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Abstract

From self-driving cars to smartphones essential to our lives, many types of the electronic devices

and computers handle intelligently our work. Thanks to the ‘things’ that have become smarter,

our lives have become more pleasant and faster, and literally easier. One of the big reasons we

can live in such an environment is ’machine learning’. It is a technology that allows a machine

to acquire new knowledge by learning through a huge amount of data, just like a person learns.

Machine learning is one of the most important topics in many industries and researches these

days. It is no exaggeration to say that machine learning is used in almost every field. Its

application to (1) wireless communications and (2) computer vision based robotics are also

essential.

Learning based communication system has the following possibilities: (1) Unlike communi-

cation theory, real communication systems are non-linear. For this reason, deep learning-based

communication systems may be more suitable for specific hardware configurations and channel

optimization. (2) One of the great features of a communication system is that various signal

processing functions (e.g., Coding, modulation, detection) are separated into several blocks.

Rather than optimizing the performance of individual blocks, a machine learning-based end-to-

end communication system can perform better. Because of these possibilities, machine learning

is being applied to a wide range of communication systems such as heterogeneous access tech-

nology, cognitive radio, and resource allocation. In this dissertation, we propose a mathematical

approach to the optimization problem of interference mitigation in a multi-cell network with

and without energy harvesting. Also, we propose a recurrent neural network (RNN) based node

selection algorithm for sensor networks with energy harvesting. Comparing the problem solving

method of the former and the latter, the difference between the existing communication system

and the learning based communication system can be clearly revealed.

Computer vision based robotics is a study that extracts meaningful information from an

image or video and applies the information to a robot. In particular, as a result of applying

machine learning to this field, various robots, such as autonomous vehicles, unmanned courier

robots, and smart home robots, are being developed. The more studies on robots equipped

with cameras, the more convenient our lives, but on the contrary, they can invade our privacy.

That is, it is a double-edged sword. In this dissertation, we propose a method to protect our

privacy while utilizing other visual information well (i.e., Simultaneous localization and mapping

(SLAM)) by detecting faces in extreme low resolution images.
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I Introduction

From self-driving cars to smartphones essential to our lives, many types of the electronic

devices and computers handle intelligently our work. Thanks to the ‘things’ that have become

smarter, our lives have become more pleasant and faster, and literally easier. One of the big

reasons we can live in such an environment is ’machine learning’. It is a technology that allows

a machine to acquire new knowledge by learning through a huge amount of data, just like a

person learns. Machine learning is one of the most important topics in many industries and

researches these days. It is no exaggeration to say that machine learning is used in almost every

field. Its application to (1) wireless communications and (2) computer vision based robotics are

also essential.

Learning based communication system has the following possibilities: (1) Unlike communi-

cation theory, real communication systems are non-linear. For this reason, deep learning-based

communication systems may be more suitable for specific hardware configurations and channel

optimization. (2) One of the great features of a communication system is that various signal

processing functions (e.g., Coding, modulation, detection) are separated into several blocks.

Rather than optimizing the performance of individual blocks, a machine learning-based end-to-

end communication system can perform better. Because of these possibilities, machine learning

is being applied to a wide range of communication systems such as heterogeneous access tech-

nology, cognitive radio, and resource allocation. In this dissertation, we propose a mathematical

approach to the optimization problem of interference mitigation in a multi-cell network with

and without energy harvesting. Also, we propose a recurrent neural network (RNN) based node

selection algorithm for sensor networks with energy harvesting. Comparing the problem solving

method of the former and the latter, the difference between the existing communication system

and the learning based communication system can be clearly revealed.

Computer vision based robotics is a study that extracts meaningful information from an

image or video and applies the information to a robot. In particular, as a result of applying

machine learning to this field, various robots, such as autonomous vehicles, unmanned courier

robots, and smart home robots, are being developed. The more studies on robots equipped

with cameras, the more convenient our lives, but on the contrary, they can invade our privacy.

That is, it is a double-edged sword. In this dissertation, we propose a method to protect our

privacy while utilizing other visual information well (i.e., Simultaneous localization and mapping

(SLAM)) by detecting faces in extreme low resolution images.

1.1 Main Contributions

This dissertation aims to provide the applications of machine learning to various fields, espe-

cially wireless communications and computer vision based robotics, where the main contributions

are:
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• Min-SINR Maximization with DL SWIPT and UL WPCN in Multi-Antenna

Interference Networks. Due to unpredictable future channel state, considering down-

link (DL) and uplink (UL) jointly in multi-cell networks with energy harvesting is known

to be very challenging. For resolving this issue, we have proposed a novel multi-cell com-

munication and energy harvesting scheme, in which DL simultaneous wireless information

and power transfer and UL wireless powered communication network concepts are jointly

considered in [1]. Specifically, a DL beamforming with energy harvesting and UL power

allocation (PA) scheme is proposed, where each cell is composed of a base station with

multiple antennas and power-limited users each with single antenna. With the difficulty of

optimizing mathematically DL and UL at the same time, it is considered to apply machine

learning to a communication system as follows.

• RNN-Based Node Selection for Sensor Networks with Energy Harvesting. Node

selection problem in sensor networks is that a master node (MN) sequentially decides which

slave node (SN) transmits UL data or receives DL data. However, the unpredictability

of 1) future channel condition, 2) battery level of sensor devices, i.e., SN, and 3) packet

deadlines of SNs makes the problem challenging. In [2], we propose an recurrent neural

network (RNN) based node selection algorithm in pursuit of minimizing the transmission

failures due to low battery level and exceeded UL/DL deadline. By processing sequential

data with RNN, this algorithm takes into account battery level of sensor devices, UL/DL

packet deadline as well as future channel information implicitly.

• Privacy-Preserving Robot Vision with Anonymized Faces by Extreme Low

Resolution. In the field of computer vision, privacy infringement is a serious social

problem. In fact, the incident that the smart home camera memory is hacked occurs,

and people’s interest in protecting privacy has increased. In [3], we propose a learning

based robot vision system which detects privacy-sensitive blocks, i.e., human face, from

extreme low resolution (LR) images, and then dynamically enhances the resolution of only

privacy-insensitive blocks, e.g., backgrounds. Keeping all the face blocks to be extreme LR

of 15x15 pixels, we can guarantee that human faces are never at high resolution (HR) in

any of processing or memory, thus yielding strong privacy protection even from cracking

or backdoors.
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II Learning-based Wireless Communications with Energy Har-

vesting

2.1 Downlink Beamforming in Small Cells with Scalar Information Exchange

Introduction

The recent evolution of mobile wireless communications is being driven by the concepts

of small cells [4], [5] and multiinput and multi-output (MIMO) [6–8]. The idea of smell cells

is to increase the infrastructure density by employing physically and functionally ‘small’ BSs

within a macro cell coverage. With the cell densification, path loss from BSs to user equipment

(UE) is expected to be significantly reduced, yielding higher data rate over the entire coverage

area [8]. In addition, in MIMO systems, the spectral efficiency can be scaled by transmitting

and receiving independent information on different spatial streams [6], [8], or the link reliability

can be improved by employing beamforming techniques [7], [8]. It is, needless to say, that the

spectral efficiency can be further enhanced if both the small cell and MIMO techniques are used

concurrently.

Four small cell scenarios are discussed by the 3GPP standard body [4], [5] considering several

different aspects: same and separate frequency for macro and small cells, indoor and outdoor

deployment, and with and without a macro coverage. One of the major problems in small cells

is intercell interference, which becomes more significant as the cell density increases.

In this paper, we address the intercell interference issue between small cells without consid-

eration of the macro coverage; that is, the scenario with separate frequency deployment or the

scenario without a macro coverage is considered. In particular, the scenario where the BSs are

equipped with multiple antennas is addressed. We first revisit the two extreme beamforming

strategies: 1) max-signal-to-noise-ratio (SNR) and 2) min-generating-interference (GI) schemes.

In the max-SNR scheme, the maximum transmit combining (MTC) beamforming scheme is

considered only to maximize the desired channel gain at each cell. On the other hand, in the

min-GI scheme, each BS designs its beamforming vector such that the interference it generates

is minimized as done in [9], [10]. These two schemes require only local channel state information

(CSI) at transmitter (CSIT) assuming the time-division duplexing (TDD) channel reciprocity,

i.e., each BS has the knowledge of the incoming and outgoing channels and is ignorant of the

channels between the BSs and UE in other cells.

Then, we propose a beamforming scheme that minimizes the weighted-GI (WGI) to in pursuit

of further enhancing the achievable rate. The weight coefficients are determined to take into

account both the desired channel gain and generating interference, thereby balancing between

the two extreme philosophies – egoism and altruism.

Specifically, the beamforming vector at each BS is designed such that it minimizes the WGI,

where the weight coefficients are determined according to the signal-to-interference-and-noise-
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Figure 1: System model

ratio (SINR) at the other cells. Thus, the proposed scheme requires an additional information

exchange between the BSs for a few scalar values such as the SINRs. The scheme is still feasible,

since in all the four 3GPP scenarios, a certain amount of information is allowed to be exchanged

between small cell BSs via X-2 interface [4], [5]. Simulation results show that there exists a SINR

cross over a point from which the performance of the min-GI scheme surpasses the performance

of the max-SNR scheme. In addition, it is shown that the proposed min-WGI scheme always

outperforms the other schemes in all SINR regime.

The remainder of this paper is organized as follows. Section II describes the system model,

and Section III presents the three different methods to design the beamforming vectors. Section

IV provides numerical simulation results, and Section V concludes the paper.

System model

As shown in Fig. 1, the small cell scenario without a macro cell coverage is considered. For

simplicity of notation, only a single UE is depicted. It is straightforward to extend the study to

the multi-user case with the use of orthogonal frequency division multiplexing [11].

It is assumed that each small cell BS has NT antennas, while each UE has a single antenna.

The number of small cells is denoted by NC . The channel vector from the i-th BS to the UE

in the j-th cell is denoted by hij ∈ C1×NT ; that is, the first letter of the subscript denotes the

source and the second denotes the destination. Block fading is assumed. TDD and the channel
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reciprocity is assumed. It is also assumed that each BS has the knowledge of the channels from

itself, i.e., the i-th BS has the information of hij , j = 1, ..., NC .

The beamforming vector at the i-th BS is denoted by wi ∈ CNT×1, where ‖wi‖2 = 1. The

received signal at the UE in the cell is written by

yi = hiiwixi︸ ︷︷ ︸
desired signal

+

NC∑
k=1,k 6=i

hkiwkxk︸ ︷︷ ︸
intercell interference

+zi, (1)

where xi is the unit-variance transmit symbol, and zi is the additive white Gaussian noise

(AWGN) at the UE in the i-th cell. Thus, the corresponding SINR is expressed by

SINRi =
|hiiwi|2∑NC

k=1,k 6=i |hkiwk|2 +N0

, (2)

and the total achievable sum-rate is given by

R =

NC∑
i=1

log (1 + SINRi) . (3)

Beamforming design

• Max-SNR

In the max-SNR scheme, the beamforming vector is designed such that the channel gain

of the desired channel, i.e., ‖hiiwi‖2, is maximized such that

wmax−SNR
i = max

w
|hiiw|2 , s.t.‖wi‖2 = 1. (4)

Thus, the solution for the max-SNR is a simple maximum ratio transmit (MRT) scheme [12]

given by

wmax−SNR
i =

hHii
‖hii‖

. (5)

Note that this solution is designed independently of the interference channels, and hence,

it does not change the strength of the interference channels in an average sense.

• Min-Generating-Interference

With the local CSIT, each BS can calculate the amount of interference that it generates

from:

∆i =

NC∑
j=1,j 6=i

|hijwi|2 . (6)

Therefore, to minimize the GI, the beamforming vector is designed such that

wmin−interf
i = min

w
∆i (w) , s.t.‖wi‖2 = 1. (7)
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Note that ∆i can be expressed as

∆i = ‖



hi1
...

hi(i−1)

hi(i+1)

...

hiNC


wi‖2 = ‖Giwi‖2. (8)

If we denote the singular value decomposition of the matrix Gi ∈ C(NC−1)×NT as

Gi = UiΣiV
H
i , (9)

where Ui ∈ C(NC−1)×N̄ and Vi ∈ CN̄×NT consist of orthogonal columns, and Σi ∈ RN̄×N̄

is a diagonal matrix composed of singular values of Gi. Here N̄ = min (NC − 1, NT ).

Now, the solution for the problem (7) is given by

wmin−interf
i = vi,N̄ , (10)

where vi,N̄ is the N̄ -th column of Vi, which is associated with the minimum singular value

of the interference matrix Gi.

Remark 1. Since the beamforming vector is designed only to minimize the GI, the desired

channel gains do not change in an average sense.

Remark 2. In [9], [10], it was shown that the min GI scheme suffices to achieve the

optimal degrees-of-freedom (DoF) in multicell networks. However, it was also shown that

the minGI scheme is not optimal in terms of the achievable sum-rate. Furthermore, it is an

open problem to find an optimal beamforming scheme achieving the maximum achievable

sum-rate with local CSIT and/or even with limited information exchange between the BSs.

• Min Weighted Generating-Interference

For the structured beamforming scheme, it is assumed that scalar values can be exchanged

between the small cell BSs. We first define the weighted generating-interference (WGI) as

follows:

Ωi =

NC∑
j=1,j 6=i

βij |hijwi|2 , (11)

where βij ≥ 0 and
NC∑

j=1,j 6=i
βij = 1. (12)

Here, the interference weight βij accounts for the relative emphasis on each interference

channel. From the fact that the sum-rate of MIMO systems with multiple spatial streams
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is maximized if more emphasis is put on the spatial streams with higher SNRs, i.e., water-

filling power allocation [12], we propose to determine the weights βij such that it is pro-

portional to the corresponding SINRs. Formally, βij is determined as

βij =
ρij∑NC

k=1,k 6=i ρik
, j = 1, . . . , i− 1, i+ 1, . . . , NC , (13)

where

ρij =
‖hjj‖2∑NC

k=1,k 6=j ‖hkj‖2 +N0

. (14)

Following the same footsteps of the min-GI scheme, we find the beamforming vector that

minimizes the WGI as

wmin−WGI
i = vi,N̄ , (15)

where vi,N̄ is the right singular vector associated with the minimum singular value of the

weighted interference matrix

Gi =



√
βi1hi1
...√

βi(i−1)hi(i−1)√
βi(i+1)hi(i+1)

...√
βiNChiNC


∈ C(NC−1)×NT . (16)

Remark 3. [Decoupling of the beamforming design and SNR calculation]. In fact, the

actual SINRs depend on the design of beamforming vectors as in (2). Hence, the deter-

mination of βij is coupled with the SINR calculation, and thus the beamforming design

cannot be done independently of other cells. We propose to use the pre-processing SINRs

ρij given by (14) to decouple the beamforming design procedures at all the cells. Sim-

ulation results shall show that even with this suboptimality, the achievable sum-rate is

significantly improved compared to the min-GI scheme.

Remark 4. [Scalar information exchange between small cell BSs]. Note that to design

βij , j = 1, . . . , i − 1, i + 1, . . . , NC , the i-th BS needs to have the knowledge about the

SINRs in the other cells, ρij , j = 1, . . . , i − 1, i + 1, . . . , NC . The relevant channels hjj ,

j = 1, . . . , i − 1, i + 1, . . . , NC , are not subject to local CSIT at i-th BS’s viewpoint, and

hence, these scalar values need to be exchanged between the BSs. This exchange can be

easily done via a low-rate direct interface between the BSs, such as the X2 interface in the

3GPP small cell systems [4], [5].

Numerical results

The achievable sum-rates of the three beamforming schemes are compared under Rayleigh

fading environment. For comparison, the baseline ‘Random’ scheme is also considered, in which

all the beamforming vectors are randomly chosen.
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Figure 2: Achievable sum-rate/cell vs. SNR for NC = 3 and NT = 2

Fig. 2 shows the average achievable sum-rate per cell versus SNR for NC = 3 and NT = 2.

For the noise-limited regime, i.e., low SNR regime, the max-SNR scheme shows relatively high

performance than the others, since the interference is predominated by the noise. On the other

hand, as the SNR increases, the efforts to reduce the GI provide sum-rate gain over the max-SNR

scheme as seen from Fig. 2, since the sum-rate is dominated by the interference.

It is also seen that the min-WGI scheme exhibits notable sum-rate gain compared to the

min-GI, as the min-WGI scheme also takes into account the desired channel gains as well as

the GI. Note again that this sum-rate gain is achieved at the cost of additional low-rate scalar

information exchange between the BSs.

Conclusion

We have revisited two extreme beamforming schemes with local CSIT, in which the beam-

forming vector is designed based on the egoism and altruism philosophies, respectively. In

addition, we have proposed a new beamforming scheme that minimizes the weighted generating-

interference, where the weight coefficients are determined proportionally to the SINRs at the

neighboring cells. The determination of these weight coefficients also takes into account the

desired channel gains as well as the generating-interference, and hence, the scheme requires

addition scalar information exchange between the small cell BSs. Through simulation results,

we have shown that the proposed min-generating-interference scheme outperforms the other

schemes for mid to high SNR regime.
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2.2 Min-SINR Maximization with DL SWIPT and UL WPCN in Multi-
Antenna Interference Networks

Introduction

In dense cellular networks, one of the most critical problems that degrade the cell throughput

is inter-cell interference (ICI) [13]. To mitigate the ICI in the downlink (DL) scenario, multi-

antenna DL beamforming has been introduced. Assuming global channel state information

(CSI), the DL beamforming vectors were optimized in the sense of maximizing the sumrate [14].

Recently, energy harvesting (EH) from ambient RF signals has received intense research

interest to save energy consumption on battery-limited devices such as low power sensors and

mobile devices. Several studies have shown the feasibility of EH systems based on ambient

RF signals in practical environments [15], [16] and cellular network [17]. To utilize interference

signals for energy harvesting, the concept of simultaneous wireless information and power transfer

(SWIPT) has been extensively studied both theoretically and practically [18]. It becomes more

crucial to harvest energy from ICI signals in wireless sensor networks or ultra dense networks,

where the ICI is even comparable in strength to the desired signal. In DL cellular network based

on global CSI [19] or local CSI [20], [21], multi-antenna beamforming or precoding at the base

stations (BSs) can guarantee the data rate of information transfer as well as the amount of energy

harvested at the users. In particular, the benefit of the SWIPT is emphasized in highly dense

networks such as small cells, since strong ICI in such a network can be utilized as a source of

EH [22]. However, these previous schemes merely focus on DL signal-to-interference-plus-noise

ratios (SINRs) and the amount of energy harvested without any explicit consideration of the

uplink (UL) SINRs.

Another framework ‘wireless powered communication network (WPCN)’ [23] has been pro-

posed to consider UL information transmission, where each user is powered by the energy that

it harvests from the DL signals in DL time slots. The authors of [23] optimized the time

allocation for the DL wireless energy transfer and UL information transmission to maximize

UL sum-throughput. This work has been extended to multiuser multi-input single-output (MU-

MISO) [24] and MU multi-input multi-output (MIMO) [25] channels. Nevertheless, these WPCN

schemes only consider energy transfer without information transmission in DL time slots, and

thus they are not applicable to the case with the presence of DL data, which is highly likely in

practical systems. In addition, these works considered only the single cell case, and the extension

to the multicell scenario is non-trivial in managing the ICI both in the DL and UL time slots.

In this letter, we tackle a general communication and energy transfer scenario for multicell

networks composed of BSs with multiple antennas and users each with a single antenna, where

there exist both DL and UL data to exchange. In the proposed scheme, the concepts of SWIPT

and WPCN are jointly considered for the DL and UL time slots, and the UL power allocation

(PA) is also considered in the UL time slots. Specifically, in a DL time slot, while a user

receives DL data, another user scavenges all the ambient signals transmitted by the BSs. In
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Figure 3: Proposed joint time switching SWIPT and WPCN protocol

the subsequent DL time slot, the role of the two users is swapped. For each DL time slot,

beamforming vectors at the BSs are optimized. In the following UL time slot, the two users

transmit UL data simultaneously with a proper UL PA by each BS. In fact, the coupled DL

and UL problems are known to be challenging to solve since the optimality of the DL and

UL parameter design at each time slot does not exist in time-varying channels. Therefore, we

propose an efficient cascaded DL and UL design scheme maximizing the minimum DL and UL

SINRs in pursuit of maximizing the rate fairness. Simulation results show that the proposed

scheme not only achieves larger minimum DL and UL SINRs region but also exhibits much

improved energy efficiency.

System Model and Proposed Protocol

An NC-cell network, each cell of which is composed of a BS with NT antennas and two users

each with a single antenna, is considered. The extension to the case with more users is trivial

assuming each pair of users is orthogonalized with the other pairs of users based on multi-carrier

modulation such as orthogonal frequency division multiplexing. We consider frame-based with

a three-time slot protocol shown in Fig. 3. In the first time slot, user 1 receives the DL data

while the other harvests energy from the DL signals transmitted by the BSs. In the second time

slot, the two users switch their roles. In the third time slot, all the users transmit UL signals

simultaneously using the energy harvested from the DL time slots. That is, ‘time switching’

SWIPT is assumed, which requires only a circuit switch for implementation. Compared to

‘power splitting’ SWIPT, where each user can split the received energy into two parts for EH

and information decoding by an additional power splitting circuit at each RF chain, the time

switching SWIPT requires relatively low implementation cost [18].

It is also assumed that each user is equipped with a battery such that the energy unused can

be stored. The channel vector between the BS in cell i and user m in cell j at the n-th slot is

denoted by h
[n]
i,(j,m) ∈ CNT×1, i, j = 1, . . . , NC , m = 1, 2, and n = 1, 2, 3. It is assumed that the

channel coefficients remain constant for a time slot and then change to another values randomly

at the next time slot, i.e., quasi-static fading. Each BS is assumed to be able to acquire its

incoming and outgoing channels through channel sounding and UL pilot signals at each time

slot and share them with the other BSs via backhaul.

10
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Figure 4: DL beamforming with energy harvesting and UL power allocation in multi-cell MISO

networks

Fig. 4 shows the system model for NC = 2 and NT = 3. At the n-th time slot, n = 1, 2,

i.e., the DL time slot, the beamforming vector at the BS in cell j is denoted by w
[n]
j ∈ CNT×1,

where
∥∥∥w[n]

j

∥∥∥2
= 1. The DL SINR for user n in cell j is thus

ρ
[n]
j,n =

Pj

∣∣∣∣(h
[n]
j,(j,n)

)H
w

[n]
j

∣∣∣∣2
NC∑

k=1,k 6=j
Pk

∣∣∣∣(h
[n]
k,(j,n)

)H
w

[n]
k

∣∣∣∣2 +N0

, (17)

where Pj is the transmit power of the BS in cell j, and N0 is the variance of additive white

Gaussian noise. In addition, νj,n̄ denotes the energy harvested at user (3− n) in cell j, defined

by

νj,n̄ = γj,n̄

NC∑
k=1

∣∣∣∣(h
[n]
k,(j,n̄)

)H
w

[n]
k

∣∣∣∣2 , (18)

where n̄ = 3 − n, and 0 < γj,n̄ ≤ 1 denotes the EH efficiency, the ratio of the energy stored in

the battery to the total received power of user n̄ in cell j [26], [18].

At the third time slot, i.e., the UL time slot, we assume a linear receiver with successive

interference cancellation [27] based on the decoding order πj at the BS in cell j, where πj =[
π(j,1), π(j,2)

]
, π(j,1), π(j,2) ∈ {1, 2}. The user with index π(j,1) is decoded first and the user with

index π(j,2) is decoded second after the subtraction of the interference due to user π(j,1)’s signal.

11



The interference-plus-noise spatial covariance matrix of user π(j,m) in cell j is given by

Zj,π(j,1)
= pj,π(j,2)

h
[3]
j,(j,π(j,2))

(
h

[3]
j,(j,π(j,2))

)H

︸ ︷︷ ︸
intra−cell interference

+ Cj +N0I, (19)

Zj,π(j,2)
= Cj +N0I, (20)

where pj,π(j,m)
is the UL transmit power from user π(j,m) and

Cj =

NC∑
k=1,k 6=j

2∑
m=1

pk,π(k,m)
h

[3]
j,(k,π(k,m))

(
h

[3]
j,(k,π(k,m))

)H

︸ ︷︷ ︸
inter−cell interference

. (21)

Denoting the receiver beamforming vector for user π(j,m) by uj,π(j,m)
∈ CNT×1, where∥∥∥uj,π(j,m)

∥∥∥2
= 1, we obtain the UL SINR as

ρ
[3]
j,π(j,m)

=

pj,π(j,m)

∣∣∣∣(uj,π(j,m)

)H
h

[3]
j,(j,π(j,m))

∣∣∣∣2(
uj,π(j,m)

)H
Zj,π(j,m)

uj,π(j,m)

. (22)

The goal is to maximize the minimum DL and UL SINRs by optimizing w
[n]
j and pj,n,

j = 1, . . . , NC , n = 1, 2, which requires a joint optimization for the three time slots. To decouple

the optimization at each time slot, we propose to design w
[n]
j to maximize the minimum DL

SINR at the first and second time slots while guaranteeing the minimum amount of harvested

energy for UL information transmission at each user. In the third time slot, the UL power pj,n
is optimized to maximize the minimum UL SINR.

Optimization of the DL beamforming

We begin with defining the augmented variable vector by w̃[n] ,

[(
w

[n]
1

)T
· · ·
(
w

[n]
NC

)T
]T

∈

C(NC ·NT )×1. Then, each beamforming vector can be expressed by w
[n]
j = Ejw̃

[n], where Ej ∈
CNT×(NC ·NT ) consists of all zeros except for the ((j − 1)NT + 1)-th to (jNT )-th columns equal

to the NT ×NT identity matrix. We can rewrite (17) as

ρ
[n]
j,n =

(
w̃[n]

)H
A

[n]
j,nw̃

[n](
w̃[n]

)H
B

[n]
j,nw̃

[n]
, (23)

where

A
[n]
j,n = PjE

H
j h

[n]
j,(j,n)

(
h

[n]
j,(j,n)

)H
Ej , (24)

B
[n]
j,n =

Nc∑
k=1,k 6=j

(
PkE

H
k h

[n]
k,(j,n)

(
h

[n]
k,(j,n)

)H
Ek

)
+N0I, (25)
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and I is the (NC ·NT )× (NC ·NT ) identity matrix. We also rewrite (18) as

νj,n̄ = γj,n̄

NC∑
k=1

∣∣∣∣(h
[n]
k,(j,n̄)

)H
Ekw̃

[n]

∣∣∣∣2 . (26)

The optimization problem at the n-th time slot, n = 1, 2, is formulated by

P [n]
D1 : max

w̃[n]
min
j

{
(w̃[n])

H
A

[n]
j,nw̃

[n]

(w̃[n])
H
B

[n]
j,nw̃

[n]

}
(27)

s.t. νj,n̄ ≥ Λj,n̄ −∆j,n̄, (28)∥∥Ejw̃
[n]
∥∥2 ≤ 1, j = 1, . . . , NC . (29)

In addition, Λj,n̄ is the minimum energy to be stored at user n̄ in cell j for UL transmit in

the UL time slot, and ∆j,n̄ is the power left in the battery of user n̄ in cell j. By controlling

Λj,n̄, the proposed protocol can cover general scenarios with different EH constraints, while

minimizing unnecessary energy consumption at the BSs. Due to the constraint (28), the feasible

set of the problem P [n]
D1 becomes non-convex, which in general is difficult to solve. To convert the

problem into a convex form, the maximization of the minimum of DL SINRs in (27) is rewritten

employing one additional variable θ by

P [n]
D2 : max

w̃[n],θ
θ (30)

s.t.
(
w̃[n]

)H
A

[n]
j,nw̃

[n] ≥ θ
(
w̃[n]

)
B

[n]
j,nw̃

[n], (31)(
w̃[n]

)H
C

[n]
j,n̄w̃

[n] ≥ Λj,n̄−∆j,n̄

γj,n̄
, (32)(

w̃[n]
)H

Djw̃
[n] ≤ 1, j = 1, ..., NC , (33)

where

C
[n]
j,n̄ =

NC∑
k=1

EH
k h

[n]
k,(j,n̄)

(
h

[n]
k,(j,n̄)

)H
Ek, (34)

Dj = EH
j Ej . (35)

The problem P [n]
D2 is still in a non-convex form due to the non-convex constraints (31) and (32).

Therefore, defining a rank-1 variable matrix by W[n] , w̃[n]
(
w̃[n]

)H ∈ C(NC ·NT )×(NC ·NT ), for

given cost value θ, we consider the following feasibility problem:

P [n]
D3(θ) : Find W[n] (36)

s.t. tr
(
A

[n]
j,nW

[n]
)
≥ θtr

(
B

[n]
j,nW

[n]
)
, (37)

tr
(
C

[n]
j,n̄W

[n]
)
≥ Λj,n̄−∆j,n̄

γj,n̄
, (38)

tr
(
DjW

[n]
)
≤ 1, j = 1, ..., NC , (39)

W[n] � 0, (40)

rank
(
W[n]

)
= 1, (41)
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where tr(·) denotes the trace operation and W[n] � 0 implies that W[n] is positive semidefinite.

The feasibility problem P [n]
D3(θ) without the constraint (41) is a convex problem with respect

to the variable W[n], and can be evaluated with polynomial computational complexity by the

semidefinite programming (SDP) [28], [29] to get the solution Ŵ[n]. However, the solution Ŵ[n]

obtained ignoring the constraint (41) becomes in general a full rank matrix, which contradicts

the baseline assumption of a rank-1 matrix. To find the rank-1 matrix closest to Ŵ[n], the

rank-1 randomization method [30] is used. Specifically, let us denote the rank of Ŵ[n] by r, the

eigenvalues by λi, i = 1, . . . , r, with the order λ1 ≥ λ2 ≥ . . . ≥ λr > 0, and the corresponding

eigenvectors by qi ∈ C(NC×NT )×1 . Then, the rank-1 approximated solution can be written by

W[n]∗ = λ1q1q
H
1 , and the solution for the beamforming vector for given θ, is given by

w̃[n]∗ =
√
λ1q1. (42)

Now, the final step is to find the maximum θ that results in a feasible solution of w̃[n]∗, which

can be readily obtained by a line search algorithm such as the bisection line search.

Optimization of the UL Power Allocation

As seen from Fig. 3, each BS acquires the UL channel information for all its serving users

and exchanges it to all other BSs. The UL PA problem is then formulated and solved at the BS

side, and the solution is forwarded to the users.

In the UL time slot, all the users simultaneously transmit UL signals using the energy

harvested in the previous time slots. The UL power and corresponding receiver beamforming

vector optimization at BS in cell j for the max min-SINR is formulated by

PU1 : max
uj,π(j,m)

,pj,π(j,m)

min
j,π(j,m)

{
ρj,π(j,m)

}
(43)

s.t. 0 ≤ pj,π(j,m)
≤ νj,π(j,m)

+ ∆j,π(j,m)
, (44)∥∥∥uj,π(j,m)

∥∥∥2
= 1, (45)

m = 1, 2, j = 1, . . . NC . (46)

The variables uj,π(j,m)
and pj,π(j,m)

in PU1 are coupled and need to be jointly optimized, and

the problem is non-convex. To make PU1 tractable, we find the solution by finding the optimal

uj,π(j,m)
for given pj,π(j,m)

and then vice versa iteratively. Inserting the optimal beamforming

vector known as the MMSE receiver [27] into (22), the UL SINR for given pj,π(j,m)
is written by

ρ̃j,π(j,m)
= pj,π(j,m)

(
h

[3]
j,(j,π(j,m))

)H
(Zj,π(j,m)

)−1h
[3]
j,(j,π(j,m))

, (47)

and the optimization of pj,π(j,m)
can be formulated by

PU2 : max
pj,π(j,m)

min
j,π(j,m)

{
ρ̃j,π(j,m)

}
(48)

s.t. 0 ≤ pj,π(j,m)
≤ νj,π(j,m)

+ ∆j,π(j,m)
, (49)

j = 1, . . . NC , m = 1, 2.
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Since the cost function (48) is still non-convex, we introduce an additional variable ω and modify

the cost function as

max
pj,π(j,m)

,ω
ω

s.t. ρ̃j,π(j,m)
≥ ω. (50)

Therefore, for given ω and with (50), the problem PU2 can be formulated by

PU3(ω) : Find pj,π(j,m)
(51)

s.t. ρ̃j,π(j,m)
≥ ω, (52)

0 ≤ pj,π(j,m)
≤ νj,π(j,m)

+ ∆j,π(j,m)
, (53)

j = 1, . . . NC , m = 1, 2.

The feasibility problem PU3(ω) is now in a linear problem form, and can be readily solved by

LP with polynomial time. The maximum ω resulting in a feasible solution of PU3(ω) can be

obtained using a linear search such as the bisection method.

After finding the optimal UL power p∗j,π(j,m)
for user π(j,m), each BS announces it to their

serving users and the users transmit UL data with the power p∗j,π(j,m)
. The unused power is

stored at the battery, and the battery level is updated as

∆j,π(j,m)
← νj,π(j,m)

+ ∆j,π(j,m)
− p∗j,π(j,m)

. (54)

By using the proposed update algorithm in (38), unnecessary energy consumption at the BSs

can be minimized, thereby improving the energy efficiency. Finally, we propose a cascaded DL

and UL design as shown in Fig. 5.

Numerical Results

For comparison of the average minimum user rate, the random beamforming and DL sum-

rate maximizing [18] schemes are considered as baseline schemes, in which the beamforming

vector is randomly designed and jointly designed across all the cells to maximize the DL sum-

rate, respectively. In addition, the maximum EH scheme with and without the minimum SINR

constraint [20] are considered. Moreover, we also evaluate the proposed scheme with and without

UL PA. It is assumed that the average SNR is the same for all the channels, and that each channel

coefficient is an i.i.d. complex Gaussian random variable with zero mean and unit variance. It

is also assumed that Λj,n = P ∈ [0, 2], γj,n = 0.5 and πj = [1, 2], j = 1, . . . , NC , n = 1, 2.

Fig. 6 demonstrates the boundaries of DL and UL achievable minimum user rate pairs for

NC = 3, NT = 2, and SNR = 5dB and 25dB. The choice of the parameter P in the proposed

scheme and the choice of the minimum SINR constraint in the max EH with a minimum DL

SINR constraint scheme determine respective maximum achievable DL-UL minimum user rates

on the rate boundary. The convex hull inside the rate boundary of each scheme is also achievable

15



Figure 5: Proposed max-min-SINR DL beamforming and UL PA design

16



Average minimum user rate (DL)

0 1 2 3 4 5 6 7

A
v
e

ra
g

e
 m

in
im

u
m

 u
s
e

r 
ra

te
 (

U
L

)

0

1

2

3

4

5

6

Random

Max DL Sum-rate [3]

Max EH

Max EH w/ Min DL SINR [5]

Prop.

Prop. w/ UL PA

SNR=25dB

SNR=5dB

Figure 6: Minimum UL user rate vs. minimum DL user rate

by controlling the time duration of DL and UL. As seen from Fig. 6, the proposed scheme even

without UL PA outperforms the existing schemes in terms of the minimum DL and UL rates

for all SNR regime, since the DL beamforming design can be more emphasized for maximizing

the minimum DL rate owing to the consideration of unused UL power in the problem.

With UL PA, the proposed scheme achieves much broader rate region than the existing

schemes, which in turn shows that merely maximizing the harvested energy does not guarantee

a high achievable rate due to UL ICI and that the UL PA is essential to significantly improve

the UL rate.

Fig 7. shows θmin and θmax versus the number of iterations of the ‘do-while’ part of DL

in Fig. 5, i.e., the number of updates for θ needed to solve P [n]
D3(θ), for NC = 3, NT = 2, and

SNR = 5dB, 10dB and 15dB. As shown in Fig. 7, the proposed iterative DL beamforming

design converges to the solution within 10 iterations for all SNR regime. It can be also shown

by numerical simulations that the proposed iterative UL PA converges within a few iterations.

Table 1 shows the relative energy efficiency defined as the ratio of the minimum UL user rate

to the total UL power consumption in comparison to that of the maximum EH scheme with the

minimum SINR constraint. Due to the cascaded DL and UL design with the consideration of

the unused UL power, UL power can be significantly saved in the proposed scheme achieving the

same or even higher minimum UL rate as seen from Fig. 6. As a result, the proposed scheme

with UL PA shows the highest UL energy efficiency among all compared schemes for all SNR

regime, as seen from Table 1.
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Table 1: UL energy efficiency

5dB[%] 25dB[%]

Random 93.5 93.3

Max DL Sum-rate [18] 94.1 98.3

Max EH 124.7 135.1

Max EH w/ Min DL SINR [20] 100 100

Prop. 143.3 162.1

Prop. w/ UL PA 173.0 206.4

Conclusion

The general communication and energy transfer scheme for multicell networks composed of

BSs with multiple antennas and users each with a single antenna has been proposed. In the

proposed scheme, the concepts of SWIPT and WPCN are jointly considered for the DL and

UL time slots, and the UL PA is also considered in the UL time slots. Simulation results show

that the proposed scheme not only achieves larger minimum DL and UL SINRs region but also

exhibits much improved energy efficiency.
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2.3 RNN-Based Node Selection for Sensor Networks with Energy Harvesting

Introduction

Recently, as smart home and smart factory have emerged, sensor networks consisting of de-

vices with energy harvesting circuits have attracted worldwide attention. Efficient energy man-

agement makes the network sustainable and environment-friendly. In [31], the authors consider

the sensing utility maximization problem where each node transmits sensing data with harvested

energy from ambient environment. In [32], the authors solve the minimization problem of the

packet delay where a transmitter harvests energy via wireless power transfer. However, these

previous schemes merely focus on either uplink (UL) or downlink (DL) data transmission. In

fact, the unpredictability of future channel condition and the coupled DL and UL design make

joint optimization problems more challenging. There is an approach to optimal design for both

simultaneous wireless information and power transfer (SWIPT) and wireless powered commu-

nication network (WPCN) in cellular networks [33]. The major problem in sensor networks is

UL/DL node selection, which becomes more difficult to solve as the number of nodes increases

enormously in the near future.

In this paper, we address UL/DL node selection problem with limited information including

future channel state and each node’s situation such as battery levels and packet deadlines. We

then propose a recurrent neural network (RNN) based algorithm for the node selection. To the

best our knowledge, this is the first work that jointly considers DL SWIPT and UL WPCN for

sensor networks. Simulation results show that the proposed scheme outperforms other existing

schemes.

The remainder of this paper is organized as follows. Section II explains the background,

and Section III describes the system model. Section IV presents a method to predict the future

decision using RNN. Section V provides simulation results, and Section VI concludes the paper.

Background

• IEEE 802.15.4g

The IEEE 802.15.4 [34] is the standard for Low-Rate Wireless Networks. One important

variant is the IEEE 802.15.4g [35] Smart Utility Network (SUN) supports various PHY

layers: frequency shift keying (FSK) PHY, orthogonal frequency division multiplexing

(OFDM) PHY, and offset quadrature phase-shift keying (O-QPSK) PHY. In this paper,

we assume PHY layers are OFDM PHY.

Figure 8: Superframe structure
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As seen in Fig.8, an active portion of a superframe consists of contention access periods

(CAPs) and a contention free period (CFP). For low-latency applications, a master node

(MN) in the SUN dedicates CFP to those applications including itself. This paper considers

which node will be selected as the user of the CFP by the MN.

• Recurrent Neural Network

RNNs are artificial neural networks that recognize patterns in sequence or time series data

Figure 9: Basic structure of RNN

in the form of texts, genes, handwriting, voice signals, sensor-detected data, stock quotes,

etc. Fig.9 presents a basic structure of RNN. Xt and Yt are the input node which receives

data from outside of the network and the output node which yields results respectively.

The RNN module consists of hidden states. Since the RNN is a directed cycle artificial

neural network with hidden states connected with the directional edges (red arrows in

Fig.9), past outcomes can affect future outcomes.

Depending on the number of inputs and outputs, the RNN can be formed in a variety of

structures, such as one-to-many, many-to-one, and many-to-many. In this paper, since we

know the previous and the current channel information and find out what a decision the

MN should make, we follow the many-to-one RNN structure.

System model

In this paper, we consider a sensor network consisting of a MN and NSN slave nodes (SNs) as

shown in Fig.10. The MN has a reliable power and each SN is powered by energy harvested from

the ambient RF signals and the ambient environment. We assume that each SN has a battery

to store the harvested energy, and it is consumed by sensing data and transmitting them to the

MN. The MN always has packets to transmit to each SN, and each SN has packets to transmit

to the MN. Every packet has its own deadline and the each deadline follows a distribution. We

consider finite time slotted system. For each time slot, an UL or a DL may occur, and only

one node who is selected by the MN can transmit or receives signals. While a selected SN

transmits UL data by using the energy harvested or receives DL data, other SNs can harvest

ambient RF signals or environment. The channel coefficients between the MN and SN i at the

time slot t is denoted by h[t]
i ∈ C, i = 1, 2, . . . , NSN , and t = 1, 2, . . . , T . It is assumed that

20



Figure 10: System model

the channel coefficients remain constant within a time slot and then change to another values

with correlation at the next time slot, i.e., quasi-static fading. The MN is assumed to be able

to acquire its outgoing channels through channel sounding at each time slot, but does not know

its future channels.

When SN i is selected to receive DL data, the received signal is written by

y
[t]
i =

√
Pmh

[t]
i x

[t]
i + zi, (55)

where Pm is the transmit power of the MN, x[t]
i is the unit-variance transmit symbol at the time

slot t, and zi is the additive white Gaussian noise (AWGN) at SN i with zero mean and variance

of N0. If the transmitted DL data is already missed deadline, we impose a DL deadline penalty.

Unselected SNs harvest energy and the amount of harvested energy is written by

γPmh
[t]∗
i−1
h

[t]
i−1

+ Pe, (56)

where i−1 denotes an index which means all SNs except for SN i. 0 < γ ≤ 1 denotes the

harvesting efficiency and Pe is energy randomly harvested from the ambient environment.

When SN i is selected to transmit UL data, if the SN has enough battery power, it transmits

UL data with the battery level and UL packet deadline ((i) in Fig.11), otherwise it transmits

battery level and UL packet deadline only with limited bits ((ii) in Fig.11). If the battery power

is not enough or the UL deadline is missed, we impose a battery level penalty or an UL deadline

penalty. Unselected SNs harvest energy from the transmitted signal by SN i and the energy

from the ambient environment. Since the MN doesn’t know the channel coefficients between

SNs, we assume that the amount of energy harvested for each unselected SN is randomly set

within a reasonable range.

Finally, the objective of this system is to minimize the summation of the battery level and

UL/DL deadline penalty.
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Figure 11: UL packet format

Approach: predict the best decision

The goal of RNN-based algorithm is to guess the best decision combination that minimizes

the number of penalties for T time slots, when only the previous and the current channel

information are given. Each decision for each time slot can be UL/DL of SN i. The number of

cases for all decision combinations is NDC = (2 × NSN )T . Since the MN does not know each

battery level and packet deadline of each SN, we do not take as input those things. Fig.12 shows

an example of the RNN structure of the proposed scheme when T = 3 and NSN = 2.

Figure 12: RNN structure of the proposed scheme

To make labeled ground-truth, first of all, we generate enormous number of T time slots

channel coefficients and multiply it by the conjugate form as (57).


h

[1]∗
1 × h[1]

1 h
[2]∗
1 × h[2]

1 . . . h
[T ]∗
1 × h[T ]

1
...

...
. . .

...

h
[1]∗
NSN
× h[1]

NSN
h

[2]∗
NSN
× h[2]

NSN
. . . h

[T ]∗
NSN
× h[T ]

NSN

 (57)

For one channel realization, we assume the various initial battery levels of SNs and UL/DL

packet deadline conditions, and then look for the best decision considering all cases. Each

channel realization has a best decision combination for T time slots. After generating lots of

channel realizations and finding the corresponding the best decisions, we quantize the elements

of (57) as {low, middle, high} to simplify the cases. Then, (i) classify the same first (T − 1)

time slots of (57) with the same value (green dashed box in Fig.13). (ii) Find the most frequent
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occurrence in the last time slot of it to predict the most likely future channel conditions (red

box in Fig.13). Once the most likely future channel conditions have been determined, (iii) the

most frequent decision among the corresponding decisions can be found (green box in Fig.13).

Let us define a ground-truth class U = [u1,u2, . . . ,uNDC ] as the one hot coded NDC decision

combinations. For example, u1 = [1, 0, ..., 0] is the first decision combination. Finally, decision

labeled ground-truth for the quantized previous and current channel information is completed

as (iv) in Fig.13.

Figure 13: Method to make labeled ground truth

When training the RNN, we take inputs as the quantized previous and current channel

information. The network outputs a probability distribution, p = (p1, p2, . . . , pNDC ), over NDC

cases, that is the number of all decision combinations. The probability distribution p is computed

by a softmax over the NDC outputs of a fully connected layer.

Each training input is labeled with a ground-truth ud. We use a mean square error loss L

on each labeled training input to train:

L(p,ud) =
1

NDC

NDC∑
k=1

(pk − udk)2 (58)

in which the pk is the k-th element of the p and the udk is the k-th element of the ud.

Simulation results

With the saved weights from the training, we can test our network. Unlike training, we take

input as unquantized previous and current channel information. It is assumed that the average

SNR is the same for all the channels, and that each channel coefficient is an i.i.d. complex

Gaussian random variable with zero mean and unit variance. It is also assumed that NSN = 2,

T = 3, γ = 0.7, Pm = 3mW, and Pe = 0.5mW. The number of decision combinations NDC is

automatically 64.
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Figure 14: Training loss vs. Learning iterations

We use training optimizer as adaptive moment estimation (Adam) optimizer. Step size is

0.01 and two exponential decay rates for the moment estimates are 0.9 and 0.999. The number

of training data is 2 × 104 and the number of iterations for the training is also 2 × 104. Fig.14

presents the training loss versus learning iterations. It shows the training loss decreases in tens

of times of learning iterations. After 3× 102 iterations, the training loss does not change much

and converges to almost zero. If the channel conditions are similar to those of the training

input, it can be expected that we can get decision results like labeled ground-truth with high

probability.

Figure 15: Number of penalties vs. time
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Fig.15 shows the averaged penalty count. We perform 103 experiments, in which the number

of time period is 5 × 103. Each penalty count is measured every 102 time period and then

averaged over 103 experiments. For comparison of the penalty count, the random selection

and the round robin selection are considered as baseline schemes, in which the final decision is

randomly selected and taken in turns all decisions without a priority. As seen in Fig.15, the

proposed scheme outperforms the base schemes in terms of the penalty count for all time period,

since the proposed scheme predicts future channel implicitly and tries to determines the best

decision for the future.

Conclusion

We have proposed a new RNN-based node selection scheme that selects a node that transmits

UL data or receives DL data in the future time slot, where the decision is determined toward

minimizing penalty count. The determination of these decisions also takes into account battery

level, UL/DL deadline as well as future channel information implicitly. Through simulation

results, we have shown that the proposed RNN-based node selection scheme outperforms the

other base schemes.
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III Learning-based Robot Vision Systems

3.1 Privacy-Preserving Robot Vision with Anonymized Faces by Extreme
Low Resolution

Introduction

Robot camera systems are becoming more important as a component of robot perception

for autonomous navigation, robot-robot or robot-human interactions, surveillance, and etc. As

small-scale mobile robots, such as drones, planes, and rovers are expected to be pervasive to

meet increasing demands of new customer services such as unmanned delivery, 24/7 surveillance,

internet connectivity in disaster, and etc, there is an increasing concern of privacy threat from

recording all unwanted images from the cameras on robots. Thus, human privacy protection

from robot cameras is a serious and real social challenge [36], while we do not want to sacrifice

robot perception performance. Indeed, several privacy-attacks have been reported, such as IP

cameras cracked by human hackers and private images from home cameras leaked through the

internet.

In this work, we pursue two goals for robot camera systems: (1) no one can access any of

privacy-sensitive visual information (e.g., faces) by cracking or installing backdoors for funda-

mental privacy protection, and (2) robots can benefit from the video for their perception as much

as they can without any consideration of privacy protection. Specifically, we develop a mobile

robot system with a novel feature of privacy-preserving face detection. Unlike the previous ap-

proaches that blur or anonymize the face blocks from high resolution (HR) images, face blocks

are detected from extreme low resolution (LR) images using the proposed deep learning-based

algorithm. Simultaneously, to improve the performance of the robot perception, the resolution

of the privacy-insensitive blocks of images is allowed to increase. The proposed face detection

system guarantees that all the face blocks in an image are designed to never be recognizable

in any of processing or memory, thus providing fundamental privacy protection. Furthermore,

we propose a pixel-by-pixel post-processing algorithm to distinguish the face and background

blocks at a pixel level more accurately, thus ensuring that robots can perform the SLAM as they

can without the consideration of face anonymization. We empirically confirm that the proposed

extreme LR face detection algorithm outperforms the state-of-the-art technique, and that robots

with the proposed face detection system still can perform well ORB-SLAM2.

Related work

• Privacy Protection from Cameras

A variety of studies have been conducted to meet the social needs of privacy protection

from cameras. The work [37] studied scene recognition from images captured with first-

person cameras, detecting locations where the privacy needs to be protected. This will

allow the device to be automatically turned off at privacy-sensitive locations. There is
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another approach for privacy preserving action detection through learning a video face

anonymizer [38]. The video anonymizer performs pixel-level modifications to anonymize

each person’s face, with minimal effect on action detection performance. However, all

these aforementioned methods are based on software-level processing using HR videos.

For this reason, they are still not safe from cyber attacks. To deal with this problem,

one of the fundamental solutions is taking extreme LR videos without having privacy-

sensitive visual information in any memory even during interim processing. In [39–41], the

authors studied activity recognition from extreme LR (e.g., 12×16) anonymized videos.

The work [39] introduced the concept of learning the optimal set of image transformations

to generate multiple LR training videos optimized for the activity classification from one

HR video. In addition, [40] presented an extreme LR activity recognition model using

a two-stream multi-Siamese convolutional neural network. The model made good use

of the inherent characteristic of LR videos: Two LR images originated from the exact

same scene often have totally different pixel values depending on their transformations.

Furthermore, [41] explicitly learned a degradation transform for the original HR video, in

order to optimize the trade-off between visual recognition performance and the associated

privacy budgets. Although these works are effective for preserving privacy, they sacrifice

too much visual information by having all the parts of images at extreme LR. If robots are

equipped with cameras taking only extreme LR images or video, then they cannot operate

basic applications based on robot vision such as autonomous navigation, interaction and

etc.

• Small Face Detection

Face detection is a well-studied research field, however, small face detection is still a

challenging area. One of the latest works [42] described a detector that can find tiny faces,

exploring the role of the contextual reasoning and scale in a pre-trained deep networks.

However, it was designed to find faces well only in pre-trained object scales. Another

approach to find small faces is to directly generate a clear HR face from a blurry small one

by adopting a generative adversarial network (GAN) and then detect the face [43]. In [44],

a model that finds a small frontal face is applied to a robot. Since all of these studies find

small faces in a HR image of at least 240×320, it is difficult to apply them to finding faces

in extreme LR images. Finding a face in extreme LR images is practically difficult because

it lacks the amount of information. Even non-visual information such as optical flow [45]

and point trajectory [46] available in action recognition is not available for face detection.

• SLAM

Simultaneous localization and mapping (SLAM) techniques build a map of an unknown

environment and localize the sensor, e.g., a robot or a camera, in the map with a strong

focus on real-time operation. In our system, we used ORB-SLAM2 [47], one of the most

popular algorithms of the visual SLAM, which mainly uses cameras.
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Figure 16: Composition of the developed patrol robot system with privacy preserving face

detection.
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Privacy-preserving face detection system

We develop a patrol robot system with cameras continuously recording video for its naviga-

tion. Fig. 16 shows the overall composition of our proposed patrol robot system. The ground

station wirelessly commands the robot to move toward a specific point. Then, the robot navi-

gates to the commanded point by the motor control computer mounted on it. At the same time,

the robot obtains dynamic-resolution input images through the camera module sensor. Then,

the companion computer mounted on the robot performs the privacy-preserving face detection.

The robot performs ORB-SLAM2 and transmits the resultant image after the face detection

back to the ground station wirelessly, and the ground station presents the results to the window

screen.

The goal is three-fold:

• Every face in images should never be identifiable by virtue of the proposed privacy-

preserving face detection algorithm. Specifically, the resolution of any face block should

never be higher than 15×15.

• The robot SLAM should work well as it does without the proposed face anonymization.

To this end, the background blocks of images should not be in LR.

• All the computation including the proposed privacy-preserving face detection and SLAM

should run on a real-time basis only on the companion computers. This makes our robot

system operate fully autonomously even without the connection to the ground station.

Each component is described with details in the sequel.

A. Face Detection Approach

• Limitations of the State-of-the-Art

The face detection in our system is to detect faces from extreme LR images. Though

not for privacy protection, several studies have been conducted for small face detection

at a distance. The state-of-the-art small face detection [42] scales a single HR snapshot

up and down to create multiple snapshots to find tiny faces. This approach employs a

set of bounding box shapes which are selected for particular object sizes. However, this

method only works well for preset resolutions and bounding box shapes, which cannot be

dynamically adopted. As a result, unless the bounding box shapes are various enough to

cover all possible face sizes, which is not possible, the bounding box may not cover some

pixels of the face, or may cover too many pixels out of the face. The former case leads to

a risk of privacy invasion, and the latter case results in a significant loss of information

needed for SLAM. For this reason, we develop a framework for finding extreme LR faces

more reliably on a pixel-by-pixel basis. In addition, via dynamic resolution control and

pixel-by-pixel post-processing, we attempt to increase the resolution of privacy-insensitive

background blocks for accurate SLAM.
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Figure 17: Dynamic resolution face detection architecture.
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• Dynamic Resolution Face Detection

The key idea is every face block should be detected at a resolution lower than 15×15, such
that it is not identifiable. The proposed dynamic resolution face detection architecture is

illustrated in Fig. 17. When the camera sensor receives an image, the system does not

store the images in any computer memory, but directly converts the images to extreme LR,

e.g., 12×16, as in Fig. 17 (a). This conversion can be easily done by dedicated up/down-

scaling DSP chips or FPGA circuits attached on the camera sensors. The companion

computer mounted on the robot determines if there are faces in the image. If a face is

found as shown in Fig. 17 (b), the resolution of that block is maintained as extreme LR

in the next step, and the resolution of the rest is slightly increased. In Fig. 17 (b), only

the larger face, but still in very LR, is detected, and the smaller face cannot be detected.

As Fig. 17 (c) shows, the resolution of the image excluding the larger face block is higher,

so that the smaller face, which is still in very LR, now can be found. This procedure is

repeated until all the faces are detected in very LR. In the end, only the non-facial parts

are in relatively HR as in Fig. 17 (d). Finally, before outputting the results, the system

checks again pixel-by-pixel for the parts that have been judged to be faces at LR. If the

probability of it not being a face pixel is very high, the system performs post-processing

to increase the resolution as shown in Fig. 17 (e).

The aim is to detect faces at the lowest possible resolution to protect privacy. To this

end, the system increases resolution only very gradually from an extreme LR and uses the

training data that is well tailored for finding faces at very LRs, as described in the sequel.

• Training Dataset

For training, we selected the AFLW dataset [48], a public dataset popularly used for face

detection. Unlike the existing work [42], we do not use the original HR dataset for training,

but resize it so that the face parts are of the target size 15x15. The dataset is composed of

annotated face images with a large variety in appearance (e.g., pose, expression, ethnicity,

age, and gender) as well as environmental conditions, containing about 25k faces.

Resizing an image to make the face within it 15×15-sized is not difficult if there is only one

face in the image. However, if there are several faces in one image, a careful consideration

should be given when generating the training data. We describe our training data gener-

ation process for the example of the image with two faces in Fig. 18. The original image,

Fig. 18 (a), is resized so that the resolution of the larger face is 15×15 as in Fig. 18 (c).

In the resized image, the smaller face is smaller than 15×15 pixels as in Fig. 18 (c), and

labeled as “face” without any problem. This resized image is used as training data. Note

that finding a face smaller than 15×15 pixels only makes the face more unidentifiable.

To make the smaller face in the original image detectable at the solution of 15×15, the
original image is additionally resized so that the smaller face is 15×15-sized as in Fig. 18

(b). This resized image now includes the larger face with size larger than 15×15 as in Fig.
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Figure 18: Our training data generation process for the example of the image with two faces.
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18 (b), which may result in a privacy threat. To handle this problem, the 15×15-sized
larger face part of Fig. 18 (c) is upscaled by the bicubic interpolation so that the upscaled

image replaces the larger face part of Fig. 18 (b) as in Fig. 18 (d). Finally, additional

training data is generated as in Fig. 18 (e), where all the faces are 15×15-sized. Note that
training data generation is performed offline using the public dataset, and hence there is

no privacy issue.

• Deep Learning

We use a fully convolutional networks (FCN) [49] structure which is one of the effective

neural networks for semantic segmentation. Its feature extractor is based on VGG19 [50].

FCN predicts dense ouputs from arbitrarily-sized inputs; that is, in-network upsampling

layers enable pixelwise prediction, and the network handles inputs of various sizes. To

improve the performance of these features, the following tasks are performed.

• Bounding Box

Due to the nature of the FCN structure, when the system makes decisions at LR on a pixel-

by-pixel basis, there is a possibility that only a few pixels in the face block are judged to be

facial while many pixels in the same face block are judged to be non-facial, which results

in a privacy threat. For instance, a donut-like face shape can be detected, which makes

no sense. To avoid this limitation, the system calculates the probability of being facial

for each pixel and then re-calculates an averaged probability value for the group of pixels

within a bounding box sliding throughout the whole image. If the averaged value exceeds

a threshold, the bound box is judged to be a face. We have empirically confirmed that

a fixed size bounding box of 15×15 pixels gives us reliable results, whereas the existing

scheme [42] employs a variety of bounding box shapes and sizes.

• Image Post-processing (IPP)

Using a bounding box provides reliable face pixel detection, but sometimes many non-facial

pixels are included in the bounding box, causing many false positives. In order to restore

the resolution of the non-facial pixels that have been judged incorrectly, we propose the

system checks again the parts that were judged to be faces, just before it outputs the final

image. It increases the resolution of the pixels with the probability of not being a face

exceeds a threshold, e.g., 99%, as in Fig. 17 (e).

• Challenge: Real-time Processing

The existing approach [42] basically uses HR images for both training and testing. In

addition, the method scales images up and down to create multiple templates, finds faces,

and then combines the results. Therefore, the computational complexity is relatively high

and the run-time is 1.4FPS on 1080p resolution and 3.1FPS on 720p resolution based

on the Resnet101-aided detector. On the other hand, our network has relatively low

computational complexity since it starts from extreme LR. Though the proposed system

33



increases resolution gradually, there is still a benefit in computational complexity because

at any step it does not reprocess the face parts previously found. When the resolution

gradually increased 6 times, from 12×16 to the original full resolution, the run-time is 6.996

FPS. Furthermore, in contrast to proposal-based detectors such as Faster R-CNN [51],

which employs as many bounding boxes as the number of proposals, our run-time does

not increase with the number of faces in an image.

B. Robot Control

The robot system consists of the following components: (1) ROS-based motor control

computer operating the motors so that the robot can move physically; (2) wireless chipset

receiving commands from the ground station and transmiting image results to the ground station;

(3) camera sensor module receiving input images to measure the distance between the robot

and obstacles when the robot performs SLAM; (4) companion computer running the proposed

face detection neural network and performing SLAM.

The robot is commanded by the ground station to move to a specific point via the wireless

chipset. According to the received commands, the ROS-based motor control computer controls

the robot to drive. While the robot is moving, images are continuously received from the camera,

which are passed through the face detection neural network at the companion computer on a

real-time basis. The privacy-preserved images are sent back to the ground station via the wireless

chipset so that we can immediately check the results on the screen of the ground station. At

the same time, the robot executes the ORB-SLAM2 algorithm using the processed images.

Experiments

A. Face Detection Deep Learning Evaluation

• Test Dataset

We tested our model on the AFLW and FDDB [52] dataset. In order to gradually increase

the resolution of the images in testing, we had to resize the images with various resolutions

in advance. When resizing the images, we could not resize all the images to the same size

such as 24×32, because the aspect ratios of the images are not constant. Instead of a fixed

aspect ratio, the images were resized based on the sum of the horizontal and vertical pixels

such as w+h=50 pixels and w+h=75 pixels.

• Existing Scheme

The approach presented in [42] is to utilize multiple templates with the coarse image

pyramid, where one template is tuned for 40-140px tall faces and the other one is tuned for

less than 20px tall faces. The neural network trained in [42] is implemented for comparison

of the baseline scheme. For fair comparison, the same dynamic resolution control is applied

to the baseline scheme as in the proposed face detection algorithm, where the resolution

of currently non-facial pixels is gradually increased to detect all small faces in the image.
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Table 2: Performances of different methods

Dataset Method DETECTED FP DETECTED-FP

AFLW

Hu et al. 0.688 0.063 0.625

Proposed w/o IPP 0.922 0.247 0.675

Proposed w/ IPP 0.896 0.183 0.713

FDDB

Hu et al. 0.479 0.078 0.401

Proposed w/o IPP 0.643 0.242 0.401

Proposed w/ IPP 0.608 0.141 0.467

• Face Detection Results

Taking careful consideration on the privacy problem when detecting faces, we should de-

clare that a face is not well detected even though it is detected in the resolution higher

than 15×15. Therefore, instead of using the term IOU (intersection over union) which is a

widely used metric, we define four metrics for performance evaluation of the face detection

algorithms as follows. (1) DETECTED: The ratio of the number of pixels judged as a

part of a face when the size of the face is smaller than or equal to 15×15 pixels to the

number of pixels actually included in the face. (2) MISSED: The ratio of the number of

pixels judged as a part of a face when the size of the face is larger than 15×15 pixels, or

not judged as a part of any faces until the resolution of the image is fully raised to the

number of pixels actually included in the face. (3) FALSE POSITIVE (FP): The ratio of

the number of pixels judged as a part of a face at any resolution to the number of pixels

actually not included in the face. (4) TRUE NEGATIVE (TN): The ratio of the number

of pixels judged as not a part of faces at all resolutions to the number of pixels actually

not included in the face.

Table 2 shows the performance of different methods tested with the AFLW and FDDB

dataset. It is observed that our methods both with and without IPP show significantly

higher DETECTED performance than the approach presented in [42] in both datasets,

although they have slightly increased FP values. From the privacy protection perspective,

it is much more important than anything else that as many face pixels are found in extreme

LR as possible. Thus, our method is more suitable for privacy-preserved robot vision.

Fig. 19 shows the results comparing our proposed method with the approach presented

in [42] for three different example images. From the left-hand side column, the images

in the figure are the original images, the results of the approach presented in [42], and

the results of the proposed face detection algorithm, respectively. In each image, the

LR parts indicate DETECTED, and the red and blue parts indicate FP and MISSED,

respectively. Two numbers below each image represent DETECTED and FP in percentage.

The proposed system finds faces with bounding boxes, gradually increases the resolution,

and finally increases the resolution of the pixels with high probability of being non-facial.
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Figure 19: Results comparing our proposed method with the results of the approach presented

in Hu et al. for three different example images.

Therefore, as seen from the figure, the proposed algorithm preserves the face shapes better

than the approach presented in [42]. Moreover, as shown in the bottom image of Fig. 19,

the proposed algorithm is particularly superior to the existing approach when faces are

largely rotated in the yaw direction.

B. Robot Control Evaluation

• Robot Hardware Specification

We performed our experiments on a TurtleBot3 Burger which is a small, affordable, and

programmable ROS-based mobile robot. The setup of the robot used in our experiments

is shown in Fig. 20. In order to obtain a wider viewing angle, a stereo ZED camera was

installed at 1.32m height. A Raspberry Pi 3 as a motor control computer and an Nvidia
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Xavier as a companion computer were mounted on the robot.

Figure 20: Face detection robot used in our experiments

• Experiments of Face Detection Network with Nvidia Xavier

Because the Nvidia Xavier module is equipped with a 512-core Volta GPU with Tensor

cores, it is suitable for large-scale matrix operations which are needed for efficient neural

networks computation. However, since the combined CPU and GPU memory is limited by

only 16 GB and because its power consumption is relatively high, it is difficult to operate

our face detection algorithm by simply porting the program to the Nvidia Xavier on the

robot. To overcome these problems, an SSD memory card with a capacity of 256GB was

additionally installed for a swap memory, and a 4-cell LiPo battery with a voltage of 14.8V

was installed for power supply. In order to minimize the amount of computations, IOU

threshold of NMS (non maximum suppression) is set to 0.1 so that not many bounding

boxes are drawn on faces. Since the run-time is 2.2FPS when running in an Nvidia Xavier,

we can utilize our face detection algorithm to any other real-time application such as

SLAM for the TurtleBot3 Burger with a maximum speed of 0.26m/s.

• ORB-SLAM2

The first step for ORB SLAM2 is the extraction of several features from an image such

as edges, corners and lines [47]. Fig. 21 shows the comparison of the feature extraction

results at various resolutions. The features are well extracted even for small eyes and noses

in HR images of 720×1280 pixels. However, the extraction algorithm fails to extract any

feature in extreme LR images of 24×32 pixels as shown in Fig. 21 (b).
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Figure 21: Comparison of the feature extraction results at various resolutions.
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The feature points extracted from our privacy preserved image in Fig. 21 (c) are almost

the same as the feature points in Fig. 21 (a) except for a few features in the face part.

Therefore, with our proposed system, a robot can still operate SLAM smoothly even with-

out any aid from or connection to the ground station. Video results for feature extraction

and ORB-SLAM2 can be found in the following link: https://youtu.be/_W6e6xPRsM0.

Conclusion

We developed a patrol robot system proposing a novel privacy preserving face detection

camera system. Using the proposed system, every snapshot is transformed to an image with

faces of extreme LR on a real-time basis without any computational aid from the ground station.

Since any of the faces is always in extreme LR even during the face detection process, privacy of

the people in the snapshot can be fundamentally preserved. We experimentally confirmed that a

robot with the proposed privacy-preserved robot vision can perform its real-time operation such

as SLAM. Upon request from users, the face detection for privacy protection can be extended

to a face and body detection.
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