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Abstract 
 

Offline programming has gained popularity over online programming because it allows changing the robot 

program without stopping production, but it still falls short in terms of accuracy. Robot programs generated 

using offline programming need to be calibrated to determine the real positions of the robot and its 

peripherals in the workcell before being uploaded to the real system, because dimensional variations 

between the virtual and the real workcell may cause robot tool center point (TCP) position errors.  

Currently to calibrate the robot workcell, robot TCP positions of strategic locations in the real workcell  are 

measured using the teach pendant or sensors such vision systems and laser sensors, and they are later used 

to modify the corresponding nominal values in the virtual workcell, to generate a new robot program.  

This thesis proposes a method to regenerate the robot program that is feasible in the real robot workcell. 

The objectives of this thesis are outlined as follows: (1) Computing the transformation matrix between the 

virtual and real work object frame. This is done by applying a linear regression algorithm to two sets of 

matching position data points, one measured in the virtual workcell and the other measured in the real 

workcell. (2) Path feasibility check and path regeneration, closed loop inverse kinematics is used for this 

task and the robot’s manipulability index is used to determine how close a robot is to a singularity and 

subsequently move the robot away from the singularity. The proposed method was verified using the 

Neuromeka Indy 7 and the simulations were done using MATLAB/SIMULINK. 
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ABBREVIATIONS 
 

Notation  Description  �   Matrix (bold, italic, and capital) �  Vector (italic and capital) (�)�,: = ��,:  ith row of matrix X  (�):,� = �:,�  jth column of matrix X (�)�,� = ��,�   Matrix element  N  Number of path points  
VPM Original path matrix (virtual workbench frame) of size N× 6 
RPM New path matrix (real workbench frame) of size N× 6 
RTV Error compensation matrix 

M Number of maximum iterations ��   Joint configuration vector at the ith path point ( RPM)i,: �  End effector pose matrix  ��  End effector pose matrix at jth instance  �  End effector pose vector ��  End effector pose vector at the ith path point ∆�  End effector pose increment  ∆�  Joint configuration increment �̇  End effector velocity �̇  Joint velocity 

J Jacobian matrix 

W Manipulability index 

K Gain  μ  Damping factor to reduce joint velocities in the vicinity of singularities μ�  Damping scale variable in the vicinity of singularities  ε  Small positive number that denotes tolerable error 
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CHAPTER 1                                                               
INTRODUCTION 

 

 

 

 

 

 

 

 

1.1 Background  

Industrial robot manipulators are crucial parts of the automated manufacturing industry, they increase 

production quality and productivity, improve reconfigurability and flexibility, and can be used for a high 

range of applications. Their common use relies on programming the robot end effector with high accuracy. 

Usually, robot manipulators have a higher repeatability than accuracy, which is acceptable for mass 

production, but as manufacturing has shifted from mass production to mass customization, where 

manufacturing cells are frequently reconfigured, the accuracy of robot manipulators need to be improved.  

Robot programming methods can be divided into two categories: online programming and offline 

programming (OLP). With online programming, the operator uses a teach pendant to maneuver the robot 

to the desired positions in the real workcell, and the related joint angles are registered at each desired 

position to generate a robot program. Online programming has the following shortcomings: the process is 

time-consuming and tedious, the program generated by teach pendant is unique to the robot and thus cannot 

be copied to a robot performing a similar task, and the quality of the produced robot program depends upon 

the operator’s skills.  

With offline programming, the robot is programmed in a virtual environment (a robot workcell is 

represented by a 3D CAD model) i.e. programming is done in  the absence of the physical robot; and the 

program is later transferred to the physical robot. This is convenient in that there is no production downtime 

when the robot is being programmed as opposed to online programming, where the robot must be out of 
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service for programming, and the robot program quality is consistent since it no longer relies on the skills 

of the robot operator.  

 

Figure 1.1 Online programming using teach pendant 

In general, multiple robot workcells perform identical tasks by using the same offline robot program (e.g. 

spot-welding robots in an automotive body-shop), which makes offline programming a good choice because 

the same robot program will be copied to the identical robot workcells. Commercial OLP packages include: 

eZRobotics (DMWorks), Delfoi Robotics, Delmia IGRIP,  Siemens RobCAD, ABB RobotStudio, RoboDK, 

and Roboguide (Fanuc). 

  

Figure 1.2 Offline programming 

Figure 1.3 shows an example of a robot workcell with its reference frames and the corresponding frame 

transformations, where: 

 {W} World coordinate frame is usually placed in a strategic position in the workcell where it will 

be convenient to measure the location of the robot and its peripherals. In a simple workcell with 

few equipment, it can be made to coincide with the robot base coordinate frame.  
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 {B} Robot base coordinate frame is located at the base of the robot manipulator, otherwise known 

as link zero. The robot manipulator’s forward kinematics (the end effector pose) are defined relative 

to this frame. The robot base coordinate frame is defined with respect to the world coordinate frame.  

 {E_0} End effector_0 coordinate frame whose origin is located at the last link’s endpoint and is 

defined relative to the robot base coordinate.  

 {E} End effector coordinate frame whose origin is placed at the tool center point (TCP) and is 

defined relative to the end effector _0 coordinate frame.  

 {Tg} Target coordinate frame defines the location of an object with respect to the workbench 

coordinate frame. 

 {O} Work Object coordinate frame is usually described relative to the world coordinate frame. It 

is preferable to define the robot path in this coordinate frame. Usually the end effector poses are 

programmed in this frame. 

 

Figure 1.3 Workcell coordinate frames 

Equation (1.1) denotes the relationship between the workcell coordinate frames. 

 ���� = � ��� ���� ��� ��� ��_�� ���_�  (1.1) 

1.2 Motivation 

Offline programming has gained popularity over online programming because it allows changing the 

robot program without stopping production, but it still falls short in terms of accuracy. Robot programs 

generated using OLP need to be calibrated to determine the true positions of the robot and its peripherals 
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in the real workcell before being uploaded to the real system, because dimensional variations between the 

virtual and the real workcell may cause robot tool center point (TCP) position errors.  

The goal of workcell calibration is to define the true transformations (in the real workcell)  between the 

robot workcell coordinate frames. The calibration process is often time consuming and it requires high 

accuracy measuring devices, and a skilled robot programmer.  

A common method used for calibration is to measure the robot TCP positions of strategic locations in 

the real workcell using the teach pendant, and subsequently use those measurements to modify the 

corresponding nominal values in the virtual workcell to generate a new robot program. This method’s 

weakness is that it relies on the operator’s skills to move the robot to accurate positions. Methods that 

incorporates sensors, such as vision systems, and laser sensors in the calibration process also make the 

corresponding changes to the OLP manually.  

For these reasons above, an adaptive robot program calibration method is devised in this thesis to assist 

the user in the calibration procedure by closely maintaining the shape of the initial robot path in the virtual 

work object frame.  

The first step to calibration is the identification of the error compensation matrix ���  that represents the 

dimensional variations between the virtual and real workcells as can be shown in Figure 1.4. 

 

Figure 1.4 Dimensional variations between the virtual and real work object frames 
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The next step is to regenerate the robot path by considering the dimensional variations obtained in the 

first step. This is usually done manually, reason why it requires a skilled robot programmer. Thus, the need 

to automate the path regeneration process as nowadays robot manipulators are common in manufacturing 

industries. 

While regenerating the robot path the approach vector length and angle, (from Figure 1.5  ���� ������������������������������⃗  ) 

should be preserved since it is the most important part of the robot task.  

 

Figure 1.5 Path regeneration 

   Experimental simulations results from the Neuromeka Indy 7 showed that a dimensional variation of ten 

millimeters may introduce singularities in the regenerated robot path. In this case a path that avoids the 

singular regions needs to be regenerated. 

1.3 Objective  

The purpose of this thesis is to generate an accurate and feasible path in the real work object coordinate 

frame given a path in the virtual work object frame. This task comprises of two main parts: (1) 

Transformation matrix (error compensation matrix) computation and (2) Path feasibility check and 

regeneration.  

Transformation Matrix Computation 

To compute the transformation matrix that expresses the virtual work object coordinate frame with respect 

to the real work object frame ��� , the transformation matrix that relates the real work object frame to the 

robot base frame �{�_�}�  is determined first, by applying the linear regression algorithm to two sets of 

matching position data points. A kinematically calibrated robot manipulator is used to measure the position 

of data points in the robot base frame {B} and the data points in the real work object frame are obtained 
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from the workcell CAD model. Since the transformation matrix that describes the virtual work object frame 

with respect to the robot base frame �{�_�}�  is extracted from the CAD model, �{�_�}{�_�}  (in short ���  ) can be 

computed by compound transformations. 

Path Feasibility Check and Regeneration  

Once a path in the real work object coordinate frame is obtained using the transformation matrix; the 

feasibility check will determine whether the path can be uploaded to the real system or whether  the path 

needs to be regenerated. For the feasibility check, closed loop inverse kinematics is used to obtain a   

feasible path in the joint space by checking for singularities. The robot’s manipulability index is used to 

determine how close a robot is to a singularity and subsequently move the robot away from the singularity.  

1.4 Overview 

This thesis is organized as follows: chapter one outlines the introduction. Chapter two denotes the 

literature review. Chapter three explains how to compute the transformation matrix and also elaborates the 

robot path feasibility check algorithm. Chapter four demonstrates the experimental and verification results. 

In chapter five, a conclusion and future works are elaborated. 
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CHAPTER 2                                    
LITERATURE SURVEY 

 

 

 

 

 

 

 

 

2.1 Robot Programming 

The three main approaches to Robot programming as outlined by (Lozano-Perez 1983) are: programming 

by guiding, robot-level programming, and task-level programming. In programming by guiding, the 

operator manually moves the robot to the desired positions, using a teach pendant, and the joint coordinates 

positions are registered and later used to develop a robot program made of a sequence of joint coordinates. 

This method is fast and straightforward when the robot must perform tasks that involve simple motions and 

do not require sensory information. However, programming by guiding is limited, when the robot tasks 

require complex motions and sensory information, like inspection or assembly. Other limitations to be cited 

are that this type of programming can be quite tedious, when the same task must be repeated at different 

points and achieving fine positioning accuracy is hard.  

Robot-level programming allows the use of computer programming languages to acquire and use sensor 

data, and to define desired motions. The acquired sensor data such as force and vision can be used to specify 

the robot motions. The drawback of this method is that it requires the user to have expertise in computer 

programming, and sensor data analysis.  

Task-level programming involves determining target positions of objects instead of determining the 

motions required to achieve those targets. This method is does not depend on the robot in that the user does 

not specify paths or motions that are dependent on the robot kinematics.  
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(Biggs and MacDonald 2003) classified robot programming methods into: manual programming, 

automatic programming, and software architectures. In manual programming systems, the user generates 

the robot program by hand. These include text-based and graphical programming language. Since the robot 

is not present during programming, these methods are often referred to as offline programming systems. 

Automatic programming systems require little or no direct involvement of the user to develop the robot 

program. The robot code is created from data input to the system in various ways. These comprise 

programming by demonstration, learning, and instructive systems. For these systems, programming is done 

while the robot system is running, so they are also called online programming systems. The importance of 

software architectures lies in that they provide communication and access to robots.  

Offline programming is usually done on a CAD model of the robot and its peripherals; and sometimes 

there are dimensional variations between the physical system and the CAD model. The robot programs 

generated in this way need to be calibrated since these dimensional errors will affect the robot’s absolute 

pose accuracy. The need for calibration has impeded the use of OLP in industries. Online programming 

does not require calibration, because dimensional errors do not affect the robot’s repeatability (Duelen and 

Schröer 1991). Figure 2.1 outlines the process of offline programming (OLP). 

 

Figure 2.1 Offline Programming process (Pan, Polden et al. 2010) 

2.2 Kinematic modelling and forward kinematics  

A robot manipulator can be modelled as a kinematic chain comprised of rigid bodies called links that are 

connected to each other by joints. The joints can either be prismatic, for a linear motion, or revolute, for a 

rotary motion. For a manipulator with 1, …, N joints, link 0 is constrained at the base, whereas the last link 

(link N) is the robot end effector. The number of joints represents the number of degrees of freedom for a 
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given manipulator.  The motion of the robot is derived from the composition of each link’s motion with 

respect to the previous one. To describe the location of each link a coordinate frame is attached to it i.e. 

frame i to link i. The relative position and orientation of two consecutive links can be obtained using the 

modified Denavit-Hartenberg (DH) convention by (Craig 2009); the link is defined by two parameters: the 

link length (ai) and the link twist (i), and the joint is defined by the offset length  (Lozano-Perez 1983) and 

the joint angle (θi). The four parameters are called the DH parameters.    

 

Figure 2.2 Modified Denavit-Hartenberg convention 

The coordinate frame attached to each link can be defined as: 

 Axis Zi is coincident with the ith joint axis. 

 Axis Xi is taken along the common perpendicular to Zi and Zi+1, in the direction from joint axis i to 

i+1          

 The origin Oi is at the intersection of Zi and the common perpendicular to Zi and Zi+1 

 Axis Yi is selected to form the right-hand rule  

The DH parameters can be defined as  

 Link length ai-1: the distance between Zi-1 and Zi along Xi-1 

 Link twist i-1: the angle between Zi-1 and Zi about Xi-1 

 Offset length di: the distance between Xi-1 and Xi along Zi 

 Joint angle θi: the angle between Xi-1 and Xi about Zi 
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For a robot manipulator, three parameters are fixed and only one joint variable Qi, (di for prismatic joint 

and θi for revolute joint), changes during robot movement. To describe motion from link i-1 to link i, link 

transformation �����  may be expressed as follows starting from link i+1: a rotation i-1 about Xi-1, followed 

by a translation ai-1 along Xi-1, then a rotation θi about Zi, then a translation di along Zi.   

 

����� = ��(����)��(����)��(��)��(��) 

= � ��� −��� 0 ������������ �������� −����� −��������������� �������� ����� �������0 0 0 1 � 
(2.1) 

The transformation that links the base frame {0} to frame {n}, the end effector can be expressed as: 

 ��� = ��� ��� … �����  (2.2) 

With the above expression, we can define the manipulator’s forward kinematics, which computes the end 

effector pose P (P is 6 elements vector, 3 for position [x, y, z] and 3 for orientation [u, v, w] ) given the 

joint configuration vector Q, and can be rewritten as:  

 � = �(�), (2.3) 

where � = [��, ��, ⋯ , ��] , �: ������ �� ������  
A minimum of six joints is required for the robot to achieve any position and orientation in its workspace. 

For a redundant manipulator, manipulator with more than six joints, the number of joints configuration 

parameters exceeds that of the end effector configuration parameters. In other words, the robot 

manipulator’s number of degrees of freedom is more than the number of degrees of freedom of its end 

effector. The focus of this work is on nonredundant robot manipulators. 

2.3 Inverse kinematics 

The inverse kinematics problem is defined as: given the desired orientation and position of the 

manipulator’s end effector compute the corresponding joint angles to attain the desired result, in other 

words it computes the inverse of equation 2.3. The inverse kinematics is crucial to the control of robot 

manipulators; once the robot task is specified each joint is controlled individually, i.e. each robot joint must 

be known to accomplish the desired task (Manseur 2007).  

The complexity of solving inverse kinematics problems depends largely on the geometry of the robot 

manipulator. Two types of solutions exist for this problem: closed form (analytical) solutions and iterative 

(numerical) solutions. Analytical solutions exist when robots have fewer joints and when there are pairs of 

parallel or intersecting joint axes. For any six degrees of freedom (DOF) robot, a closed form solution exists 
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when there are three consecutive joints that are either parallel or perpendicular. Analytical methods provide 

solutions of joint variables in terms of the end effector cartesian coordinates. Numerical solutions are used 

when there is no closed form solution or when there is a need to develop a generic inverse kinematics solver 

for all kinematic configurations (Lenarcic, Bajd et al. 2012). The rest of this section will deal with some of 

the numerical methods used to solve inverse kinematics.  

Numerical or iterative methods are used when an analytical solution cannot be achieved even though for 

the given set of Cartesian coordinates a joint space solution exists. Unlike, closed form solution, numerical 

solutions use an initial approximate value of the joint coordinates Q(0) to iteratively converge towards a 

solution. The initial condition affects the convergence rate of the numerical solution and whether a solution 

will be found; if the initial joint coordinate is far from the target an exact solution may not be obtained. For 

continuous trajectory tracking, the best initial condition is the joint coordinates in the previous iteration 

step.  

Major drawbacks of these techniques include failure to converge, not obtaining all possible solutions, 

and computationally more expensive and slower than closed form solutions. The advantage of these 

methods is that they are generic and thus can be applied to various structures of robot mechanisms.  

Let Q(0) be the initial joint coordinate, the goal is to find the target joint coordinate Qt such that:  

 

�� − �(��) = 0   
or �� − �(��) ≤ � 

(2.4) 

Where �: a small positive number. 

For a converging method, the error decreases and approaches zero after each iteration.  ε(��, ��) → 0, 
where �� = �(�(0)) 

The Newton Raphson is one of the numerical methods used to compute inverse kinematics through 

several iterations (Whitney 1969). Equation (2.3) is highly nonlinear but can be approximated by a linear 

equation using a Jacobian matrix. The Jacobian is a matrix of joint variables first order partial derivatives 

relative to the end effector coordinates.  

Differentiating equation (2.3) with respect to Q 
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���� = �(�), (2.5) 

where �(�): the Jacobian of f with respect to Q, 

�(�) = �����, 
where i = 1, …, n 

Equation 2.5 can be rewritten as  

 ∆� = �(�)∆� (2.6) 

If J is a nonsingular (invertible) matrix 

 ∆� = ���(�)∆� (2.7) 

The Jacobian matrix expresses a linear relationship between the end effector and joint velocities  

 
�̇ = �(�)�̇  �̇ = ���(�)�̇ 

(2.8) 

Given Q (0) and P0, the joint coordinate Qt for Pt can be obtained by the following iteration  

 At each iteration k  

 

∆�� = �� − �� ∆�� = ���(��)∆�� ���� = �� + ∆��                              ���� = �(����), � = 0,1,2, … 

(2.9) 

The iteration stops when the condition in equation (2.4) is fulfilled. 

(Balestrino, De Maria et al. 1984) derived another method to ensure that condition (2.4) is fulfilled.  

Expressing the error between � and �(�) as �  

 ε = � − �(�) (2.10) 

Differentiating with respect to time ε̇ = �̇ − �(�)�̇ 

From the Lyapunov theory (Khalil and Grizzle 2002) ,choosing � as a positive definite matrix such that  ε̇ = −Kε 
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ensures that the system is asymptotically stable i.e. that the error � goes to zero. In that case �̇ can be 

described as 

 �̇ = ���(�)(�̇ + K(� − �(�))) (2.11) 

Figure 2.3 illustrates equation (2.11) 

 

Figure 2.3 Inverse Jacobian block scheme 

The solution to equation (2.9) is not unique and usually depends on the initial condition of the joint 

coordinates. As mentioned above, the Jacobian should be invertible to achieve a solution; but even if this 

is the Jacobian may perform poorly near singularities. At singularities, the Jacobian matrix loses rank, 

which means that the robot loses the ability to move the end effector in one or more directions even though 

the joints are moving. Different researchers have developed methods to avoid this problem that include the 

pseudoinverse, the Jacobian transpose and the singularity robust inverse (Nakamura and Hanafusa 1986, 

Nakamura, Hanafusa et al. 1987, Sciavicco and Siciliano 2012). 

2.3.1 Resolved Motion Rate Control 

In case we want the robot end effector’s motion to be along a straight line in the cartesian space, the 

resolved motion rate control (RMRC) approach is used. (Whitney 1972)who derived the RMRC defined it 

as having multiple joints moving simultaneously at different and time-varying rates to attain a desired end 

effector motion in the cartesian space. Given the start and target pose, a smooth trajectory in the cartesian 

space is generated; since robots are controlled at the joint level, it is necessary to determine the 

corresponding joint motions. With RMRC, this is achieved by computing the Cartesian coordinates of the 

end effector at each instant (��) and from that obtaining the joint coordinates using equation (2.8). Figure 

2.4 shows the process of RMRC. 



15 
 

 

Figure 2.4 RMRC Algorithm 

(Liu, Lei et al. 2016) used resolved motion control to control a humanoid robot during coordinated 

manipulation like lifting and placing a load. The authors developed three types of control methods at the 

acceleration, velocity, and position level.  

(O'Neil, Chen et al. 1997) enhanced the RMRC by a including a second order condition, that if satisfied 

provides a solution in the neighborhood singularity. Their method also provided a measure of the recovery 

rate of the manipulability index around singularities.      

2.3.2 Jacobian Transpose 

The Jacobian transpose offers an intuitive solution of the inverse kinematics based on the Lyapunov 

theorem for nonlinear systems (Khalaji and Moosavian 2015). With the Jacobian Transpose, a relationship 

between �̇ and ∆� that drives the error to zero, is possible. Using the Jacobian transpose, equation (2.8) can 

be expressed as: 

 �̇ = K��(�)∆� (2.12) 

where K is a positive definite matrix 
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The validity of equation (2.12) was proven in (Sciavicco and Siciliano 2012) by choosing a positive definite 

Lyapunov function of the form  

� =  12 (�� − �)�K(�� − �) 

Differentiating V with respect to time  �̇ = (�� − �)�K�̇� − (�� − �)�K�̇ 

Considering equation (2.8) �̇ = (�� − �)�K�̇� − (�� − �)�K�(�)�̇ 

By choosing joint velocities as   �̇ = ��(�)K∆� �̇ becomes �̇ = (�� − �)�K�̇� − (�� − �)�K�(�)��(�)K∆� 

 For the case of a constant target (�̇� = 0), �̇ is a negative definite function given that the Jacobian matrix 

has full rank, and from (Khalil and Grizzle 2002) it implies that the system is asymptotically stable i.e. the 

error converges to zero.  

(Buss 2004) suggested a method to update matrix K that aims at minimizing the updated value of ∆�   

K =  〈∆�, ���∆�〉〈���∆�, ���∆�〉, 
where 〈∙〉 is the dot product. 

The Jacobian transpose is computationally inexpensive and does not involve inverting the Jacobian. Its 

limitations include slow convergence and the solution to equation (2.12) degenerates when K∆� is in the 

null space of ��(�).  

2.3.3 Jacobian Pseudoinverse 

The pseudoinverse offers a least square solution to equation (2.7). Unlike the inverse, which is only 

defined for nonsingular and square matrices, the pseudoinverse is defined for all matrices. It is mostly used 

to determine the inverse kinematics solutions for redundant manipulators. These solutions are not unique, 
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hence the need to impose an optimization function �(�) that is a Euclidean norm of the joint increment 

vector ∆� (Šoch and Lórencz 2005). 

From (Klein and Huang 1983, Buss 2004), the pseudoinverse sets to find the joint incremental ∆� that 

minimizes  

 ‖�∆� − ∆�‖� (2.13) 

To compute the value of ∆� that minimizes equation (2.13), we differentiate equation (2.13) with respect 

to ∆� and equate to zero to obtain  ���∆� = ��∆� 

The pseudoinverse is then defined as  

�� = ��������� 

Thus ∆� can be obtained by 

 ∆� =  ��(�)∆� (2.14) 

A singular value decomposition of J expresses J as  

 � = ���� = � σ�u�v���
���  (2.15) 

where r is the rank of the Jacobian matrix 

The pseudoinverse is expressed as  

 �� = ����� = � 1�� ������
���  (2.16) 

For a square, invertible, full rank matrix the pseudoinverse is equal to the inverse.    �� = ��� 

The pseudoinverse has a good property that makes the matrix �� − ���� project onto the null space of J; by 

including the optimization function �(�) equation (2.14) is reformulated as: 

∆� = ��∆� + �� − ���� ��(�)��  



18 
 

Since at singularities the Jacobian loses rank, the Pseudoinverse provides a good solution instead of the 

inverse; but in the vicinity of singularities, the Jacobian Pseudoinverse has stability issues. Small changes 

in the Cartesian space will cause large changes in the joint space i.e. high joint speeds.   

2.3.4 Damped Least Square Inverse 

As mentioned in the previous section, around singularities the pseudoinverse exhibits high joints speeds. 

This can be corrected by adding a constraint function that damps the high joint velocities to equation (2.13) 

(Wampler and Leifer 1988) 

 ‖�∆� − ∆�‖� + ��‖∆�‖� (2.17) 

where � is a nonzero damping factor. 

To compute the value of ∆� that minimizes equation (2.17), we differentiate equation (2.17) with respect 

to ∆� and equate to zero to obtain  ���� − ����∆� = ��∆� 

The damped least square inverse (DLSI) �∗can be defined as  �∗ = ���� − �������� = ������ − ������ 

Thus ∆� can be defined as 

 ∆� = �∗∆� (2.18) 

By singular value decomposition, the DLSI is described as  

 �∗ = ��∗�� = � ����� + �� ������
���  (2.19) 

Various authors have suggested different ways to adjust the damping factor. (Nakamura and Hanafusa 

1986) proposed adjusting the damping factor in terms of the manipulability index. 

The manipulability index (W) was first introduced by (Yoshikawa 1985); it is the ability of a robot to 

change the end effector’s orientation and position given the joint configuration. The larger the value of this 

index the greater the range of possible movements at that configuration. At singularities, the value of the 

manipulability index reduces to zero and the end effector loses one or more degrees of freedom.  

The manipulability index can be computed by  
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 W =  �det��(�)��(�)� =  σ�σ� … σ� (2.20) 

where σ�: ith singular value of the Jacobian matrix where r is the rank of J 

The manipulability ellipsoid for an end effector velocity �̇ satisfies  ��̇�� = �̇�� + �̇�� + ⋯ + �̇�� ≤ 1 

and its principal axes are σ���, σ���, … σ���. The robot has the best mobility in the direction of the largest 

singular value which is the major axis of the manipulability ellipsoid. The minor axis represents the 

direction where the end effector has least mobility. 

 

Figure 2.5 Axes of the manipulability ellipsoid 

(Nakamura and Hanafusa 1986) proposed a method to adjust the damping factor using the manipulability 

index. Another method proposed by (Chiaverini, Egeland et al. 1991) adjust the manipulability index in 

terms of the minimum singular value (����).  

μ� = �μ��(1 − σ��� ε⁄ )� otherwise0 for σ��� ≥ ε 

where ε determines the limit of the singularity neighborhood, and �� is the damping factor for ���� = 0 

The damped least square reaches a balance between robustness and accuracy of the desired solution. 

Since accuracy will often be sacrificed, a weighting matrix � that distinguishes between end effector 

directions where higher accuracy is required and those where lower accuracy is accepted was introduced 

by (Chiaverini, Egeland et al. 1991). The pose increment ∆� in equation (2.6) can be rewritten as ∆�� =�∆�, substituting this in equation (2.6)   ∆�� =  �� ∆� 



20 
 

where �� = ��  

Another method developed by (Buss and Kim 2005)assigns a different damping factor to each singular 

value �� from the SVD. In this case, the damping factor not only depends on the current robot configurations 

but also on the error between the end effector’s current and target poses. With this method, each joint is 

analyzed separately to know how much it is attempting to move the end effector to the target pose; this 

distance is then compared to the distance the end effector is to move to reach the target. In case the prior is 

larger than the latter, the motion of the joint is damped. The implementation of this algorithm involves 

limiting the maximum joint angle increment in each iteration. 

2.4 Robot Workcell Calibration 

Calibration is needed to reduce or eliminate robot errors without redesigning the robot or reprogramming 

the OLP. Robot errors can be divided into four classes: dynamic, geometric, system, and thermal errors 

(Greenway 2000). Dynamic errors come from structural resonance and inertial loadings resulting from 

robot motion. Geometric errors come from manufacturing tolerances, they affect the end effector orientation 

and position since the kinematic solutions will be computed with as designed values of the Denavit-

Hartenberg (DH) parameters. Inaccuracies in relative orientation and position between the robot and its 

peripherals also are a source of geometric errors in robot systems. System errors originate from inaccurate 

calibration, wrong tuning of servos, and sensor inaccuracies. Thermal errors result from the expansion of 

the robot parts under heat.  

Dynamic and thermal errors are hard to compensate for since they are highly nonlinear and cannot be 

easily modeled. Other errors such as sensor inaccuracies and dynamic errors are ignored as they do not have 

a considerable impact on the robot operation. Geometric errors are compensated for during calibration. 

Model based calibration can be used to increase the robot manipulator’s positioning accuracy by way of 

software such as DynaCal, Calibware, BullsEye, and VISOR Robotics. The kinematic calibration process 

involves four steps namely: establishing a kinematic model of the robot, measuring planned end effector 

poses, identifying the real robot kinematic parameters, and compensating for the kinematics parameters for 

an improved accuracy (Cheng 2008).  Usually the Denavit-Hartenberg convention is used to develop the 

robot’s kinematic model.  

There are various techniques to calculate true end effector position and orientation if the joints 

configurations at different known points in a robot workspace are given (Hayati 1983). An external 

measuring system is required to accurately determine the robot position at these points. Researchers have 
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used measuring systems such as theodolites (Duelen and Schröer 1991), laser tracker (Nubiola and Bonev 

2013) and vision system (Du and Zhang 2013) among others.  

To obtain the actual DH parameter an equation that relates the actual to the designed parameters has been 

developed. Given a vector � = [��, �� ⋯ , ��] that represent the DH parameters for an n-joint robot, the 

actual link transformation ���_�  can be expressed as ���_� = ���_� + ∆�� 
where ∆�� = ∆��(∆��) . Thus, the actual end effector transformation ���   ��� = ��� + ∆� 

where ∆� = ∆�(�, ∆�) , ∆� is the DH parameter error vector and � = [��, �� ⋯ , ��] is the robot joints 

vector. ∆� is a highly nonlinear function (Cheng 2008), solved by nonlinear least square methods such as 

the Levenberg – Marquardt method, to generate actual DH parameters �∗ = � + ∆�. Since it is hard to 

compensate for each DH parameter, because usually the robot’s control architecture is closed due to safety 

issues, compensations are made to the joint positions using inverse kinematics with the determined true DH 

parameters. Figure shows an offline compensation scheme.  

 

Figure 2.6 Offline compensation scheme (Tao, Mustafa et al. 2015) 

As mentioned above, other geometric errors originate from the relative orientation and position 

inaccuracies between the robot and its peripherals in the robot workcell. Two methods have been developed 

methods to minimize or eliminate these errors. The first method is to measure planned robot TCP positions 

in the real workcell using the teach pendant and subsequently change the corresponding nominal values in 

the virtual workcell. The second method involves using sensors to measure the actual orientation and 

positions of workcell elements. The sensor measurements are then utilized to update the offline programs 

(Lu and Lin 1997, Cheng 2008). 

(Lu and Lin 1997) devised an online calibration method that automatically detects and compensates for 

relative orientation and position errors between the robot and its peripherals by using a vision system, a 3-

dimensional force/torque sensor, together with control schemes that involve neural networks.  
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(Tao, Mustafa et al. 2015) proposed a method that computes the actual relative poses of the robot TCP 

and the work object frame in the sensor coordinate frame. A sensor fixed on the robot end effector is utilized 

to acquire the point cloud of the work object and subsequently compensate for the relative pose errors 

between the TCP and the work object frame. With accurate measurements, the robot TCP is directed to 

follow the desired robot path in the work object coordinate frame.  

(Cai, Gu et al. 2018) developed a robot workcell calibration that utilizes a touch panel as a measurement 

equipment. A touch panel is fixed to the end effector and a touch panel is attached to work object. Once the 

touch probe comes in contact with the touch panel, the latter sends a signal to the robot controller by WIFI. 

The method achieves robot accuracy with a 0.25 mm error. The quality of the robot calibration depends on 

the resolution and measuring accuracy of the touch panel. 

(Liu, Shen et al. 2008) devised a line-based calibration scheme that calibrates the transformation matrix 

relating the robot base frame to the work object frame. A position sensitive device is used to precisely 

capture a laser beam originating from a pointer attached to the end effector. Once numerous PSDs are 

installed on the work object, calibration points in both base and work object frames are generated. 

Subsequently a least square method and a quaternion algorithm are used to determine the transformation 

matrix relating the work object frame to the robot base frame. 

 

Figure 2.7 Coordinate frames of the calibration scheme 
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Table 2. 1 Robot workcell calibration methods 

Author Measurement Technique Compensation Technique 

(Tao, Mustafa et al. 2015) Laser scanner, Stereo vision 

system (mounted on Robot) 

Point cloud and least square 

method 

(Gu, Li et al. 2015) Line touch sensor (mounted on 

robot), cross beam sensor 

(mounted on work object) 

Planar searching algorithm  

(Ge, Gu et al. 2014) Displacement sensor (mounted 

on robot), ball and cubes 

(mounted on work object) 

Least square method for ball 

fitting, plane fitting 

(Gan, Sun et al. 2004) A coordinate measuring touch 

probe, a sphere 

Nonlinear least square 

optimization 

(Liu, Shen et al. 2008) Laser pointer detector, position 

sensitive detector (PSD) 

Plane fitting algorithm, 

quaternion based algorithm 

(Arai, Maeda et al. 2002) Charge-coupled device (CCD) 

camera  

Direct linear transformation 

(Cai, Gu et al. 2018) Touch probe, touch panel Linear least square optimization 

(Lu and Lin 1997) 3D force/torque sensor, vision 

system 

Neural networks 

(De Smet 2015) Laser emitter and laser receiver 

(mounted on the robot or work 

object)  

 

(Horváth and Erdős 2017) Kinect sensor Point cloud registration 

(Schmidt and Wang 2014) Camera, fiducial markers Transformation matrix 
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CHAPTER 3                                                    
PATH REGENERATION 

 

 

 

 

 

3.1 Transformation Matrix Computation 

Once the robot manipulator is kinematically calibrated it can be utilized as a measurement tool for the 

calibration of the work object. Two sets of matching position data points are needed to get the 

transformation matrix of the work object relative to the robot base. The first set of points is measured with 

respect to the work object while the other set of points is measured with the robot and the values are read 

from the teaching pendant.  

  

                                                    (a)                                               (b)  

Figure 3.1 (a)Transformation matrix of the real work object frame relative to the robot base frame, (b) 

Points measured in the work object frame  
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The work object frame is defined by measuring three points as shown in Figure 3.1, choosing point {1} as 

the origin of the work object frame the other two points are defined relative to this origin. The robot is then 

used to measure the same points in the base frame. Thus obtaining two data sets that will be used to compute 

the transformation matrix between the real work object frame and the robot base frame �{�_�}� . �{�_�}�  describes the orientation and position between the two frames. 

 �{�_�}� = �n� o� a� r�n� o� a� r�n� o� a� r�0 0 0 1 � (3.1) 

A linear regression method applied to the matched data points is used to determine the transformation 

matrix �{�_�}� . 

 �x�y�z�1 � = �n� o� a� r�n� o� a� r�n� o� a� r�0 0 0 1 � �x�y�z�1 � (3.2) 

The corresponding linear equations are  

 

x� = n�x� + o�y� + a�z� + r� y� = n�x� + o�y� + a�z� + r� z� = n�x� + o�y� + a�z� + r� 

(3.3) 

For n pairs of matched data points, the square of residuals for the above equations can be determined by  

 

R�x� = �[x�� − (n�x�� + o�y�� + a�z�� + r�)]��
���  

R�y� = ��y�� − �n�x�� + o�y�� + a�z�� + r�����
���  

R�z� = �[z�� − (n�x�� + o�y�� + a�z�� + r�)]��
���  

(3.4) 

Since with linear regression we want to minimize the square of residual, the minimum can be obtained by 

equating the partial derivatives of equation (3.4)  to zero.  ∂R�x�∂n� = 0 = −2 �[x�� − (n�x�� + o�y�� + a�z�� + r�)]x���
���  
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∂R�x�∂o� = 0 = −2 �[x�� − (n�x�� + o�y�� + a�z�� + r�)]y���
���  

∂R�x�∂a� = 0 = −2 �[x�� − (n�x�� + o�y�� + a�z�� + r�)]z���
���  

∂R�x�∂r� = 0 = −2 �[x�� − (n�x�� + o�y�� + a�z�� + r�)]�
���  

The above process is repeated for row two and three of equation (3.4). Putting the results into matrix form, 

the values of the transformation matrix can be expressed as  

 �n�o�a�r� � = [�]��

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡� x��x���

���� x��y���
���� x��z���
���� x���

��� ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎤
 (3.5) 

 

 �n�o�a�r� � = [�]��

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡� y��x���

���� y��y���
���� y��z���
���� y���

��� ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎤
 (3.6) 
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 �n�o�a�r� � = [�]��

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡� z��x���

���� z��y���
���� z��z���
���� z���

��� ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎤
 (3.7) 

 

where 

� =
⎣⎢⎢
⎢⎢⎢
⎢⎡ ��x��� � �(x��y��) �(x��z��) �(x��)�(x��y��) ��y��� � �(y��z��) �(y��)�(x��z��) �(y��z��) ��z��� � �(z��)�(x��) �(y��) �(z��) n ⎦⎥⎥

⎥⎥⎥
⎥⎤
 

The transformation matrix between the robot base frame and the virtual work object frame �{�_�}�  is 

obtained from the CAD model, to obtain the transformation matrix of the real work object relative to virtual 

work object frames �{�_�}{�_�}  (in short ���  ) can be computed by compound transformations. 

 

Figure 3.2 Compound transformations ��� = � ��� ��� ���  

Thus, given a path in the virtual work object frame VPM, a corresponding path in the real work object RPM 

can be obtained by equation (3.8).  
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 RPM =  ��� VPM (3.8) 

3.2 Path Feasibility Check and Regeneration  

Once the path in the real work object frame is determined, we need to check the feasibility of that path in 

terms of singularity. In case the path is not feasible, a new approximate path must be regenerated.  

Given the joint configuration vector Q of a robot manipulator whose ith  element �� is the joint angle for 

the ith joint of the robot manipulator, the forward kinematics finds the pose vector P that denotes the 

orientation and position of the effector. For an n joint robot manipulator, � = [Q�, Q�, … Q�]. For a 6 

degrees of freedom task the vector P  has six elements: three for position and three for orientation                                                     � = [r�, r�, r�, u, v, w]. 
 � = �(�) (3.9) 

The inverse kinematics on the other hand finds the joint configuration required to reach a given target pose. 

Inverse kinematics equations are harder to derive than the forward kinematics as f is a highly nonlinear 

function.  

 � = ���(�) (3.10) 

For a given end effector pose, there are more than one solutions for inverse kinematics.  

Two types of solutions exist for inverse kinematics: closed-form (analytical) solutions and numerical 

solutions. Analytical solutions are unique to a given robot manipulator and they do not work for all robot 

manipulators, and as the number of joints increases the solutions become increasingly challenging to solve. 

For a six-joint manipulator, a closed form exists only when they are consecutive joints that either parallel 

or intersecting including wrist portioned robot manipulator such as the Puma 560 whose last three joint 

axes intersect at one point.  Numerical solutions are general, and they can be applied to any type of robot 

manipulator. The drawbacks with these techniques are that they only give a single solution for a given initial 

condition when there may exist multiple solutions, and with an improper initial condition the method may 

fail to converge. The method in this section assumes a six joint robot manipulator with a six degrees of 

freedom task space and a six joint robot manipulator. The most common numerical method used is the 

Newton’s method.  

To derive the Newton’s method, Taylor’s expansion of equation (3.9) for a target pose ��  with initial 

condition �� can be expressed as  
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�� = �(��) = �(��) + �����  �� (�� − ��) + ℎ. �. � 

Letting the Jacobian matrix �(��) = �����  �� and dropping the higher order terms h.o.t  

 ∆� = �(��)∆� (3.11) 

where ∆� = (�� − ��) and ∆� =  �� −  �(��) 

If the Jacobian matrix is nonsingular  

 ∆� = ���(��)��� −  �(��)� (3.12) 

   

Algorithm 1.1 

1: Input target pose  ��, initial condition ��, maximum number of iterations M, set j = 0 and ε ˃ 0 

2: For � = �: � 

3:     Define � =  �� −  �(��), While ‖�‖ > � 

4:     ∆� = ���(��)�       

5:     Set  ���� = �� + ∆� 

6:     �� = ���� 

7: End For 
 

If the Jacobian is singular i.e. det(�) = 0 , equation (3.12) impossible. This is known as the robot 

manipulator’s kinematic singularity, where the robot manipulator cannot produce motion in one or more 

degrees of freedom of the end effector. The robot manipulator in this case operates as if at least one degree 

of freedom has been lost.  

The Levenberg Marquadt algorithm is used to derive an approximate solution to the Jacobian inverse that 

is called the damped least square solution (Nakamura and Hanafusa 1986), that allows the solution to 

equation (3.12) to become continuous. In this way a feasible and continuous solution is guaranteed at the 

cost of the robot end effector diverging from the desired path.  

The damped least square solution satisfies the following optimization equation  min∆� ‖∆� − �∆�‖� + μ�‖∆�‖� 

where � is the damping factor. 
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In the vicinity of a singularity, the robot manipulator exhibits a jerky motion because a small change in the 

end effector motion will produce large changes in joint angles. The damping factor serves as a means to 

reduce these joint angle changes by inducing minimal errors in the end effector motion.  

Which yields the following solution 

 ∆� = ������ + μ�����∆� (3.13) 

The damped least square Jacobian �∗ is expressed as  

�∗ = ������ + μ����� 

For a non-redundant robot manipulator equation (3.13) can be expressed as  

 ∆� = (� + μ��)��∆� (3.14) 

By singular value decomposition of the Jacobian 

 � = ���� = � σ�u�v���
���  (3.15) 

where �  is the diagonal matrix of singular values σ� , U and V are orthogonal matrices, r is the rank of the 

Jacobian. 

By singular value decomposition of the damped least square Jacobian  

�∗ = ��∗�� = � σ�σ�� + μ� v�u���
���  

The damping factor allows the continuity of the inverse kinematics solution, it can be tuned with respect to 

the manipulability index of the robot manipulator.  

The workspace of a robot manipulator is the set of all poses that are reachable by a specific end effector 

attached to that robot. The workspace of a robot depends on its number of degrees of freedom, its geometry, 

i.e. the link length, and the joint motion constraints. For a six-axis robot manipulator, the workspace is a 

six-dimensional body (Lenarcic, Bajd et al. 2012). If the Jacobian matrix has full rank, the manipulability 

index will have the same dimension as the workspace.  

3.2.1 Manipulability Index  

The manipulability index is a value that quantifies the ability of a robot manipulator to change the end 

effector’s orientation and position given the joint configuration. The larger the value of this index the greater 
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the range of possible movements at that configuration. At singularities, the value of the manipulability index 

reduces to zero and the end effector loses one or more degrees of freedom.  

When the joint increments have the same length in all directions, in other words when the vector  �� lies 

on the surface of an n-dimensional hypersphere  ∆��∆� = 1 

the end effector increment vector ∆� then lies on the surface of an ellipsoid of m-dimensional end effector 

coordinate space called the manipulability ellipsoid. If the ellipsoid has an almost spherical shape, i.e. it 

has uniform radii, then the end effector can move in any cartesian direction. If on the other hand one or 

more radii have a very small magnitude, it means the end effector cannot move in the directions with the 

small radii. The radii of the ellipsoid are the singular values of the Jacobian matrix  

The manipulability index �(�) can be computed  

 W(Q) =  ����(�(�)��(�)) = σ�σ� ⋯ σ� (3.16) 

Figure 3.3 shows examples of manipulability index and manipulability ellipsoid for two joint configurations  

(a) � = [−26, −31 − 41, −36,0,0] and (b) � = [0,15, −70,175,86,63] (in degrees) for the Indy 7. In (a) 

the ellipsoid’s radii are not uniform while in (b) the ellipsoid’s radii are more uniform which is why the 

manipulability index in this case is larger than in (a). 

 

                                     (a)                                                                  (b)      

Figure 3.3 Manipulability ellipsoid (a) W(Q) = 0.006 and (b) W(Q) = 0.0248 (Corke 2011) 

The damping factor is adjusted with respect to the manipulability index  
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 μ� = ����(1 − W W�⁄ )� for W < W�0 for W ≥ W� (3.17) 

where �� is the damping factor at singular points, and W� is the limit of manipulability index in the vicinity of 

singularities. These two values depend on the robot geometry and they are user-defined.  

As mentioned above the damped least square offers a continuous solution at the cost the end effector 

deviating from the desired path. Figure 3.4 shows how the damping factor modifies the path and the robot 

configuration in a singular region. In (a) the robot path deviates from the desired path due to the damping 

factor and in (b) the robot manipulator moves away from the singular region because of the damping factor. 

 

(a)                                                                      (b) 

Figure 3.4 Change in (a) desired path and (b) robot joint configuration, due to the damping factor 

3.2.2 Closed Loop Inverse Kinematics  

The numerical integration in algorithm 1.1 introduces  a tracking error in the inverse kinematics solution. 

The closed loop inverse kinematics algorithm introduces a feedback gain that is multiplied to the error in 

order to eliminate the tracking error. The tracking error decreases as feedback gain increases, but there is a 

limit to this increase. In case the feedback gain surpasses this limit, the system becomes unstable.  

Using the damped least square Jacobian inverse �∗  in equation (3.12)  ∆� can be expressed as  

 ∆� = �∗(��)K��� −  �(��)� (3.18) 

where K is the feedback gain 

In algorithm 1.1, step 4 then becomes  

 ∆� = �∗(��)Kε (3.19) 

Figure 3.5 shows the loop for the inverse kinematics solution 
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Figure 3.5 Closed loop inverse kinematics 

From (Falco and Natale 2011) a limit to the feedback gain was proposed that allows the algorithm to remain 

stable  

K = 2T� 

where T� is the sampling time. 

3.3 Summary of the Method 

Step I: Path 
transformation 

Input:  
 Original path (virtual work object frame): VPM 

 Error compensation matrix: ( ��� )                        

                    
Output: 
New path matrix (real workbench frame): RPM = ��� VPM 
 

Step II: 
Feasibility 
check and 
path 
regeneration 

Input:   

 RPM:  new path matrix 

 ��: joint angle vector at the first path point (RPM1,:) 

 S ← f (��): forward kinematics for �� 

 Extract pose (position + orientation) vector P from pose matrix S (transform the 

rotation matrix into roll, pitch, and yaw angles)  

 
Rotation matrix  
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� =  ��� �� �� ��� �� �� ��� �� �� �0 0 0 1�  

� = [�, �, �, �, �, �]�  

 

 J (��,): Jacobian matrix at joint configuration ��,: 
 W =  �det��(��)��(��)� =  σ�σ� … σ�  where σ�: ith singular value of the Jacobian matrix where r = rank of J 

 W0: limit of manipulability index in the vicinity of singularities 

 

 
Algorithm 1: Path execution  

Input: RPM (new path matrix by transformation matrix), �� (joint angles vector at first path 

point (RPM1,: )),  

1: for i = 1 : N do 

2:    while j < M do 

3:         compute the forward kinematics matrix �� ← f(��)  

4:         extract the pose (position + orientation) vector �����  from pose matrix �� 
5:         compute the pose difference ∆� ← ���� − �����   

6:         �∗���,:� ← Jacobian_matrix   

7:         compute the joint configuration increment ∆� ← �∗(��)∆�   

8:         compute the next joint configuration ����� ← �� + ∆� 

9:         compute the forward kinematics matrix ���� ← f(����� ) 

10:       extract the pose (position + orientation) vector �����  from pose matrix ���� 

11:       update ∆� ← ���� − �����  

12:       if ∆� < �  

13:         break  

14:       else � ← � + � 

Position 
vector  

Manipulability ellipsoid that 
allows to visualize how close a 
robot is to being singular. In a 
singular position the singular 
values are zero. 
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15:       end if 

16:   end while 
17: end for 

 

Algorithm 2: Jacobian_matrix  

Input: ��,: (Joint angles configuration at instance j) 

1: compute the Jacobian matrix at iteration j ← � ���� 

2:  compute the manipulability index  W ← �det ������������� 

3: if � < �� 

4:   compute damping factor μ� ← μ�� �1 − �����
 

5: else � ← � 

6: end if  

6: �∗���,:� ← �� ���� − �2��−1
 

 

3.4 Simulink Model 

  The above algorithm was implemented in MATLAB/SIMULINK. The closed loop inverse kinematics 

algorithm was implemented using SIMULINK as shown in  Figure 3.6.  
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Figure 3.6 Implementation of the algorithm in SIMULINK 
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3.5 Example 

This example provides simulation experiments to demonstrate how the above algorithm works. Given an 

initial path in the virtual frame to move the cube (purple) from pose 1 to pose 2 (in Figure 3.7). VPM  path 

in the virtual frame (position in m).  

 X (m) Y (m) Z (m) 

1 0.65 -0.3 0.2 

2 0.65 -0.253 0.308 

3 0.362 -0.544 0.14 

4 0.055 -0.434 -0.148 

 

 

Figure 3.7 Robot workcell in virtual frame 

Assuming a transformation matrix ���  that quantifies the dimensional variations between the virtual and 

real work object  

��� = �1 0 0 0.10 1 0 00 0 1 0.150 0 0 1 � 
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From equation we can obtain the path in the real frame (position in m) 

 X (m) Y (m) Z (m) 

1 0.53 -0.45 0.2 

2 0.53 -0.403 0.308 

3 0.242 -0.694 0.14 

4 -0.065 -0.584 -0.148 

 

 

Figure 3.8 Robot workcell showing both the virtual and real frame 

The limit for the manipulability index W� = 0.001  and �� = 0.1  were used to check the feasibility of the 

path in the real work object frame. Table 3.1  and 3.2 show joint angle values for VPM and RPM, respectively. 

From Figure 3.9 the desired path RPM  and the regenerated feasible path are plotted. The error between the 

two paths is |�| = 0.003 and it is shown in Figure 3.10. 
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Table 3.1 Joint angles for VPM (in degrees)                    Table 3.2 Joint angles for RPM (in degrees) 

 

 �� �� �� 

1 0 0 0 

2 3.6 18 -3.7 

3 -36.02 -10.86 -46.83 

4 -41.7 -85.2 -7 

 

 

Figure 3.9 Desired robot path vs feasible robot path 

 �� �� �� 

1 -18.03 0 -21.17 

2 -15.25 18.84 -32.35 

3 -42 -10 29.3 

4 -48.7 -57.5 -25.7 
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Figure 3.10 Error between the regenerated path and the desired path 

 

 

 

 

 

 

 

 

 

 

 



41 
 

CHAPTER 4                                 
CASE STUDY 

 

 

 

 

 

4.1 Experimental Setup 

The Neuromeka Indy 7 whose modified Denavit Hartenberg parameters are shown in Figure 4.2 was used 

for the experiments. To determine the transformation matrix that relates the robot base to the work object 

frame two sets of data are acquired, one in the robot base frame using the robot teach pendant and another 

in the work object frame. Table 4.1 shows the two data sets used to obtain the transformation matrix that 

describes the work object frame with respect to the robot base frame ��_{�}�  , the points in the work object 

frame are measured with respect to the origin as shown in Figure 4.3 (a). The TCP of the end effector shown 

in Figure 4.1 after calibration is 101 mm.   

 

Figure 4.1 Indy 7 with end effector 
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Figure 4.2 Indy 7 modified DH Parameters (dimension in mm and angles in degree) 

Modified DH parameters 

 ai+1 (mm) i+1 (°) di (mm) θi (°) Joint range (°) 

Joint #1 0 0 300 �� -175 to 175 

Joint #2 0 90 0 �� + 90 -175 to 175 

Joint #3 450 0 3.5 �� + 90 -175 to 175 

Joint #4 0 90 350 �� + 180 -175 to 175 

Joint #5 0 90 183 �� -175 to 175 

Joint #6 0 −90 228 �� -215 to 215 
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Table 4.1 Transformation matrix data points in mm 

Robot base frame Work object frame 

X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm) 

280.7 230.8 426.5 0 0 0 

448.9 415.6 416.6 0 250 0 

-15.3 499.3 408 400 0 0 

280.9 229.6 405.8 0 0 20.7 

405.86 438 440 75 187.5 22.4 

310.5 334.7 448 98.7 45.6 26 

367.2 469.2 439.35 193.5 130 25 

 

The transformation matrix ��_{�}�  obtained  

��_{�}� = �−0.7411 0.6707 −0.0301 281.050.6721 0.7407 −0.0277 230.540.0021 0.0406 0.7849 411.990 0 0 1 � 

 

                       (a)                                                                                      (b)                 

Figure 4.3 Robot work object measurement 

To test the algorithm a robot task is shown in Figure 4.3 (b) and its path points in the virtual work object 

frame are listed in Table 4.2. 
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Table 4.2 Robot task path points in the virtual work object frame 

 X (mm) Y (mm) Z (mm) U (O) V (O) W (O) 

1 595.95 131.7 1016.3 44 72.83 82.08 

2 686.25 18.61 756.17 135.9 66.57 158.1 

3 708.23 -151.97 596.92 163.32 54 168 

4 592.68 -316.06 318.5 170 25 157.6 

5 284.2 419.14 466.46 176.8 4.7 84.4 

6 207.5 333.6 430.5 150 5 168 

7 92.16 446 392.9 164 68.3 102 

Given a transformation matrix that relates the robot base to the virtual work object frames ��_{�}�   

��_{�}� = �−0.7357 0.667 −0.1180 277.310.6719 0.7413 0.0051 241.39−0.0663 0.0678 0.7802 413.650 0 0 1 � 

The transformation matrix that describes the virtual work object frame relative to the real work object frame  ��_{�}�_{�}  (or in short ���  )  

��� = � ��{�}� ��� ��_{�}�  

��� = � 0.9962 0.0030 0.0871 10.040 0.9994 −0.0349 5.6−0.0872 0.0348 0.9956 1.80 0 0 1 � 

The path points in the real work object frame are listed in Table 4.3 

Table 4.3 Robot task path points in the real work object frame 

 X (mm) Y (mm) Z (mm) U (O) V (O) W (O) 
1 692.64 101.75 966.25 60.11 70.8 97.32 
2 759.6 -2.2 695.47 150 67 -70.5 
3 767.1 -167.1 529.07 162 48.7 167 
4 627.24 -321.4 256.25 170 19.61 157.53 
5 335.06 408.2 456 -178 3.2 84.7 
6 255.3 324 424 149 0 168 
7 137.4 437.6 400.4 174.6 65 111.6 
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Angles for the path in the real work object frame 

 �� �� �� �� �� �� 
1 15.47 -27.05 -9.848 28.13 -46.88 0.09291 
2 22.04 -61.63 -16.75 -72.11 -102.2 94.03 
3 -1.63 -33.07 -51.07 12.91 -46.08 -1.351 
4 -14.39 -107.5 82.17 9.872 -133.5 14.49 
5 70.59 -21.2 -73.91 1.538 -88.56 165.9 
6 78.76 9.843 -120.7 -0.3037 -38.21 91.15 
7 103 -38.29 -85.83 -15.21 -119.3 168.7 

 

Plotting the desired path and the feasible path in Figure 4.4 and the error between the feasible path and the 

desired path in  

 

Figure 4.4 Desired robot path and  feasible robot path 
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Figure 4.5 Error between the regenerated path and the desired path 

4.2 Experiments  

To test the feasibility check algorithm a path in the virtual frame is given for the Indy 7 robot manipulator,  ���.   W� = 0.01  and K� = 0.1 

 X (mm) Y (mm) Z (mm) U (O) V (O) W (O) 

1 621.75 123.59 981.13 57.2 74.5 93.3 

2 612.75 98.01 981.35 57.2 74.5 93.2 

3 612.6 98 768.54 57.1 75 93.2 

4 557.63 -102.72 621.85 -154 40.5 -125 

5 493.63 -238.81 466.46 176.5 19.3 171 

6 541.11 -329.5 307.13 -170 0 175 

7 605.48 -490.13 98.6 -167 4.5 169 

 

Test I: Transformation matrix ���   

��� = �1 0 0 200 0.9848 −0.1736 00 0.1736 0.9848 00 0 0 1 � 
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The path in the real frame  ���  ��� =  ���  ��� 

 X (mm) Y (mm) Z (mm) U (O) V (O) W (O) 
1 621.75 123.59 981.13 57.2 74.5 93.3 
2 632.75 -73.8886 983.4603 56 64.5 92 
3 632.6 -36.9444 773.8817 56 64.5 92 
4 577.63 -209.143 594.5656 -162.6 48.4 -131 
5 513.63 -316.182 417.9045 166 17.4 168 
6 561.11 -377.827 245.2469 -180 -0.87 175 
7 625.48 -499.806 11.99186 -177 2.5 168.4 

 

 

Figure 4.6 Desired robot path and feasible robot path 
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Since the initial path and the path execution coincide the path has no singular points. The  approach vector 

length (6 to 7) is preserved. 

Test II: Transformation matrix ���   

��� = �1 0 0 200 0.866 −0.5 00 0.5 0.866 00 0 0 1 � 

The path in the real frame  ��� 

X (mm) Y (mm) Z (mm) U (O) V (O) W (O) 
621.75 123.59 981.13 57.2 74.5 93.3 
612.8 -385.8 898.9 56 64.5 92 
612.6 -279.4 714.6 56 64.5 92 
557.6 -379.9 487.2 -162.6 48.4 -131 
493.6 -419.6 284.8 166 17.4 168 
541.1 -418.9 101.2 -180 -0.87 175 
605.5 -453.8 -159.7 -177 2.5 168.4 

 

 

Figure 4.7 Desired robot path vs feasible robot path 
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The singular point in red (2) is approximated as shown in blue (2). The  approach vector length (6 to 7) is 

preserved. The error between the desired and feasible path is plotted in Figure 4.8. 

 

Figure 4.8 Error between the regenerated path and the desired path 
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CHAPTER 5                                 
CONCLUSION AND                       

FUTURE RESEARCH 
 

 

 

  

 

 

 

 

5.1 Conclusion 

Offline programming provides users with the ability to reprogram the robot without stopping the production 

process. Despite the popularity of offline programming, accuracy remains an issue in this field due to 

dimensional differences that occur in the real robot workcell, thus the need for calibrating the robot program. 

Calibration is required for the robot program in order to determine the real positions of the robot and its 

peripherals within the workcell. This process must be completed before the program is uploaded to the real 

system, since the dimensional variations between real and virtual workcells can result in critical TCP 

position errors.  

In this thesis an adaptive robot program calibration method that accounts for the dimensional variations that 

occur in the real work object frame has been developed. The review of current workcell calibration methods 

includes methods that identify dimensional variations in the real work object either using the robot as a 

measurement tool or other measurement sensors such as laser and vision. To compensate for the 

dimensional variations, the true values are then loaded in the offline programming software to regenerate a 

new robot program.  

The method developed in this thesis, comprises of two main steps, first we compute the transformation 

matrix between the robot base and the real work object frame in order to regenerate a robot program in the 

real work object frame. Then we check the feasibility of the regenerated path in terms of singularities and 
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subsequently regenerate a new path in case the robot encounters a singular region while executing the 

desired path. 

Since in this work, we considered a case of a six joint robot manipulator it is difficult to avoid singularities 

and still reach the target points. By using the manipulability index as a measure of how close the robot 

manipulator is to a singular region, the singularity can be avoided but at the cost of the end effector deviating 

from the desired path.  

To prove the validity of the proposed method a six joint robot manipulator, the Neuromeka Indy 7 was used, 

and the algorithms were developed in MATLAB/SIMULINK. The experimental results showed that the 

end effector pose error introduced by the damping factor is not bounded, which may lead to the robot 

manipulator missing its target pose while avoiding a singularity.  

5.2 Future Research 

To avoid singularities, the closed loop inverse kinematics incorporates a damping factor that acts on the 

Jacobian in the vicinity of singularities. The damping factor in turn depends on two user defined factors 

namely: μ�, the damping factor at singular points, and W� is the limit of manipulability index in the vicinity 

of singularities. Since the damping factor provides a compromise between singularity avoidance and 

minimizing errors in the end effector pose, it is imperative to have a proper method to determine μ� and W�. 

As mentioned in the conclusion, the error in the end effector pose caused by the damping factor is 

unbounded, which is a major setback to the developed method. A robot program calibration method that 

ensures that robot reaches its target poses without singularities is needed. 

Real industrial robots’ applications  may include obstacles of the workspace of the robot manipulator.  In 

future works a method to calibrate the robot program by incorporating obstacle avoidance in the path 

regeneration algorithm, will be studied. 
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