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Abstract

Entering the era of the fourth industrial revolution (4IR), interest about camera is growing
rapidly. The demand for detecting range has been increased by consumer of electronics applications
such as gesture recognition like kinect gaming and robotic vision. The depth sensing technology can be
classified into 2 types. One is sensing with optical sources and the other is sensing without optical
sources. The most popular approaches include radar and time-of-flight (TOF) sensing systems.

In the non-optical sensing category, the well-known radar range-finding system utilizes the

radio waves to measure the range. Radar is the abbreviation of radio detection and ranging. Literally,
this system uses radio wave for detecting the range and it consists of receiving part and transmitting
part which produces electromagnetic waves. However, this systems is weak on spatial resolution.
Because large array size receiver is hard to be materialized.
Time-of-flight (ToF) principle is measuring distance based on time difference between emitted light
wave and reflected light wave. ToF is classified 2 types; direct-ToF (dToF) and indirect-ToF (iToF). The
direct-ToF is measurement of the time delay between emitted light and reflected light, while indirect-
ToF is measurement of the phase delay of a periodic waveform. In direct ToF system, single-photon
avalanche diode (SPAD) is the most commonly used sensing device because of high sensitivity and fast
responsivity.

In this research, the proposed sensor is implemented to iToF structure with depth calculation
using phase shift. It has 4 advantages compared to previous AX based background light suppression i-
ToF. As modulation frequency increases, switching noise becomes more dominant. Therefore, to reduce
unnecessary switching noise, smart adaptable AX operation is proposed. Process variation is one of the
factors causing depth error. To compensate process variation, in-pixel automatic chopping controller is
proposed. Additionally, to increase background suppression capability, all pixel include individual
integrator for global AX operation in pixel and pinned photodiode is implemented for high electron

transfer speed. This chip is fabricated with a 0.11um DBH CIS process.



Chapter 1. Introduction

1.1 Range detection methods overview

There are 2 types of range detection methods. First is non-injection type such as stereo vision.
Second is optical injection type such as triangulation, interferometry and time-of-flight. The basic
principles of non-injection 3 techniques for range detection are summarized in this chapter.

1.1.1 Triangulation

The triangulation is range detection technique which determines the coordinates and distances
of any single point through a trigonometric function using the properties of the triangle. The distance
of the object can be determined by measuring angles. This is shown in figure 1.1. Triangulation systems
are useful for various applications because its distance range is very discursive, but it needs a large
triangulation base. Therefore, it is not easy to set a system without restrictions.

Glittering reflective
object

LED detector
(2 divided photo-diode)
Figure 1.1 Triangulation diagram



1.1.2 Interferometry

Figure 1.2 The Michaelson Interferometer system Interferometry is a method of interpreting
short-length photovoltaic field measurements or line spectrum using two light interference. In figure
1.2, coherent light source emits light to a mirror and reflected light pass interferometer and reflected
again to a reference mirror and comes in detector. This technique can be considered as a time-of-flight
principle. Because measuring runtime difference is same between interferometry and time-of-flight.
However, this systems have two drawbacks. First thing is that complexity of this system is very high
and second thing is that maximum detect range is limited.

eleincre
mimor
T

Y
coharent A ‘nererameter measurerment

$oht soure mirror
ight source

1 < .

2
>

i

Figure 1.2 The Michaelson Interferometer system
1.1.3 Time-of-Flight

Time-of-Flight is a range detecting system by measuring round trip time of emitted light.
Advantages of this technique are simplicity, efficient distance algorithm and speed. If signal is sampled
only one time, it is impossible to distinguish the intensity of light due to various reasons such as phase
motion, reflectivity due to color or surface characteristics of the object, and background. The depth
information of the target is wrong according to the phase of the signal. Figure 1.3 shows ToF system
diagram.

/ IR Emitter
Object \ [
I

Distance

Controller

~ Sensor
array

Figure 1.3 Time-of-Flight system diagram; IR emitter and photodetector
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1.2 Range detection error by Background light

Figure 1.4 Distorted depth image in outdoor by background light

As interest in cameras increases more and more, smart phone are equipped with not only 2D
camera but also 3D camera. 3D depth camera in smart phone should provide precise detection of depth
independent of ambient light. In figure 1.4, right image is distorted depth image in outdoor by
background light.
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Chapter 2. Time-of-Flight 3D Imaging

2.1 Principles of Time-of-Flight 3D Imaging

2.1.1 Classification of Time-of-Flight

There are 2 types of distance detection methods in Time-of-Flight. One is direct-ToF (dToF)
and the other is indirect-ToF (iToF). The Time-of-Flight 3D imaging is roughly composed of 2
components, optical emitter, and photonic detectors. Both dToF and iToF systems use diodes (photonic
detectors) for light signal to transfer electric signal. However, diode operation region is different
between dToF and iToF. In figure 2.1, normal photodiode, avalanche-diode (APD), single-photon
avalanche diode (SPAD) operate in reverse bias, but gain is different according to breakdown voltage.

Gain 4

SPAD
1000_‘ ................... »
100
10
1 <4

>
Vi Voltage

Figure 2.1 Photodiode gain variation in accordance with breakdown voltage

The direct-ToF is measurement of the time delay between emitted light and reflected light.

In direct ToF system, single-photon avalanche diode (SPAD) is the most commonly used sensing device
because it can generates large current when a low light signal comes into photodiode. Therefore, it has
high sensitivity and can detect long distance of over 20m. However, it has fatal drawback on spatial
resolution. SPAD requires guard-ring to suppress unintended avalanche current around diode and needs
deep N-well for isolating from circuit in pixel. [1] - [4].

On the other hands, indirect-ToF is measurement of the phase delay of a periodic waveform. Sensor
array read out phase difference between modulated emitted signal and light signal which is reflected on

object.

11



—

f k
/ IR Emitter

Controller

Object DDDQ —

Sensor
Figure 2.2 Basic principle of indirect Time-of-Flight 3D imaging system.
FD_A = FD_B

Figure 2.3 Demodulation operation of sensor

Figure 2.2 shows the principle of indirect Time-of-Flight. IR emitter emits modulated light to object
and sensor receives phase-shifted light reflected to object. Figure 2.3 shows that received light signal is
demodulated to in-phase signal and out-phase signal by switching operation and calculated as range

data. To get 2 different phase information, sensor and emitter is synched in the indirect-ToF system.
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2.1.2 Distance detection by phase difference between emitted and

reflected light

Emitted light is reflected from the target object. Reflected light amplitude is smaller than
emitted light because light amplitude is inversely proportional to distance squared. Demodulation of
reflected light can be calculated by correlation function between emitted light and reflected light. We

assume reflected signal s(t) = 1+ a- cos(wt — ¢) and correlation signal g(t) = cos(wt).

Emitted Light

TOF i

Reflected Light & /\/\
TX1 Dol Dl Dol 72

™

™ | el Goed  Bod

Figure 2.4 Phase measurement of Time-of-Flight 3D imaging system.

c(t) = o(t) =[1+a - cos(wt — )] Q [cos(wt)]

T
= %im %f_zz[l +a - cos(wt — @)] - [cos(wt + T)]dt
2

a
=E-cos(wt+<p)
Additionally, we add a constant indicating offset B by background light and choose 4 phase information
(0°,90°,180°,270°). Considering above condition, 4 phase data are shown below.
C(0°) = c(0°) = %-cos(q)) + B
C(90°) = ¢(90°) = —%-sin((p) +B
C(180°) = ¢(180°) = —%-cos(ql) +B
C(270°) = ¢(270°) = % -sin(p) + B

With this 4 phase signal, we can calculate phase shift ¢ and distance from phase shift [5]
c(270°)—c(180°))

c(90°)—c(0°)
c(270°) — c(180°)

c(90°) — c(0°)

¢ = arctan(

c
D(distance) = 4—arctan(

f
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2.2 Correlation between background light and depth image

Depth calculation by 4 phase measurement is appropriate on both case with background light
and without background light. Because background light signal is DC signal and in-phase background

amount is same with out-phase background amount, so it is removed when subtracted.

>

Light Intensity

# " "
S : : ~

Background light(DC)

Figure 2.5 Emitted light and reflected light intensity when background light exists

2 2

FD_A = FD_B

Figure 2.6 Signal distortion by background light in saturation case

However, depth error occurs when background light (BL) is strong. In figure 2.6, during integration
time, if storage node (FD) is saturated early by high BL, signal is distorted by BL. To solve this problem,
subtract in-phase signal and out-phase signal frequently when strong background light before storage

node is saturated.
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2.3 Conceptual ideas of background light suppression

There are many factors causing background light. It could be sunlight in outdoor and could be
fluorescent lamp. In case of high background light, if the signal is saturated by background light, sensor
can’t measure phase difference. In this case, it will be noise element and it will cause depth error.
Therefore, Suppressing background light is mainly caused subject in ToF sensor. Figure 2.7 introduces
4 types of suppressing background light signal. Background light is DC signal, so BL added on out-
phase signal is same with BL added on in-phase signal. Because in-phase pulse width and out-phase

pulse width is same.

Measuring background light Delta-sigma technique

] ‘ i ! o]
< S N < 5 *

[
m B Ra e |

= Pho Ph180 - Pho - Ph180

Continuous charge subtraction Discrete hole supply

QAL 5

Figure 2.7 Conceptual 4 types of background light suppression

First method is measuring background light and subtracting same value to in-phase signal and out-phase
signal. Second method is delta-sigma technique that subtracts in-phase value to out-phase value. There
are 4 types of implementing delta integrator; Flipping photodiode, Flipping capacitor, Flipping CDS
operation and cross-coupled capacitor. Third method is continuous charge subtraction. It is sampling
photocurrent by background light and then only accumulates additional photocurrent except

continuously flowing current by BL. Fourth method is randomly supplying discrete hole.
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Chapter 3.

Previous BLS techniques in iToF depth sensor

3.1 Measuring background light and subtraction scheme

Y . —
Fp1 FD, Ii;'glttted [—|
-~ | Received
ST O R ol

x2 —1— x ' l E— «—>»
- 2 r— G3 Td
FD, {Drain
| y * Qg

Three-tap pixel k e = 08

Figure 3.1 Three-tap pixel structure

Figure 3.1 is three-tap pixel structure, two-tap is used for accumulating in-phase and out-phase signal
and other 1-tap is used for accumulating only background light. By subtracting the output of G1 from
G2, G3, the background light can be canceled. The equation for estimating the range in each pixel is

given by :

CTO SZ — Sl

L=—2.
2 S, +S;—2S,

where c is the speed of light, and S;,S, and S; are outputs of G4, G,, and Gs, respectively [6].
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3.2 Delta-Sigma background light suppression scheme
3.2.1 Flipping photodiode

COLUne 1

COL Une 1
COL Line 2

* COLLne 2

No contribution

Figure 3.2 In-pixel flipping photodiode pixel structure

Figure 3.2 is in-pixel flipping photodiode pixel structure. Among the 3 types of PD (P+/N-
well/P-sub, N-well/P-sub, and N+/P-sub, N-well/P-sub diode has the highest quantum efficiency (QE)
and sensitivity. Each pixel has in-pixel capacitive trans-impedance amplifier (CTIA) for transferring

current to voltage.

<Oppp> <Ogp> lpp
VREF : CINT
[ P+/N-well / P+/N-well =
T 1 + Vi
| Virer 7 Veer
N-well/P-sub e

Figure 3.3 Pixel operation when add phase and subtraction phase

Figure 3.3 shows connection between photodiode and CTIA when add phase and subtraction phase.
When add phase, both P+/N-well diode and N-well/P-sub diode generate photocurrent according to

signal and background light. Conceptually, CTIA output voltage will increase AVpx o except parasitic

diode photocurrent.

_ _1 (y<LED> _ <BGL> 1
AVeixo = ¢ — (ps/NZwen ~ to + Ips/NZwen * 5 Tmod)

17



When subtraction phase, only P+/N-well diode generates photocurrent.
_ _1 <LED> <BGL> 1
AVPIX,180 T CINT (IP+/N—well tigo + IP+/N—well ETmod)

After M cycles of integration, voltage difference by accumulated signal can be expressed like below.
I<LED>

P+/N—-well (

AVpix = M- (AVPIX,O - AVPIX,180) =M-[ to — t1g0)]

CINT
However, parasitic diode’s photocurrent will cause depth error, so phase-shift readout (PSR) technique
is proposed. Nevertheless, for sampling electron generated by light to integration capacitor, switching

operation may cause charge injection, so it is not suitable on high frequency operation [7].

18



3.2.2 Flipping input capacitor

RES1
Te
' Cinr
. e
(Cpp)7 Vint
Vref
INT BWD |
; g FW@'I | 4-bit [}y
BL integration , Latches |
Vref
RES1
== RES2
' e
C NT Vref T %
|
o |} o awo"
INT °
- - I"v Ne | _r—L
(Cpo). Vinl C1 _ >~#-0Vee
Vo L1 L2 3 AV -AVp -AVnt
ol B 4-bit |
FWo ". ‘Latches '

BL+IR integration

Figure 3.4 Pixel structure of flipping input capacitor with in-pixel CDS

Figure 3.4 shows pixel structure of background cancelling by flipping input capacitor using in-
pixel correlated double sampling. At initial phase, only background is integrated on C;yr capacitor.
Then, by turning on FWD switch, charge for BL signal is integrated on C, capacitor. At next phase,
IR signal added background signal are integrated on C,; 7 capacitor. Then, by turning on BWD switch,
charge for BL+IR signal is integrated, but its sign is negative. Because input capacitor’s two nodes are
flipped. This scheme is also not suitable for high frequency operation similar to flipping photodiode

scheme because of photodiode structure [8].
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3.2.3 Flipping CDS operation

Analog Memory

NGO RST F
o 9 Seected -
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Figure 3.5 (a) Pixel structure of column-parallel background cancelling scheme
(b) Architecture of flipping column-parallel CDS operation

Figure 3.5 (a) shows unit pixel structure which has 2 transfer gates, FD nodes, source followers,
reset transistors, and row select switches. In-phase signal is read out on column line 1 and out-phase
signal is read out on column line 2 and then it is connected to mux connected to column-parallel CDS
input capacitors. Figure 3.5 (b) shows architecture of flipping column-parallel CDS operation. At first
phase(mux value is zero), SIG1 and RST2 is connected to input capacitor’s left node and then RST1
and SIG2 is serially connected as mux value is high. In this case, charge for voltage difference at input
capacitor left node is sampled at C, capacitor.

= P _ _
AVcer = CF [((RST1 — SIG1) — (RST2 — SIG2)]

Output voltage is voltage difference between in-phase signal + BL and out-phase signal + BL. Therefore,

signal difference except only background signal is acquired. Because background signal is DC value

[9].
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3.3 Continuous charge subtraction scheme
3.3.1 Sampling photocurrent by background

cs&H VDD Correlating integrator
na —_—
Csan L S/H I
] T l T g -
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Figure 3.6 (a) Pixel structure of sampling photocurrent by background light
(b) Operation principle of CS&H

Figure 3.6 (a) shows current sample and hold (CS&H) circuit for BL suppression. Csgpy
samples photocurrent by BL and then accumulates additional photocurrent by emitted light. In Figure
3.6 (b), Csgy senses DC current by setting S/H to high state and gate-source voltage of T; is defined.
After S/H transistor turns off, gate-source voltage remains preserved by Cggpy, SO it facilitates BL

suppression [10].
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3.3.2 Flipping feedback capacitor to delta accumulation

| APD cross-section | Varo v 1o imegnlorg

N+ | |
N-well ]P-cnb P-well ruub N-well
Deep N-well
P-sub

| APD gain modulation |

APD Gain f
Moduiation
TRl tesbidistttiattnids }
APD Voltage Modulation — APD

—

{~500mV) = : VO’"GQG

Figure 3.7 APD cross-section and its operation principle

Figure 3.8 Pixel schematic with in-pixel BLS and chopping

In figure 3.7, a low noise APD is implemented with a p-well/DNW junction and it has better
sensitivity, but it needs additional p-sub guard-ring to avoid early breakdown, so its pixel pitch is a quite
large by photodiode structure. There are coarse and fine scheme for BL suppression. Coarse is flipping
integration capacitor and fine is sampling only BL and nulling photocurrent by BL. In figure 3.8, at
initial state, photocurrent by only BL is generated and then it is copied by current mirror. This nulling
current is present during chopping phase by C,z. Through these techniques, it can suppress up to
200klIx sunlight [11].
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3.4 Discrete hole supply scheme
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Figure 3.9 Ambient-light-cancellation TOF pixel with three-transistor discrete-time charge sources

In figure 3.9, three-transistor discrete-time charge sources (ALC1, Valc, ALC2) are implemented for
ambient light cancellation. When these transistors are activated, ALC circuit injects the same number
of holes into each FD. The electrons in FD node recombine with discrete hole packet and it helps
saturation of FD node and prevents depth error by ambient light. Each hole source consists of PMOS
transistors and middle transistor acts like a MOS capacitor. It stores hole and transfers to FD. This
scheme can be implemented on small size pixel, but it has limited subtraction efficiency (up to 40kix)
[12].
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Chapter 4.

Proposed iI-ToF sensor with in-pixel Adaptable BL

Suppression Based on AX

4.1 Solution of previous work problem
4.1.1 Adaptable AX by monitoring FD node

In previous work, flipping photodiode scheme has some problems. First is that switching noise
is very large. For flipping photodiode, a few switches need and it requires switch operation at every in-
phase and out-phase integration. In case of low light signal, this scheme has unnecessary switching
noise. Proposed solution of large switching noise is removing unnecessary switch operation by smart

adaptable AX when light signal is not high.

(" High light : ™ [ Low light : i
Charge flow Charg ("%)w
V(1 GV)-ﬁ- Vo Vil 1.6V)-o-~--~- Vo
Vast(2V)-
() " e / (b) \ }

Figure 4.1 (a) Smart adaptable AX ON
(b) Smart adaptable AX OFF
At integration phase, generated electron is demodulated to in-phase signal and out-phase signal.
After integration time, comparator monitors FD node voltage and determines AX operation will be ON
or OFF. Figure 4.1 (a) shows case of high light and figure 4.1 (b) shows case of low light. In low light

case, AX operation is skipped and electrons for background and light are accumulated continually.
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4.1.2 Automatic TX chopping interlocking adaptable AX

In previous work of flipping photodiode, second problem is mismatches. There is some factors
causing mismatches. One is photodiode mismatches. P+/N-well photodiode and N-well/P-sub
photodiode has different sensitivity and it causes different photocurrent. In add phase, additionally, both
P+/N-well PD and N-well/P-sub PD make photocurrent, but in subtract phase, only P+/N-well PD
makes photocurrent. It may cause depth error. Another is TX strength variation by process variation. If
TX strength is different, charges generated on PD transfer to FD capacitors differently about in-phase
case and out-phase case. To resolve these problems, automatic TX chopping technique is proposed.

Figure 4.2 TX chopping mechanism by flipping control signal

After AX operation, T flip flop for TX chopping controls that TX signals are flipped and accumulates
in-phase signal on FD B node and out-phase signal on FD A node. Through this technique, TX strength

variation and floating diffusion mismatch problem could be compensated.
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4.1.3 Pinned-PD for accelerating charge transfer

Third problem is only possible for low frequency operation due to conventional photodiode
structure characteristic. An expression for the standard deviation of the phase measurement of indirect
ToF is known as [13]:

c JAsig + Background
B 4‘7Tfmod\/§ CaemodAsig

where Ag;, is intensity of signal and f;,,4 is modulation frequency and cgemoq is demodulation

OR

contrast. From this equation, we can know o will decrease as modulation frequency goes up. To

operate high modulation frequency up to 50MHz, pinned-photodiode with doping gradient is proposed.
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Figure 4.3 (a) Conventional photodiode potential diagram
(b) Pinned-photodiode potential diagram

In figure 4.3 (a), conventional PD has flat electric-field from PD to FD node, so as frequency increases,
electrons generated on PD could not fully transfer to FD node for given time. Figure 4.3(b) shows
accelerated charge transfer. By gradient doping concentration on photodiode region, sloped electric-

field from PD to FD node is generated and it helps for electrons to fully transfer to FD node [14].
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4.1.4 In-pixel integrator for global AX operation
Fourth problem is BL suppression capability decrease through row-by-row AX. In AX BLS by

column-level subtraction scheme, integrator is shared in each column. Through sharing integrator, pixel
pitch could decrease because there is no integrator in pixel, so it is effective in terms of pixel resolution.
However, it can’t implement AX operation globally because there is only 1 integrator in column line.

Therefore, AX time is much longer than global AX operation and it can’t implement many sub-

integration.
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Figure 4.4 Structure with integrator in-pixel level for global AX

Figure 4.4 shows pixel structure with integrator in pixel for global AZ. In this case, AX time is
very short, so it can implement much times of AX compared to column-level AX. In strong background

case, global AX operation will be effective.

27



4.2 Proposed Sensor Design

4.2.1 Proposed overall architecture
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Figure 4.5 Overall architecture of proposed sensor

Ramp Gen
/ Bias circuit

Figure 4.5 shows full architecture of proposed BLS sensor. It consists of a pixel array, two
row drivers, decoders and TX clock trees, and a column-parallel delta double sampler (DDS) with an
address decoder. Each pixel includes pinned photodiodes, amplifier, 3 memories for smart reset and TX
chopping, 100fF MIM capacitor. Single-slope ADC has 10 bits resolution. Pixel pitch is 28.8um and
pixel array is 92 x 72 with optical black (OB) dummy pixel. A pixel on the edge is not surrounded by
pixels everywhere, so it may cause mismatch compared to other pixels. This is first reason we add OB
pixel on the edge. Second reason is for calibrating signal by dark current in no light signal case. Effective
pixel array is 80 x 60 without OB pixel. All pixel has individual amplifier in pixel for switched-capacitor

Integrator. In addition, it has active reset scheme for reducing KTC noise and smart reset for reducing

28



unnecessary switching noise. For background light cancelling, integration time is divided by a few sub-
integrations. By monitoring FD node voltage through inverter-based comparator, it determines whether
turning delta-sigma operation on or off between FD A node (In-phase) and FD B node (Out-phase). On
sub-integration time, FD node reset is automatically implemented by transferring FD node charge to

integration capacitor.

4.2.2 In-Pixel Background Light Suppression (BLS) structure
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Figure 4.6 Operation on integration phase
Figure 4.6 shows TX operation on integration phase. Through TX operation, electrons on PD

is transferred to two nodes corresponding to TX signal. Usually, signal for O degree and 90 degree is

collected on FD A node and signal for 180 degree and 270 degree is collected on FD B node.
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Figure 4.7 (a) In-phase operation on background light suppression (BL) phase

(b) Out-phase operation on background light suppression (BL) phase
In BLS phase, by turning on BR A switch, charges on FD A node transfers to integration capacitor and
capacitor ratio x voltage corresponding to signal 1 and background light is added to reference voltage.
At next, by turning on BR B switch, integration capacitor is flipped and charges on FD B node transfers
to integration capacitor. In this case, however, voltage for signal 2 and background light is subtracted
because capacitor is flipped. Through delta-sigma of FD node, we can get difference signal between in-

phase signal and out-phase signal except background light
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4.2.3 Smart reset technique for low charge-injection

4 )
B
JE
E o on
I?\l o © £ DC 2 % BR
V(1 6V = l/ FDmonitor 0 BRL e
M( . ) Inverter based BRg BRg chop
comparator
VrsT(2V) --
FD
(a) \ )
4 )
B
JE :
: :
& [~ OFF
> oo 1= {>c T\ BRa
l/ FD ] 1 BR _chop
Vu(1.6V)-------- Inverter based monitor A
comparator BRg BRg_chop
VrsT(2V) --
FD
(5) T T— g
Figure 4.8 (a) AX controller ON state when light signal is high
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Figure 4.9 (a) AX operation is ON

(b) AX operation is OFF

Smart adaptable AX controller scheme is proposed for reducing unnecessary switching noise

when background light is not dominant. In strong background light (BL) case, signal will be distorted

by BGL. In figure 4.8, inverter-based comparator monitors light condition and inverter-latch memory

stores this data for delta-sigma phase. If FD voltage is under 1.6V (High light), inverter output is high

and it determines delta-sigma and FD node reset. If FD voltage is over 1.6V (Low light), inverter output

is low and it skips delta-sigma operation and collects light signal continuously. At next phase,

comparator monitors FD node again and if FD voltage is under 1.6V, it determines delta-sigma operation.

Figure 4.9 (a) shows that AX operation is on when light signal is high and (b) shows that AX operation

is off when light signal is low.
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4.2.4 TX gate signal chopping in pixel-level for reducing mismatch
There are some mismatch factors in pixel. First is TX strength variation between FD A node
and FD B node. Second is full-well-capacity (FWC) variation between two FD nodes. Mismatch of
FWC cause different gain and it may cause depth error. To compensate these mismatches by process
variation, TX gate signal chopping in pixel-level is proposed.
Figure 4.10 is memory based on T flip-flop for chopping. BR chopping time is next to TX chopping
time, so this is why 2 memories for chopping are needed. Figure 4.11 is operation of chopping logic in

strong background light case.

monitor
BRchop_on

BRmonitor

i

RST

SRmemory
5 o
D FDmumtor TXchop_on BRnonitor

Figure 4.10 Memory based on T flip-flop for TX and BR chopping

Sub int #1 | AZ#1 | Sub int #2 | AZ#2 | Sub int #3 | AZ#3 | Sub int #4 | AX#4
FD value >1.6V >1.6V <l.eV <l.6V >1.6V >1.6V <l.6eV <l.6V
Smart reset OFF ON OFF ON
TX chopping OFF OFF OFF ON ON ON ON OFF
TX signal TX TX TX TX
BR chopping OFF OFF OFF OFF OFF ON ON ON

Figure 4.11 Case of strong background light
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4.2.5 Overall operation
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Figure 4.12 Unit pixel schematic with smart adaptable AX and chopping controller
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Figure 4.13 Overall timing diagram of proposed sensor
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Figure 4.12 shows overall structure of unit pixel. It consists of 4 blocks; 2-tap pixel based on
pinned-photodiode, integrator with 5 switches and 1 MIM capacitor for AX operation, smart adaptable
AX controller for determining AX ON/OFF and chopping controller for TX and BR switching operation
chopping. Operation is divided by three phase briefly; reset phase, sub-integration phase and AX phase.
First phase is reset phase. Storage node FD is resetto Vgygr by negative feedback of amplifier. At sub-
integration phase, electron generated on photodiode is demodulated by TX operation. FD A stores in-
phase signal and FD B stores out-phase signal. After sub-integration, smart adaptable AX controller
determines AX operation. Inverter based comparator monitors FD node voltage. If it is over 1.6V, AX
operation turns OFF. On the other hand, if it is under 1.6V, AX operation turns ON. Because FD node
voltage means signal intensity added background light. If AX turns ON, chopping controller controls
TX chopping signal ON. After AX operation, in-phase signal is stored on FD B and out-phase signal is
stored on FD A. Because TX signal is flipped by TX chopping controller. In this case, AX operation
also should be flipped in sync with TX signal. After 2nd sub-integration phase, AX operation is flipped
by BR chopping memory. Therefore, charges of in-phase signal on FD B transfers to integration
capacitor firstly and charges of FD A transfers to flipped integration capacitor. At next sub-integration
phase, TX chopping signal is inverted again, so in-phase signal is stored on FD A and out-phase signal
is stored on FD B node. Through these techniques, it can reduce unnecessary switching noise or charge
injection when light signal is not high and it can compensate storage node mismatch and TX strength

mismatch problem by process variation.
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Chapter 5. Measurement result

5.1 Measurement system setup

[P\ @

Depth results w/

previous sensor

Figure 5.1 Measurement system setup of sensor board

In figure 5.1, it shows system of sensor measurement. Control signal is generated by FPGA
and inserted to chip. Row decoder and column decoder signal controlled by FPGA makes address and

CDS output is read out row by row.

FPGA
MAX Il
Fommomooooooooo- N Control
! [m]”\ signal
i [ IRLD
. ! . Sensor
: [MJ: emitter
:_ ________________ E/I \ /
Object

Figure 5.2 Block diagram of overall system

In figure 5.2, LED emitter pulse has long rising and falling time and it means that our depth calculation
is not correspond in this case. Additionally, emitter’s large distortion in waveform also causes depth

error. Therefore, we need IR LD emitter which has short rising and falling time and operates on high

modulation frequency.
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5.2 Light source and optical emitter design
5.2.1 Light source - LED

2 types of light source are used in ToF optical emitter. First, LED is abbreviation of light
emitting diode. LED is photonic-semiconductor that transfers electric energy to light energy. In figure
5.3, LED basically consists of p-type semiconductor and n-type semiconductor (P-N junction). When
forward voltage is biased on diode, electron on n-type semiconductor moves to p-type semiconductor
and then it combines with holes. In this case, light is emitted by forward current.

Light Energy O
6__

Hole

Electron

Figure 5.3 Structure of LED
5.2.2 Light source — LD
LD is abbreviation of light amplification by stimulated emission of radiation. In figure 5.4,
literally, to get a stimulated emission, it needs 2 mirrors for resonance cavity and it plays the role of
light amplification. The most difference between LD and LED is coherence. LD can emit completely
same phase and wavelength light pulse, so coherence is very high. Therefore, LD’s wavelength

spectrum is uniform, while LED is broad.

‘6 Laser pump }

95% reflection

100% reflection | s
Miccoe 1 exiiation 594 penetration
. % ‘ ___ Mirror 2

e IS At | d

g I Al

8 Laser beam

Laser active medium |
Resonator
Stimulated Emission of Light Amplification

Radiation
Figure 5.4 Structure of LD
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5.2.3 Light source device comparison
Figure 5.5 is comparison between LED device (OSRAM SFH4259S) and LD device

(Lumentum 22045498)
- { - £ &

_ LED(SFH4259S_OSRAM) |Laser(22045498 Lumentum)

Output power Linearly proportional to Proportional to current above
drive current threshold
Power intensity 55mwW 24W ©
Divergence 50° Approximately 20° &
Rising time 12ns 1Ins @
Fall time 12ns 2ns ©
Wavelength 860nm 855nm

Figure 5.5 Comparison of LED and LD
LD power intensity is approximately 44 times stronger than LED’s. Because LD’s power is

exponentially proportional to current above threshold current. Figure 5.5 is comparison between LED
device (OSRAM SFH4259S) and LD device (Lumentum 22045498)
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5.2.4 Switching topology
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Figure 5.6 (a) Series switching circuit

(b) Shunt switching circuit

Figure 5.6 shows two types of switching circuit. In series switching circuit, it has voltage
source and emitter and switch in series. By controlling gate voltage, it turns on and off the switch at
modulation frequencies. In this case, it has disadvantage of having switch drain node impedance going
to infinite when switch turns off. The only advantage to use this topology is that inductor is not necessary.
In shunt switching topology, it has current source and emitter and switch in parallel. This is same to
Norton’s equivalent of series switching circuit. In this topology, the advantage is that there is no infinite
impedance node. Therefore, in high frequency operation, this switching topology is recommended.
However, it is not suitable for very low power illumination circuits. Because most discrete switching
power MOSFETSs in market have relatively high output capacitance. Small current from current source
could not drive the MOSFET output capacitance at high frequencies. Nevertheless, it has many
advantages compared to series switching topology. Its output power is relatively stable against

frequency, temperature and electrical to optical conversion efficiency is higher.
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Figure 5.7 (a) Shunt switching circuit without high frequency inductor
(b) Shunt switching circuit with high frequency inductor

However, practical current sources cannot provide high impedance as frequencies goes up. It is very
hard to get high impedance current sources at voltage rise edge rates of optical emitter circuits. In figure
5.7, Adding inductor in series with current sources compensates current source’s impedance. Impedance
of inductor increases with frequency (wL). On high frequency, inductor impedance increases the overall

output impedance of current source.
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5.2.5 LD board measurement
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Figure 5.8 (a) Optical power degradation ratio graph as frequency changes

(b) LED pulse waveform through photodetector on 30MHz

Figure 5.8 (a) shows optical power degradation ratio between LED and LD. As frequency
goes up, pulse width decreases. In figure 5.8 (b), it seems like triangle wave not pulse wave. Because

it’s rising and falling time is quite long. This is why its optical power decreases as frequency increases.

“ -

(@) (b)
Figure 5.9 (a) Pulse waveform through photodetector on 30MHz

(b) Pulse waveform through photodetector on 50MHz

However, Figure 5.9 shows LD waveform through photodetector. It’s falling and rising time is much
shorter than LED, so its waveform is much closer to pulse waveform. Additionally, optical power
degradation is under 10% from 10MHz to 50MHz.
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5.3 Chip measurement
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Figure 5.10 5200um x 5900um in-pixel background light suppression i-ToF system layout

Figure 5.10 shows overall layout of smart adaptable AX with BL suppression. Pixel array is 92

X 72 with optical dummy and pixel pitch is 28.8um. Pixel array and unit pixel layout is shown below.
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A. Smart adaptable AX simulation result
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Figure 5.13 Simulation result of smart adaptable AX ON/OFF operation

At first, storage node (FD) is reset to 2V by negative feedback. For integration time, FD voltage
decreases as generated electrons are transferred by modulated TX operation. At AX phase, inverter-
based comparator monitors FD node (1.7V). It is over 1.6V, so AX operation is OFF. After 2" integration,
comparator monitors FD node (1.53V) again. SRyemory Value is toggled to zero because it is under

inverter switching point. In this phase, AX operation is ON.

B. Automatic TX chopping simulation result
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Figure 5.14 Simulation result of automatic TX chopping operation
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TX chopping is interlocked with smart adaptable AX operation. If FD value is under inverter switching
point, AX operation turns ON and TX signal for next integration is flipped. Figure 5.14 shows TX A
signal and TX B signal are flipped as latch out is toggled.

C. AZX operation simulation result for 3 cases

RST

el

Jnn "
—Pp{— I i ._/ﬁ i:
Ve

_O; | BR:_;[>——0/0—C| Vo< Vi
mr TFDB v

Vo

Vsigl > VsigZ

RST

Vg Vo

_% | BR?_;[>>—0/0—C| Vo= Vi

= Vsigl = VsigZa

Vr

_% | BR?_;[>>—0/0—C| Vo> Vr

= Vsigl < VsigZ

Figure 5.15 Pixel output change for 3 cases of different signal intensity
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Figure 5.16 Pixel operation simulation result for Vg1 > Vg
Figure 5.16 shows simulation result of 1 case that in-phase signal intensity is larger than out-phase
signal intensity. Difference between in-phase signal and out-phase signal is approximately -0.057V and
closed-loop gain is approximately 0.4. At first, storage node is reset to V,.r(2V). After AX operation,

pixel output voltage decreases as much as 0.021V (AV;, X gain).
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Figure 5.17 Pixel operation simulation result for Vg1 = Vg2

Figure 5.17 shows that in-phase signal intensity is same with out-phase signal intensity. Difference
between in-phase signal and out-phase signal is approximately OV and closed-loop gain is
approximately 0.4. At first, storage node is reset to V..¢(2V). After AX operation, pixel output voltage
is continuously 1.998V because voltage increment by in-phase signal is same with decrement by out-

phase signal.
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Figure 5.18 Pixel operation simulation result for Vg < Vg

Figure 5.18 shows that in-phase signal intensity is smaller than out-phase signal intensity. Difference
between in-phase signal and out-phase signal is approximately 0.053V and closed-loop gain is
approximately 0.4. At first, storage node is reset to V,..¢(2V). After AX operation, pixel output voltage

increases as much as 0.02V (AVgjg X gain).
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5.3 Conclusion

In this research, 92x 72 i-ToF with smart adaptable background light suppression based on
AX techniques are proposed. Overall architecture consist of a pixel array, two row drivers and decoders
for row addressing, TX clock trees, and a column-parallel delta double sampler (DDS) with an column
address decoder and 10-bits single-slope ADC. Full chip size is 5900um x 5200um. Briefly, 4
techniques are proposed to develop previous work problem. At first, for reducing unnecessary switching
noise when light is low, comparator monitoring storage node determines AX operation at every sub-
integration. At second, for compensation of mismatch problem by process variation, automatic
chopping in pixel-level is proposed. At third, for high depth precision, trident PPD with accelerated
electric field by doping gradient was implemented. Lastly, for high frame-rate and high background
suppression capability, all pixel include individual integrator in pixel and implement AX operation at
the same time.
To compensate power consumption, power-gating controls amplifier bias. Turning off the in-pixel
amplifier array on integration time is helpful for power saving because integration time is dominant
than readout time and reset time.

Finally, this chip is fabricated with a 0.11um DBH CIS process.
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