Area Under the ROC Curve (AUC) and Average Precision (AP) 

of causal sentences as the evaluation metrics. As an input, a single sentence is tokenized at the length 

of 100, with Keras tokenizer (Chollet & others, 2015) and BERT tokenizer (Devlin et al., 2018) 

respectively for Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) based models 

and BERT Base. For LSTM based models, we use Glove for word embedding. All models are optimized 

for the validation dataset. A trained model gives us the probability of causality on each sentence. We 

set a threshold as 0.4 because the majority of models we used show the highest F1-score at this point. 

6.2 Few Shot training 

We use BERT Base for fine-tuning on our CR-SPC data. We increase the amount of training data and 

verify the causal extracting performance on each step. At each step, we randomly select a set of training 

data by increasing 10,000 sentences, then report the mean and the standard deviation of AUC and AP 

from 10-fold cross validation of the rest of the CR-SPC dataset. 



15 

 

AP and AUC of BERT Base increased with huge gaps (13.67% and 2.16%, respectively) from 10K 

to 20K. Then they increase gradually until 200K then slightly drop afterward. At 200K, we observe 

83.29% and 98.97% for AP and AUC respectively (Figure 3). 

 

Figure 3. AUC (gray) and Average Precision (black) of BERT Base by the number of training data 

from our CR-SPC dataset. 

6.3 Baseline Models 

We use LSTM, Bidirectional LSTM (Bi-LSTM) (Graves et al., 2005), attentional LSTM (Attn. LSTM) 

(Zhou et al., 2016), attentional Bi-LSTM (Attn. Bi-LSTM), BERT Base as baselines to compare the 

performance of extracting rationale of stock price changes. For the baseline experiment, we only use 

CR-SPC dataset for training NLMs.  

As shown in Table 4, models with an attention layer improved in AUC and AP compared to the 

models with no attention layer. BERT Base achieved the highest AUC (98.61%) and AP score (80.92%). 

 

Model AUC (%) AP (%) 

LSTM 98.31 ± 0.06 77.59 ± 0.66 

Bi-LSTM 98.35 ± 0.08 77.92 ± 0.81 

Attn. LSTM 98.53 ± 0.03 79.07 ± 0.36 

Attn. Bi-LSTM 98.55 ± 0.03 79.48 ± 0.46 

BERT Base 98.61 ± 0.02 80.92 ± 0.17 

Table 4. Classification performance of baseline models in supervised learning with our CR-SPC 

dataset. 



16 

 

6.4 Two-stage Fine-tuning 

We compare the test performances (AUC and AP) of three different models for each sector. Sector-only 

models are fine-tuned with BERT Base models on sector data only. 1st fine-tune models are BERT 

Base models fine-tuned on all sector data except a specific sector. 2nd fine-tuned models are secondly 

fine-tuned on the 1st fine-tuned models with the specific sector data. We use three fine-tuning layers 

for all models. The batch sizes are fixed at 32. We report the mean of AUC and AP from 10-K cross 

validations for each sector. 

 

Figure 4. Comparison between ‘Sector-only’, ‘1st Fine-tune’ and ‘2nd Fine-tune’ model  

(left: Area Under the ROC Curve (AUC), right: Average Precision (AP)). 

Section 
Sector-only 1st-Finetune 2nd-Finetune Semi-supervised 

AUC AP AUC AP AUC AP AUC AP 

1 97.42 80.30 97.80 85.32 97.97 85.00 98.16 84.97 

2 96.85 63.82 98.52 82.64 98.59 83.78 98.50 84.08 

3 98.31 82.84 99.03 85.79 99.14 86.97 98.97 86.48 

4 97.90 78.69 98.59 81.53 99.36 86.16 99.02 81.92 

5 96.22 66.05 99.24 89.51 99.24 90.19 99.14 89.15 

6 98.97 84.69 99.16 87.61 99.11 87.69 99.14 87.76 

7 99.18 77.98 99.61 91.65 99.64 91.94 99.52 91.70 

8 99.26 81.20 99.54 85.84 99.58 87.00 99.64 88.95 

9 98.74 76.77 98.98 84.26 99.03 84.31 99.09 84.39 

10 99.04 78.30 99.59 88.20 99.59 88.88 99.57 87.27 

11 97.20 54.00 98.47 64.50 98.68 66.62 98.84 66.89 

12 97.22 72.92 97.10 72.17 97.97 77.45 98.00 78.33 

Table 5. Test performance (AUC, AP) of Sector-only, 1st-Finetune, 2nd-Finetune,  

and Semi-supervised models on the test data of each sector (highest score in bold) (%). 

 

As shown in Table 5 and Figure 4, all 2nd fine-tune models achieved improved AUC and AP scores 

compared to Sector-only models. The differences between 2nd fine-tune models and Sector-only 

models are significantly higher at Sectors 2 and 5 with 19.96% and 24.14% in AP, respectively. Sectors 

1 and 6 show slightly decreased performances of 2nd fine-tune compared to 1st fine-tune. In Sector 12, 

1st fine-tune models achieve the lowest performance of both AUC and AP compared to the other models 
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for the same sector. In addition, we observe that the micro average over the performance of 2nd fine-

tune models is higher than 1st-fine-tune models with increases of .19% and 1.4% in AUC and AP, 

respectively. We conduct one-tailed t-tests to determine the statistical significance of the difference in 

performances of AP (p < .05) and AUC (p < .01). 

6.5 Semi-supervision 

For a semi-supervised learning, we use 2nd fine-tuned models as the teacher models to produce pseudo 

labels for unlabeled sentences of objective sector. Then, we combine labeled data and pseudo labeled 

data of the sector to fine-tune 1st fine-tuned models for a specific sector. To confirm the quality of 

pseudo labels, we train 1st fine-tuned model on the low-quality labeled data combined with high-quality 

labeled data (CR-SPC) of the sector, and we call this model as a supervised-low model. Then we 

compare the performances of two models. As described in Section 4.4, low quality data is annotations 

not passed the agreement with expert annotations. The low-quality dataset consists of 324,315 sentences 

and 1,403 reports.  

Test performances of semi-supervised models show improved performances in AUC and AP for 

Sectors 4, 5, 10, 11 and 12 compared to supervised-low models (Table 6). In particular of Sector 10, 

the difference of AP (87.27%) in Semi-supervised and AP (73.58%) in supervised-low is huge. 

Sector 
Supervised-low Semi-supervised 

AUC (%) AP (%) AUC (%) AP (%) 

4 98.79 79.55 99.02 81.91 

5 98.91 85.93 99.14 89.15 

10 99.04 73.58 99.57 87.27 

11 98.81 62.93 98.84 66.89 

12 97.72 76.29 98.00 78.33 

Table 6. AUC and AP of supervised-low learning (low-quality + high-quality data (CR-SPC)) and 

semi-supervised learning (pseudo labeled + high-quality data (CR-SPC)). 

6.6 Turing Test  

We generate automated summaries from unlabeled MD&A of 2017. The first two lines consist of the 

rule-based sentences containing companies' basic information. The latter part of the summaries consists 

of sentences that are classified as rationale of changes in stock prices from attentional Bi-LSTM trained 

on CR-SPC dataset. Those sentences are extracted from a document and listed as the order of 

appearance in the document.  

We prepare three financial summaries written by analysts which are published at J.P. Morgan and 

twenty-five summaries generated by our program in similar length for both. Each participant reads five 
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summaries and decides the writer of each summary. Five summaries consist of either a set of two 

summaries written by analysts and three summaries generated by our model or vice versa. With 30 

students who participated in this experiment, we collected 150 responses. Among 150 responses, 75 

were generated by our model and the other 75 were written by analysts. Examples of summary generated 

from our program are shown in Table 7. 

From the Turing Test, out of 75 summaries by our model, 24 were answered as analyst-written and 

51 were perceived as software-generated. Among 75 summaries by analysts, 25 were thought as 

software-generated and 50 were perceived as analyst-written. That is, 32% of individual summaries 

generated from our NLM trained on CR-SPC dataset are perceived as human written. The responses of 

participants in Turing Test are presented in Figure 5. 

 

 

 

Figure 5. Responses of participants in Turing Test. 
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Summary 

ID 
Summary [Company name, source, year] 

1 

The results of 2017 are reported by New Age Beverages Corp. Changes in financial performance 

during the last year are described as follows: Their revenue for the period is primarily 

attributed to their acquisition of the Xing brands and the related increase in demand for 

Xing products, as well as expanded distribution on the Búcha Live Kombucha brand. The 

increase in gross margin was due to several factors, including (1) an increase in gross sales, 

(2) reduced freight costs and manufacturing labor, and (3) improved raw material and 

packaging supply costs including gaining the benefits of increased scale. The increase in the 

gross margin was due to several factors, including (1) a significant increase in gross and net 

sales, (2) significantly increased scale and efficiencies that led to lower freight costs and 

transportation costs, and (3) an improvement in the production processes of some of their 

key products that led to lower overall manufacturing costs. [New Age Beverages Corp, 10-

K, 2017] 

2 

YIELD10 BIOSCIENCE, INC. posted the results of 2017. The significant changes in financial 

performance are explained in the following:  The Company’s technology sales, services and 

licensing revenues increased 5% in 2016, as compared to 2015, as a result of a strengthening 

in sales of the Company’s digital authentication solution, partially offset by a decrease in 

the Company’s IT hardware reselling business that resulted from the Company’s decreased 

focus on this component of its digital business. Costs of revenue increased 4% in 2016 as 

compared to 2015 which was less than the 10% increase in the Company’s revenue over the 

same period, which generally reflected the increase in sales of products that have a higher 

margin, such as security sales and technology card sales such that material costs, outside 

service costs and delivery costs decreased as a percentage of revenue during the 2016 period. 

Stock-based compensation costs decreased 66% in 2016 as compared to 2015 due to a 

general decrease in the number and value of equity compensation awards granted by the 

Company since 2014. [YIELD10 BIOSCIENCE, INC, 10-K, 2017] 

3 

Luvu Brands, Inc. announced 2017 results. Their financial record was affected by several reasons 

such as: The decrease in sales through the Wholesale channel was due to lower sales of 

Liberator products to retailers, offset in part by greater sales of Liberator, Jaxx and Avana 

products through and to Amazon. The improvement in gross profit was primarily due to 

greater sales of manufactured consumer products which have a higher average gross profit 

margin than products purchased for resale, and production improvements implemented 

this year which increased productivity and reduced cost of goods sold. Other income 

(expense) increased 16% from the prior year due to higher average borrowing balances and 

higher interest expense on those larger balances. [Luvu Brands, Inc., 10-K, 2017] 

Table 7. Generated summary samples used in Turing Test (extracted sentences are in bold). 
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6.7 Interpretation of Causal Rationale Detection  

LIME is the abbreviation for Local Interpretable Model-Agnostic Explanations. With this explanation 

technique, we can visualize the most important features affecting predictions from any models. In order 

to see the difference on the predicted sentences from various models, we applied LIME on our models. 

We set the explainer to select top 13 contributing features. The results from LIME is visualized in Figure 

6. In Figure 6, true labels for all sentences are all causal sentences. 

In the case of a sentence from Sector 2, predicted answer from Sector-only model is incorrect. 

Predictions from the 1st-fine-tune model and 2nd-fine-tune model are correct answers which are 

improved by ‘sales’ and ‘increase’. 

From the result of Sector 11, the word, ‘interest’ works as non-causal in Sector-only model. 

However, it disappears in the 1st and 2nd fine-tune models. The word ‘level’ becomes an opposite 

contributing factor in the 2nd fine-tune model. The highest probability of causal rationale is achieved 

by 2nd fine-tune model. 

For a causal sentence from Sector 4, words including ‘oilfield’, ‘primarily’, ‘attributable’ and 

‘whose’ become weaker contributing factors in the 2nd fine-tune model.  

The probability of a causal sentence from Sector 5 is predicted as highest with the 2nd-fine-tune 

model, compared to Sector-only and 1st-fine-tune models. From 2nd-fine-tune's prediction, we observe 

that the word, ‘higher’ becomes a contributing factor, and the color gradient becomes darker on ‘sales’. 

On the other hand, ‘volume’ disappears in the 1st and 2nd fine-tune models. All probabilities on the 

sentence are above the threshold (0.4), so they are all classified as a causal sentence.  

   We also apply LIME to 2nd-fine-tuned models of each sector to test how each sector's model 

predicts differently when classifying causal sentences. First, we apply 2nd-fine-tuned models of each 

sector used in Chapter 6.4 to the test dataset which are used for baseline models, so that we can test on 

sentences from every sector. Then, we use LIME to analyze the top 13 words contributing to causal 

sentences for each model. In order to rank the words contributing to causal rationales for each sector, 

we are stemming all words appeared in 500 sentences of test dataset, and then, we sum the weights of 

each stem word. If the sum weight of a certain word is higher than others, it means the word is more 

contributing to the decision of causal rationales. Also, we remove the verb ‘be’ and prepositions from 

the rank to obtain meaningful words. 

   The results of comparing 13 words contributing to causal rationales for each sector are listed in 

Table 8. Words with the higher sum of weights are located at the top. We find that the words 'increase' 

and 'due' are selected as the most contributing words to causal rationales in all sectors. In addition, 

words such as 'revenue', 'income', 'primarily', 'lower' and 'attributable' are found in all sectors but their 

orders in the rank are slightly different each other. Moreover, words such as 'higher', 'cost', 'profit', 
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'promote' and ‘margin’ can be found in a set of specific sectors. According to those results, we find that 

each model classifies given sentences differently. 

 

 

 

Figure 6. Interpretation of predictions from (A) ‘Sector-only’, (B) ‘1st-fine-tune’ and (C) ‘2nd-fine-

tune’ models with LIME. (Features contributing on causal rationale are highlighted in orange, the 

opposites are in blue.).   
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Sector 

1 2 3 4 5 6 

increas increas increas increas increas increas 

due due due due due due 

revenu revenu revenu revenu revenu revenu 

primarili incom incom incom sale incom 

incom primarili sale result primarili primarili 

sale sale result primarili result attribut 

result result primarili sale incom result 

decreas lower lower attribut attribut sale 

attribut attribut attribut lower decreas higher 

lower decreas decreas decreas lower lower 

cost profit declin declin higher profit 

higher declin profit profit declin decreas 

7 8 9 10 11 12 

increas increas increas increas increas increas 

due due due due due due 

revenu revenu revenu revenu incom revenu 

incom incom incom incom revenu sale 

result primarili primarili primarili primarili primarili 

primarili result result sale result result 

sale sale sale result sale attribut 

attribut attribut lower attribut attribut decreas 

lower lower decreas lower lower incom 

decreas decreas attribut higher decreas lower 

cost declin declin decreas declin profit 

profit margin cost profit profit declin 

declin profit profit declin higher rose 

Table 8. Top 13 words contributing to causal sentences for each sector. 
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Chapter VII 

 

Discussions 

 

In Figure 3, we observe that AUC is high enough on the first step. Therefore, there is not much room 

for further improvements as we increase the number of training data. This is because of the imbalanced 

ratio of causes and non-causes in our CR-SPC dataset. In addition, we find that the test performances 

between individual sectors have a large distribution as shown in Figure 4. That is mainly because of the 

size of dataset for sectors and the characteristics of each sector. 

The results of LIME on 1st and 2nd fine-tune models show that two models resemble each other, 

that is because of distilled knowledge of the first stage of two-stage fine-tuning. However, some words 

appear or disappear in 2nd fine-tune models, which shows the advantage of using the two-stage fine-

tuning framework on extracting causal rationales. 

From the semi-supervised learning, we observe a dramatic increase of test performances in some 

sectors. That means we can use this method for automatic annotation, instead of collecting annotations 

from non-experts. However, our tests highly depend on our dataset, and there is a possibility of any bias 

on the judgement of the main reasons of stock price changes.  
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Chapter VIII 

 

Conclusion and Future Work 

 

In this work, we create a large scale of Causal Rationale of Stock Price Changes (CR-SPC) dataset 

to extract causal rationales from financial reports in various sectors automatically. We propose a two-

stage fine-tuning framework to overcome diverse causalities and imbalanced learning. In addition, we 

also augment the size of dataset by self-training. We found that our two-stage fine-tuning enhances the 

performance of causal extracting models trained on sectors with a small number of data. We also 

collected additional 382K pseudo labeled data and observed better performances on the pseudo labels 

from self-training compared to the performance on low-quality data in some sectors. Furthermore, we 

showed a possible application of our work to the real financial fields (e.g., automatic summary 

generation). Finally, we apply LIME to our two-stage fine-tuned model and other models to compare 

the improvements qualitatively. 

At this moment, we choose causal rationales from 10-K reports with respect to typical interests of 

industrial sectors. However, we have not tested that those causal rationales have actual correlations with 

stock price changes. Therefore, we need to investigate their relationships in the following research. 
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