

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master's Thesis

IMPLEMENTATION OF WEIGHTED DAMPED

LEAST SQUARES INVERSE KINEMATICS

FOR ADAPTIVE ROBOT PROGRAM

CALIBRATION

Bucyeye Shema Mireille

Department of Mechanical Engineering

Graduate School of UNIST

2020

[UCI]I804:31001-200000336856[UCI]I804:31001-200000336856

Master's Thesis

IMPLEMENTATION OF WEIGHTED DAMPED

LEAST SQUARES INVERSE KINEMATICS FOR

ADAPTIVE ROBOT PROGRAM CALIBRATION

Bucyeye Shema Mireille

Department of Mechanical Engineering

Graduate School of UNIST

2020

IMPLEMENTATION OF WEIGHTED DAMPED

LEAST SQUARES INVERSE KINEMATICS FOR

ADAPTIVE ROBOT PROGRAM CALIBRATION

Bucyeye Shema Mireille

Department of Mechanical Engineering

Graduate School of UNIST

Abstract

Offline programming has gained popularity over online programming because it allows changing the robot

program without stopping production, but it still falls short in terms of accuracy. Robot programs generated

using offline programming need to be calibrated to determine the real positions of the robot and its

peripherals in the workcell before being uploaded to the real system, because dimensional variations

between the virtual and the real workcell may cause robot tool center point (TCP) position errors.

Currently to calibrate the robot workcell, robot TCP positions of strategic locations in the real workcell are

measured using the teach pendant or sensors such vision systems and laser sensors, and they are later used

to modify the corresponding nominal values in the virtual workcell, to generate a new robot program.

This thesis proposes a method to regenerate the robot program that is feasible in the real robot workcell.

The objectives of this thesis are outlined as follows: (1) Computing the transformation matrix between the

virtual and real work object frame. This is done by applying a linear regression algorithm to two sets of

matching position data points, one measured in the virtual workcell and the other measured in the real

workcell. (2) Path feasibility check and path regeneration, closed loop inverse kinematics is used for this

task and the robot’s manipulability index is used to determine how close a robot is to a singularity and

subsequently move the robot away from the singularity. The proposed method was verified using the

Neuromeka Indy 7 and the simulations were done using MATLAB/SIMULINK.

Contents

Abbreviations ... 1
CHAPTER 1 INTRODUCTION .. 2

1.1 Background ... 2
1.2 Motivation ... 4
1.3 Objective ... 6
1.4 Overview ... 7

CHAPTER 2 LITERATURE SURVEY .. 8
2.1 Robot Programming .. 8
2.2 Kinematic modelling and forward kinematics .. 9
2.3 Inverse kinematics ..11

2.3.1 Resolved Motion Rate Control ...14
2.3.2 Jacobian Transpose ...15
2.3.3 Jacobian Pseudoinverse ..16
2.3.4 Damped Least Square Inverse ..18

2.4 Robot Workcell Calibration ..20
CHAPTER 3 PATH REGENERATION ...24

3.1 Transformation Matrix Computation ..24
3.2 Path Feasibility Check and Regeneration ...28

3.2.1 Manipulability Index ..30
3.2.2 Closed Loop Inverse Kinematics ..32

3.3 Summary of the Method ...33
3.4 Simulink Model ..35
3.5 Example ..37

CHAPTER 4 CASE STUDY ...41
4.1 Experimental Setup ...41

4.2 Experiments ..46
CHAPTER 5 CONCLUSION AND FUTURE RESEARCH50

5.1 Conclusion ..50
5.2 Future Research ..51

References ...52
Acknowledgment ..55

List of Figures

Figure 1.1 Online programming using teach pendant ... 3

Figure 1.2 Offline programming .. 3

Figure 1.3 Workcell coordinate frames ... 4

Figure 1.4 Dimensional variations between the virtual and real work object frames

 .. 5

Figure 1.5 Path regeneration .. 6

Figure 2.1 Offline Programming process (Pan, Polden et al. 2010) 9

Figure 2.2 Modified Denavit-Hartenberg convention ...10

Figure 2.3 Inverse Jacobian block scheme ..14

Figure 2.4 RMRC Algorithm ...15

Figure 2.5 Axes of the manipulability ellipsoid ..19

Figure 2.6 Offline compensation scheme (Tao, Mustafa et al. 2015)21

Figure 2.7 Coordinate frames of the calibration scheme ...22

Figure 3.1 (a)Transformation matrix of the real work object frame relative to the

robot base frame, (b) Points measured in the work object frame24

Figure 3.2 Compound transformations ..27

Figure 3.3 Manipulability ellipsoid (a) W(Q) = 0.006 and (b) W(Q) = 0.0248

(Corke 2011) ..31

Figure 3.4 Change in (a) desired path and (b) robot joint configuration, due to the

damping factor ...32

Figure 3.5 Closed loop inverse kinematics ..33

Figure 3.6 Implementation of the algorithm in SIMULINK36

Figure 3.7 Robot workcell in virtual frame ...37

Figure 3.8 Robot workcell showing both the virtual and real frame38

Figure 3.9 Desired robot path vs feasible robot path ...39

Figure 3.10 Error between the regenerated path and the desired path40

Figure 4.1 Indy 7 with end effector ...41

Figure 4.2 Indy 7 modified DH Parameters (dimension in mm and angles in

degree) ..42

Figure 4.3 Robot work object measurement ..43

Figure 4.4 Desired robot path and feasible robot path ..45

Figure 4.5 Error between the regenerated path and the desired path46

Figure 4.6 Desired robot path and feasible robot path ...47

Figure 4.7 Desired robot path vs feasible robot path ...48

Figure 4.8 Error between the regenerated path and the desired path49

1

ABBREVIATIONS

Notation Description � Matrix (bold, italic, and capital) � Vector (italic and capital) (�)�,: = ��,: ith row of matrix X (�):,� = �:,� jth column of matrix X (�)�,� = ��,� Matrix element N Number of path points
VPM Original path matrix (virtual workbench frame) of size N× 6
RPM New path matrix (real workbench frame) of size N× 6
RTV Error compensation matrix

M Number of maximum iterations �� Joint configuration vector at the ith path point (RPM)i,: � End effector pose matrix �� End effector pose matrix at jth instance � End effector pose vector �� End effector pose vector at the ith path point ∆� End effector pose increment ∆� Joint configuration increment �̇ End effector velocity �̇ Joint velocity

J Jacobian matrix

W Manipulability index

K Gain μ Damping factor to reduce joint velocities in the vicinity of singularities μ� Damping scale variable in the vicinity of singularities ε Small positive number that denotes tolerable error

2

CHAPTER 1
INTRODUCTION

1.1 Background

Industrial robot manipulators are crucial parts of the automated manufacturing industry, they increase

production quality and productivity, improve reconfigurability and flexibility, and can be used for a high

range of applications. Their common use relies on programming the robot end effector with high accuracy.

Usually, robot manipulators have a higher repeatability than accuracy, which is acceptable for mass

production, but as manufacturing has shifted from mass production to mass customization, where

manufacturing cells are frequently reconfigured, the accuracy of robot manipulators need to be improved.

Robot programming methods can be divided into two categories: online programming and offline

programming (OLP). With online programming, the operator uses a teach pendant to maneuver the robot

to the desired positions in the real workcell, and the related joint angles are registered at each desired

position to generate a robot program. Online programming has the following shortcomings: the process is

time-consuming and tedious, the program generated by teach pendant is unique to the robot and thus cannot

be copied to a robot performing a similar task, and the quality of the produced robot program depends upon

the operator’s skills.

With offline programming, the robot is programmed in a virtual environment (a robot workcell is

represented by a 3D CAD model) i.e. programming is done in the absence of the physical robot; and the

program is later transferred to the physical robot. This is convenient in that there is no production downtime

when the robot is being programmed as opposed to online programming, where the robot must be out of

3

service for programming, and the robot program quality is consistent since it no longer relies on the skills

of the robot operator.

Figure 1.1 Online programming using teach pendant

In general, multiple robot workcells perform identical tasks by using the same offline robot program (e.g.

spot-welding robots in an automotive body-shop), which makes offline programming a good choice because

the same robot program will be copied to the identical robot workcells. Commercial OLP packages include:

eZRobotics (DMWorks), Delfoi Robotics, Delmia IGRIP, Siemens RobCAD, ABB RobotStudio, RoboDK,

and Roboguide (Fanuc).

Figure 1.2 Offline programming

Figure 1.3 shows an example of a robot workcell with its reference frames and the corresponding frame

transformations, where:

 {W} World coordinate frame is usually placed in a strategic position in the workcell where it will

be convenient to measure the location of the robot and its peripherals. In a simple workcell with

few equipment, it can be made to coincide with the robot base coordinate frame.

4

 {B} Robot base coordinate frame is located at the base of the robot manipulator, otherwise known

as link zero. The robot manipulator’s forward kinematics (the end effector pose) are defined relative

to this frame. The robot base coordinate frame is defined with respect to the world coordinate frame.

 {E_0} End effector_0 coordinate frame whose origin is located at the last link’s endpoint and is

defined relative to the robot base coordinate.

 {E} End effector coordinate frame whose origin is placed at the tool center point (TCP) and is

defined relative to the end effector _0 coordinate frame.

 {Tg} Target coordinate frame defines the location of an object with respect to the workbench

coordinate frame.

 {O} Work Object coordinate frame is usually described relative to the world coordinate frame. It

is preferable to define the robot path in this coordinate frame. Usually the end effector poses are

programmed in this frame.

Figure 1.3 Workcell coordinate frames

Equation (1.1) denotes the relationship between the workcell coordinate frames.

 ���� = � ��� ���� ��� ��� ��_�� ���_� (1.1)

1.2 Motivation

Offline programming has gained popularity over online programming because it allows changing the

robot program without stopping production, but it still falls short in terms of accuracy. Robot programs

generated using OLP need to be calibrated to determine the true positions of the robot and its peripherals

5

in the real workcell before being uploaded to the real system, because dimensional variations between the

virtual and the real workcell may cause robot tool center point (TCP) position errors.

The goal of workcell calibration is to define the true transformations (in the real workcell) between the

robot workcell coordinate frames. The calibration process is often time consuming and it requires high

accuracy measuring devices, and a skilled robot programmer.

A common method used for calibration is to measure the robot TCP positions of strategic locations in

the real workcell using the teach pendant, and subsequently use those measurements to modify the

corresponding nominal values in the virtual workcell to generate a new robot program. This method’s

weakness is that it relies on the operator’s skills to move the robot to accurate positions. Methods that

incorporates sensors, such as vision systems, and laser sensors in the calibration process also make the

corresponding changes to the OLP manually.

For these reasons above, an adaptive robot program calibration method is devised in this thesis to assist

the user in the calibration procedure by closely maintaining the shape of the initial robot path in the virtual

work object frame.

The first step to calibration is the identification of the error compensation matrix ��� that represents the

dimensional variations between the virtual and real workcells as can be shown in Figure 1.4.

Figure 1.4 Dimensional variations between the virtual and real work object frames

6

The next step is to regenerate the robot path by considering the dimensional variations obtained in the

first step. This is usually done manually, reason why it requires a skilled robot programmer. Thus, the need

to automate the path regeneration process as nowadays robot manipulators are common in manufacturing

industries.

While regenerating the robot path the approach vector length and angle, (from Figure 1.5 ���� ������������������������������⃗)

should be preserved since it is the most important part of the robot task.

Figure 1.5 Path regeneration

 Experimental simulations results from the Neuromeka Indy 7 showed that a dimensional variation of ten

millimeters may introduce singularities in the regenerated robot path. In this case a path that avoids the

singular regions needs to be regenerated.

1.3 Objective

The purpose of this thesis is to generate an accurate and feasible path in the real work object coordinate

frame given a path in the virtual work object frame. This task comprises of two main parts: (1)

Transformation matrix (error compensation matrix) computation and (2) Path feasibility check and

regeneration.

Transformation Matrix Computation

To compute the transformation matrix that expresses the virtual work object coordinate frame with respect

to the real work object frame ��� , the transformation matrix that relates the real work object frame to the

robot base frame �{�_�}� is determined first, by applying the linear regression algorithm to two sets of

matching position data points. A kinematically calibrated robot manipulator is used to measure the position

of data points in the robot base frame {B} and the data points in the real work object frame are obtained

7

from the workcell CAD model. Since the transformation matrix that describes the virtual work object frame

with respect to the robot base frame �{�_�}� is extracted from the CAD model, �{�_�}{�_�} (in short ���) can be

computed by compound transformations.

Path Feasibility Check and Regeneration

Once a path in the real work object coordinate frame is obtained using the transformation matrix; the

feasibility check will determine whether the path can be uploaded to the real system or whether the path

needs to be regenerated. For the feasibility check, closed loop inverse kinematics is used to obtain a

feasible path in the joint space by checking for singularities. The robot’s manipulability index is used to

determine how close a robot is to a singularity and subsequently move the robot away from the singularity.

1.4 Overview

This thesis is organized as follows: chapter one outlines the introduction. Chapter two denotes the

literature review. Chapter three explains how to compute the transformation matrix and also elaborates the

robot path feasibility check algorithm. Chapter four demonstrates the experimental and verification results.

In chapter five, a conclusion and future works are elaborated.

8

CHAPTER 2
LITERATURE SURVEY

2.1 Robot Programming

The three main approaches to Robot programming as outlined by (Lozano-Perez 1983) are: programming

by guiding, robot-level programming, and task-level programming. In programming by guiding, the

operator manually moves the robot to the desired positions, using a teach pendant, and the joint coordinates

positions are registered and later used to develop a robot program made of a sequence of joint coordinates.

This method is fast and straightforward when the robot must perform tasks that involve simple motions and

do not require sensory information. However, programming by guiding is limited, when the robot tasks

require complex motions and sensory information, like inspection or assembly. Other limitations to be cited

are that this type of programming can be quite tedious, when the same task must be repeated at different

points and achieving fine positioning accuracy is hard.

Robot-level programming allows the use of computer programming languages to acquire and use sensor

data, and to define desired motions. The acquired sensor data such as force and vision can be used to specify

the robot motions. The drawback of this method is that it requires the user to have expertise in computer

programming, and sensor data analysis.

Task-level programming involves determining target positions of objects instead of determining the

motions required to achieve those targets. This method is does not depend on the robot in that the user does

not specify paths or motions that are dependent on the robot kinematics.

9

(Biggs and MacDonald 2003) classified robot programming methods into: manual programming,

automatic programming, and software architectures. In manual programming systems, the user generates

the robot program by hand. These include text-based and graphical programming language. Since the robot

is not present during programming, these methods are often referred to as offline programming systems.

Automatic programming systems require little or no direct involvement of the user to develop the robot

program. The robot code is created from data input to the system in various ways. These comprise

programming by demonstration, learning, and instructive systems. For these systems, programming is done

while the robot system is running, so they are also called online programming systems. The importance of

software architectures lies in that they provide communication and access to robots.

Offline programming is usually done on a CAD model of the robot and its peripherals; and sometimes

there are dimensional variations between the physical system and the CAD model. The robot programs

generated in this way need to be calibrated since these dimensional errors will affect the robot’s absolute

pose accuracy. The need for calibration has impeded the use of OLP in industries. Online programming

does not require calibration, because dimensional errors do not affect the robot’s repeatability (Duelen and

Schröer 1991). Figure 2.1 outlines the process of offline programming (OLP).

Figure 2.1 Offline Programming process (Pan, Polden et al. 2010)

2.2 Kinematic modelling and forward kinematics

A robot manipulator can be modelled as a kinematic chain comprised of rigid bodies called links that are

connected to each other by joints. The joints can either be prismatic, for a linear motion, or revolute, for a

rotary motion. For a manipulator with 1, …, N joints, link 0 is constrained at the base, whereas the last link

(link N) is the robot end effector. The number of joints represents the number of degrees of freedom for a

10

given manipulator. The motion of the robot is derived from the composition of each link’s motion with

respect to the previous one. To describe the location of each link a coordinate frame is attached to it i.e.

frame i to link i. The relative position and orientation of two consecutive links can be obtained using the

modified Denavit-Hartenberg (DH) convention by (Craig 2009); the link is defined by two parameters: the

link length (ai) and the link twist (i), and the joint is defined by the offset length (Lozano-Perez 1983) and

the joint angle (θi). The four parameters are called the DH parameters.

Figure 2.2 Modified Denavit-Hartenberg convention

The coordinate frame attached to each link can be defined as:

 Axis Zi is coincident with the ith joint axis.

 Axis Xi is taken along the common perpendicular to Zi and Zi+1, in the direction from joint axis i to

i+1

 The origin Oi is at the intersection of Zi and the common perpendicular to Zi and Zi+1

 Axis Yi is selected to form the right-hand rule

The DH parameters can be defined as

 Link length ai-1: the distance between Zi-1 and Zi along Xi-1

 Link twist i-1: the angle between Zi-1 and Zi about Xi-1

 Offset length di: the distance between Xi-1 and Xi along Zi

 Joint angle θi: the angle between Xi-1 and Xi about Zi

11

For a robot manipulator, three parameters are fixed and only one joint variable Qi, (di for prismatic joint

and θi for revolute joint), changes during robot movement. To describe motion from link i-1 to link i, link

transformation ����� may be expressed as follows starting from link i+1: a rotation i-1 about Xi-1, followed

by a translation ai-1 along Xi-1, then a rotation θi about Zi, then a translation di along Zi.

����� = ��(����)��(����)��(��)��(��)

= � ��� −��� 0 ������������ �������� −����� −��������������� �������� ����� �������0 0 0 1 �
(2.1)

The transformation that links the base frame {0} to frame {n}, the end effector can be expressed as:

 ��� = ��� ��� … ����� (2.2)

With the above expression, we can define the manipulator’s forward kinematics, which computes the end

effector pose P (P is 6 elements vector, 3 for position [x, y, z] and 3 for orientation [u, v, w]) given the

joint configuration vector Q, and can be rewritten as:

 � = �(�), (2.3)

where � = [��, ��, ⋯ , ��] , �: ������ �� ������
A minimum of six joints is required for the robot to achieve any position and orientation in its workspace.

For a redundant manipulator, manipulator with more than six joints, the number of joints configuration

parameters exceeds that of the end effector configuration parameters. In other words, the robot

manipulator’s number of degrees of freedom is more than the number of degrees of freedom of its end

effector. The focus of this work is on nonredundant robot manipulators.

2.3 Inverse kinematics

The inverse kinematics problem is defined as: given the desired orientation and position of the

manipulator’s end effector compute the corresponding joint angles to attain the desired result, in other

words it computes the inverse of equation 2.3. The inverse kinematics is crucial to the control of robot

manipulators; once the robot task is specified each joint is controlled individually, i.e. each robot joint must

be known to accomplish the desired task (Manseur 2007).

The complexity of solving inverse kinematics problems depends largely on the geometry of the robot

manipulator. Two types of solutions exist for this problem: closed form (analytical) solutions and iterative

(numerical) solutions. Analytical solutions exist when robots have fewer joints and when there are pairs of

parallel or intersecting joint axes. For any six degrees of freedom (DOF) robot, a closed form solution exists

12

when there are three consecutive joints that are either parallel or perpendicular. Analytical methods provide

solutions of joint variables in terms of the end effector cartesian coordinates. Numerical solutions are used

when there is no closed form solution or when there is a need to develop a generic inverse kinematics solver

for all kinematic configurations (Lenarcic, Bajd et al. 2012). The rest of this section will deal with some of

the numerical methods used to solve inverse kinematics.

Numerical or iterative methods are used when an analytical solution cannot be achieved even though for

the given set of Cartesian coordinates a joint space solution exists. Unlike, closed form solution, numerical

solutions use an initial approximate value of the joint coordinates Q(0) to iteratively converge towards a

solution. The initial condition affects the convergence rate of the numerical solution and whether a solution

will be found; if the initial joint coordinate is far from the target an exact solution may not be obtained. For

continuous trajectory tracking, the best initial condition is the joint coordinates in the previous iteration

step.

Major drawbacks of these techniques include failure to converge, not obtaining all possible solutions,

and computationally more expensive and slower than closed form solutions. The advantage of these

methods is that they are generic and thus can be applied to various structures of robot mechanisms.

Let Q(0) be the initial joint coordinate, the goal is to find the target joint coordinate Qt such that:

�� − �(��) = 0
or �� − �(��) ≤ �

(2.4)

Where �: a small positive number.

For a converging method, the error decreases and approaches zero after each iteration. ε(��, ��) → 0,
where �� = �(�(0))

The Newton Raphson is one of the numerical methods used to compute inverse kinematics through

several iterations (Whitney 1969). Equation (2.3) is highly nonlinear but can be approximated by a linear

equation using a Jacobian matrix. The Jacobian is a matrix of joint variables first order partial derivatives

relative to the end effector coordinates.

Differentiating equation (2.3) with respect to Q

13

���� = �(�), (2.5)

where �(�): the Jacobian of f with respect to Q,

�(�) = �����,
where i = 1, …, n

Equation 2.5 can be rewritten as

 ∆� = �(�)∆� (2.6)

If J is a nonsingular (invertible) matrix

 ∆� = ���(�)∆� (2.7)

The Jacobian matrix expresses a linear relationship between the end effector and joint velocities

�̇ = �(�)�̇ �̇ = ���(�)�̇

(2.8)

Given Q (0) and P0, the joint coordinate Qt for Pt can be obtained by the following iteration

 At each iteration k

∆�� = �� − �� ∆�� = ���(��)∆�� ���� = �� + ∆�� ���� = �(����), � = 0,1,2, …

(2.9)

The iteration stops when the condition in equation (2.4) is fulfilled.

(Balestrino, De Maria et al. 1984) derived another method to ensure that condition (2.4) is fulfilled.

Expressing the error between � and �(�) as �

 ε = � − �(�) (2.10)

Differentiating with respect to time ε̇ = �̇ − �(�)�̇

From the Lyapunov theory (Khalil and Grizzle 2002) ,choosing � as a positive definite matrix such that ε̇ = −Kε

14

ensures that the system is asymptotically stable i.e. that the error � goes to zero. In that case �̇ can be

described as

 �̇ = ���(�)(�̇ + K(� − �(�))) (2.11)

Figure 2.3 illustrates equation (2.11)

Figure 2.3 Inverse Jacobian block scheme

The solution to equation (2.9) is not unique and usually depends on the initial condition of the joint

coordinates. As mentioned above, the Jacobian should be invertible to achieve a solution; but even if this

is the Jacobian may perform poorly near singularities. At singularities, the Jacobian matrix loses rank,

which means that the robot loses the ability to move the end effector in one or more directions even though

the joints are moving. Different researchers have developed methods to avoid this problem that include the

pseudoinverse, the Jacobian transpose and the singularity robust inverse (Nakamura and Hanafusa 1986,

Nakamura, Hanafusa et al. 1987, Sciavicco and Siciliano 2012).

2.3.1 Resolved Motion Rate Control

In case we want the robot end effector’s motion to be along a straight line in the cartesian space, the

resolved motion rate control (RMRC) approach is used. (Whitney 1972)who derived the RMRC defined it

as having multiple joints moving simultaneously at different and time-varying rates to attain a desired end

effector motion in the cartesian space. Given the start and target pose, a smooth trajectory in the cartesian

space is generated; since robots are controlled at the joint level, it is necessary to determine the

corresponding joint motions. With RMRC, this is achieved by computing the Cartesian coordinates of the

end effector at each instant (��) and from that obtaining the joint coordinates using equation (2.8). Figure

2.4 shows the process of RMRC.

15

Figure 2.4 RMRC Algorithm

(Liu, Lei et al. 2016) used resolved motion control to control a humanoid robot during coordinated

manipulation like lifting and placing a load. The authors developed three types of control methods at the

acceleration, velocity, and position level.

(O'Neil, Chen et al. 1997) enhanced the RMRC by a including a second order condition, that if satisfied

provides a solution in the neighborhood singularity. Their method also provided a measure of the recovery

rate of the manipulability index around singularities.

2.3.2 Jacobian Transpose

The Jacobian transpose offers an intuitive solution of the inverse kinematics based on the Lyapunov

theorem for nonlinear systems (Khalaji and Moosavian 2015). With the Jacobian Transpose, a relationship

between �̇ and ∆� that drives the error to zero, is possible. Using the Jacobian transpose, equation (2.8) can

be expressed as:

 �̇ = K��(�)∆� (2.12)

where K is a positive definite matrix

16

The validity of equation (2.12) was proven in (Sciavicco and Siciliano 2012) by choosing a positive definite

Lyapunov function of the form

� = 12 (�� − �)�K(�� − �)

Differentiating V with respect to time �̇ = (�� − �)�K�̇� − (�� − �)�K�̇

Considering equation (2.8) �̇ = (�� − �)�K�̇� − (�� − �)�K�(�)�̇

By choosing joint velocities as �̇ = ��(�)K∆� �̇ becomes �̇ = (�� − �)�K�̇� − (�� − �)�K�(�)��(�)K∆�

 For the case of a constant target (�̇� = 0), �̇ is a negative definite function given that the Jacobian matrix

has full rank, and from (Khalil and Grizzle 2002) it implies that the system is asymptotically stable i.e. the

error converges to zero.

(Buss 2004) suggested a method to update matrix K that aims at minimizing the updated value of ∆�

K = 〈∆�, ���∆�〉〈���∆�, ���∆�〉,
where 〈∙〉 is the dot product.

The Jacobian transpose is computationally inexpensive and does not involve inverting the Jacobian. Its

limitations include slow convergence and the solution to equation (2.12) degenerates when K∆� is in the

null space of ��(�).

2.3.3 Jacobian Pseudoinverse

The pseudoinverse offers a least square solution to equation (2.7). Unlike the inverse, which is only

defined for nonsingular and square matrices, the pseudoinverse is defined for all matrices. It is mostly used

to determine the inverse kinematics solutions for redundant manipulators. These solutions are not unique,

17

hence the need to impose an optimization function �(�) that is a Euclidean norm of the joint increment

vector ∆� (Šoch and Lórencz 2005).

From (Klein and Huang 1983, Buss 2004), the pseudoinverse sets to find the joint incremental ∆� that

minimizes

 ‖�∆� − ∆�‖� (2.13)

To compute the value of ∆� that minimizes equation (2.13), we differentiate equation (2.13) with respect

to ∆� and equate to zero to obtain ���∆� = ��∆�

The pseudoinverse is then defined as

�� = ���������

Thus ∆� can be obtained by

 ∆� = ��(�)∆� (2.14)

A singular value decomposition of J expresses J as

 � = ���� = � σ�u�v���
��� (2.15)

where r is the rank of the Jacobian matrix

The pseudoinverse is expressed as

 �� = ����� = � 1�� ������
��� (2.16)

For a square, invertible, full rank matrix the pseudoinverse is equal to the inverse. �� = ���

The pseudoinverse has a good property that makes the matrix �� − ���� project onto the null space of J; by

including the optimization function �(�) equation (2.14) is reformulated as:

∆� = ��∆� + �� − ���� ��(�)��

18

Since at singularities the Jacobian loses rank, the Pseudoinverse provides a good solution instead of the

inverse; but in the vicinity of singularities, the Jacobian Pseudoinverse has stability issues. Small changes

in the Cartesian space will cause large changes in the joint space i.e. high joint speeds.

2.3.4 Damped Least Square Inverse

As mentioned in the previous section, around singularities the pseudoinverse exhibits high joints speeds.

This can be corrected by adding a constraint function that damps the high joint velocities to equation (2.13)

(Wampler and Leifer 1988)

 ‖�∆� − ∆�‖� + ��‖∆�‖� (2.17)

where � is a nonzero damping factor.

To compute the value of ∆� that minimizes equation (2.17), we differentiate equation (2.17) with respect

to ∆� and equate to zero to obtain ���� − ����∆� = ��∆�

The damped least square inverse (DLSI) �∗can be defined as �∗ = ���� − �������� = ������ − ������

Thus ∆� can be defined as

 ∆� = �∗∆� (2.18)

By singular value decomposition, the DLSI is described as

 �∗ = ��∗�� = � ����� + �� ������
��� (2.19)

Various authors have suggested different ways to adjust the damping factor. (Nakamura and Hanafusa

1986) proposed adjusting the damping factor in terms of the manipulability index.

The manipulability index (W) was first introduced by (Yoshikawa 1985); it is the ability of a robot to

change the end effector’s orientation and position given the joint configuration. The larger the value of this

index the greater the range of possible movements at that configuration. At singularities, the value of the

manipulability index reduces to zero and the end effector loses one or more degrees of freedom.

The manipulability index can be computed by

19

 W = �det��(�)��(�)� = σ�σ� … σ� (2.20)

where σ�: ith singular value of the Jacobian matrix where r is the rank of J

The manipulability ellipsoid for an end effector velocity �̇ satisfies ��̇�� = �̇�� + �̇�� + ⋯ + �̇�� ≤ 1

and its principal axes are σ���, σ���, … σ���. The robot has the best mobility in the direction of the largest

singular value which is the major axis of the manipulability ellipsoid. The minor axis represents the

direction where the end effector has least mobility.

Figure 2.5 Axes of the manipulability ellipsoid

(Nakamura and Hanafusa 1986) proposed a method to adjust the damping factor using the manipulability

index. Another method proposed by (Chiaverini, Egeland et al. 1991) adjust the manipulability index in

terms of the minimum singular value (����).

μ� = �μ��(1 − σ��� ε⁄)� otherwise0 for σ��� ≥ ε

where ε determines the limit of the singularity neighborhood, and �� is the damping factor for ���� = 0

The damped least square reaches a balance between robustness and accuracy of the desired solution.

Since accuracy will often be sacrificed, a weighting matrix � that distinguishes between end effector

directions where higher accuracy is required and those where lower accuracy is accepted was introduced

by (Chiaverini, Egeland et al. 1991). The pose increment ∆� in equation (2.6) can be rewritten as ∆�� =�∆�, substituting this in equation (2.6) ∆�� = �� ∆�

20

where �� = ��

Another method developed by (Buss and Kim 2005)assigns a different damping factor to each singular

value �� from the SVD. In this case, the damping factor not only depends on the current robot configurations

but also on the error between the end effector’s current and target poses. With this method, each joint is

analyzed separately to know how much it is attempting to move the end effector to the target pose; this

distance is then compared to the distance the end effector is to move to reach the target. In case the prior is

larger than the latter, the motion of the joint is damped. The implementation of this algorithm involves

limiting the maximum joint angle increment in each iteration.

2.4 Robot Workcell Calibration

Calibration is needed to reduce or eliminate robot errors without redesigning the robot or reprogramming

the OLP. Robot errors can be divided into four classes: dynamic, geometric, system, and thermal errors

(Greenway 2000). Dynamic errors come from structural resonance and inertial loadings resulting from

robot motion. Geometric errors come from manufacturing tolerances, they affect the end effector orientation

and position since the kinematic solutions will be computed with as designed values of the Denavit-

Hartenberg (DH) parameters. Inaccuracies in relative orientation and position between the robot and its

peripherals also are a source of geometric errors in robot systems. System errors originate from inaccurate

calibration, wrong tuning of servos, and sensor inaccuracies. Thermal errors result from the expansion of

the robot parts under heat.

Dynamic and thermal errors are hard to compensate for since they are highly nonlinear and cannot be

easily modeled. Other errors such as sensor inaccuracies and dynamic errors are ignored as they do not have

a considerable impact on the robot operation. Geometric errors are compensated for during calibration.

Model based calibration can be used to increase the robot manipulator’s positioning accuracy by way of

software such as DynaCal, Calibware, BullsEye, and VISOR Robotics. The kinematic calibration process

involves four steps namely: establishing a kinematic model of the robot, measuring planned end effector

poses, identifying the real robot kinematic parameters, and compensating for the kinematics parameters for

an improved accuracy (Cheng 2008). Usually the Denavit-Hartenberg convention is used to develop the

robot’s kinematic model.

There are various techniques to calculate true end effector position and orientation if the joints

configurations at different known points in a robot workspace are given (Hayati 1983). An external

measuring system is required to accurately determine the robot position at these points. Researchers have

21

used measuring systems such as theodolites (Duelen and Schröer 1991), laser tracker (Nubiola and Bonev

2013) and vision system (Du and Zhang 2013) among others.

To obtain the actual DH parameter an equation that relates the actual to the designed parameters has been

developed. Given a vector � = [��, �� ⋯ , ��] that represent the DH parameters for an n-joint robot, the

actual link transformation ���_� can be expressed as ���_� = ���_� + ∆��
where ∆�� = ∆��(∆��) . Thus, the actual end effector transformation ��� ��� = ��� + ∆�

where ∆� = ∆�(�, ∆�) , ∆� is the DH parameter error vector and � = [��, �� ⋯ , ��] is the robot joints

vector. ∆� is a highly nonlinear function (Cheng 2008), solved by nonlinear least square methods such as

the Levenberg – Marquardt method, to generate actual DH parameters �∗ = � + ∆�. Since it is hard to

compensate for each DH parameter, because usually the robot’s control architecture is closed due to safety

issues, compensations are made to the joint positions using inverse kinematics with the determined true DH

parameters. Figure shows an offline compensation scheme.

Figure 2.6 Offline compensation scheme (Tao, Mustafa et al. 2015)

As mentioned above, other geometric errors originate from the relative orientation and position

inaccuracies between the robot and its peripherals in the robot workcell. Two methods have been developed

methods to minimize or eliminate these errors. The first method is to measure planned robot TCP positions

in the real workcell using the teach pendant and subsequently change the corresponding nominal values in

the virtual workcell. The second method involves using sensors to measure the actual orientation and

positions of workcell elements. The sensor measurements are then utilized to update the offline programs

(Lu and Lin 1997, Cheng 2008).

(Lu and Lin 1997) devised an online calibration method that automatically detects and compensates for

relative orientation and position errors between the robot and its peripherals by using a vision system, a 3-

dimensional force/torque sensor, together with control schemes that involve neural networks.

22

(Tao, Mustafa et al. 2015) proposed a method that computes the actual relative poses of the robot TCP

and the work object frame in the sensor coordinate frame. A sensor fixed on the robot end effector is utilized

to acquire the point cloud of the work object and subsequently compensate for the relative pose errors

between the TCP and the work object frame. With accurate measurements, the robot TCP is directed to

follow the desired robot path in the work object coordinate frame.

(Cai, Gu et al. 2018) developed a robot workcell calibration that utilizes a touch panel as a measurement

equipment. A touch panel is fixed to the end effector and a touch panel is attached to work object. Once the

touch probe comes in contact with the touch panel, the latter sends a signal to the robot controller by WIFI.

The method achieves robot accuracy with a 0.25 mm error. The quality of the robot calibration depends on

the resolution and measuring accuracy of the touch panel.

(Liu, Shen et al. 2008) devised a line-based calibration scheme that calibrates the transformation matrix

relating the robot base frame to the work object frame. A position sensitive device is used to precisely

capture a laser beam originating from a pointer attached to the end effector. Once numerous PSDs are

installed on the work object, calibration points in both base and work object frames are generated.

Subsequently a least square method and a quaternion algorithm are used to determine the transformation

matrix relating the work object frame to the robot base frame.

Figure 2.7 Coordinate frames of the calibration scheme

23

Table 2. 1 Robot workcell calibration methods

Author Measurement Technique Compensation Technique

(Tao, Mustafa et al. 2015) Laser scanner, Stereo vision

system (mounted on Robot)

Point cloud and least square

method

(Gu, Li et al. 2015) Line touch sensor (mounted on

robot), cross beam sensor

(mounted on work object)

Planar searching algorithm

(Ge, Gu et al. 2014) Displacement sensor (mounted

on robot), ball and cubes

(mounted on work object)

Least square method for ball

fitting, plane fitting

(Gan, Sun et al. 2004) A coordinate measuring touch

probe, a sphere

Nonlinear least square

optimization

(Liu, Shen et al. 2008) Laser pointer detector, position

sensitive detector (PSD)

Plane fitting algorithm,

quaternion based algorithm

(Arai, Maeda et al. 2002) Charge-coupled device (CCD)

camera

Direct linear transformation

(Cai, Gu et al. 2018) Touch probe, touch panel Linear least square optimization

(Lu and Lin 1997) 3D force/torque sensor, vision

system

Neural networks

(De Smet 2015) Laser emitter and laser receiver

(mounted on the robot or work

object)

(Horváth and Erdős 2017) Kinect sensor Point cloud registration

(Schmidt and Wang 2014) Camera, fiducial markers Transformation matrix

24

CHAPTER 3
PATH REGENERATION

3.1 Transformation Matrix Computation

Once the robot manipulator is kinematically calibrated it can be utilized as a measurement tool for the

calibration of the work object. Two sets of matching position data points are needed to get the

transformation matrix of the work object relative to the robot base. The first set of points is measured with

respect to the work object while the other set of points is measured with the robot and the values are read

from the teaching pendant.

 (a) (b)

Figure 3.1 (a)Transformation matrix of the real work object frame relative to the robot base frame, (b)

Points measured in the work object frame

25

The work object frame is defined by measuring three points as shown in Figure 3.1, choosing point {1} as

the origin of the work object frame the other two points are defined relative to this origin. The robot is then

used to measure the same points in the base frame. Thus obtaining two data sets that will be used to compute

the transformation matrix between the real work object frame and the robot base frame �{�_�}� . �{�_�}� describes the orientation and position between the two frames.

 �{�_�}� = �n� o� a� r�n� o� a� r�n� o� a� r�0 0 0 1 � (3.1)

A linear regression method applied to the matched data points is used to determine the transformation

matrix �{�_�}� .

 �x�y�z�1 � = �n� o� a� r�n� o� a� r�n� o� a� r�0 0 0 1 � �x�y�z�1 � (3.2)

The corresponding linear equations are

x� = n�x� + o�y� + a�z� + r� y� = n�x� + o�y� + a�z� + r� z� = n�x� + o�y� + a�z� + r�

(3.3)

For n pairs of matched data points, the square of residuals for the above equations can be determined by

R�x� = �[x�� − (n�x�� + o�y�� + a�z�� + r�)]��
���

R�y� = ��y�� − �n�x�� + o�y�� + a�z�� + r�����
���

R�z� = �[z�� − (n�x�� + o�y�� + a�z�� + r�)]��
���

(3.4)

Since with linear regression we want to minimize the square of residual, the minimum can be obtained by

equating the partial derivatives of equation (3.4) to zero. ∂R�x�∂n� = 0 = −2 �[x�� − (n�x�� + o�y�� + a�z�� + r�)]x���
���

26

∂R�x�∂o� = 0 = −2 �[x�� − (n�x�� + o�y�� + a�z�� + r�)]y���
���

∂R�x�∂a� = 0 = −2 �[x�� − (n�x�� + o�y�� + a�z�� + r�)]z���
���

∂R�x�∂r� = 0 = −2 �[x�� − (n�x�� + o�y�� + a�z�� + r�)]�
���

The above process is repeated for row two and three of equation (3.4). Putting the results into matrix form,

the values of the transformation matrix can be expressed as

 �n�o�a�r� � = [�]��

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡� x��x���

���� x��y���
���� x��z���
���� x���

��� ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎤
 (3.5)

 �n�o�a�r� � = [�]��

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡� y��x���

���� y��y���
���� y��z���
���� y���

��� ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎤
 (3.6)

27

 �n�o�a�r� � = [�]��

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎡� z��x���

���� z��y���
���� z��z���
���� z���

��� ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎤
 (3.7)

where

� =
⎣⎢⎢
⎢⎢⎢
⎢⎡ ��x��� � �(x��y��) �(x��z��) �(x��)�(x��y��) ��y��� � �(y��z��) �(y��)�(x��z��) �(y��z��) ��z��� � �(z��)�(x��) �(y��) �(z��) n ⎦⎥⎥

⎥⎥⎥
⎥⎤

The transformation matrix between the robot base frame and the virtual work object frame �{�_�}� is

obtained from the CAD model, to obtain the transformation matrix of the real work object relative to virtual

work object frames �{�_�}{�_�} (in short ���) can be computed by compound transformations.

Figure 3.2 Compound transformations ��� = � ��� ��� ���

Thus, given a path in the virtual work object frame VPM, a corresponding path in the real work object RPM

can be obtained by equation (3.8).

28

 RPM = ��� VPM (3.8)

3.2 Path Feasibility Check and Regeneration

Once the path in the real work object frame is determined, we need to check the feasibility of that path in

terms of singularity. In case the path is not feasible, a new approximate path must be regenerated.

Given the joint configuration vector Q of a robot manipulator whose ith element �� is the joint angle for

the ith joint of the robot manipulator, the forward kinematics finds the pose vector P that denotes the

orientation and position of the effector. For an n joint robot manipulator, � = [Q�, Q�, … Q�]. For a 6

degrees of freedom task the vector P has six elements: three for position and three for orientation � = [r�, r�, r�, u, v, w].
 � = �(�) (3.9)

The inverse kinematics on the other hand finds the joint configuration required to reach a given target pose.

Inverse kinematics equations are harder to derive than the forward kinematics as f is a highly nonlinear

function.

 � = ���(�) (3.10)

For a given end effector pose, there are more than one solutions for inverse kinematics.

Two types of solutions exist for inverse kinematics: closed-form (analytical) solutions and numerical

solutions. Analytical solutions are unique to a given robot manipulator and they do not work for all robot

manipulators, and as the number of joints increases the solutions become increasingly challenging to solve.

For a six-joint manipulator, a closed form exists only when they are consecutive joints that either parallel

or intersecting including wrist portioned robot manipulator such as the Puma 560 whose last three joint

axes intersect at one point. Numerical solutions are general, and they can be applied to any type of robot

manipulator. The drawbacks with these techniques are that they only give a single solution for a given initial

condition when there may exist multiple solutions, and with an improper initial condition the method may

fail to converge. The method in this section assumes a six joint robot manipulator with a six degrees of

freedom task space and a six joint robot manipulator. The most common numerical method used is the

Newton’s method.

To derive the Newton’s method, Taylor’s expansion of equation (3.9) for a target pose �� with initial

condition �� can be expressed as

29

�� = �(��) = �(��) + ����� �� (�� − ��) + ℎ. �. �

Letting the Jacobian matrix �(��) = ����� �� and dropping the higher order terms h.o.t

 ∆� = �(��)∆� (3.11)

where ∆� = (�� − ��) and ∆� = �� − �(��)

If the Jacobian matrix is nonsingular

 ∆� = ���(��)��� − �(��)� (3.12)

Algorithm 1.1

1: Input target pose ��, initial condition ��, maximum number of iterations M, set j = 0 and ε ˃ 0

2: For � = �: �

3: Define � = �� − �(��), While ‖�‖ > �

4: ∆� = ���(��)�

5: Set ���� = �� + ∆�

6: �� = ����

7: End For

If the Jacobian is singular i.e. det(�) = 0 , equation (3.12) impossible. This is known as the robot

manipulator’s kinematic singularity, where the robot manipulator cannot produce motion in one or more

degrees of freedom of the end effector. The robot manipulator in this case operates as if at least one degree

of freedom has been lost.

The Levenberg Marquadt algorithm is used to derive an approximate solution to the Jacobian inverse that

is called the damped least square solution (Nakamura and Hanafusa 1986), that allows the solution to

equation (3.12) to become continuous. In this way a feasible and continuous solution is guaranteed at the

cost of the robot end effector diverging from the desired path.

The damped least square solution satisfies the following optimization equation min∆� ‖∆� − �∆�‖� + μ�‖∆�‖�

where � is the damping factor.

30

In the vicinity of a singularity, the robot manipulator exhibits a jerky motion because a small change in the

end effector motion will produce large changes in joint angles. The damping factor serves as a means to

reduce these joint angle changes by inducing minimal errors in the end effector motion.

Which yields the following solution

 ∆� = ������ + μ�����∆� (3.13)

The damped least square Jacobian �∗ is expressed as

�∗ = ������ + μ�����

For a non-redundant robot manipulator equation (3.13) can be expressed as

 ∆� = (� + μ��)��∆� (3.14)

By singular value decomposition of the Jacobian

 � = ���� = � σ�u�v���
��� (3.15)

where � is the diagonal matrix of singular values σ� , U and V are orthogonal matrices, r is the rank of the

Jacobian.

By singular value decomposition of the damped least square Jacobian

�∗ = ��∗�� = � σ�σ�� + μ� v�u���
���

The damping factor allows the continuity of the inverse kinematics solution, it can be tuned with respect to

the manipulability index of the robot manipulator.

The workspace of a robot manipulator is the set of all poses that are reachable by a specific end effector

attached to that robot. The workspace of a robot depends on its number of degrees of freedom, its geometry,

i.e. the link length, and the joint motion constraints. For a six-axis robot manipulator, the workspace is a

six-dimensional body (Lenarcic, Bajd et al. 2012). If the Jacobian matrix has full rank, the manipulability

index will have the same dimension as the workspace.

3.2.1 Manipulability Index

The manipulability index is a value that quantifies the ability of a robot manipulator to change the end

effector’s orientation and position given the joint configuration. The larger the value of this index the greater

31

the range of possible movements at that configuration. At singularities, the value of the manipulability index

reduces to zero and the end effector loses one or more degrees of freedom.

When the joint increments have the same length in all directions, in other words when the vector �� lies

on the surface of an n-dimensional hypersphere ∆��∆� = 1

the end effector increment vector ∆� then lies on the surface of an ellipsoid of m-dimensional end effector

coordinate space called the manipulability ellipsoid. If the ellipsoid has an almost spherical shape, i.e. it

has uniform radii, then the end effector can move in any cartesian direction. If on the other hand one or

more radii have a very small magnitude, it means the end effector cannot move in the directions with the

small radii. The radii of the ellipsoid are the singular values of the Jacobian matrix

The manipulability index �(�) can be computed

 W(Q) = ����(�(�)��(�)) = σ�σ� ⋯ σ� (3.16)

Figure 3.3 shows examples of manipulability index and manipulability ellipsoid for two joint configurations

(a) � = [−26, −31 − 41, −36,0,0] and (b) � = [0,15, −70,175,86,63] (in degrees) for the Indy 7. In (a)

the ellipsoid’s radii are not uniform while in (b) the ellipsoid’s radii are more uniform which is why the

manipulability index in this case is larger than in (a).

 (a) (b)

Figure 3.3 Manipulability ellipsoid (a) W(Q) = 0.006 and (b) W(Q) = 0.0248 (Corke 2011)

The damping factor is adjusted with respect to the manipulability index

32

 μ� = ����(1 − W W�⁄)� for W < W�0 for W ≥ W� (3.17)

where �� is the damping factor at singular points, and W� is the limit of manipulability index in the vicinity of

singularities. These two values depend on the robot geometry and they are user-defined.

As mentioned above the damped least square offers a continuous solution at the cost the end effector

deviating from the desired path. Figure 3.4 shows how the damping factor modifies the path and the robot

configuration in a singular region. In (a) the robot path deviates from the desired path due to the damping

factor and in (b) the robot manipulator moves away from the singular region because of the damping factor.

(a) (b)

Figure 3.4 Change in (a) desired path and (b) robot joint configuration, due to the damping factor

3.2.2 Closed Loop Inverse Kinematics

The numerical integration in algorithm 1.1 introduces a tracking error in the inverse kinematics solution.

The closed loop inverse kinematics algorithm introduces a feedback gain that is multiplied to the error in

order to eliminate the tracking error. The tracking error decreases as feedback gain increases, but there is a

limit to this increase. In case the feedback gain surpasses this limit, the system becomes unstable.

Using the damped least square Jacobian inverse �∗ in equation (3.12) ∆� can be expressed as

 ∆� = �∗(��)K��� − �(��)� (3.18)

where K is the feedback gain

In algorithm 1.1, step 4 then becomes

 ∆� = �∗(��)Kε (3.19)

Figure 3.5 shows the loop for the inverse kinematics solution

33

Figure 3.5 Closed loop inverse kinematics

From (Falco and Natale 2011) a limit to the feedback gain was proposed that allows the algorithm to remain

stable

K = 2T�

where T� is the sampling time.

3.3 Summary of the Method

Step I: Path
transformation

Input:
 Original path (virtual work object frame): VPM

 Error compensation matrix: (���)

Output:
New path matrix (real workbench frame): RPM = ��� VPM

Step II:
Feasibility
check and
path
regeneration

Input:

 RPM: new path matrix

 ��: joint angle vector at the first path point (RPM1,:)

 S ← f (��): forward kinematics for ��

 Extract pose (position + orientation) vector P from pose matrix S (transform the

rotation matrix into roll, pitch, and yaw angles)

Rotation matrix

34

� = ��� �� �� ��� �� �� ��� �� �� �0 0 0 1�

� = [�, �, �, �, �, �]�

 J (��,): Jacobian matrix at joint configuration ��,:
 W = �det��(��)��(��)� = σ�σ� … σ� where σ�: ith singular value of the Jacobian matrix where r = rank of J

 W0: limit of manipulability index in the vicinity of singularities

Algorithm 1: Path execution

Input: RPM (new path matrix by transformation matrix), �� (joint angles vector at first path

point (RPM1,:)),

1: for i = 1 : N do

2: while j < M do

3: compute the forward kinematics matrix �� ← f(��)

4: extract the pose (position + orientation) vector ����� from pose matrix ��
5: compute the pose difference ∆� ← ���� − �����

6: �∗���,:� ← Jacobian_matrix

7: compute the joint configuration increment ∆� ← �∗(��)∆�

8: compute the next joint configuration ����� ← �� + ∆�

9: compute the forward kinematics matrix ���� ← f(�����)

10: extract the pose (position + orientation) vector ����� from pose matrix ����

11: update ∆� ← ���� − �����

12: if ∆� < �

13: break

14: else � ← � + �

Position
vector

Manipulability ellipsoid that
allows to visualize how close a
robot is to being singular. In a
singular position the singular
values are zero.

35

15: end if

16: end while
17: end for

Algorithm 2: Jacobian_matrix

Input: ��,: (Joint angles configuration at instance j)

1: compute the Jacobian matrix at iteration j ← � ����

2: compute the manipulability index W ← �det �������������

3: if � < ��

4: compute damping factor μ� ← μ�� �1 − �����

5: else � ← �

6: end if

6: �∗���,:� ← �� ���� − �2��−1

3.4 Simulink Model

 The above algorithm was implemented in MATLAB/SIMULINK. The closed loop inverse kinematics

algorithm was implemented using SIMULINK as shown in Figure 3.6.

36

Figure 3.6 Implementation of the algorithm in SIMULINK

37

3.5 Example

This example provides simulation experiments to demonstrate how the above algorithm works. Given an

initial path in the virtual frame to move the cube (purple) from pose 1 to pose 2 (in Figure 3.7). VPM path

in the virtual frame (position in m).

 X (m) Y (m) Z (m)

1 0.65 -0.3 0.2

2 0.65 -0.253 0.308

3 0.362 -0.544 0.14

4 0.055 -0.434 -0.148

Figure 3.7 Robot workcell in virtual frame

Assuming a transformation matrix ��� that quantifies the dimensional variations between the virtual and

real work object

��� = �1 0 0 0.10 1 0 00 0 1 0.150 0 0 1 �

38

From equation we can obtain the path in the real frame (position in m)

 X (m) Y (m) Z (m)

1 0.53 -0.45 0.2

2 0.53 -0.403 0.308

3 0.242 -0.694 0.14

4 -0.065 -0.584 -0.148

Figure 3.8 Robot workcell showing both the virtual and real frame

The limit for the manipulability index W� = 0.001 and �� = 0.1 were used to check the feasibility of the

path in the real work object frame. Table 3.1 and 3.2 show joint angle values for VPM and RPM, respectively.

From Figure 3.9 the desired path RPM and the regenerated feasible path are plotted. The error between the

two paths is |�| = 0.003 and it is shown in Figure 3.10.

39

Table 3.1 Joint angles for VPM (in degrees) Table 3.2 Joint angles for RPM (in degrees)

 �� �� ��

1 0 0 0

2 3.6 18 -3.7

3 -36.02 -10.86 -46.83

4 -41.7 -85.2 -7

Figure 3.9 Desired robot path vs feasible robot path

 �� �� ��

1 -18.03 0 -21.17

2 -15.25 18.84 -32.35

3 -42 -10 29.3

4 -48.7 -57.5 -25.7

40

Figure 3.10 Error between the regenerated path and the desired path

41

CHAPTER 4
CASE STUDY

4.1 Experimental Setup

The Neuromeka Indy 7 whose modified Denavit Hartenberg parameters are shown in Figure 4.2 was used

for the experiments. To determine the transformation matrix that relates the robot base to the work object

frame two sets of data are acquired, one in the robot base frame using the robot teach pendant and another

in the work object frame. Table 4.1 shows the two data sets used to obtain the transformation matrix that

describes the work object frame with respect to the robot base frame ��_{�}� , the points in the work object

frame are measured with respect to the origin as shown in Figure 4.3 (a). The TCP of the end effector shown

in Figure 4.1 after calibration is 101 mm.

Figure 4.1 Indy 7 with end effector

42

Figure 4.2 Indy 7 modified DH Parameters (dimension in mm and angles in degree)

Modified DH parameters

 ai+1 (mm) i+1 (°) di (mm) θi (°) Joint range (°)

Joint #1 0 0 300 �� -175 to 175

Joint #2 0 90 0 �� + 90 -175 to 175

Joint #3 450 0 3.5 �� + 90 -175 to 175

Joint #4 0 90 350 �� + 180 -175 to 175

Joint #5 0 90 183 �� -175 to 175

Joint #6 0 −90 228 �� -215 to 215

43

Table 4.1 Transformation matrix data points in mm

Robot base frame Work object frame

X (mm) Y (mm) Z (mm) X (mm) Y (mm) Z (mm)

280.7 230.8 426.5 0 0 0

448.9 415.6 416.6 0 250 0

-15.3 499.3 408 400 0 0

280.9 229.6 405.8 0 0 20.7

405.86 438 440 75 187.5 22.4

310.5 334.7 448 98.7 45.6 26

367.2 469.2 439.35 193.5 130 25

The transformation matrix ��_{�}� obtained

��_{�}� = �−0.7411 0.6707 −0.0301 281.050.6721 0.7407 −0.0277 230.540.0021 0.0406 0.7849 411.990 0 0 1 �

 (a) (b)

Figure 4.3 Robot work object measurement

To test the algorithm a robot task is shown in Figure 4.3 (b) and its path points in the virtual work object

frame are listed in Table 4.2.

44

Table 4.2 Robot task path points in the virtual work object frame

 X (mm) Y (mm) Z (mm) U (O) V (O) W (O)

1 595.95 131.7 1016.3 44 72.83 82.08

2 686.25 18.61 756.17 135.9 66.57 158.1

3 708.23 -151.97 596.92 163.32 54 168

4 592.68 -316.06 318.5 170 25 157.6

5 284.2 419.14 466.46 176.8 4.7 84.4

6 207.5 333.6 430.5 150 5 168

7 92.16 446 392.9 164 68.3 102

Given a transformation matrix that relates the robot base to the virtual work object frames ��_{�}�

��_{�}� = �−0.7357 0.667 −0.1180 277.310.6719 0.7413 0.0051 241.39−0.0663 0.0678 0.7802 413.650 0 0 1 �

The transformation matrix that describes the virtual work object frame relative to the real work object frame ��_{�}�_{�} (or in short ���)

��� = � ��{�}� ��� ��_{�}�

��� = � 0.9962 0.0030 0.0871 10.040 0.9994 −0.0349 5.6−0.0872 0.0348 0.9956 1.80 0 0 1 �

The path points in the real work object frame are listed in Table 4.3

Table 4.3 Robot task path points in the real work object frame

 X (mm) Y (mm) Z (mm) U (O) V (O) W (O)
1 692.64 101.75 966.25 60.11 70.8 97.32
2 759.6 -2.2 695.47 150 67 -70.5
3 767.1 -167.1 529.07 162 48.7 167
4 627.24 -321.4 256.25 170 19.61 157.53
5 335.06 408.2 456 -178 3.2 84.7
6 255.3 324 424 149 0 168
7 137.4 437.6 400.4 174.6 65 111.6

45

Angles for the path in the real work object frame

 �� �� �� �� �� ��
1 15.47 -27.05 -9.848 28.13 -46.88 0.09291
2 22.04 -61.63 -16.75 -72.11 -102.2 94.03
3 -1.63 -33.07 -51.07 12.91 -46.08 -1.351
4 -14.39 -107.5 82.17 9.872 -133.5 14.49
5 70.59 -21.2 -73.91 1.538 -88.56 165.9
6 78.76 9.843 -120.7 -0.3037 -38.21 91.15
7 103 -38.29 -85.83 -15.21 -119.3 168.7

Plotting the desired path and the feasible path in Figure 4.4 and the error between the feasible path and the

desired path in

Figure 4.4 Desired robot path and feasible robot path

46

Figure 4.5 Error between the regenerated path and the desired path

4.2 Experiments

To test the feasibility check algorithm a path in the virtual frame is given for the Indy 7 robot manipulator, ���. W� = 0.01 and K� = 0.1

 X (mm) Y (mm) Z (mm) U (O) V (O) W (O)

1 621.75 123.59 981.13 57.2 74.5 93.3

2 612.75 98.01 981.35 57.2 74.5 93.2

3 612.6 98 768.54 57.1 75 93.2

4 557.63 -102.72 621.85 -154 40.5 -125

5 493.63 -238.81 466.46 176.5 19.3 171

6 541.11 -329.5 307.13 -170 0 175

7 605.48 -490.13 98.6 -167 4.5 169

Test I: Transformation matrix ���

��� = �1 0 0 200 0.9848 −0.1736 00 0.1736 0.9848 00 0 0 1 �

47

The path in the real frame ��� ��� = ��� ���

 X (mm) Y (mm) Z (mm) U (O) V (O) W (O)
1 621.75 123.59 981.13 57.2 74.5 93.3
2 632.75 -73.8886 983.4603 56 64.5 92
3 632.6 -36.9444 773.8817 56 64.5 92
4 577.63 -209.143 594.5656 -162.6 48.4 -131
5 513.63 -316.182 417.9045 166 17.4 168
6 561.11 -377.827 245.2469 -180 -0.87 175
7 625.48 -499.806 11.99186 -177 2.5 168.4

Figure 4.6 Desired robot path and feasible robot path

48

Since the initial path and the path execution coincide the path has no singular points. The approach vector

length (6 to 7) is preserved.

Test II: Transformation matrix ���

��� = �1 0 0 200 0.866 −0.5 00 0.5 0.866 00 0 0 1 �

The path in the real frame ���

X (mm) Y (mm) Z (mm) U (O) V (O) W (O)
621.75 123.59 981.13 57.2 74.5 93.3
612.8 -385.8 898.9 56 64.5 92
612.6 -279.4 714.6 56 64.5 92
557.6 -379.9 487.2 -162.6 48.4 -131
493.6 -419.6 284.8 166 17.4 168
541.1 -418.9 101.2 -180 -0.87 175
605.5 -453.8 -159.7 -177 2.5 168.4

Figure 4.7 Desired robot path vs feasible robot path

49

The singular point in red (2) is approximated as shown in blue (2). The approach vector length (6 to 7) is

preserved. The error between the desired and feasible path is plotted in Figure 4.8.

Figure 4.8 Error between the regenerated path and the desired path

50

CHAPTER 5
CONCLUSION AND

FUTURE RESEARCH

5.1 Conclusion

Offline programming provides users with the ability to reprogram the robot without stopping the production

process. Despite the popularity of offline programming, accuracy remains an issue in this field due to

dimensional differences that occur in the real robot workcell, thus the need for calibrating the robot program.

Calibration is required for the robot program in order to determine the real positions of the robot and its

peripherals within the workcell. This process must be completed before the program is uploaded to the real

system, since the dimensional variations between real and virtual workcells can result in critical TCP

position errors.

In this thesis an adaptive robot program calibration method that accounts for the dimensional variations that

occur in the real work object frame has been developed. The review of current workcell calibration methods

includes methods that identify dimensional variations in the real work object either using the robot as a

measurement tool or other measurement sensors such as laser and vision. To compensate for the

dimensional variations, the true values are then loaded in the offline programming software to regenerate a

new robot program.

The method developed in this thesis, comprises of two main steps, first we compute the transformation

matrix between the robot base and the real work object frame in order to regenerate a robot program in the

real work object frame. Then we check the feasibility of the regenerated path in terms of singularities and

51

subsequently regenerate a new path in case the robot encounters a singular region while executing the

desired path.

Since in this work, we considered a case of a six joint robot manipulator it is difficult to avoid singularities

and still reach the target points. By using the manipulability index as a measure of how close the robot

manipulator is to a singular region, the singularity can be avoided but at the cost of the end effector deviating

from the desired path.

To prove the validity of the proposed method a six joint robot manipulator, the Neuromeka Indy 7 was used,

and the algorithms were developed in MATLAB/SIMULINK. The experimental results showed that the

end effector pose error introduced by the damping factor is not bounded, which may lead to the robot

manipulator missing its target pose while avoiding a singularity.

5.2 Future Research

To avoid singularities, the closed loop inverse kinematics incorporates a damping factor that acts on the

Jacobian in the vicinity of singularities. The damping factor in turn depends on two user defined factors

namely: μ�, the damping factor at singular points, and W� is the limit of manipulability index in the vicinity

of singularities. Since the damping factor provides a compromise between singularity avoidance and

minimizing errors in the end effector pose, it is imperative to have a proper method to determine μ� and W�.

As mentioned in the conclusion, the error in the end effector pose caused by the damping factor is

unbounded, which is a major setback to the developed method. A robot program calibration method that

ensures that robot reaches its target poses without singularities is needed.

Real industrial robots’ applications may include obstacles of the workspace of the robot manipulator. In

future works a method to calibrate the robot program by incorporating obstacle avoidance in the path

regeneration algorithm, will be studied.

52

REFERENCES

Arai, T., Y. Maeda, H. Kikuchi and M. J. C. A. Sugi (2002). "Automated calibration of robot coordinates

for reconfigurable assembly systems." CIRP Annals 51(1): 5-8.

Balestrino, A., G. De Maria and L. Sciavicco (1984). "Robust control of robotic manipulators." IFAC

Proceedings Volumes 17(2): 2435-2440.

Biggs, G. and B. MacDonald (2003). A survey of robot programming systems. Proceedings of the

Australasian conference on robotics and automation: 1-3

Buss, S. R. (2004). "Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped

least squares methods." IEEE Journal of Robotics and Automation 17(1-19): 16.

Buss, S. R. and J.-S. Kim (2005). "Selectively damped least squares for inverse kinematics." Journal of

Graphics tools 10(3): 37-49.

Cai, Y., H. Gu, C. Li and H. Liu (2018). "Easy industrial robot cell coordinates calibration with touch

panel." Robotics Computer-Integrated Manufacturing 50: 276-285.

Cheng, F. S. (2008). "Calibration of robot reference frames for enhanced robot positioning accuracy." Robot

Manipulators: 95-112.

Chiaverini, S., O. Egeland and R. Kanestrom (1991). Achieving user-defined accuracy with damped least-

squares inverse kinematics. Fifth International Conference on Advanced Robotics' Robots in Unstructured

Environments, IEEE: 672-677

Corke, P. (2011). "Robotics Vision and Control." Springer Tracts in Advanced Robotics 118: 235-237.

Craig, J. J. (2009). Introduction to robotics: mechanics and control, 3/E, Pearson Education India: 65-67

De Smet, P. (2015). Robot-cell calibration, Google Patents.

Du, G. and P. Zhang (2013). "Online robot calibration based on vision measurement." Robotics and

Computer-Integrated Manufacturing 29(6): 484-492.

Duelen, G. and K. Schröer (1991). "Robot calibration—method and results." Robotics Computer-Integrated

Manufacturing 8(4): 223-231.

Falco, P. and C. Natale (2011). "On the stability of closed-loop inverse kinematics algorithms for redundant

robots." IEEE Transactions on Robotics 27(4): 780-784.

Gan, Z., Y. Sun and Q. Tang (2004). In-process relative robot workcell calibration, Google Patents.

Ge, J., H. Gu, L. Qi and Q. Li (2014). An automatic industrial robot cell calibration method. ISR/Robotik

2014; 41st International Symposium on Robotics, VDE.

53

Greenway, B. (2000). "Robot accuracy." Industrial Robot: An International Journal 27(4): 257-265.

Gu, H., Q. Li and J. Li (2015). Quick robot cell calibration for small part assembly. The 14th IFToMM

World Congress, Taipei.

Hayati, S. A. (1983). Robot arm geometric link parameter estimation. The 22nd IEEE Conference on

Decision and Control, IEEE: 1477-1483

Horváth, G. and G. Erdős (2017). "Point cloud based robot cell calibration." CIRP Annals 66(1): 145-148.

Khalaji, A. K. and S. A. A. Moosavian (2015). "Modified transpose Jacobian control of a tractor-trailer

wheeled robot." Journal of Mechanical Science and Technology 29(9): 3961-3969.

Khalil, H. K. and J. W. Grizzle (2002). Nonlinear systems, Prentice hall Upper Saddle River, NJ.

Klein, C. A. and C.-H. Huang (1983). "Review of pseudoinverse control for use with kinematically

redundant manipulators." IEEE Transactions on Systems, Man, and Cybernetics(2): 245-250.

Lenarcic, J., T. Bajd and M. M. Stanišić (2012). Robot mechanisms, Springer Science & Business Media.

Liu, T., Y. Lei, L. Han, W. Xu and H. Zou (2016). "Coordinated resolved motion control of dual-arm

manipulators with closed chain." International Journal of Advanced Robotic Systems 13(3): 80.

Liu, Y., Y. Shen, N. Xi, R. Yang, X. Li, G. Zhang and T. A. Fuhlbrigge (2008). Rapid robot/workcell

calibration using line-based approach. 2008 IEEE International Conference on Automation Science and

Engineering, IEEE: 510-515

Lozano-Perez, T. (1983). "Robot programming." Proceedings of the IEEE 71(7): 821-841.

Lu, T.-F. and G. Lin (1997). "An on-line relative position and orientation error calibration methodology for

workcell robot operations." Robotics Computer-Integrated Manufacturing 13(2): 89-99.

Manseur, R. (2007). Robot modeling and kinematics, Firewall Media.

Nakamura, Y. and H. Hanafusa (1986). "Inverse kinematic solutions with singularity robustness for robot

manipulator control." Journal of Dynamic systems, Measurement, and Control 108(3): 163-171.

Nakamura, Y., H. Hanafusa and T. Yoshikawa (1987). "Task-priority based redundancy control of robot

manipulators." The International Journal of Robotics Research 6(2): 3-15.

Nubiola, A. and I. A. Bonev (2013). "Absolute calibration of an ABB IRB 1600 robot using a laser tracker."

Robotics and Computer-Integrated Manufacturing 29(1): 236-245.

O'Neil, K. A., Y.-C. Chen and J. Seng (1997). "Removing singularities of resolved motion rate control of

mechanisms, including self-motion." IEEE Transactions on Robotics Automation 13(5): 741-751.

Pan, Z., J. Polden, N. Larkin, S. Van Duin and J. Norrish (2010). Recent progress on programming methods

for industrial robots. ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th

German Conference on Robotics), VDE: 619-626

54

Schmidt, B. and L. Wang (2014). "Automatic work objects calibration via a global–local camera system."

Robotics and Computer-Integrated Manufacturing 30(6): 678-683.

Sciavicco, L. and B. Siciliano (2012). Modelling and control of robot manipulators, Springer Science &

Business Media: 106-109

Šoch, M. and R. Lórencz (2005). "Solving inverse kinematics–a new approach to the extended Jacobian

technique." Acta Polytechnica Journal of Advanced Engineering 45(2): 22-26.

Tao, P., S. Mustafa, G. Yang and M. Tomizuka (2015). "Robot work cell calibration and error

compensation." Handbook of Manufacturing Engineering Technology. London: Springer: 1995-2034.

Wampler, C. and L. Leifer (1988). "Applications of damped least-squares methods to resolved-rate and

resolved-acceleration control of manipulators." Journal of Dynamic systems, Measurement, and Control

110(1): 31-38.

Whitney, D. E. (1969). "Resolved motion rate control of manipulators and human prostheses." IEEE

Transactions on man-machine systems 10(2): 47-53.

Whitney, D. E. (1972). "The mathematics of coordinated control of prosthetic arms and manipulators."

Journal of Dynamic systems, Measurement, and Control 94(4): 303-309.

Yoshikawa, T. (1985). "Manipulability of robotic mechanisms." The International Journal of Robotics

Research 4(2): 3-9.

55

ACKNOWLEDGMENT

My deepest gratitude goes to Prof Duck Young Kim. Thank you for giving me the opportunity to learn and

advance in my career. I have learnt a lot under your guidance. You have been very patient with me in my

learning process, taught me how to be a good researcher, and most importantly taught me the importance

of hard work and consistency. I believe that the past two years have been a very defining stage in my career

as a researcher.

I would also like to express my sincere gratitude to Prof Namhun Kim and Prof Sang Hoon Kang for

agreeing to be my defense committee members. Their insight and guidance were highly appreciated.

My sincere thanks to my Smart Factory laboratory colleagues. They have helped me navigate life in South

Korea. They have been great friends and always there for me whenever I needed any help, whether in

academic endeavors or with life in general. I have enjoyed our pizza and barbecue outings and all the time

we spent together.

Last but not least I deeply thank my parents for their unending love and support in everything I do. My

daughter Merveille you are a constant source of inspiration. To my siblings, you believe in me and always

inspire me to be the best that I can be. And to Hana my best friend, I appreciate your love and support. This

journey has indeed been much easier with you by my side.

	Abbreviations
	CHAPTER 1 INTRODUCTION
	1.1 Background
	1.2 Motivation
	1.3 Objective
	1.4 Overview

	CHAPTER 2 LITERATURE SURVEY
	2.1 Robot Programming
	2.2 Kinematic modelling and forward kinematics
	2.3 Inverse kinematics
	2.3.1 Resolved Motion Rate Control
	2.3.2 Jacobian Transpose
	2.3.3 Jacobian Pseudoinverse
	2.3.4 Damped Least Square Inverse

	2.4 Robot Workcell Calibration

	CHAPTER 3 PATH REGENERATION
	3.1 Transformation Matrix Computation
	3.2 Path Feasibility Check and Regeneration
	3.2.1 Manipulability Index
	3.2.2 Closed Loop Inverse Kinematics

	3.3 Summary of the Method
	3.4 Simulink Model
	3.5 Example

	CHAPTER 4 CASE STUDY
	4.1 Experimental Setup
	4.2 Experiments

	CHAPTER 5 CONCLUSION AND FUTURE RESEARCH
	5.1 Conclusion
	5.2 Future Research

	References
	Acknowledgment

<startpage>14
Abbreviations 1
CHAPTER 1 INTRODUCTION 2
 1.1 Background 2
 1.2 Motivation 4
 1.3 Objective 6
 1.4 Overview 7
CHAPTER 2 LITERATURE SURVEY 8
 2.1 Robot Programming 8
 2.2 Kinematic modelling and forward kinematics 9
 2.3 Inverse kinematics 11
 2.3.1 Resolved Motion Rate Control 14
 2.3.2 Jacobian Transpose 15
 2.3.3 Jacobian Pseudoinverse 16
 2.3.4 Damped Least Square Inverse 18
 2.4 Robot Workcell Calibration 20
CHAPTER 3 PATH REGENERATION 24
 3.1 Transformation Matrix Computation 24
 3.2 Path Feasibility Check and Regeneration 28
 3.2.1 Manipulability Index 30
 3.2.2 Closed Loop Inverse Kinematics 32
 3.3 Summary of the Method 33
 3.4 Simulink Model 35
 3.5 Example 37
CHAPTER 4 CASE STUDY 41
 4.1 Experimental Setup 41
 4.2 Experiments 46
CHAPTER 5 CONCLUSION AND FUTURE RESEARCH 50
 5.1 Conclusion 50
 5.2 Future Research 51
References 52
Acknowledgment 55
</body>

