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Abstract 

 

Alzheimer’s disease (AD) remains a formidable threat against mankind since its introduction in 1906. 

As a progressive neurodegenerative disease responsible for the majority of dementia cases, AD remains 

cureless. Along with the lack of an effective cure, the aging world population depicts an imminent 

epidemic and pessimistic outlook regarding the disease. Research endeavors dedicated to understanding 

the etiopathology of AD and developing therapeutics have led to significant progress in our 

comprehension of AD. However, attempts of formulating treatments with the ability to stop AD 

progression have proven futile. More specifically, various pathological factors have been identified and 

implicated as sources of neurodegeneration leading to AD. These include amyloid- (A), metal ions, 

acetylcholinesterase (AChE), and reactive oxygen species (ROS) indicated in the various hypotheses 

attempting to elucidate the main cause of AD: amyloid cascade, metal ion, cholinergic, and oxidative 

stress, respectively. Therapeutic approaches targeting these individual pathogenic features have yet to 

result in clinically effective treatment strategies. Such failures have led to a shift in paradigm to 

understand the interconnections between these pathological factors to account for AD’s complexity. 

Intricacies of the pathogenic elements of AD present experimental challenges in investigating their 

inter-relationships. Multifunctional molecules capable of targeting multiple pathogenic factors of AD 

could, therefore, be beneficial in our attempt to understand AD. In this thesis, we first aim to identify 

molecular frameworks conferring multifunctionality against multiple pathogenic factors of AD [i.e., A, 

metal-bound A (metal–A), AChE, and ROS] from the structures of both natural products and 

synthetic molecules. Such chemical entities will be helpful in furthering our understanding of the 

relationships among the different pathological factors and assist the development of physiologically 

viable chemical tools with suitable bioapplicability. We hope that these findings contribute towards an 

improved capacity for experimentally examining the complex network of AD pathology and a closer 

understanding of its inner workings. 

In Chapter 1, we briefly introduce the multifaceted pathology of AD and discuss the various 

pathogenic elements implicated in driving the development and progression of the disease. In Chapter 

2, a naturally occurring isoflavone, orobol, is presented as a multifunctional molecule with modulative 

reactivity against four specific pathogical factors of AD: metal-free A, metal–A, ROS, and AChE. In 

chapter 3, the molecular structures of 12 flavonoids, selected based on three multifunctional flavonoids 

(i.e., quercetin, luteolin, and orobol) were examined with respect to their reactivities against metal-

free A, metal–A, ROS, and AChE. This study aimed to identify the molecular features responsible 

for instilling these flavonoids with the ability to modulate the aforementioned targets. Four major 

structural attributes were identified to contribute to such versatility of select flavonoids. In chapter 4, 

pre-approved anti-depressant molecules were explored as candidates of drug repurposing to discover 
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new multifunctional molecules against AD and increase our database of structural moieties associated 

with multifunctionality. The versatile reactivity of three synthetic compounds were demonstrated 

against Cu(II)–A, free radicals, and AChE. 

Overall, we present a number of multifunctional chemicals capable of targeting several major 

pathogenic elements of AD. We believe that these molecules will contribute significantly towards our 

efforts to better comprehend the multifaceted etiopathology of AD by serving as chemical tools that 

allow us to directly perform experiments regarding the pathogenic connections between metal-free A, 

metal–A, ROS, and AChE at in vitro and possibly clinical stages. Moreover, identification of the 

structural features instilling multifunctionality could facilitate the design and development of 

biocompatible therapeutics capable of simultaneously targeting multiple pathologies of AD and their 

connections. Our approaches will provide the foundation for developing effective and efficient methods 

of elucidating fundamental connections among the pathological factors of AD at the molecular level 

and identifying efficacious therapeutics against AD capable of controlling the progression of 

neurodegeneration. 
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Figure 1.1. The production, aggregation, and amino acid sequence of A. (a) Non-amyloidogenic and 

amyloidogenic processing of the amyloid precursor protein (APP). (b) Aggregation pathways of A. (c) 

Amino acid sequence of A40 and A42; (blue) self-recognition site of A; (red) two additional 

hydrophobic amino acid residues at the C-terminus for A42. 

 

Figure 1.2. Six isoforms of tau and their structural characterizations based on amino acid domains. N1 

and N2: N-terminal projection domains; R1, R2, R3, and R4: Microtubule binding repeat domains. 

 

Figure 1.3. Feasibility of the presence of A and metal ions [e.g., Cu(II) and Zn(II)] at the synaptic 

cleft upon neurotransmission. 

 

Figure 1.4. Proposed metal coordination to A. Binding modes of (a) Cu(II)–A (component I and II) 

and (b) Zn(II)–A. 

 

Figure 1.5. Schematic representation of the multifaceted pathology of neurodegenerative diseases. (a) 

Proteopathy of wild-type (wt) or mutant intra- or extracellular unfolded proteins/peptides. Unfolded 

monomers partially fold and aggregate into oligomers and fibrils. Oligomers may interact with various 

organelles (e.g., mitochondria) or cell membrane disrupting Ca(II) homeostasis and signaling. (b) 

Dyshomeostasis of metal ions that, depending on the disease, can bind to misfolded proteins/peptides 

affecting their aggregation or accumulate in the brain or spinal cord. (c) Elevated oxidative stress 

resulting from redox-active metal ions (i.e., Cu and Fe) via Fenton-like reactions or ROS escaping from 

damaged mitochondria. ROS can attack cellular proteins, nucleic acids, and lipids causing oxidative 

damage. (d) Mitochondrial dysfunction and defects in energy metabolism that can occur as a 

consequence of protein/peptide aggregates. (e) Aberrant axonal transport from hyperphosphorylated 

microtubule binding proteins, mutant tubulin proteins, or mutant motor proteins. (f) Pervasive, sustained 

chronic inflammation with reactive microglia and astrocytes as well as altered inflammatory signaling 

pathways. 

 

Figure 2.1. Rational identification of orobol as a multifunctional small molecule for regulating four 

pathological factors implicated in AD (i.e., metal-free A, metal–A, free radicals, and AChE). 

 

Figure 2.2. Influence of orobol on the formation of metal-free and metal-induced A42 aggregates. (a) 

Scheme of the inhibition experiment. (b) Analysis of the MW distribution of the resultant A42 species 

by gel/Western blot using an anti-A antibody (6E10). (c) TEM images of the samples from (b). 

Conditions: [A42] = 25 μM; [CuCl2 or ZnCl2] = 25 M; [orobol] = 50 M; 20 mM HEPES, pH 7.4 

[for metal-free and Zn(II)-containing samples] or pH 6.6 [for Cu(II)-added samples], 150 mM NaCl; 

37 °C; 24 h incubation; constant agitation. 

 

Figure 2.3. Influence of orobol on the disassembly and/or aggregation of preformed metal-free and 

metal-associated A42 aggregates. (a) Scheme of the disaggregation experiment. (b) Analysis of the 

molecular weight distribution of the resultant A42 species by gel/Western blot with an anti- A antibody 

(6E10). (c) TEM images of the samples from (b). Conditions: [A42] = 25 M; [CuCl2 or ZnCl2] = 25 

M; [orobol] = 50 M; 20 mM HEPES, pH 7.4 [for metal-free and Zn(II)-containing samples] or pH 



XI 

6.6 [for Cu(II)-added samples], 150 mM NaCl; 37 °C; 24 h incubation; constant agitation. 

 

Figure 2.4. Interactions of Oro with metal-free A42. (a) Interaction of Oro with soluble metal-free 

A42, monitored by ESI-MS. Inset: Zoom-in spectrum from 1860 to 1880 m/z (indication of [2A42 + 

Oro]5+ at 1863 m/z). (b) Analysis of the IM-MS spectra of [2A42]5+ (black) and [2A42 + Oro]5+ 

(purple). Conditions: [A42] = 20 μM; [Oro] = 100 μM; 100 mM ammonium acetate, pH 7.4; 3 h 

incubation; no agitation. 

 

Figure 2.5. Interactions of Oro with Cu(II) and Cu(II)−A42. (a) Cu(II) binding of Oro in a buffered 

solution. UV−Vis spectra of Oro (black) with up to 5 equiv of Cu(II) (blue). Conditions: [Oro] = 25 

μM; [CuCl2] = 0, 12.5, 25, 50, and 125 M; pH 7.4; room temperature. Interaction of Oro with soluble 

Cu(II)−A42, monitored by (b) ESI-MS and (c) IM-MS. (d) Tandem mass spectrometric analysis in 

conjunction with CID of the singly oxidized A42 (1511 m/z). Conditions: [A42] = 20 M; [CuCl2] = 

20 M; [Oro] = 100 M; 100 mM ammonium acetate, pH 7.4; 3 h incubation; no agitation. 

 

  

 

Figure 3.1. Rational selection of 12 flavonoids. The presented library of flavonoids was chosen based 

on structural variations, including the number and position of hydroxyl groups and the location of the 

B ring, to identify the structural features responsible for reactivities against multiple pathological factors 

found in AD [i.e., metal-free A, metal–A, free radicals, and AChE]. 

 

Figure 3.2. Interaction of the flavonoids with Cu(II) monitored by UV–Vis spectroscopy. Conditions: 

[flavonoid] = 25 M; [CuCl2] = 0, 12.5, 25, 50, and 125 M; 20 mM HEPES, pH 6.6, 150 mM NaCl 

or EtOH (for Chr and HF). 

 

Figure 3.3. Influence of the flavonoids on the aggregation of metal-free and metal-treated A42. (a) 

Scheme of the inhibition experiment. (b) Analysis of the MW distribution of the resultant A42 species 

by gel/Western blot with an anti-A antibody (6E10). (c) TEM images of the samples from (b). 

Conditions: [A42] = 25 M; [CuCl2 or ZnCl2] = 25 M; [flavonoid] = 50 M; 20 mM HEPES, pH 7.4 

[for metal-free and Zn(II)-containing samples] or pH 6.6 [for Cu(II)-added samples], 150 mM NaCl; 

37 °C; 24 h incubation; constant agitation. 

 

Figure 3.4. Impact of the flavonoids on the disassembly and aggregation of preformed metal-free and 

metal-added A42 aggregates. (a) Scheme of the disaggregation experiment. (b) Analysis of the MW 

distribution of the resultant A42 species by gel/Western blot with an anti-A42 antibody (6E10). (c) 

TEM images of the samples from (b). Conditions: [A42] = 25 M; [CuCl2 or ZnCl2] = 25 M; 

[flavonoid] = 50 M; 20 mM HEPES, pH 7.4 [for metal-free and Zn(II)-containing samples] or pH 6.6 

[for Cu(II)-added samples], 150 mM NaCl; 37 °C; 24 h incubation; constant agitation. 

 

Figure 3.5. Scavenging activity of the flavonoids against free organic radicals determined by the TEAC 

assay and their computed redox potentials. (a) Summary of the TEAC values for the flavonoids and 

their computed redox potentials (E0 vs. SHE). Conditions: EtOH; 25 °C; abs = 734 nm. aThis value was 

obtained from reference 29. bn.d., not determined. The TEAC values of Api, Chr, and HIF could not 

be obtained due to limited solubility or marginal antioxidant activity levels undetected under our 
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experimental conditions. (b) Isosurface plots (isodensity value = 0.03 a.u.) of the HOMO energy for 

Que, Lut, and Oro and their dihedral angles between two planes calculated from carbon coordinates of 

the A/C rings and the B ring, respectively. 

 

Figure 3.6. Inhibitory activity of the flavonoids against AChE. (a) Summary of the IC50 values of the 

flavonoids against eeAChE determined by a fluorometric assay. (b) Intermolecular interactions between 

the flavonoids and AChE (PDB 1C2O) observed by aMD simulations. (c) Visualization of the 

flavonoid–AChE interactions modeled through aMD simulations. N, O, and H (from hydroxyl groups) 

atoms in the flavonoid ligand are depicted in blue, red, and white, respectively. an.d., not determined. 

Inhibitory activity of Api, Chr, HF, and HIF against AChE was too low to be detected under our 

experimental conditions and, thus, an accurate IC50 value could not be determined. 

 

Figure 3.7. Alternative binding modes of Que, Lut, and Oro against AChE (PDB 1C2O) modeled 

through aMD simulations and their % populations (# of snapshots for each cluster / # of snapshots in 

the total simulation × 100). 

 

Figure 3.8. Computational parameters of the interactions between the selected flavonoids and AChE 

(PDB 1C2O). (a) Closest distance between hydroxyl groups in the flavonoids and the heteroatom (X = 

O or N) in the binding pocket. an.a., not available. Error bars represent the standard deviation. (b) 

Calculated mean values for the selected binding determinants: the minimum distance from S203, the 

number of hydrogen bonding, the SASA of the hydrophobic residues in the binding pocket, and the 

number of water molecules in the binding pocket. 

 

Figure 3.9. Possible binding modes of DHF and HF against AChE (PDB 1C2O) generated by aMD 

simulations and their % populations (# of snapshots for each cluster / # of snapshots in the total 

simulation × 100). 

 

Figure 3.10. Evaluation of flavonoid-binding determinants against AChE (PDB 1C2O). (a) Closest 

distance between the flavonoid and S203 of the catalytic triad. (b) Box plot of the number of hydrogen 

bonding between the flavonoid and AChE. The box extends to the top 25% and bottom 75% of the 

clustered data. The black line represents the mean value of each computed case. (c) SASA distribution 

of the hydrophobic residues in the active site. (d) Average count of water molecules in the binding 

pocket for the apo and holo cases. Error bars represent the standard deviation. 

 

Figure 4.1. Chemical structures of the selected drug repurposing candidates. 

 

Figure 4.2. Effects of the repurposing candidates on the formation of A40 and A42 aggregates in the 

absence and presence of metal ions [i.e., Zn(II) and Cu(II)]. (a) Scheme of the inhibition experiments. 

(b) Analysis of the MW distribution of the resultant A species by gel/Western blot using an anti-A 

antibody (6E10). Conditions: [A40 or A42] = 25 μM; [CuCl2 or ZnCl2] = 25 M; [compound] = 50 

M; 20 mM HEPES, pH 7.4 [for metal-free and Zn(II)-containing samples] or pH 6.6 [for Cu(II)-added 

samples], 150 mM NaCl; 37 °C; 24 h incubation; constant agitation. 

 

Figure 4.3. Impact of the repurposing candidates on preformed metal-free and metal-treated A40 and 

A42 aggregates. (a) Scheme of the disaggregation experiment. (b) Analysis of the molecular weight 

distribution of the resultant A42 species by gel/Western blot with an anti-A antibody (6E10). 
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Conditions: [A40 or A42] = 25 M; [CuCl2 or ZnCl2] = 25 M; [compound] = 50 M; 20 mM HEPES, 

pH 7.4 [for metal-free and Zn(II)-containing samples] or pH 6.6 [for Cu(II)-added samples], 150 mM 

NaCl; 37 °C; 24 h incubation; constant agitation. 

 

Figure 4.4. UV–Vis spectra monitoring the interactions between the repurposing candidates and Cu(II) 

in solution. Conditions: [Compounds] = 50 M; [CuCl2] = 0, 25, 50, 100, and 250 M; 20 mM HEPES, 

pH 7.4, 150 mM NaCl; room temperature. 

 

Figure 4.5. Mass spectrometric analyses of the interactions between the repositioning candidates and 

metal-free and Cu(II)-bound A. (a) ESI-MS data of the Cu(II)–A40 samples. (b) ESI-MS data of the 

Cu(II)–A42 samples. Conditions: [A] = 100 M; [CuCl2] = 100 M; [Compounds] = 200 M; 20 mM 

ammonium acetate, pH 7.4; 37 C; 3 h incubation; no agitation. 

 

Figure 4.6. Mass spectrometric analyses of the interactions between the repositioning candidates and 

metal-free A. (a) ESI-MS data of the metal-free A40 samples. (b) ESI-MS data of the metal-free A42 

samples. Conditions: [A] = 100 M; [Compounds] = 200 M; 20 mM ammonium acetate, pH 7.4; 37 

C; 3 h incubation; no agitation. 
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1.1. Introduction 

In recent decades, we have experienced technological advancements at a pace unmatched in history. In 

the field of Chemical Biology, significant strides have been made with our ability to treat various types 

of diseases, previously considered terminal. As a result, global mortality rates have declined 

significantly. This turn of events is evidence of our scientific capabilities in combatting disease through 

diverse approaches including those surrounding Chemical Biology. In face of such success, a more 

formidable challenge has surfaced behind the aging population of the world. As a byproduct of our 

technological advancement, increased life expectancy has led to a general transition of our population 

with a skewed demographic towards older generations. This phenomenon was accompanied by the 

increased prevalence of a more insidious disorder with a greater societal and emotional cost: 

Alzheimer’s disease (AD). In this thesis, we first describe our current understanding of AD and the 

shortcomings in our comprehension and capacity to treat the disease. Thereafter, our multidisciplinary 

research in search of multifunctional compounds capable of simultaneously targeting multiple 

pathogenic elements of the disease is presented. 

 

1.2. Alzheimer’s disease (AD) 

AD is a progressive neurodegenerative disease, predominantly responsible for dementia.1 Symptoms of 

AD manifest memory loss and deterioration of cognitive function. An anticipated in AD incidents 

premised on the aging world population and absence of effective treatments depict the potential 

detriment of the disease against society.1 Currently available therapeutics for AD are comprised of 

acetylcholinesterase (AChE) inhibitors and N-methyl-D-aspartate receptor (NMDAR) antagonists 

offering temporary relief against the symptoms and progression of the disease.1,2 These therapeutic 

approaches utilizing focus on renormalizing the levels of cerebral neurotransmission (i.e., cholinergic 

and glutamatergic); however, they are unable to arrest the progressive neurodegeneration.1 Therefore, 

researchers have been attempting to pinpoint the fundamental cause of the disease. The shear possibility 

of connected interactions among various factors depicts an incredible network of AD’s pathology. 

Recent efforts to solve the mystery behind what is driving neurodegeneration in AD has led to 

substantial progress in our understanding of the implicated pathogenic factors. The network among 

them, however, are only beginning to be explored. For instance, two major factors of AD, amyloid-β 

(Aβ) and metal ions, have been vigorously investigated for their contribution towards AD, revealing 

oligomeric Aβ species, gain-of-toxicity of metal ions, and loss-of-function in biological components 

through metal ion miscompartmentalization as plausible principal causes of AD. In the following 

sections, four major aspects of AD will be discussed and explored: cholinergic deficit, proteopathy (Aβ 

and tau), metal ion dyshomeostasis, oxidative stress, and metal-bound Aβ (metal–Aβ).  
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1.2.1. Cholinergic deficit 

Substantial degradation of the hippocampus and cerebral cortex present a physiological hallmark of AD 

associated with progressive memory loss. More specifically, hippocampal impairments are strongly 

connected to a retrograde disruption of episodic memories. The hippocampal cholinergic system is 

subject to notable alterations throughout the various stages of the sleep-wake cycle, critical in memory 

formation, consolidation, and recall.3 Acetylcholine (ACh) is the acting neurotransmitter of the 

cholinergic system released into the synapse upon depolarization to bind to post-synaptic receptors for 

signal propagation. Implicated as a major neural factor in learning and memory, ACh is also reported to 

set the dynamics of cortical networks.4 Thereafter, ACh is released from the receptor and is subject to 

rapid hydrolysis catalyzed by AChE. AChE exhibits remarkable efficiency in breaking down ACh at 

the synaptic cleft to rapidly terminate signaling. With this understanding of the cholinergic nervous 

system, its role in memory, and the observation of decreased ACh levels in the brains of AD patients, 

researchers have explored the potential pathological role of AChE. Testing this notion further, AChE 

inhibition was evaluated as a potential therapeutic strategy against AD. Clinical studies revealed that 

inhibiting the activity of AChE led to an increase in the ACh concentration and temporarily improved 

cognitive function and memory in AD patients.5 Utilization of AChE inhibitors as symptomatic 

remedies followed the introduction of the cholinergic hypothesis pinpointing the deficit of ACh in the 

brains of AD patients as the main culprit behind the observed neurodegeneration and memory loss.6  

 Despite such progress in our comprehension regarding the cholinergic pathology of AD, 

pharmaceutical efforts targeting this pathway have proven unsuccessful in stopping the progression of 

AD-associated neurodegeneration. These failures have led researchers to re-evaluate the cholinergic 

hypothesis in two schools of thought:7,8 (i) the cholinergic deficit may be a consequence of the 

development of the detrimental AD pathology that directly results in the symptomatic memory loss and 

cognitive deterioration and (ii) the AD pathology manifests a much more complex network of 

interconnected causative factors (vide infra).1 

 

1.2.2. Proteopathy 

The proteopathic implications of AD represents a major portion of the research efforts allocated to 

understand its pathogenesis. Although a number of proteins have been proposed to be involved in 

initiating the pathological development of AD, two main proteins are at the center of the proteopathic 

facet the disease: A and tau. In this section, we will briefly discuss the pathogenic role of these two 

proteins with particular respect to their aggregation. 

 

1.2.2.1. A 

As the main consistent of senile plaques, A is a proteolytic product of the amyloid precursor protein 

(APP).9 Various aspects of A have been investigated in relation to AD: (i) production, (ii) aggregation 
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and accumulation, (iii) interactions with biological and chemical components (e.g., metal ions and 

AChE), and (iv) neurotoxic pathways.1,10,11 Generation of A involves a sequential cleavage of APP via 

- and -secretases producing multiple A isoforms, among which A40 and A42 are known to be 

predominant (Figure 1.1).12,13 Changes in the cleavage site catalyzed by -secretase elicit the deviation 

in length of different A isoforms.14 The direct participation of secretases in A production has led to 

attempts in regulating their activities to control the cerebral levels of A.15,16 Such endeavors, however, 

have presented a lack of clinical efficacy and unforeseen consequences: for instance, -secretase 

inhibitors negatively affect notch signaling and invoke critical cognitive decline.17 

 

 

Figure 1.1. The production, aggregation, and amino acid sequence of A. (a) Non-amyloidogenic and 

amyloidogenic processing of the amyloid precursor protein (APP). (b) Aggregation pathways of A. (c) 

Amino acid sequence of A40 and A42; (blue) self-recognition site of A; (red) two additional 

hydrophobic amino acid residues at the C-terminus for A42. 

 

A can be found in the kidney, lung, and brain with the brain exhibiting higher concentrations.18 

Extracellular amyloid plaques represent a large portion of the A load in the brain; however, A can 

also be found intracellularly.19 Although the innate biological role of A has not been clearly established, 

research suggests its involvement in lipid homeostasis,20 memory regulation,21 and metal transport.22 

The heterogeneity of A stemming from its intrinsically disordered structure presents experimental 

obstacles in the form of heterogeneity.23 To facilitate the efforts in elucidating the sectional functions of 

A, researchers have utilized fragments of full-length A peptides (i.e., A40 and A42). Recent 

fragmental analyses of A have reported the structural significance of specific A segments: (i) A1–16 

is involved in metal coordination (vide infra);24-26 (ii) A17–21 is the self-recognition site responsible for 

driving self-induced aggregation through hydrophobic interactions;27,28 (iii) A25–35 is indicated as the 

neurotoxic fragment contributing towards aggregation.29,30 

Aggregation is a key characteristic of A with numerous pathogenic implications. Different Aβ 
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conformers (i.e., monomers, dimers, oligomers, protofibrils, and fibrils; Figure 1.1b) exist throughout 

its aggregation pathways.11,13,31 Research regarding A aggregation and its mechanistic details indicate 

a complex process contrary to the classical homogeneous primary nucleation.32 In vitro A aggregation 

can be categorized into three distinct phases: (i) nucleation or lag, (ii) elongation or growth, and (iii) 

plateau or saturation.11,13,33-35 Under physiological conditions, A is present at ca. nM levels in the 

brain;36,37 however, regional increases in A concentration to μM levels through membrane association, 

macromolecular crowding, or accumulation in organelles can initiate the aggregation cascade of Aβ 

through a two-step nucleation mechanism.38 The first step involves seed formation induced by initial 

hydrophobic interactions between the self-recognition sites of monomeric Aβ entailing a β-sheet 

transition.38-40 The second step of nucleation manifests a first-order conformational rearrangement to 

produce larger oligomers exhibiting amyloidogenic features and toxicity.38 Such oligomeric species of 

Aβ subsequently undergo rapid elongation to construct protofibrils and fibrils. Fragmentation of fibrils 

and secondary nucleation further drive Aβ aggregation during the elongation and plateau phases.11,32,41,42 

An important feature of Aβ accumulation to consider is the transmissibility of Aβ seeds, which could 

significantly foster the propagation of Aβ aggregation at regions far removed from the site of initial 

nucleation.11,43 

The two major isoforms of Aβ, Aβ40 and Aβ42 (Figure 1.1c), exhibit distinct aggregation 

pathways.44 Two additional hydrophobic amino acid residues at the C-terminal domain of Aβ42 (i.e., I41 

and A42) appear to be responsible for the thermodynamic and kinetic differences in their 

aggregation.45,46 Research indicate A42’s superior propensity for aggregation, relative to that of A40, 

through multiple experimental techniques (e.g., fluorescence assay and electron microscopy).44,47 A 

computational study reported in 2017 comparatively analyzed the free energy landscapes of A40 and 

A42 aggregation and demonstrated a more downhill free energy profile of the latter isoform.45 Such 

notions are further supported by the fact that amyloid plaques can often be found in the AD-affected 

brains to mainly contain A42, despite the presence of A40 at greater levels.47,48 Based on the dominant 

role of its aggregation, A42 is presumed to initiate the amyloidogenic pathology in AD by triggering 

the nucleation process at critical aggregation concentrations (ca. 90 nM).49-51 Both Aβ40 and Aβ42 can 

exist as stable structured oligomers (e.g., trimers and tetramers) at concentrations as low as ca. 13 μM, 

with A42 oligomers exhibiting greater stability.45,52-54 Bitan et al. reported an isoform-dependent 

predisposition for early oligomer conformations (trimer and tetramers for A40 and pentamer and 

hexamer for A42), suggesting distinct oligomerization pathways.55 Furthermore, clinical studies have 

identified a connection between the cerebral A42/A40 ratio and cognitive deterioration in AD.56-58 

These observations signify the isoform-dependent association of Aβ with AD.  

Aβ oligomers have been increasingly viewed as neurotoxic species responsible for inducing 

AD-associated neurodegeneration.11 The heterogeneity of Aβ oligomers and their indefinite identity and 
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structure, however, present major obstacles in elucidating their conformation-dependent role in AD 

pathology. Nanomolar concentrations of soluble Aβ oligomers reportedly deteriorate synaptic plasticity, 

hinder long-term potentiation, invoke spine retraction from pyramidal cells, and impair spatial 

memory.59 The molecular mechanisms of Aβ oligomer-induced neuronal detriments include (i) receptor-

mediated pathways involving cellular prion protein, APP, NMDAR, -amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor, metabotropic glutamate receptor (mGluR), 7 nicotinic acetylcholine 

receptor, and insulin receptor; (ii) -barrel pore or channel formation leading to ion dyshomeostasis and 

Ca(II) overload; (iii) membrane permeabilization.11,60,61 Intracellular Aβ oligomers can also disrupt 

neuronal homeostasis by inducing endoplasmic reticulum (ER) stress, calcium ion dyshomeostasis, 

mitochondrial dysfunction, and, ultimately, apoptosis.11 The physiological significance and specific 

conformational details of oligomeric A species remain inconclusive and require research regarding 

oligomer-specific influences towards AD.  

The precedence of Aβ pathology to the onset of other pathological features implicated to disrupt 

neuronal homeostasis is supported by growing evidence indicating that intraneuronal Aβ accumulation 

occurs during the initial stages of AD.32 Interrelationships between Aβ and other pathogenic factors 

(e.g., AChE, metal ions, and ROS) place Aβ at the center of an intricate network eliciting AD-associated 

neuronal degradation.1 Ratification of these notions, however, requires a substantial amount of 

multidisciplinary research ranging from molecular-level to clinical endeavors. Such is the challenge in 

understanding the multi-faceted pathology of AD. Early accumulation and deposition of various Aβ 

species (e.g., soluble oligomers and insoluble fibrils) is often considered an initiator for the cascade of 

AD pathogenesis.62 Therefore, approaches to regulate Aβ formation, aggregation, degradation, and 

clearance are currently viewed as potential preventative measures against neurodegeneration in AD.63 

These prevention tactics, however, face the challenge of identifying and diagnosing preclinical AD 

cases, for which the clinical criteria are yet to be established.64 The amyloid cascade hypothesis, 

presently under scrutiny regarding its therapeutic significance, should not be disregarded based on its 

connection to AD. 

 

1.2.2.2. Tau 

Tau is the main component of neurofibrillary tangles (NFTs), another histopathological hallmark of AD. 

Unlike its proteopathic counterpart A, tau exhibits essential neurobiological function linked to 

neuronal homeostasis. Tau’s contribution in regulating microtubule assembly and stability are critical 

in neuronal growth and function.65 Recent studies indicate additional tau functions: modulation of 

axonal transport and maintaining genomic DNA integrity.1 Besides its functional roles, tau’s connection 

to the fatal pathology of AD has gathered a great deal of attention.  

The six isoforms of tau range from 352 to 441 amino acid residues in human brains manifesting 

different combinations of structural domains (Figure 1.2). Tau can be divided into four major domains: 
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Figure 1.2. Six isoforms of tau and their structural characterizations based on amino acid domains. N1 

and N2: N-terminal projection domains; R1, R2, R3, and R4: Microtubule binding repeat domains. 

 

projection (N1 and N2), proline-rich, microtubule-binding repeat (MTBR), and C-terminal. The 

MTBRs represent three to four imperfectly repeated sequences (R1-R4) (Figure 1.2). Numerous 

biophysical methods such as nuclear magnetic resonance (NMR), circular dichroism, and Fourier 

transform infrared spectroscopies have determined that full-length tau is an intrinsically disordered 

protein without a unique 3D structure.66 This finding is rationalized by two main physicochemical 

properties: (i) excess in the number of charged residues (ca. 30%) and (ii) relatively small number of 

hydrophobic residues in the primary sequence of tau (ca. 45%).67 Furthermore, the proline-rich domain 

further contributes to the disordered structure of tau as proline serves as a secondary structure breaker. 

 The self-assembly process of tau into paired helical filaments (PHFs) is accompanied by 

drastic conformational transitions from natively disordered structures to highly ordered -structures, 

referred to as amyloidogenesis.68 Like A, amyloid generation of tau can be fundamentally depicted via 

a two-phase mechanism: (i) the rate-limiting nucleation phase responsible for the observed lag time 

prior to notable aggregate formation and (ii) the subsequent rapid elongation phase during which the 

formation and growth of fibrils take place. Two aggregation-prone hexapeptide segments, PHF6 

(VQIVYK) and PHF6* (VQIINK), located in the MTBRs are essential for productive nucleation.69 

Interestingly, in addition to PHFs, tau was also observed to form straight filaments (SFs). A recent cryo-

EM study revealed important polymorphic aspects of tau amyloid formation. The atomic models of 

PHFs and SFs derived from the brain of AD patient demonstrated that the structural polymorphism 

between PHFs and SFs results from the differences in packing between two protofilaments. The two 

protofilaments of PHFs form identical structures with helical symmetry; however, in SFs, the two 

protofilaments pack asymmetrically. 

It is worth noting that, in addition to amyloid fibrils, tau is capable of forming various types of 

aggregates such as amorphous aggregates, oligomers, and protofibrils in a condition dependent 

manner.70-72 Ostwald ripening describes the kinetic and thermodynamic control of aggregation behavior: 

soluble tau undergo oligomerization or liquid phase separation prior to fibrillation. Among the different 

types of tau assemblies, oligomers are implicated as the toxic species possibly responsible for directly 
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disrupting neuronal homeostasis.70 The aggregation of amyloidogenic proteins is strongly influenced 

by various environmental factors and the interactions with other molecules including proteins. Different 

types of aggregates can be generated as a result of altered ambient conditions such as pH, temperature, 

and ionic strength.72-74  

Interestingly, recent studies suggest that ambient conditions were also of critical importance for 

the liquid-liquid phase separation (LLPS) of a variety of pathological proteins.75 LLPS is a physical 

separation of a liquid into two divisible phases. Soluble proteins in solution can undergo phase 

separation by means of forming liquid droplets. Soluble tau has been reported for its ability to form 

liquid droplets both in vitro and in vivo, which denotes significant implications in tau’s biological 

functions and abnormal aggregation. With the clinical failures of A-centric therapeutic approaches, a 

surge in tau-related AD research has been observed likely due to the direct sptial and temporal 

connections between tauopathy and neurodegeneration followed by the manifestation of notable AD 

symptoms such as memory loss. Much more research regarding the exact nature of tau’s neurobiological 

function and pathogenesis with respect to post-translational modifications, aggregation, and 

microtubule stabilization is required to complete our comprehension. Moreover, numerous reports 

suggest a connection between A and tau further complicating the matter by including tau in the 

complex network of AD pathologies. 

 

1.2.3. Metal ion dyshomeostasis 

The pertinence of metal ions in neurobiology is manifested by the elevated concentrations of metal ions 

in the brain, relative to other parts of the body.1,76-78 Cerebral distributions of metal ions exhibit 

substantial heterogeneity with a large variance in compartmental metal ion concentrations.77 The brain 

presents a dynamic system with immeasurable intricacy with numerous pathways maintaining 

homeostasis, such as the blood-brain barrier (BBB).79 Therefore, the brain-specific function, regulation, 

transport, and metabolism of transition metal ions are not yet fully understood.76 As redox-active 

components of enzymes and structural anchors stabilizing a myriad of proteins, metal ions are involved 

in a wide range of biological roles.1,76 Synaptic release of transition metal ions upon signal transduction 

indicate their regulatory roles in neurotransmission.78 In contrast, neurotoxicity of metal ions through 

the overproduction of ROS via Fenton-like reactions and impediment of vital cellular pathways under 

pathological conditions present their potential to contribute towards neurodegeneration.1,76,80-82  For 

these reasons, strict control of metal ion levels balancing its functionality and toxicity is crucial in proper 

neuronal function. Disruption of this balance leading to metal ion dyshomeostasis and 

miscompartmentalization are a key characteristic of AD.1,82-84 Among transition metal ions, Cu(II) and 

Zn(II) have been receiving attention as key contributors to AD-associated neurodegeneration. 

 Challenges in selectively monitoring the levels of metal ions in the brains of live patients make 

it difficult to directly evaluate the region-specific effects of metal ion dyshomeostasis in a 
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physiologically relevant manner. Therefore, novel diagnostic tools allowing the selective real-time 

assessment of cerebral metal ion concentrations could prove useful in investigating how metal ion 

dysregulation affects neuronal homeostasis and degradation in a healthy brain. Distinguishing the 

cerebral regions heavily impacted in different stages of AD could also offer the ability to develop 

personalized therapeutic approaches to re-establish metal ion homeostasis. 

Metal ion homeostasis presents an intricate biochemical balance critical for cell survival 

between their functionality and toxicity. Neurons exhibit greater susceptibility to pathological changes 

in their environment (e.g., oxidative stress and accumulation neurotoxins) brought upon by the 

disruption of metal ion homeostasis.85-89 Based on such notions, chelation therapy is considered a viable 

option for preventing neuronal deterioration and cognitive decline. Clinical studies evaluating the 

therapeutic efficacy of metal chelators against AD, however, have yet to result in the development of a 

drug capable of stopping disease progression.84 Such outcomes substantiate the complexity of AD 

pathogeny portraying an interconnected network of multiple pathologies synergistically intertwined to 

aid in each other’s exacerbation and direct neurodegeneration. Among them, the relationship between 

Aβ and metal ions has been suggested as a plausible contributor in AD, as discussed in Section 1.2.5. 

 

1.2.3.1. Cu(I/II) 

Copper is a redox-active transition metal essential for vital enzymes [e.g., cytochrome c oxidase and 

Cu/Zn-superoxide dismutase (SOD)].90,91 The highest concentrations of Cu(I/II) can be found in the 

locus ceruleus at 110–400 μM and substantia nigra at 80–120 μM, at which Cu(I/II) is localized to nerve 

terminals and secretory vesicles.92,93 Ca(II)-dependent synaptic secretion of Cu(I/II) plays a regulatory 

role in the central nervous system (CNS): peptidergic neurons release Cu(I/II) upon depolarization at 

concentrations up to 15 μM to alter the permeability of granule membranes.93,94 Cu(I/II) neurotoxicity 

stems from its proclivity to engage in redox reactions to produce ROS (e.g., hydroxyl radicals) and 

oxidatively damage critical biological components, such as nucleic acids, proteins, and lipids.95,96 

Cu(I/II) can also induce toxicity by erroneously binding to metal ligands and disrupting their function. 

For instance, elevated levels of Cu(I/II) can inhibit the activity of lysosomal and cytoplasmic proteases 

in the cerebral cortex leading to compromised proteolytic degradation mechanisms in neurons, resulting 

in A accumulation and disruption of neuronal homeostasis.97 Through the various channels mentioned 

above, copper is considered a potential triggering agent in AD.1,98  

 

1.2.3.2. Zn(II) 

Zinc is a redox-inactive transition metal involved in the function of more than 200 proteins.93 With an 

ionic radius of 0.74 Å and borderline hardness, Zn(II) preferably binds to nitrogen and sulfur donor 

atoms.99 The neocortex and hippocampus exhibit the greatest concentrations of Zn(II). Reports have 

indicated neocortical Zn(II) concentrations of ca. 150–200 μM.93,100 The vesicles of mossy fibers of the 
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terminal boutons found in the hippocampus, a region critical for memory, manifest Zn(II) concentrations  

of 220-300 μM.101 The synaptic release of Zn(II) takes place during neurotransmission in a Ca(II)-

dependent manner from the mossy fiber terminals,102 reaching concentrations as high as ca. 300 μM.103 

Although the physiological role of synaptic Zn(II) remain unclear, researchers have suggested its 

involvement in controlling normal synaptic transmission, memory formation, and long-term 

potentiation.100,104,105 Toxic mechanisms of Zn(II) is comprised of interactions with receptors, transport 

proteins, and respiratory enzymes, in which Zn(II) can induce excitotoxicity, Ca(II) and Cu(II) 

dyshomeostasis, and cellular respiratory failure, respectively.106,107 

 

1.2.4. Oxidative stress 

O2 chemistry is an essential component of cellular homeostasis providing energy in the form of ATP. 

As byproducts of cellular respiration which 90% of takes place in mitochondria, reactive oxygen species 

(ROS) are generated from the inefficiency of the electron transport chain. Oxidative stress is defined as 

the imbalance between the levels of ROS and antioxidants in a system. Biologically relevant ROS 

include superoxide anion radical (O2
•−), hydroxyl radical (•OH), hydrogen peroxide (H2O2), 

hydroperoxyl radical (•O2H), singlet oxygen (1O2), peroxide (O2
2−), and hydroxide ion (OH−). Despite 

their capacity for cellular damage, ROS are critical for a variety of cellular functions such as receptor-

mediated signaling pathways, transcriptional activation, apoptosis regulation.1 A major source of 

cellular ROS, in the form of O2
•−, is a membrane-bound enzyme, nicotinamide adenine dinucleotide 

phosphate oxidase located in mitochondria and ER.108 

As an overencompassing pathogenic concept ubiquitous in a wide spectrum of diseases, 

oxidative stress often presents itself as a bridging factor between distinct pathological pathways. 

Oxidative stress is a prevailing component in the manifestation of multiple pathological factors (e.g., 

Aβ, metal ions, and metal−Aβ, vide infra) as well as their toxic mechanisms. Elevated levels of ROS 

can activate the c-Jun N-terminal kinase pathway, modulating the expression of β-secretase and A 

production as a result. In return, Aβ, metal ions, and metal−Aβ are capable of producing ROS under 

pathological conditions further exacerbating oxidative stress. 

 

1.2.5. Metal–A 

Pathological associations between Aβ and metal ions in AD, supported by the detection and 

characterization of the corresponding complexes, have led to the introduction of a new hybrid concept: 

metal–Aβ.109-114 Metal–Aβ bridges the pathogenic principles of the amyloid cascade and metal ion 

hypotheses, in which their intertwined pathologies are presumed to foster the development and 

progression of AD. The potential relationship between Aβ and metal ions has been suspected since the 

discovery of their colocalization in senile plaques.113 The extracellular presence of various A species 

and synaptic release of metal ions [e.g., Cu(I/II) and Zn(II)] at micromolar concentrations implicate the  
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Figure 1.3. Feasibility of the presence of A and metal ions [e.g., Cu(II) and Zn(II)] at the synaptic 

cleft upon neurotransmission. 

 

biochemical feasibility of their interaction and subsequent formation of metal–A complexes (Figure 

1.3).110,114 Research efforts are illuminating the different facets of the connection between Aβ and metal 

ions, including metal–Aβ complexation, aggregation, and their toxic mechanisms. 

Aβ and metal ions manifest a bilateral relationship in AD. Levels of Aβ are influenced by Cu(II) 

and Zn(II) through their impact on APP processing, Aβ clearance, and cellular proteolytic capacity; 

consequently, elevated concentrations of Aβ can alter the cerebral metal ion distribution leading to 

deficiencies in normally metal-enriched regions of the brain (loss-of-function) and accumulation in 

amyloid plaques resulting in oxidative damage (gain-of-toxicity).115,116 Although Aβ pathology is often 

believed to precede metal ion dyshomeotasis, an in-depth evaluation of the physiological changes 

during the early preclinical stages of AD is needed to validate this notion. 

The flexible structure of Aβ presents dynamic metal–Aβ interactions with numerous proposed 

binding modes.117 Coordination modes of Cu(II)–Aβ assume two pH-dependent components: (i) 

component I at pH 6.5 with 3N1O coordination; (ii) component II at pH > 8 with 3N1O, 4N, and 5N1O 

coordinations (Figure 1.4a).1 Zn(II) coordination of Aβ depicts binding sites with various combinations 

involving 4–6 ligands: N-terminal NH2, D1, E3, H6, D7, Y10, E11, H13, and H14 (Figure 1.4b). The 

feasible Zn(II) coordination mode of Aβ primarily includes histidine residues (i.e., H6, H13, and H14). 

Y10’s participation in Zn(II) binding is facilitated by a metal-induced conformational rearrangement 

under membrane mimicking conditions.118 Binding affinities (Kd) of Cu(II)–A and Zn(II)–A range 

from 10-11 to 10-7 and 10-9 to 10-6 M, respectively. A review published in 2019 provides a comprehensive 

list of the binding modes and binding affinities of metal–Aβ species reported thus far.1 

Stored in the synaptic vesicles, Cu(II) and Zn(II) are reportedly released into the synaptic cleft upon 

depolarization reaching micromolar concentrations. Recent evidence suggest that these synaptic metal 

ions may contribute in controlling neurotransmission through their modulatory effects on the 
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Figure 1.4. Proposed metal coordination to A. Binding modes of (a) Cu(II)–A (component I and II) 

and (b) Zn(II)–A. 

 

postsynaptic receptors. Considering (i) the notable release of metal ions under the dynamic environment 

presented at the synaptic cleft undergoing rapid changes upon signal transmission, (ii) presence of A 

in the extracellular matrix in the brains of AD patients and (iii) the strong binding affinity of metal–A, 

interactions between metal ions and A. 

Metal–A interaction has been recognized to affect the aggregation pathways of A.119 The 

conditional and conformational dependence of A’s metal interaction and aggregation hamper efforts 

to elucidate the influence of metal ions on A aggregation. Such challenges are manifested by the 

controversial results from different research groups. Rana et al. provide an account of the studies 

regarding the contradictory effects of Cu(I/II) and Zn(II) on Aβ aggregation.120 To summarize, Cu(I/II) 

was observed to hinder the formation of β-sheet-rich fibrillary Aβ aggregates in a stoichiometry-

dependent manner.121-128 Equimolar and greater concentrations of Cu(I/II) promote the generation of 

non-fibrillary assemblies by accelerating nucleation through the stabilization of Aβ dimers.39,123,129 

Several studies demonstrate Cu(I/II)’s ability to (i) stabilize Aβ oligomers, (ii) disassemble mature Aβ 

fibrils by abolishing its β-sheet secondary structure, and (iii) subsequently increase Aβ toxicity.126,128,130-

133 Zn(II) was reported to destabilize the intermediate Aβ conformations by accelerating its aggregation 

kinetics in several studies.95,101,102 Contradicting data, however, denote that the presence of Zn(II) 

resulted in the slow aggregation of Aβ leading to amorphous assemblies.131,134 In short, Cu(I/II) and 

Zn(II) affect the both aggregation kinetics and pathways of Aβ in a stoichiometry-dependent way 

modifying the toxicity of the resultant aggregates. Moreover, a report in 2017 by Branch et al., 

comparing the binding kinetics of Cu(I/II)–A and Zn(II)–A under physiological conditions, proposed 
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that Cu(I/II)–A complexes are likely responsible for the initial synaptic aggregation of A.135 

Redox chemistry of Cu(I/II)–Aβ is considered a major toxic mechanism eliciting 

neurodegeneration in AD. Cu(II)–Aβ coordination results in a rapid reduction to produce Cu(I) and 

H2O2 in the presence of a reducing agent, like ascorbate.133 The products, Cu(I) and H2O2, can further 

react to form hydroxyl radicals capable of oxidatively damaging vital cellular organelles, including 

mitochondria.136,137 The most recent estimate of Cu(II)–Aβ’s half potential (0.18 V vs. NHE) indicates 

the possibility of ascorbate-mediated redox cycling of Cu(I/II)–Aβ through Fenton-like reactions.138-141 

Despite these findings, the physiological relevance of such redox chemistry remains questionable due 

the dynamic nature of the Cu(I/II)–Aβ interaction and its conformation, concentration, target 

engagement, and electron transfer rate dependence.129 Therefore, additional studies inquiring the 

 

 

Figure 1.5. Schematic representation of the multi-faceted pathology of neurodegenerative diseases. (a) 

Proteopathy of wild-type (wt) or mutant intra- or extracellular unfolded proteins/peptides. Unfolded 

monomers partially fold and aggregate into oligomers and fibrils. Oligomers may interact with various 

organelles (e.g., mitochondria) or cell membrane disrupting Ca(II) homeostasis and signaling. (b) 

Dyshomeostasis of metal ions that, depending on the disease, can bind to misfolded proteins/peptides 

affecting their aggregation or accumulate in the brain or spinal cord. (c) Elevated oxidative stress 

resulting from redox-active metal ions (i.e., Cu and Fe) via Fenton-like reactions or ROS escaping from 

damaged mitochondria. ROS can attack cellular proteins, nucleic acids, and lipids causing oxidative 

damage. (d) Mitochondrial dysfunction and defects in energy metabolism that can occur as a 

consequence of protein/peptide aggregates. (e) Aberrant axonal transport from hyperphosphorylated 

microtubule binding proteins, mutant tubulin proteins, or mutant motor proteins. (f) Pervasive, sustained 

chronic inflammation with reactive microglia and astrocytes as well as altered inflammatory signaling 

pathways. 
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conditions observed in AD are needed to ascertain the effects of Cu(I/II)–Aβ-driven redox chemistry in 

AD pathology. 

The abovementioned relationship between Aβ and metal ions in AD indicates the pathogenic 

relevance and synaptic presence of metal–Aβ. Further research, however, is required to discover the 

neuropathologically relevant metal–Aβ complexes and conformations, evaluate the toxicity of the 

relevant metal–Aβ complexes to identify the species responsible for critical neurotoxicity, compare its 

cerebral localization to the regions of neurodegeneration in the AD-affected brain, and finally resolve 

its toxic mechanisms in disrupting neuronal homeostasis. Thereby, the roles of metal–Aβ in AD may be 

precisely understood. Such information would be especially helpful to develop diagnostic and 

preventative strategies against the disease.  

 

1.3. Conclusions 

Increasing evidence regarding the complexity of AD pathology and the failures of numerous clinical 

trials utilizing therapeutic strategies singly targeting the individual pathogenic elements of AD have 

fostered the shift in paradigm regarding our understanding of the disease. Recent notions regarding AD 

etiopathology consider the pathological connections between the various pathological factors of AD. 

To explain, although research on the individual pathological factors have revealed numerous pathways 

through which neurodenegeration can be induced, methods of targeting such aspects have proven 

ineffective. Therefore, researchers have been investigating how these different pathogenic pathways 

could be intertwined to further contribute towards neurodegeneration. The concept of metal–A serves 

as an example of such ideas. We believe that this is the beginning of the establishment of the complete 

picture that is AD pathology. Research indicate connections between A and AChE, A and ROS, AChE 

and ROS, and A and tau. Experimentally assessing these pathogenic relationships, however, present 

major challenges due to the complex nature of these individual components of AD and such 

complications are only augmented when combining multiple concepts together. Major conceptions of 

AD include proteopathy, metal ion dyshomeostasis, oxidative stress, mitochondrial dysfunction, 

aberrant axonal transport, and neuroinflammation (Figure 1.5). 
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2.1. Introduction 

Most dementia cases are diagnosed as the progress neurodegenerative disease AD, which presents a 

pessimistic outlook based on the lack of a cure and aging world population.1,2 Despite efforts of 

investigating AD pathology, our comprehension on the subject matter remains fragmental. Numerous 

pathological factors of AD have been implicated as contributors towards the clinical cognitive decline, 

however, the principal causative factors of the disease remain unidentified.1 This fact is practically 

demonstrated by the clinical failures of drugs formulated based on the individual pathogenic targets 

[i.e., A, metal ions, free radicals, and AChE]. In response, resesarchers began looking in to the 

malignant connections among these pathogenic elements of AD.1 For example, the close association 

between A and metal ions [e.g., Cu(II) and Zn(II)] have led to the introduction of metal–A as a hybrid 

pathogenic component in AD.3-5 Endeavors to identify the evaluate such pathogenic connections in AD 

are hindered by experimental challenges that arise from the complexity involving multiple intricate 

biological components under physiologically relevant conditions. Chemical tools with the ability to 

target multiple pathogenic elements of AD could significantly expedite our efforts to elucidate the 

relationships between them. In this chapter, we present a naturally occurring isoflavone, orobol (Oro), 

as a multifunctional molecule with the capacity to (i) alter the aggregation pathways of metal-free A42 

and metal–A42, (ii) scavenge organic free radicals, and (iii) inhibit the catalytic activity of AChE. 

Although numerous compounds have been tested as multifunctional chemicals, reports of flavonoids 

capable of regulating four or more pathological factors found in AD are very limited.  

 

2.2. Results and discussion 

2.2.1. Rational selection of orobol (Oro) 

In this study, we report, for the first time, a multifunctional isoflavone (Oro, Figure 2.1) capable 

of modulating four pathogenic elements of AD (i.e., metal-free A, metal–A, free radicals, and AChE). 

Oro is characterized by an isoflavone framework with structural variations from the basic flavone 

backbone (Figure 2.1 and Scheme 2.1): (i) four hydroxyl substituents; (ii) catechol functionality on the 

B-ring; (iii) translocation of the B-ring. The molecular structure of Oro foreshadows its potential 

versatility in modulating our target subjects. First, oxidation of “catechol-type flavonoids” is reported 

to produce an ortho-quinone that covalently binds to primary amine-containing residues of A (e.g., 

K16 and K28).6 Previous research regarding synthetic aminoisoflavones demonstrated the pertinence 

of both the catechol functionality and isoflavone framework towards their ability to modify the 

aggregation of A.7 Two potential metal chelation sites of Oro (i.e., 3’-OH/4’-OH and 4-oxo/5-OH) 

indicate the molecule’s ability to bind to metal ions by forming 5- or 6-membered rings.7,8 The B-ring 

catechol moiety has been reported as a source of antioxidant activity fostered by  
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Figure 2.1. Rational identification of Oro as a multifunctional small molecule for regulating four 

pathological factors implicated in AD (i.e., metal-free A, metal–A, free radicals, and AChE). 

 

its radical stabilization capabilities via intramolecular hydrogen bonding.9,10 Although there are no 

reports of Oro’s effect against AChE, structure-activity relationship studies of flavonoids’ ability to 

suppress the activity of AChE indicate the inhibitory potency of isoflavones and the significance of the 

catechol functional group.11 Despite the collective implications for the versatility of Oro from previous 

studies, the multifunctionality of the compound against four pathological factors linked to AD pathology 

(i.e., metal-free A, metal–A, free radicals, and AChE) has not been directly examined until now. 

 

2.2.2. Synthesis of orobol (Oro) 

Scheme 2.1. Synthetic routes to orobol (O-ro). 

 

Oro was prepared following previously reported procedures with minor modifications as shown in 

Scheme 2.1.12,13 An electrophilic aromatic substitution reaction (Friedel-crafts acylation) of 1 with 2 
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generated 3 (17% yield) using boron trifluoride ethyl etherate (BF3·OEt2) as both the solvent and 

catalyst.14 The subsequent cyclization of 3 in the presence of methanesulfonyl chloride (MeSO2Cl2) 

generated 4 in 19% yield. Lastly, the demethylation of 4 with boron tribromide (BBr3) afforded Oro 

(10% yield).13 

 

2.2.3. Modulative reactivity towards metal-free A42 and metal–A42 aggregation 

Oro’s effects on the aggregation pathways of metal-free A42 and metal–A42 were first determined 

through gel electrophoresis with Western blotting (gel/Western blot) in both inhibition (inhibition of 

A42 aggregate formation; Figure 2.2a) and disaggregation (disassembly and/or aggregation of 

preformed A42 aggregates; Figure 2.3a) experiments. In the inhibition experiments, Oro noticeably 

altered the molecular weight (MW) distribution of metal-free A42 species by increasing the intensity 

of smearing bands greater than ca. 20 kDa compared to Oro-free A42 (Figure 2.2b; left). Cu(II)–A42 

 

 

Figure 2.2. Influence of orobol on the formation of metal-free and metal-induced A42 aggregates. (a) 

Scheme of the inhibition experiment. (b) Analysis of the MW distribution of the resultant A42 species 

by gel/Western blot using an anti-A antibody (6E10). (c) TEM images of the samples from (b). 

Conditions: [A42] = 25 μM; [CuCl2 or ZnCl2] = 25 M; [orobol] = 50 M; 20 mM HEPES, pH 7.4 

[for metal-free and Zn(II)-containing samples] or pH 6.6 [for Cu(II)-added samples], 150 mM NaCl; 

37 °C; 24 h incubation; constant agitation. 
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treated with Oro exhibited darker bands at ca. 20-240 kDa and less intense bands at ca. 7-20 kDa, 

relative to Cu(II)–A42 without treatment of the compound. In the presence of Zn(II), Oro enhanced 

the band intensity at ca. 7-100 kDa. In addition to the inhibition studies, the disaggregation experiments 

illustrated the reactivity of Oro towards preformed aggregates of metal-free A42 and metal–A42 

(Figure 2.3). Under metal-free conditions, when preformed A42 aggregates were incubated with Oro, 

a different MW distribution from Oro-free A42 aggregates with darker bands at ca. 50-240 kDa was 

observed (Figure 2.3b). Oro noticeably reduced the band intensity of preformed Cu(II)–A42 aggregates 

smaller than at ca. 100 kDa. As for Zn(II)–A42, the MW distribution of preformed species was altered 

by Oro with an increase in the intensity of the smearing band at ca. 20-50 kDa. It should be noted that 

the A42 aggregate species detected through gel/Western blot are small enough to enter the gel matrix. 

In order to visualize the larger A42 assemblies, transmission electron microscopy (TEM) was used to 

examine the morphology of the resultant metal-free A42 and metal–A42 aggregates from the  

 

 

Figure 2.3. Influence of orobol on the disassembly and/or aggregation of preformed metal-free and 

metal-associated A42 aggregates. (a) Scheme of the disaggregation experiment. (b) Analysis of the 

molecular weight distribution of the resultant A42 species by gel/Western blot with an anti- A antibody 

(6E10). (c) TEM images of the samples from (b). Conditions: [A42] = 25 M; [CuCl2 or ZnCl2] = 25 

M; [orobol] = 50 M; 20 mM HEPES, pH 7.4 [for metal-free and Zn(II)-containing samples] or pH 

6.6 [for Cu(II)-added samples], 150 mM NaCl; 37 °C; 24 h incubation; constant agitation. 
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gel/Western blot experiments (Figures 2.2c and 2.3c). According to the TEM images, Oro noticeably 

modified the morphology of metal-free A42 and metal–A42 assemblies from both the inhibition and 

disaggregation experiments, inducing the formation of smaller chopped fibrils or amorphous aggregates. 

Overall, the gel/Western blot and TEM results support Oro’s modulative reactivity towards the 

aggregation of both metal-free and metal-bound A42 species. 

 To elucidate the mechanistic details regarding Oro’s ability to modulate the aggregation 

pathways of metal-free A42 and metal–A42, spectrometric and spectroscopic studies [i.e., electrospray 

ionization mass spectrometry (ESI-MS), tandem MS (ESI-MS2), and UV–Visible spectroscopy (UV–

Vis)] were performed to determine the interactions of Oro with metal-free A42, Cu(II), and Cu(II)– 

A42 (Figures 2.4 and 2.5). Under metal-free conditions, a 2A42–Oro complex was detected (Figure 

2.4a; purple). The complexation of Oro with A42 dimer was observed to vary the size distribution of 

the peptide dimer indicating a structural compaction, according to the ion mobility-mass spectrometry 

(IM-MS) data (Figure 2.4b; purple). Such changes could be responsible for the altered aggregation 

pathways of A42.8,15 

Interactions between Cu(II) and Oro was confirmed via UV–Vis denoted by notable optical 

changes with the addition of Cu(II) to an aqueous solution of the isoflavone (Figure 2.5a). Under Cu(II)-

present conditions, the mass spectrometric analysis of Oro-treated A42 led to the detection of singly 

oxidized A42 (Figure 2.5b; red circle). The oxidation-induced conformational change of A42 monomer 

was monitored by IM-MS (Figure 2.5c), in which the singly oxidized A42 exhibited a more compact 

structure. Using ESI-MS2, the oxidation sites of A42 were determined by analyzing the peptide  

 

 

Figure 2.4. Interactions of Oro with metal-free A42. (a) Interaction of Oro with soluble metal-free 

A42, monitored by ESI-MS. Inset: Zoom-in spectrum from 1860 to 1880 m/z (indication of [2A42 + 

Oro]5+ at 1863 m/z). (b) Analysis of the IM-MS spectra of [2A42]5+ (black) and [2A42 + Oro]5+ 

(purple). Conditions: [A42] = 20 μM; [Oro] = 100 μM; 100 mM ammonium acetate, pH 7.4; 3 h 

incubation; no agitation. 
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Figure 2.5. Interactions of Oro with Cu(II) and Cu(II)−A42. (a) Cu(II) binding of Oro in a buffered 

solution. UV−Vis spectra of Oro (black) with up to 5 equiv of Cu(II) (blue). Conditions: [Oro] = 25 

μM; [CuCl2] = 0, 12.5, 25, 50, and 125 M; pH 7.4; room temperature. Interaction of Oro with soluble 

Cu(II)−A42, monitored by (b) ESI-MS and (c) IM-MS. (d) Tandem mass spectrometric analysis in 

conjunction with CID of the singly oxidized A42 (1511 m/z). Conditions: [A42] = 20 M; [CuCl2] = 

20 M; [Oro] = 100 M; 100 mM ammonium acetate, pH 7.4; 3 h incubation; no agitation. 

 

fractions of the singly oxidized A42, reported as b fragments (Figure 2.5d). Upon collision-induced 

dissociation (CID) of [A42 + O]3+ at 1511 m/z, A fragments were found in their oxidized form from  

b14, revealing H14 as a possible oxidation site. Based on the indication of a mixture containing both the 

oxidized and non-oxidized fragments from b14 to b34 and the sole detection of the oxidized A fragments 

starting from b35, M35 was designated as another plausible oxidation site of A. A noteworthy 

observation was that Oro noticeably diminished the peak intensity of Cu(II)–A42 while increasing that 

of metal-free A42 (Figure 2.5b), indicating that the isoflavone may disrupt the interaction between A42 

and Cu(II), potentially through Cu(II) chelation.7 Together, our spectrometric and spectroscopic studies 

of Oro demonstrate its ability to (i) interact with metal-free A42 and Cu(II), (ii) disrupt the interaction 



30 

between Cu(II) and A42, and (iii) oxidize A42 in the presence of Cu(II) at H14 or M35. Such molecular 

interactions and alterations of A have previously been reported as mechanistic strategies to modify the 

aggregation pathways of A42 in both the absence and presence of metal ions.16-19 Note that Zn(II)–A42 

could not be detected under our experimental conditions for ESI-MS studies. 

 

2.3. Inhibitory activities against organic free radicals and acetylcholinesterase (AChE) 

The free radical scavenging activity of Oro was determined relative to Trolox, a vitamin E analog with 

notable antioxidant activity, using the Trolox equivalent antioxidant capacity (TEAC) assay (Figure 

2.6a).14 Oro was observed to significantly scavenge free radicals with a TEAC value of 3.39 (± 0.14). 

Moreover, Oro’s inhibitory activity against AChE was measured by a fluorometric AChE assay,20 

indicating a nanomolar IC50 value [123 (± 32) nM; Figure 2.6a]. In silico studies (Figures 2.6b and 2.6c) 

presented that Oro could interact with multiple amino acid residues lining the active site gorge (e.g., 

G120, Y124, F295, Y337, and Y341). In addition, Oro was shown to interact with S203 of the catalytic 

triad, responsible for initiating the enzymatic hydrolysis of ACh,21 via hydrogen bonding, suggesting a 

potential mechanism for Oro’s inhibitory activity against AChE. 

 

 

Figure 2.6. Free radical scavenging and AChE inhibitory activities of Oro. (a) TEAC values and IC50 

values against AChE activity of Oro and the corresponding standards (Trolox: antioxidant; Tacrine: 

AChE inhibitor).20 (b,c) Docking studies of Oro and AChE (PDB 1C2B21). (b) Top view perspective 

looking into the active site gorge of AChE. (c) Side view of Oro bound to AChE and zoom-in image of 

the interaction between Oro and the amino acid residues of the active site gorge. The dashed lines and 

the corresponding numbers indicate the possible hydrogen bonding between Oro and AChE and their 

predicted distances (Å). 
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2.4. Conclusions 

Oro, a naturally occurring isoflavone, is demonstrated as a multifunctional small molecule able to 

modulate four distinct pathological features found in the brains affected by AD (i.e., metal-free and 

metal-induced A aggregation, oxidative stress, and AChE-catalyzed ACh hydrolysis). Aside from the 

properties tested herein, additional neuroprotective properties of Oro have been previously reported: (i) 

protection against 6-hydroxydopamine-induced neurotoxicity by restoring proteasomal function;22 (ii) 

anti-inflammatory effects;23 (iii) inhibition of tyrosine-specific protein kinase;24 phosphatidylinositol 

turnover;25 and 15-lipoxygenase;26 (iv) hypotensive effects.27 Based on its functional versatility, the 

isoflavone framework of Oro conferring multifunctionality could be useful towards developing 

chemical reagents for advancing our understanding of the multi-faceted pathology of neurodegenerative 

disorders, including AD. 

 

2.5. Experimental section 

2.5.1. Materials and methods 

All reagents were purchased from commercial suppliers and used as received unless noted otherwise. 

NMR and high-resolution mass spectrometric analyses of small molecules were conducted on an 

Agilent 400-MR DD2 NMR spectrometer (UNIST Central Research Facilities, Ulsan, Republic of 

Korea) and a Q exactive plus orbitrap mass spectrometer (HRMS; Thermo Fisher Scientific, Waltham, 

MA, USA), respectively. Absorbance and fluorescence values for biological assays were measured on 

a Molecular Devices SpectraMax M5e microplate reader (Sunnyvale, CA, USA). Trace metal 

contamination was removed from buffers and solutions used in metal binding and A42 experiments by 

treating with Chelex overnight (Sigma-Aldrich, St. Louis, MO, USA). Optical spectra were recorded 

on an Agilent 8453 UV−Vis spectrometer. A42 (DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAI-

IGLMVGGVVIA) was purchased from AnaSpec (Fremont, CA, USA) and Peptide Institute (Osaka, 

Japan). AChE assay kit was purchased from Abcam (Cambridge, UK). Double-distilled H2O (ddH2O) 

was obtained from a Milli-Q Direct 16 system (18.2 MΩ⋅cm; Merck KGaA, Darmstadt, Germany). 

Transmission electron microscopical images were taken using a Tecnai F30 (FEI) transmission electron 

microscope (KAIST Analysis Center for Research Advancement, Daejeon, Republic of Korea). 

 

2.5.2. Synthesis of orobol (Oro) 

Synthesis of 3 [3-(3,4-dihydroxyphenyl)-5,7-trimethoxy-4H-chromen-4-one] A solution (BF3·OEt2, 

15 mL) of 3,4-dihydroxyphenylacetic acid (1.5 g, 9.1 mmol) and 3,5-dimethoxyphenol (1.4 g, 9.1 mmol) 

was refluxed at 75 °C. After 4 h, the reaction mixture was extracted in a solution of ethyl acetate (EtOAc) 

and saturated sodium acetate (NaOAc) (12 g/100 mL). The organic layer was collected, washed with 

brine, dried with MgSO4, filtered, and concentrated. The crude product was purified via column 

chromatography (SiO2, 1:1 EtOAc/hexanes, Rf = 0.4; > 90% purity) to yield 3 (yellow oil; 459 mg, 1.5 
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mmol, 17% yield). 1H NMR [400 MHz, (CD3)2CO,  (ppm)]: 13.89 (1H, s), 7.75 (2H, br), 6.75 (2H, 

dd, J = 8.3, 1.7 Hz), 6.60 (1H, d, J = 8.0 Hz), 6.07 (2H, dd, J = 9.1, 2.0 Hz), 4.18 (2H, s), 3.94 (3H, d, 

J = 1.9 Hz), 3.86 (3H, d, J = 1.9 Hz). 13C NMR [100 MHz, (CD3)2CO,  (ppm)]: 203.5, 167.8, 166.5, 

162.9, 144.8, 144.7, 127.3, 120.9, 116.5, 115.0, 105.2, 93.7, 90.6, 55.3, 55.2, 49.1. HRMS: [M + Na]+ 

calcd, 327.0847; found, 327.0844. 

 

Synthesis of 4 [3-(3,4-dihydroxyphenyl)-5,7-dimethoxy-4H-chromen-4-one] 3 (459 mg, 1.5 mmol) 

was dissolved in dried N,N-dimethylformamide (DMF, 6 mL) and BF3·OEt2 (1.07 mL, 15 mmol) was 

added dropwise and heated to 50 °C for 1 h followed by the introduction of MeSO2Cl [173 L, 1.5 

mmol, DMF (2 mL)] dropwise. The reaction mixture was refluxed at 100 °C for 2 h. After the reaction, 

the mixture was extracted in a solution of EtOAc and saturated NaOAc (12 g/100 mL). The organic 

layer was collected, washed with brine, dried with MgSO4, filtered, and concentrated. The crude product 

was purified by column chromatography (SiO2, 3:1 EtOAc/hexanes, Rf = 0.4). 4 (white powder) was 

obtained by washing the solid with CH3OH. (88 mg, 0.28 mmol, 19% yield). 1H NMR [400 MHz, 

(CD3)2SO,  (ppm)]: 9.02 (1H, s), 8.96 (1H, s), 8.15 (1H, s), 7.00 (1H, s), 6.79 (2H, s), 6.69 (1H, d, J = 

2.1 Hz), 6.54 (1H, d, J = 2.1 Hz), 3.92 (3H, s), 3.87 (3H, s). 13C NMR [100 MHz, (CD3)2SO,  (ppm)]: 

174.3, 164.0, 161.3, 159.6, 151.0, 145.6, 145.2, 125.5, 123.6, 120.4, 117.2, 115.6, 109.4, 96.6, 93.3, 

56.6, 56.4. HRMS: [M – H]- calcd, 313.0712; found, 313.0721. 

 

Synthesis of Oro [3-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one] A solution (dry 

CH2Cl2) of 4 (87.2 mg, 0.28 mmol) was stirred in an ice bath. A solution of BBr3 in CH2Cl2 (1 M, 250 

L) was added to the solution of 4 dropwise. Then the ice-bath was removed to stir the reaction mixture 

at 60 °C for 18 h. The reaction mixture was refluxed at 100 °C for 2 h. After the reaction, the mixture 

was extracted with EtOAc and water. The organic layer was collected, washed with brine, dried with 

MgSO4, filtered, and concentrated. The crude was purified by column chromatography (SiO2, 1:30 

CH3OH/CH2Cl2, Rf = 0.2). The final product, Oro (pale yellow powder), was obtained by 

recrystallization using a mixture of acetone, hexanes, and CH2Cl2. 1H NMR [400 MHz, (CD3)2CO,  

(ppm)]: 13.07 (1H, s), 8.41 (2H, br), 8.16 (1H, s), 7.16 (1H, d, J = 2.0 Hz), 6.95 (1H, dd, J = 8.2, 2.1 

Hz), 6.89 (1H, d, J = 8.2 Hz), 6.43 (1H, d, J = 2.2 Hz), 6.29 (1H, d, J = 2.2 Hz). 13C NMR [100 MHz, 

(CD3)2CO,  (ppm)]: 180.9, 164.2, 163.2, 159.2, 153.6, 145.5, 144.8, 123.2, 122.8, 120.6, 116.5, 115.0, 

105.4, 98.9, 93.7. HRMS: [M – H]- calcd, 285.0397; found, 285.0405. 

 

2.5.3. A42 aggregation experiments 

All experiments were carried out following previously published procedures.28 Initially, A42 was 

dissolved in ammonium hydroxide (NH4OH, 1% v/v, aq), aliquoted, lyophilized overnight, and stored 
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at −80 °C. The stock solution of A42 was prepared by dissolving the lyophilized A42 in NH4OH (1% 

v/v; 10 L) and diluting it with ddH2O. The concentration of A42 was determined by measuring the 

absorbance of the solution at 280 nm ( = 1490 M−1cm−1). The peptide stock solution was diluted to a 

final concentration of 25 M in a Chelex-treated buffered solution [20 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), pH 7.4 (for metal-free and Zn(II) samples) or pH 6.6 (for Cu(II) 

samples), 150 mM NaCl]. In the inhibition experiments, Oro [final concentration, 50 M; 1% v/v 

dimethyl sulfoxide (DMSO)] was added to the freshly prepared samples of A42 (25 M) in the absence 

and presence of a metal chloride salt (CuCl2 or ZnCl2; 25 M) followed by incubation for 24 h at 37 °C 

with constant agitation. For the disaggregation experiments, A42 (25 M) was pre-incubated for 24 h 

at 37 °C with constant agitation in the absence and presence of CuCl2 or ZnCl2 (25 M). The pre-

incubated samples were then treated with Oro (final concentration, 50 M; 1% v/v DMSO) and 

incubated for an additional 24 h at 37 °C with constant agitation. 

 

2.5.4. Gel/Western blot 

Size distributions of the incubated A42 samples were analyzed by gel/Western blot using an anti-A 

antibody (6E10). 10 L of each sample was separated on a 10-20% Tris-tricine gel (Thermo Fisher 

Scientific, Carlsbad, CA, USA). After separation, the peptides were transferred onto a nitrocellulose 

membrane and blocked with bovine serum albumin (BSA, 3% w/v, RMBIO, Missoula, MT, USA) in 

Tris-buffered saline (TBS) containing 0.1% Tween-20 (TBS-T) for 2 h at room temperature. Then, the 

membranes were incubated with an anti-A antibody (6E10) (1:2,000; Covance, Princeton, NJ, USA) 

in a solution of 2% BSA (w/v in TBS-T) overnight at 4 ºC. The membranes were then washed with 

TBS-T three times for 10 min each and incubated with a horseradish peroxidase-conjugated goat 

antimouse secondary antibody (1:5,000) in 2% BSA for 1 h at room temperature. The membranes were 

visualized on a ChemiDoc MP Imaging System (Bio-Rad, Hercules, CA, USA) using a homemade ECL 

kit.29 

 

2.5.5. TEM 

Samples for TEM measurements were prepared based on previously published methods.30 Glow-

discharged grids (Formvar/Carbon 300-mesh, Electron Microscopy Sciences, Hatfield, PA, USA) were 

treated with A samples for 2 min at room temperature. Excess sample was removed using filter paper. 

Each grid was washed three times with ddH2O and incubated with uranyl acetate (1% w/v ddH2O, 5 

L) for 1 min. After removing excess uranyl acetate, the grids were dried for at least 20 min at room 

temperature. Images of each grid were taken on a Tecnai F30 (FEI) transmission electron microscope 

(200 kV; 29,000x magnification). 
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2.5.6. Cu(II)-binding studies 

The interaction of Oro with Cu(II) was monitored by UV–Vis spectroscopy. UV–Vis experiments were 

carried out in a Chelex-treated buffered solution (20 mM HEPES, pH 7.4, 150 mM NaCl). The solution 

of Oro was titrated up to 5 equiv of CuCl2 at room temperature. The mixture solution was allowed to 

equilibrate for 5 min after the addition of CuCl2 at room temperature before the spectra were recorded. 

 

2.5.7. Mass spectrometric analyses 

Experiments were carried out following previously reported procedures.31-33 A42 (20 M) was 

incubated with Oro (100 M; 1% v/v DMSO) and/or CuCl2 (20 M) in 100 mM ammonium acetate, 

pH 7.2 at 37 °C without agitation. The incubated samples were then diluted by five-fold with ddH2O 

and injected into the mass spectrometer. A Waters Synapt G2-Si quadrupole time-of-flight (Q-Tof) ion 

mobility mass spectrometer (Waters, Manchester, UK) equipped with an ESI source [DGIST Center for 

Core Research Facilities (CCRF)] was used for the experiments. The capillary voltage, sampling cone 

voltage, and source temperature were set to 2.8 kV, 70 V, and 40 °C, respectively. The backing pressure 

was adjusted to 2.7 mbar. Ion mobility wave height and velocity were adjusted to 10 V and 300 m/s, 

respectively, and gas flows for the helium and ion mobility cell were set to 120 and 30 mL/min, 

respectively. ESI-MS2 analyses were additionally performed on the singly oxidized A42. The ESI 

parameters and experimental conditions were the same as above. Collision-induced dissociation was 

conducted by applying collision energy in the trap. 

 

2.5.8. TEAC assay 

The free radical scavenging capacity of Oro was determined by the TEAC assay based on the 

decolorization of ABTS [2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt] 

cation radicals in comparison to that of the vitamin E analog, Trolox, known for its antioxidant 

properties.34 Previously reported procedures were followed with minor modifications.28 Blue ABTS•+ 

cation radicals were generated by dissolving ABTS (7.0 mM) with potassium persulfate (2.5 mM) in 

ddH2O (5 mL) and incubating the solution for 16 h at room temperature in the dark. Then the solution 

was diluted with ethanol to an absorbance of ca. 0.7 at 734 nm. The ABTS•+ solution (200 L) was then 

added to a clear 96 well plate and incubated for 5 min at 25 ºC. Various concentrations of Oro or Trolox 

were added to the 96 well plate and incubated at 25 ºC for multiple time periods (1, 3, 6, and 10 min). 

Percent inhibition was calculated based on the measured absorbance at 734 nm [% inhibition = 100 x 

(A0 – A)/A0; A0 = absorbance of the control well without compound; A = absorbance of the wells treated 

with compounds] and plotted as a function of compound concentration. The TEAC values of each time 

point were calculated as the ratios between the slope of Oro and the slope of Trolox. All measurements 

were carried out in triplicate. 
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2.5.9. AChE activity assay 

AChE inhibitory activities of Oro was determined using a fluorometric AChE assay kit (Abcam, 

Cambridge, MA, USA) following the manufacturer’s protocol with slight modifications. eeAChE was 

dissolved and diluted to a working solution of 400 mU/mL. The eeAChE solution (50 L) was added 

to a 96 well plate. Various concentrations of Oro were then added to the 96 well plate. After shaking, 

the mixture of eeAChE and Oro was pre-incubated for 15 min. A reaction mixture containing ACh, an 

AChE probe, and AbRedTM was added to the 96 well plate to initiate the reaction. Calculations of the 

AChE activity were made based on the fluorescence intensity (ex/em = 540/590 nm) of the wells 

detected after 15 min. Data was normalized to the control (no inhibitor). All experiments were 

performed in duplicate. 

 

2.5.10. Docking studies 

Flexible ligand docking studies for Oro against Electrophorus electricus acetylcholinesterase (eeAChE; 

PDB 1C2B)21 using AutoDock Vina.35 The MMFF94 energy minimization in ChemBio3D Ultra 11.0 

was used to optimize the ligand structure for docking studies. The structural files of Oro and the protein 

were generated by AutoDock Tools and imported into PyRx, which were used to run AutoDock Vina. 

The search space dimensions were set to contain the catalytic active site (CAS) and peripheral anionic 

site (PAS) for AChE (PDB 1C2B). The exhaustiveness for the docking runs was set to 1024. Docked 

poses of the ligand with eeAChE were visualized using Pymol. 
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Multiple Reactivities of Flavonoids towards Pathological Elements in Alzheimer’s Disease: 

Structure-Activity Relationship 
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3.1. Introduction 

AD is a progressive neurodegenerative disorder responsible for a majority of dementia.1,2 Despite 

extensive research aimed at developing therapeutics, there is no cure and our capability of controlling 

the development and progression of AD is severely limited.2,3 Currently available symptomatic 

treatments offer temporary relief using AChE inhibitors and N-methyl-D-aspartic acid receptor 

antagonists.3 AChE terminates cholinergic transmission at the synapse by catalyzing the hydrolysis of 

the neurotransmitter, ACh.4 The cholinergic hypothesis identifies the reduced level of ACh as a primary 

culprit in the pathogenesis of AD.5 In recent years, however, the inability of AChE inhibitors to 

effectively halt the progressive neurodegeneration in AD has led to a re-evaluation of this hypothesis.6 

The prevailing perception of AD pathology reflects the multifaceted quality of the disease.2  

Identification of additional pathological contributors of AD such as Aβ,7 metal ions,8 metal–Aβ,9-

12 and ROS13 corroborates the complex nature of the disease. Aβ, the major component of senile plaques, 

is an aggregation-prone peptide composed of 36-43 amino acids.7 Aβ aggregation is a subject of 

intensive research and Aβ oligomers were recently identified as potential toxic species capable of 

disrupting neuronal homeostasis.14 Metal ions present two neurochemical implications: (i) they 

functions as essential cofactors and structural anchors in enzymatic reactions and protein folding and 

(ii) they are neurotoxic by catalyzing the generation of ROS.10 For these reasons, metal ions are tightly 

regulated in biological systems. Dyshomeostasis and miscompartmentalization of metal ions such as 

Cu(II) and Zn(II) are observed in the brains of AD patients and linked to neurodegeneration.10 Moreover, 

metal ions can affect the aggregation and conformation of Aβ by directly binding to the peptide.9,10,15 

Based on their physiological roles and reactivity with Aβ, metal ions are considered an important part 

of AD pathogenesis.16 Research regarding the pathological relationship between metal ions and Aβ 

introduced the concept of metal–Aβ as a pathogenic factor based on its potential toxicity and 

involvement in producing ROS.10,16,17 Lastly, oxidative stress, characterized by the imbalance between 

the formation and removal of ROS, has been indicated in a spectrum of diseases including AD for 

detriments such as lipid peroxidation and peptide oxidation.18,19 

Attempts to exploit these pathological elements for the development of single target-based therapeutics 

have been made, but were largely shown to be clinically ineffective.20,21 As a result, research efforts 

have shifted towards understanding the connections among the various pathogenic pathways in AD. 

There is growing recognition that chemical reagents capable of simultaneously targeting and 

modulating multiple pathological features are necessary for potential therapeutic candidates and 

chemical tools for elucidating the pathology of AD at the molecular level. In this work, we evaluated 

the reactivities of flavonoids against the pathological elements of AD such as metal-free and metal-

bound Aβ, free radicals, and AChE and identified the structural features responsible for their versatile 

reactivities, as depicted in Figure 3.1. 

Flavonoids are a family of phytochemicals exhibiting low toxicity,22 anti-/pro-oxidant  
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Figure 3.1. Rational selection of 12 flavonoids. The presented library of flavonoids was chosen based 

on structural variations, including the number and position of hydroxyl groups and the location of the 

B ring, to identify the structural features responsible for reactivities against multiple pathological factors 

found in AD [i.e., metal-free A, metal–A, free radicals, and AChE]. 

 

activity,23 and numerous utilitarian biological activities (e.g., anti-cancer,24 anti-viral,25 and anti-

bacterial26). The direct administration of flavonoids, however, presents limitations in practical 

applications. For example, the solubility and stability of flavonoids often present challenges. Therefore, 

understanding the molecular structures of flavonoids and identifying their pharmacophores could be 

valuable in designing small molecules with multiple reactivities for investigating and treating AD. In 

this work, the modulative reactivities of 12 flavonoids enumerated in Figure 3.1 towards metal-free Aβ, 

metal–Aβ, free radicals, and AChE were assessed and analyzed based on their molecular structures to 

identify the structural moieties critical for their reactivities. Moreover, computational studies were 

carried out to obtain a more in-depth perspective of their activities against free radicals and AChE. 

 

3.2. Results and discussion 

3.2.1. Rational selection of the flavonoid library 

Quercetin (Que), luteolin (Lut), and orobol (Oro) were included in our study because they have been 
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tested previously against several pathogenic elements in AD. Both Que and Lut exhibited a variety of 

biological activities23,24,26 including the ability to modulate the aggregation of metal–A and inhibit 

AChE activity.27,28 Oro was found to interact with metal ions, alter the aggregation of both metal-free 

and metal-bound A, scavenge free radicals, and inhibit the catalytic activity of AChE.29 The 12 

flavonoids enumerated in Figure 3.1 include three different classes, namely the flavonols (row 1), 

flavones (row 2), and isoflavones (row 3) that offer significant structural variance. These flavonoids 

chosen according to three structural criteria: (i) inclusion of the chromone framework containing the 4-

oxo group and the double bond between C2 and C3 on the C ring; (ii) variation in hydroxyl groups at 

C3 (row 1 vs. row 2), C3’, C4’, and C7 (columns 1, 2, and 3, respectively); (iii) change in the position 

of the B ring from C2 to C3 (row 2 vs. row 3). Previous studies identified the 4-oxo group and the 

unsaturated bond between C2 and C3 on the C ring to be important in various chemical and biological 

properties such as their metal-binding ability and antioxidant activity.28,30,31 Moreover, the unsaturated 

C2–C3 bond may contribute to interactions of the compounds with the hydrophobic regions of Aβ such 

as the self-recognition site and the C-terminal region that are essential for peptide aggregation.32-35 The 

4-oxo functionality can form 5- and 6-membered metal chelation sites with the 3-OH or 5-OH group, 

respectively. The catechol moiety on the B ring can also chelate metal ions. In  

 

Scheme 3.1. Synthetic routes to 5-hydroxyisoflavone (HIF). 
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addition, the number and location of electron-donating hydroxyl groups can impact the flavonoids’ 

redox potentials that direct their capacity to quench free radicals.36 These 12 flavonoids were obtained 

through commercial sources or prepared in our laboratory in the cases of Oro29 and 5-

hydroxyisoflavone (HIF) as depicted in Schemes 2.1 and 3.1. 

 

3.2.2. Interaction with Cu(II) 

To verify that the flavonoids interact with metal ions in solution, UV–is spectra were monitored. 

Significant spectral changes in the UV–Vis range were observed upon adding Cu(II), as illustrated in 

Figure 3.2 Two characteristic –* transition bands are characteristic: band I associated with the B ring 

of flavonoids ( = ca. 300–400 nm) and band II associated with the A ring ( = ca. 240–280 nm).37 

Treatment of the flavonoids with Cu(II) showed optical shifts of either or both band I and II, e.g., 

bathochromic/hypsochromic and hyper/hypochromic shifts, indicative of interactions between Cu(II) 

and the oxygen (O) donor atoms in the A, B and C rings of the flavonoids such as 4-oxo/5-OH, 3-OH/4-

oxo, and 3’-OH/4’-OH. Together, these observations confirm that all of the selected flavonoids interact 

with Cu(II) in solution. Unfortunately, quantitative measurements for metal-binding affinities of the 

flavonoids was not possible due to the limited stability of the complexes. 

 

 

Figure 3.2. Interaction of the flavonoids with Cu(II) monitored by UV–Vis spectroscopy. Conditions: 

[flavonoid] = 25 M; [CuCl2] = 0, 12.5, 25, 50, and 125 M; 20 mM HEPES, pH 6.6, 150 mM NaCl 

or EtOH [for chrysin (Chr) and 5-hydroxyflavone (HF)]. 
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3.2.3. Modulation of metal-free A42 and metal–A42 aggregation 

To determine the effects of the flavonoids on the aggregation of metal-free and metal-treated A42, the 

MW distribution and morphology of the resultant A42 species upon incubation with the compounds 

were analyzed by gel/Western blot and TEM, respectively. The amount of -sheet-rich aggregates 

generated through metal-free and metal-induced A42 aggregation with treatment of the flavonoids 

could not be quantitatively determined due to the optical interference from the compounds within the 

analysis window of the assays (e.g., thioflavin-T assay). Two types of A aggregation experiments were 

performed: inhibition and disaggregation experiments, as summarized in Figures 3.3 and 3.4. For the 

inhibition experiments, freshly prepared metal-free or metal-added A42 was incubated with the 

flavonoids for 24 h to assess whether the compounds could inhibit the formation of peptide aggregates. 

In the disaggregation experiments, the samples containing A42 with and without metal ions were pre-

incubated for 24 h to produce peptide aggregates and then treated with the flavonoids for an additional 

24 h. The disaggregation studies determined whether the flavonoids could disassemble preformed 

peptide aggregates or modulate their aggregation. Under our experimental conditions, A42 alone 

spontaneously aggregated to yield a heterogeneous mixture of A ensembles including large aggregates 

that were too big to penetrate the gel matrix and be visualized by gel/Western blot. Such large 

aggregates were probed by TEM.38,39 On the other hand, smaller A42 species such as monomers and 

low MW oligomers indicated visible bands in gel/Western blot, but they were not detected by TEM.40,41 

In the inhibition experiments, as shown in Figure 3.3b, the introduction of Que, Lut, and Oro 

slightly changed the MW distribution of metal-free A42. The signal intensities of the bands 

corresponding to smaller oligomeric A42 species (from 7 to 20 kDa) and larger oligomers (from 50 to 

100 kDa) were reduced by Que, Lut, and Oro. In the case of Cu(II)–A42, Que, Lut, Oro, and 

kaempferol (Kae) modified the aggregation of the peptide notably and increased the smearing bands 

corresponding to species larger than ca. 20 kDa. Moreover, Que, Lut, and Oro altered the aggregation 

of Zn(II)–A42, resulting in diverse MW distributions from ca. 7 to 270 kDa. Kae did not significantly 

influence the aggregation of A42 in the absence and presence of Zn(II). Apigenin (Api), genistein 

(Gen), galangin (Gal), chrysin (Chr), 5,7-dihydroxyisoflavone (DHIF), 3,5-dihydroxyflavone 

(DHF), 5-hydroxyflavone (HF), and HIF did not exhibit any significant reactivity against metal-free 

or metal-induced Aβ42 aggregation.  

As depicted in Figure 3.3c, TEM images corroborated the effect of the flavonoids on the Cu(II)-

induced aggregation of A42. The flavonoids exhibiting modulative reactivity towards the aggregation 

of Cu(II)–A42 in gel/Western blot led to notable morphological changes in the peptide aggregates: (i) 

Que gave significantly shorter fibrillar aggregates; (ii) Lut decreased the degree of branching in the  
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Figure 3.3. Influence of the flavonoids on the aggregation of metal-free and metal-treated A42. (a) 

Scheme of the inhibition experiment. (b) Analysis of the MW distribution of the resultant A42 species 

by gel/Western blot with an anti-A antibody (6E10). (c) TEM images of the samples from (b). 

Conditions: [A42] = 25 M; [CuCl2 or ZnCl2] = 25 M; [flavonoid] = 50 M; 20 mM HEPES, pH 7.4 

[for metal-free and Zn(II)-containing samples] or pH 6.6 [for Cu(II)-added samples], 150 mM NaCl; 

37 °C; 24 h incubation; constant agitation. 

 

fibrils; (iii) Oro afforded thinner and shorter aggregates; (iv) Kae generated amorphous assemblies 

distinct from native A42 fibrils. As expected, Gal and HF did not significantly alter the morphologies 

of Aβ42 aggregates regardless of the presence of Cu(II) or Zn(II). When Zn(II)–A42 was incubated with 

Que, Lut, or Oro that modified Zn(II)–A42 aggregation in the gel/Western blot studies, thinner 

chopped fibrils were detected. In the presence of Kae, Gal, and HF, fibrillar aggregates similar to those 

from the compound-free Zn(II)–A42 sample were produced. None of the flavonoids studied via TEM 

exhibited the ability to particularly change the aggregate morphology of metal-free A42. 
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Figure 3.4. Impact of the flavonoids on the disassembly and aggregation of preformed metal-free and 

metal-added A42 aggregates. (a) Scheme of the disaggregation experiment. (b) Analysis of the MW 

distribution of the resultant A42 species by gel/Western blot with an anti-A42 antibody (6E10). (c) 

TEM images of the samples from (b). Conditions: [A42] = 25 M; [CuCl2 or ZnCl2] = 25 M; 

[flavonoid] = 50 M; 20 mM HEPES, pH 7.4 [for metal-free and Zn(II)-containing samples] or pH 6.6 

[for Cu(II)-added samples], 150 mM NaCl; 37 °C; 24 h incubation; constant agitation. 

 

In the disaggregation experiments, as illustrated in Figure 3.4b, Que and Oro very mildly varied 

the MW distribution of preformed metal-free A42 aggregates. In the case of Cu(II)–A42, Que, Oro, 

and Kae exhibited the reactivity towards preformed A42 aggregates: (i) Que decreased the intensity of 

the bands corresponding to monomeric and small oligomeric species of A42 (< 20 kDa) and resulted 

in smearing in the range from 20 to 270 kDa; (ii) Oro reduced the signal intensity of all MW species 

below ca. 100 kDa; (iii) Kae increased smearing in the MW region from ca. 20 to 100 kDa. The size 

distribution of preformed Zn(II)–A42 aggregates upon treatment with Que and Oro differed from that 

of the compound-free sample, displaying greater smearing below 50 kDa. While a faint band 



46 

corresponding to species smaller than 50 kDa was observed in the Que-treated sample, Oro indicated 

a significantly stronger signal for the species in the same range. Lut, Api, Gen, Gal, Chr, DHIF, DHF, 

HF, and HIF did not exhibit the notable reactivity with preformed metal-free and metal-induced A42 

aggregates. Demonstrating modulative reactivity towards preformed Cu(II)–A42 aggregates, Kae did 

not impact the disaggregation samples of metal-free A42 and Zn(II)–A42. As presented in Figure 3.4c, 

morphological changes in the metal-free and metal-treated A42 aggregates in the presence of 

flavonoids were monitored by TEM. As for preformed Cu(II)–A42 aggregates, Que, Oro, and Kae 

exhibiting modulative reactivity in gel/Western blot altered the morphologies of the resultant aggregates 

with indications of a mixture of amorphous aggregates and thinner chopped fibrils. Treatment of Que 

and Oro with preformed Zn(II)–A42 aggregates produced shorter fibrils. As expected from the 

gel/Western blot experiments, the flavonoids lacking modulative reactivity in the disaggregation 

experiments did not result in any morphological variations in preformed peptide aggregates. 

In general, increasing the number of hydroxyl substituents on the backbone promotes the ability 

of the flavonoids to modify the aggregation pathways of metal–A42. Among the flavonoids, the 

isoflavone Oro carrying four hydroxyl groups with two potential metal chelation sites, i.e. 4-oxo/5-OH 

on the A/C rings and 3’-/4’-OH on the B ring, demonstrated notable modulation on the aggregation of 

both metal-free and metal-added A42. The pertinence of the 3-OH group in the flavonoids’ modulative 

reactivity towards A42 was denoted by the distinctions between (i) Kae and Api and (ii) Que and Lut. 

Kae displayed notable reactivity with Cu(II)–A42 in both inhibition and disaggregation experiments, 

while Api did not show such reactivity. Moreover, Que altered the MW distribution of Cu(II)–A42 in 

both inhibition and disaggregation experiments, but Lut only inhibited the generation of Cu(II)–A42 

aggregates. Structurally comparing Kae, Gal, and Api, a connection between the 3-OH and 4’-OH 

groups on the C and B rings, respectively, can be recognized regarding the flavonoid’s influence on the 

aggregation of A42. The presence of the 3-OH or 4’-OH functionality alone (Gal and Api, respectively) 

does not result in the reactivity towards metal–A42 aggregation; however, the presence of both 

hydroxyl groups on the B and C rings (Kae) leads to noticeable reactivity. The catechol moiety on the 

B ring (Que, Lut, and Oro) fostered their interactions with metal ions and A. Catechol-type flavonoids 

were reported to undergo oxidation to form o-quinones that in turn covalently bind to the lysine residues 

of A.42 Our results confirm the importance of the catechol moiety in the flavonoids’ modulative 

reactivity towards A in the absence and presence of metal ions and further support that such reactivity 

could be maintained and may be altered by changing the location of the B ring catechol group, as 

observed with Oro. Taken together, the reactivity studies on metal-free and metal-induced A 

aggregation reveal three major structural features of flavonoids: (i) the 3-OH group on the C ring, (ii) a 

catechol moiety on the B ring, and (iii) the position of the B ring. 
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3.2.4. Scavenging free organic radicals 

To evaluate the capacity of the flavonoids for quenching free organic radicals relative to the vitamin E 

analog Trolox, the TEAC assay was conducted with the cationic radical form of 2,2'-azino-bis(3-

ethylbenzthiazoline-6-sulphonic acid) as the organic radical substrate.43 As presented in Figure 3.5a, 

the flavonols Que, Kae, Gal, and DHF (Figure 3.1, row 1) exhibited notable scavenging capacity 

against free organic radicals, suggesting the importance of the 3-OH group on the C ring for this activity. 

As expected, Que, Lut, and Oro carrying a catechol moiety on the B ring showed significant 

antioxidant activity. Among the selected flavonoids, Que embodying both the 3-OH functionality and 

the catechol moiety was the most effective scavenger against free organic radicals. In contrast, Api, 

Chr, DHIF, HF, and HIF presented negligible radical scavenging activity compared to Trolox. 

The antioxidant properties of the flavonoids are reportedly affected by the 4-oxo functionality 

and the double bond between C2 and C3.44 Conjugation of the A, B, and C rings resulting in the 

stabilization of the flavonoid radical through resonance may be critical for their scavenging activity 

 

 

Figure 3.5. Scavenging activity of the flavonoids against free organic radicals determined by the TEAC 

assay and their computed redox potentials. (a) Summary of the TEAC values for the flavonoids and 

their computed redox potentials (E0 vs. SHE). Conditions: EtOH; 25 °C; abs = 734 nm. aThis value was 

obtained from reference 29. bn.d., not determined. The TEAC values of Api, Chr, and HIF could not 

be obtained due to limited solubility or marginal antioxidant activity levels undetected under our 

experimental conditions. (b) Isosurface plots (isodensity value = 0.03 a.u.) of the HOMO energy for 

Que, Lut, and Oro and their dihedral angles between two planes calculated from carbon coordinates of 

the A/C rings and the B ring, respectively. 
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against free radicals.44 Our results employing Chr, DHIF, HF, and HIF, however, indicate that the 4-

oxo group and the unsaturated C2–C3 bond do not guarantee a molecule’s ability to quench free radicals 

effectively. The difference in the scavenging capacity against free radicals between flavonols and 

flavones, as shown in Figure 3.1 (row 1 and 2), respectively, may be prompted by the presence of 

electron-donating groups, especially at C3, that could lower their redox potentials (vide infra).45 These 

observations indicate that the 3-OH group on the C ring is an important structural feature for the free 

radical scavenging capability of flavonoids. Que, Lut, and Oro containing a catechol moiety on the B 

ring exhibited the best inhibitory activity against free organic radicals according to the TEAC assay. 

Catechol and “catechol-type flavonoids” are recognized for their notable antioxidant activity and 

mechanistic studies further support their significance.46,47 Conversely, the flavonoids possessing the 4’-

OH group without 3’-OH, as depicted in Figure 3.1 (column 2), except Kae, did not demonstrate 

significant antioxidant property, further emphasizing the significance of the catechol moiety and the 3-

OH group for the ability to scavenge free radicals. 

 

3.2.5. Redox potentials 

To verify the antioxidant activity of our flavonoid series, the redox potentials of all compounds were 

computed following a previously reported method.48 Attempts to determine the redox potentials 

experimentally were made, but their instability and limited solubility in both aqueous media and organic 

solvents hampered electrochemical measurements. As summarized in Figure 3.5a, the computed redox 

potentials (E0
 vs. SHE) of the flavonoids support that the incorporation of electron-donating hydroxyl 

groups into the molecular framework lowers the redox potentials. Furthermore, the redox potentials 

depended not only on the number of electron-donating hydroxyl groups but also on their positions 

affecting the degree of –conjugation between the core skeleton of the molecule and the functional 

group. Directly comparing the changes in the calculated E0 suggested that the impact of a hydroxyl 

group on the B or C ring is more prominent than that on the A ring. The 4’-OH (column 2 vs. 3 shown 

in Figure 3.1), 3’-OH (column 1 vs. 2), and 3-OH (row 1 vs. 2) groups on the B and C rings decreased 

the E0 values by ca. 0.18, 0.09, and 0.27 V, respectively, but the 7-OH group on the A ring (column 3 

vs. 4) gave a difference of only ca. 0.03 V in the computed E0. 

Figure 3.5b illustrates the calculated dihedral angles and the highest occupied molecular orbital 

(HOMO) levels of the neutral forms of Que, Lut, and Oro. Lut exhibited the lowest HOMO energy (–

6.13 eV) out of the three compounds of interest, which is in accord with the more positive E0 (1.32 V 

vs. SHE). The HOMO level of Que that embodies an additional hydroxyl group at C3 on the framework 

of Lut with a relatively planar structure was elevated to –5.75 eV. On the other hand, the HOMO level 

of Oro, a regioisomer of Lut, was at –5.80 eV, which was higher than that of Lut. The better antioxidant 

ability of Oro can be rationalized by the distinctions in the conjugated π-system of the HOMO for Lut 

and Oro. Considering the intrinsic electronic property of the C ring enone, the -carbon of the enone 
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(C3) possesses a - partial charge while the -carbon (C2) has a partial + charge. In the case of Lut, 

the electron-rich catechol is attached to the + charged -carbon C2, preferring the -conjugation 

throughout ring B and C. On the other hand, in the case of Oro, the catechol moiety is attached to the 

- charged α-carbon (C3) of the enone, therefore the resonance between the B and C rings will be 

weakened. In the optimized structure of Oro, the dihedral angle between the A/C rings and the B ring 

was 36.7°, which is notably greater than that of Lut. The frontier orbitals showed that the HOMO of 

Lut was composed of a conjugated -system throughout the A/C rings and the B ring. In contrast, the 

orbital lobes in the HOMO of Oro displayed a biased localization towards the B ring resulting in a less 

electronically stable HOMO. This distorted alignment of -orbitals and the consequential disruption of 

-conjugation between the two -ring planes elevated the HOMO levels of Oro, making its redox 

potential more negative. Therefore, our experimental and computational data support that three 

structural components including the 3-OH group, catechol moiety, and position of the B ring 

considerably influence the redox potentials of the flavonoids and, subsequently, their antioxidant 

activity. 

 

3.2.6. Inhibition against AChE 

The 12 flavonoids were tested for their ability to inhibit the catalytic activity of AChE following a 

previously reported fluorometric assay with slight modifications employing electrophorus electricus 

AChE.49 As a reference, tacrine, a potent inhibitor against AChE,50 was tested under our experimental 

conditions (IC50 = 38.7 ± 5.0 nM). Thereafter, the inhibitory activities of all flavonoids towards AChE 

were determined under the same conditions. As shown in Figure 3.6a, Que, Lut, Oro carrying a 

catechol moiety displayed notable inhibition against the activity of AChE, exhibiting IC50 values in the 

nanomolar range, although weaker than that of tacrine. Kae and Gal indicated high nanomolar IC50 

values comparable to that of Que, while those of Gen, DHIF, and DHF were within the micromolar 

range. Lastly, the activity of AChE was not inhibited by Api, Chr, HF, and HIF under our experimental 

settings. 

Relating these experimental results to the molecular structures, several features stand out. The 

catechol functionality is important for the inhibitory activity against AChE. DHF exhibited an IC50 

value in the low micromolar range and the incorporation of the 7-OH group led to an increase in the 

inhibitory activity as observed with Gal. The distinct inhibitory activity between DHIF and HIF further 

supports the involvement of the 7-OH group, whereas the pertinence of the 3-OH functionality can be 

inferred from the general enhancement of the inhibitory capacity from Api, Chr, and HF to Kae, Gal, 

and DHF, respectively. Lastly, the enhanced AChE inhibitory effects of Gen and DHIF, relative to Api 

and Chr, implicate the potential influence of the B ring position on their ability to inhibit the catalytic 

activity of AChE. 

 



50 

 

Figure 3.6. Inhibitory activity of the flavonoids against AChE. (a) Summary of the IC50 values of the 

flavonoids against eeAChE determined by a fluorometric assay. (b) Intermolecular interactions between 

the flavonoids and AChE (PDB 1C2O)51 observed by aMD simulations. (c) Visualization of the 

flavonoid–AChE interactions modeled through aMD simulations. N, O, and H (from hydroxyl groups) 

atoms in the flavonoid ligand are depicted in blue, red, and white, respectively. an.d., not determined. 

Inhibitory activity of Api, Chr, HF, and HIF against AChE was too low to be detected under our 

experimental conditions and, thus, an accurate IC50 value could not be determined. 

 

3.2.7. Computational studies for interactions with AChE 

Based on their distinct structural characteristics and IC50 values against AChE, five flavonoids, Que, 

Lut, Oro, HF, and DHF, were chosen for a detailed computational evaluation of their interactions with 

AChE. Specifically, the binding configurations and interactions of the selected flavonoids towards the 

AChE dimer were analyzed by accelerated molecular dynamics (aMD) simulations. Details of these 

simulations are given in the Supporting Information. This method has been shown to improve the 

fidelity of the simulated poses in studies of ligand–protein interactions by enhancing the sampling 

efficiencies.52 The structural clustering analysis of three potent flavonoids, Que, Lut, and Oro, against 

AChE identified three representative interactions between the compounds and AChE (PDB 1C2O51), as 

depicted in Figure 3.6b and 3.6c: (i) The most dominant interaction observed by the aMD simulations 

is the hydrogen bonding between the catechol moiety on the B ring and neighboring amino acid residues, 

where the E202 residue in AChE is the dominant partner hydrogen bond accepting partner. (ii) The 7-

OH group on the A ring serves as a hydrogen bond donor to interact with a carbonyl moiety from a 

backbone amide group of E81/G82, E292/S293, or F338/L339 in the gorge region of the pocket. (iii) A 
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– stacking interaction between the chromone framework of the flavonoids on the A and C rings and 

the amino acid residues containing a -ring such as W86, Y341, and F295 within the hydrophobic 

pocket of AChE was detected. 

Based on the initial identification of these flavonoid–AChE interactions, a more detailed 

computational analysis was performed on the representative binding modes of the three potent inhibitors, 

Que, Lut, and Oro, against AChE. As shown in Figure 3.6b and 3.6c, a closer inspection of the binding 

configurations between the flavonoids and AChE revealed the hydrogen bonding between the catechol 

moiety on the B ring and the carboxylate group of E202. The presence of such hydrogen bonding 

interactions in close proximity to S203 could limit the accessibility of the substrate ACh to the catalytic 

triad responsible for catalyzing the hydrolysis of the neurotransmitter. Such anchoring of the flavonoids 

near S203 through hydrogen bonding may explain the relatively high inhibitory activity of Que, Lut,  

 

 

Figure 3.7. Alternative binding modes of Que, Lut, and Oro against AChE (PDB 1C2O)51 modeled 

through aMD simulations and their % populations (# of snapshots for each cluster / # of snapshots in 

the total simulation × 100). 
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and Oro towards AChE. These observations emphasize the pertinent role of the catechol moiety on the 

B ring in controlling the activity of AChE. Other binding modes, e.g. where the A ring is arranged 

towards S203, were also sampled from the clustering analysis, as illustrated in Figure 3.7. They typify 

a relatively small population, suggesting that they play only a minor role in the overall binding 

characteristic. Moreover, the – stacking interactions between the A/C rings and the tryptophan, 

tyrosine, and phenylalanine residues also provided additional stability for binding of the flavonoids to 

AChE. The chromone moieties of Lut and Oro interact with W86 and F295, respectively, while Que 

displayed a slightly longer – distance to Y341. The additional 3-OH functionality on Que, 

distinguishing it from Lut, did not show notable interactions with any amino acid residues in the binding 

pocket of AChE, as presented in Figure 3.8a. The hydrogen bond mediated by the 7-OH group indicated 

longer distances with a large standard deviation than those formed between the catechol moiety and 

E202. 

 

 

Figure 3.8. Computational parameters of the interactions between the selected flavonoids and AChE 

(PDB 1C2O51). (a) Closest distance between hydroxyl groups in the flavonoids and the heteroatom (X 

= O or N) in the binding pocket. an.a., not available. Error bars represent the standard deviation. (b) 

Calculated mean values for the selected binding determinants: the minimum distance from S203, the 

number of hydrogen bonding, the SASA of the hydrophobic residues in the binding pocket, and the 

number of water molecules in the binding pocket. 
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Figure 3.9. Possible binding modes of DHF and HF against AChE (PDB 1C2O)51 generated by aMD 

simulations and their % populations (# of snapshots for each cluster / # of snapshots in the total 

simulation × 100). 

 

The binding modes of DHF and HF, whose inhibitory potency towards AChE was relatively 

weak (IC50 > 2.0 M), were also analyzed, as visualized in Figure 3.9. The two compounds do not 

possess the catechol moiety on the B ring or the 7-OH group on the A ring. The clustering analysis of 

the aMD trajectories indicated distinct binding characteristics of DHF and HF towards AChE compared 

to Que, Lut, and Oro. DHF did not interact with E202, but it was still compact enough to position itself 

within the hydrophobic pocket by preserving the hydrogen bonding between the 3-OH group and the 

side chain of G122. In the case of HF, we were not able to obtain an aMD cluster for the compound 

populating more than 5% of the trajectories, in accord with its low inhibitory activity against AChE. 

Nevertheless, we considered the most clustered conformation of HF for further exploration and analysis. 

Upon determining the binding configurations between the selected flavonoids and AChE, 

statistical analysis regarding four specific physical parameters, including the distance from S203, the 

number of hydrogen bonding, the solvent accessible surface area (SASA) of the hydrophobic residues 

lining the active site pocket, and the number of water molecules in the active site pocket, were conducted 

to provide more in-depth details of the flavonoid–AChE interactions, as shown in Figures 3.8b and 3.10.  
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Figure 3.10. Evaluation of flavonoid-binding determinants against AChE (PDB 1C2O)51. (a) Closest 

distance between the flavonoid and S203 of the catalytic triad. (b) Box plot of the number of hydrogen 

bonding between the flavonoid and AChE. The box extends to the top 25% and bottom 75% of the 

clustered data. The black line represents the mean value of each computed case. (c) SASA distribution 

of the hydrophobic residues in the active site. (d) Average count of water molecules in the binding 

pocket for the apo and holo cases. Error bars represent the standard deviation. 

 

The minimum distance between the flavonoid and S203 was measured. On average, aMD simulations 

with Que, Lut, Oro, and DHF presented relatively short distances (below 2.5 Å ) to S203, as illustrated 

in Figure 3.10a, implying that they can remain in the binding site interior. HF was positioned away (5.1 

Å ) from the catalytic residue, which is consistent with its minimal inhibitory potency. The distance to 

S203 alone is not sufficient to discern more potent inhibitors, however, as DHF was also found to 

maintain close contact with S203 despite its weak inhibitory activity towards AChE. The number of 

hydrogen bonding between the flavonoids and the binding pocket residues was calculated to assess the 

relative stabilities of the identified binding poses, as presented in Figure 3.10b. The lack of adequately 

positioned hydrogen bond donors or acceptors on HF and DHF led to poorly established hydrogen 

bonding with AChE, as shown in Figure 3.9. Que, Lut, and Oro exhibited a significantly greater 

number of hydrogen bonds than HF and DHF, which supports again the notion that the catechol moiety 

on the B ring and the 7-OH group on the A ring are crucial structural features for interacting with AChE. 

The SASA values of the hydrophobic residues residing within 6.0 Å  from S203 was examined 

as a measure of the binding pocket stability in the presence of a ligand.53 As displayed in Figure 3.10c, 

the SASA values of the hydrophobic residues in the presence of Lut and Oro were found to be 0.54 
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and 0.49 nm2, respectively, suggesting that the hydrophobic residues effectively minimized unfavorable 

contacts with the polar solvent medium. In addition, the relatively low level of fluctuations in the 

computed SASAs indicated the increased stability of the binding pocket with Lut and Oro. The SASA 

alone, however, cannot be considered a computational parameter in evaluating the potency of 

compounds as Que and DHF showed comparable SASA values (0.88 and 0.97 nm2, respectively), while 

their ability to inhibit AChE activity varied significantly. The HF-bound structure exhibited a mean 

SASA value of 1.23 nm2 with significantly large fluctuations. This implied the unstable organization of 

the hydrophobic residues upon binding of HF to the active site. 

Finally, the dynamics of the water molecules in the binding pocket is another critical factor 

influencing the binding properties of ligands.54 We analyzed the number of water molecules in the active 

site gorge within 8.0 Å  from the Ca atom of S203 for each simulated flavonoid–AChE binding modes, 

relative to the number of water molecules in the apo state, as illustrated in Figure 3.10d. The number 

of water molecules in holo states decreased by more than 5 in the presence of the flavonoids, while 22 

water molecules were present in the apo state. In line with the computational findings described above, 

the HF-bound conformation contained the most water molecules in the binding pocket (16 on average). 

In contrast, Que and DHF disclosed the lower number of water molecules within the active site than 

that of HF. Lut and Oro exhibiting stronger inhibition activity against AChE led to the least amount of 

water molecules in the hydrophobic pocket (on average, 12 and 7, respectively). Combining the 

experimental and computational results, several structural features of the flavonoids can be connected 

to their inhibitory activity against AChE. Our structure-activity relationship study regarding the 

inhibition towards AChE underscores the importance of (i) the catechol moiety on the B ring to facilitate 

hydrogen bonding with E202, (ii) the 7-OH group for hydrogen bonding, and (iii) the chromone 

framework for – stacking with the hydrophobic residues lining the active site gorge. The aMD 

simulations also provide a detailed representation of the possible interactions between the flavonoids 

and AChE at the active site with multiple key parameters related to the strength of their interactions. 

 

3.3. Conclusions 

The complexity of the multifaceted AD pathology has led to increased interest in the development of 

chemical reagents with multiple functions. Considering the versatile reactivity of the three naturally 

occurring flavonoids, a series of 12 flavonoids was selected and investigated with respect to their 

reactivities towards four pathogenic elements including metal-free A42, metal–A42, free radicals, and 

AChE implicated in AD. Through our detailed investigations, several structural features were identified 

to be likely connected to the reactivities towards the aforementioned targets. First, the catechol moiety 

on the B ring of the flavonoids notably promoted the molecules’ modulative reactivities against metal-

free A, metal–A, free organic radicals, and AChE. The two ortho-hydroxyl substituents on the B ring 

of flavonoids presented the ability to (i) chelate metal ions in a bidentate manner forming a 5-membered 
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ring, (ii) undergo oxidation to produce an ortho-quinone that can covalently bind to the lysine residues 

in A,42 (iii) effectively scavenge free organic radicals via radical stabilization through hydrogen 

bonding,55,56 and (iv) inhibit the catalytic activity of AChE by sterically blocking off the catalytic active 

site by interacting with the amino acid residues lining the active site gorge. Second, the hydroxyl group 

at C3 contributed towards the (i) chelation of metal ions in a bidentate manner manifesting a 5-

membered metal-binding site, (ii) modulation of metal-free or metal-induced A aggregation when 

accompanied by hydroxyl substituents on the B ring, (iii) scavenging free organic radicals, and (iv) 

inhibition of AChE activity in conjunction with the hydroxyl group at C7. Third, the isoflavone 

variation accompanied by the presence of a catechol moiety on the B ring impacted the molecule’s 

reactivities by altering the molecule’s thermodynamic properties such as HOMO energy. As for the free 

radical scavenging activity of the flavonoids, the structural features lowering the computed redox 

potentials were observed to increase the molecule’s antioxidant capacity. In addition to the catechol 

functionality on the B ring, the 7-OH group on the A ring contributed towards inhibition against AChE 

through hydrogen bonding. The chromone framework of the flavonoids also demonstrated supplemental 

interactions with the active site gorge of AChE through – stacking. Overall, our structure-activity 

relationship study employing a series of 12 flavonoids demonstrates that alterations in the number and 

location of hydroxyl groups, the presence of a catechol moiety, and the location of the B ring 

substantially contribute towards the versatile reactivities of flavonoids with multiple pathogenic 

elements in AD. 

 

3.4. Experimental section 

3.4.1. Materials and methods 

All reagents were purchased from commercial suppliers and used as received unless noted otherwise. 

NMR and high-resolution mass spectrometric analyses of small molecules were conducted on an 

Agilent 400-MR DD2 NMR spectrometer (UNIST Central Research Facilities, Ulsan, Republic of 

Korea) and Q exactive plus orbitrap mass spectrometer (HRMS; Thermo Fisher Scientific, Waltham, 

MA, USA), respectively. Absorbance and fluorescence values for biological assays were measured on 

a Molecular Devices SpectraMax M5e microplate reader (Sunnyvale, CA, USA). Trace metal 

contamination was removed from buffers and solutions used in metal binding and A aggregation 

experiments by treating with Chelex overnight (Sigma-Aldrich, St. Louis, MO, USA). Optical spectra 

were recorded on an Agilent 8453 UV−Vis spectrophotometer (Santa Clara, CA, USA). A42 

(DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA) was purchased from AnaSpec 

(Fremont, CA, USA) and Peptide Institute (Osaka, Japan). ddH2O was obtained from a Milli-Q Direct 

16 system (18.2 MΩ⋅cm; Merck KGaA, Darmstadt, Germany). Morphologies of peptide aggregates 

were taken by a JEOL JEM-2100 transmission electron microscope (200 kV; 25,000x magnification; 

UNIST Central Research Facility, Ulsan, Republic of Korea) and a Tecnai F30 (FEI) transmission 
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electron microscope (KAIST Analysis Center for Research Advancement, Daejeon, Republic of Korea). 

 

3.4.2. Synthesis of 5-hydroxyisoflavone (HIF) 

Synthesis of 1-[2-hydroxy-6-(methoxymethoxy)phenyl]ethanone (2). 2,6-Dihydroxyacetophenone 

(303 mg, 2.0 mmol) was dissolved with CH2Cl2 (10 mL) in a flame-dried flask. The resultant mixture 

was cooled to 0 °C, and N,N-diisopropylethylamine (450 L, 3 mmol) was slowly introduced. After 20 

min, methyl chloromethyl ether (MOMCl; 159 L, 2 mmol) was added dropwise. The reaction mixture 

was maintained at 0 °C for 20 min and then brought to room temperature followed by being quenched 

with H2O (40 mL). The aqueous collection was extracted with CHCl3 (3 × 40 mL). The combined 

organic layers were dried using magnesium sulfate (MgSO4) and concentrated to obtain the product 

[yield: 316 mg (82%)].1H NMR [400 MHz; CDCl3,  (ppm)]: 13.12 (s, 1H), 8.36 (t, J = 8.4 Hz, 1H), 

6.62 (m, 2H), 5.30 (s, 2H), 3.54 (s, 3H), 2.74 (s, 3H). 13C NMR [100 MHz; CDCl3,  (ppm)]: 205.0, 

164.4, 158.9, 136.1, 111.7, 111.6, 104.0, 94.5, 56.7, 33.7. 

 

Synthesis of 3-(dimethylamino)-1-[2-hydroxy-6-(methoxymethoxy)phenyl]prop-2-en-1-one (3). 2 

(316 mg, 1.6 mmol) was dissolved in N,N-dimethylformamide (DMF) (10 mL), and the solution was 

heated to 74 °C in an oil bath. N,N-dimethylformamide dimethyl acetal (DMF-DMA; 700 L, 8.0 mmol) 

was then added dropwise to the flask. After the mixture was stirred for 4.5 h, it was cooled to room 

temperature. The reaction was quenched with H2O (100 mL) and the mixture was extracted with ethyl 

acetate (EtOAc; 100 mL). The extracts were washed with H2O (50 mL), dried with MgSO4, and 

concentrated under reduced pressure. The resultant residues were purified by column chromatography 

(SiO2; EtOAc) to give a yellow solid [yield: 337 mg (83%)]. [400 MHz; CDCl,  (ppm)]: 14.24 (s, 1H), 

7.98 (d, J = 12.3 Hz, 1H), 7.21 (t, J = 8.3 Hz, 1H), 6.62 (d, J = 8.3 Hz, 1H), 6.53 (d, J = 8.3 Hz, 1H), 

6.31 (d, J = 12.3 Hz, 1H), 5.25 (s, 2H), 3.54 (s, 3H), 3.20 (s, 3H), 2.96 (s, 3H). 13C NMR [100 MHz; 

CDCl3,  (ppm)]: 190.6, 164.3, 157.4, 154.8, 133.1, 112.7, 111.9, 104.8, 97.6, 95.2, 56.6, 45.3, 37.3. 

 

Synthesis of 3-iodo-5-(methoxymethoxy)-4H-chromen-4-one (4). A solution of 3 (337 mg, 1.3 mmol) 

and I2 (399 mg, 1.9 mmol) in CH3OH (30 mL) was stirred at room temperature for 6 h followed by 

being concentrated under reduced pressure to give a red-black residue. To remove the remaining I2, the 

residue was treated with saturated aqueous sodium sulfite (Na2SO3) until the mixture became clear. The 

mixture was then extracted with CHCl3 (3 × 40 mL), and the extracts were dried with MgSO4 and 

concentrated under reduced pressure. The resulting off-white solid was purified by chromatography 

[SiO2; EtOAc/hexanes (1:1)] to give a white solid [yield: 271 mg (61%)]. 1H NMR [400 MHz; CDCl3, 

 (ppm)]: 8.19 (s, 1H), 7.58 (t, J = 8.4 Hz, 1H), 7.12 (m, 2H), 5.35 (s, 2H), 3.57 (s, 3H). 13C NMR [100 

MHz; CDCl3,  (ppm)]: 172.0, 158.0, 157.0, 156.1, 134.0, 113.6, 111.9, 111.2, 95.5, 89.2, 56.7. 
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Synthesis of 5-(methoxymethoxy)-3-phenyl-4H-chromen-4-one (5). PEG 10000 (6.7 g), ground to a 

fine consistency in a mortar, and palladium acetate [Pd(OAc)2; 7.9 mg, 0.04 mmol] were added to a 

solution of sodium carbonate (Na2CO3; 174 mg, 2.0 mmol) in CH3OH (10 mL). The reaction mixture 

was heated to 50 °C in a water bath. When the mixture turned black, 4 (271 mg, 0.82 mmol) and 

phenylboronic acid (209 mg, 2.1 mmol) were added. After being stirred for 3 h, the resulting mixture 

was filtered, washed with CH3OH (40 mL), and concentrated under reduced pressure. The mixture was 

extracted with H2O and EtOAc (3 × 40 mL), and the extracts were dried with MgSO4 and concentrated 

under reduced pressure. The white solid was used in the next reaction without further purification [yield: 

181 mg (80%)]. 1H NMR [400 MHz; CDCl3,  (ppm)]: 7.80 (s, 1H), 7.46 (m, 3H), 7.32(m, 3H), 7.02 

(m, 2H), 5.26 (s, 2H), 3.47 (s, 3H). 13C NMR [100 MHz; CDCl3,  (ppm)]: 175.9, 158.2, 157.6, 151.3, 

133.6, 131.8, 192.2, 128.4, 128.1, 126.5, 111.7, 111.6, 95.5, 56.6. 

 

Synthesis of 5-hydroxy-3-phenyl-4H-chromen-4-one (HIF). A solution of 5 (181 mg, 0.99 mmol) in 

CHCl3 (2 mL) / CH3OH (2 mL) with concentrated HCl (36%, 0.5 mL) was refluxed for 1 h. The reaction 

was quenched with H2O, and the mixture was extracted with CHCl3 (2 × 10 mL). The extracts were 

washed with H2O (10 mL) and purified by column chromatography to give the final product [SiO2; 

EtOAc/hexanes (1:4); yield: 84 mg (35%)]. 1H NMR [400 MHz; CDCl3,  (ppm)]: 12.68 (s, 1H), 8.02 

(s, 1H), 7.57 (m, 3H), 7.48 (m, 3H), 6.96 (d, J = 8.4 Hz, 1H), 6.86 (d, J = 8.3 Hz, 1H). 13C NMR [100 

MHz; CDCl3,  (ppm)]: 181.8, 161.4, 156.6, 153.9, 135.6, 130.6, 124.4, 111.5, 107.1. HRMS: Calcd 

for [M + Na]+, 261.0522; found, 261.0529. 

 

3.4.3. UV–Vis measurements 

The interaction of compounds with Cu(II) was detected by UV–Vis spectroscopy. The experiments were 

carried out in 20 mM HEPES, pH 7.4, 150 mM NaCl for most of compounds. In the case of Chr and 

HF, their Cu(II) interaction was monitored in ethanol (EtOH). The solutions of compounds were titrated 

up to 5 equiv of CuCl2 at room temperature. The mixture solution was allowed to equilibrate for 5 min 

after the addition of CuCl2 at room temperature before the spectra were recorded. 

 

3.4.4. A aggregation experiments 

A42 was dissolved in ammonium hydroxide [1% v/v NH4OH (aq)]. The resulting solution was 

aliquoted, lyophilized overnight, and stored at −80 °C. A stock solution of A42 was then prepared by 

dissolving the lyophilized peptide using 1% v/v NH4OH (aq) (10 L) and diluting with ddH2O. All A42 

samples were prepared following previously reported procedures.57 The concentration of the peptide 

solution was determined by measuring the absorbance of the solution at 280 nm ( = 1,490 M-1cm–1). 
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The buffered solution (20 mM HEPES, pH 7.4, 150 mM NaCl) was used for the preparation of A42 

samples. For the inhibition studies, compounds (final concentration, 50 M; 1% v/v DMSO) were added 

to the samples of A42 (25 M) in the absence and presence of Cu(II) or Zn(II) (25 M) followed by 

incubation for 24 h at 37 °C with constant agitation. For the disaggregation studies, A42 (25 M) was 

incubated with and without Cu(II) or Zn(II) (25 M) for 24 h at 37 °C with constant agitation to generate 

preformed A42 aggregates. The resulting A42 aggregates were then treated with compounds (50 M) 

and incubated for an additional 24 h with constant agitation. 

 

3.4.5. Gel/Western Blot 

The resultant A42 species from the inhibition and disaggregation experiments were analyzed through 

gel/Western blot using an anti-A antibody (6E10).1 The samples (10 L) were separated on a 10-20% 

Tris-tricine gel (Invitrogen, Carlsbad, CA, USA). Following separation, the peptides were transferred 

onto nitrocellulose membranes and blocked with bovine serum albumin (BSA; 3% w/v; Sigma-Aldrich) 

in TBS containing 0.1% v/v Tween-20 (Sigma-Aldrich) (TBS-T) for 4 h at room temperature or 

overnight at 4 °C. The membranes were incubated with 6E10 (1:2,000, Covance, Princeton, NJ, USA) 

in a solution of BSA (2% w/v in TBS-T) for 2 h at room temperature or overnight at 4 °C. After washing 

with TBS-T (3x, 10 min each), a horseradish peroxidase-conjugated goat anti-mouse secondary 

antibody (1:5,000 in 2% w/v BSA in TBS-T; Cayman Chemical Company, Ann Arbor, MI, USA) was 

added for 2 h at room temperature. Lastly, a homemade ECL kit58 was used to visualize gel/Western 

blots on a ChemiDoc MP Imaging System (Bio-Rad, Hercules, USA). 

 

3.4.6. TEM 

Samples for TEM were prepared following previously reported methods.57 Glow-discharged grids 

(Formvar/Carbon 300-mesh, Electron Microscopy Sciences, Hatfield, PA, USA) were treated with A 

samples (5 L, 25 M) for 2 min at room temperature. Excess sample was removed using filter paper 

followed by washing twice with ddH2O. Each grid, incubated with uranyl acetate (5 L, 1% w/v in 

ddH2O) for 1 min, was blotted off and dried for 15 min at room temperature. Images for each sample 

were taken on a transmission electron microscope. For the TEM studies, we randomly selected the 

locations of samples on the grids for imaging and collected more than 25 images from each grid 

(sample). 

 

3.4.7. TEAC assay 

The free radical scavenging capacities of compounds were determined by the TEAC assay based on the 

decolorization of ABTS [2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt] 

cation radical in comparison to that of the vitamin E analog, Trolox, known for its antioxidant 
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properties.59 The TEAC assay was conducted in EtOH following previously reported methods.41 Blue 

ABTS•+ cation radicals were generated by dissolving ABTS (7.0 mM) with potassium persulfate (2.5 

mM) in H2O (5 mL) and incubating the solution for 16 h at room temperature in the dark. Then the 

solution was diluted with EtOH to an absorbance of ca. 0.7 at 734 nm. The ABTS•+ solution (200 L) 

was then added to a clear 96 well plate. Various concentrations of compounds or Trolox were added to 

the 96 well plate and incubated at 25 ºC for various time periods (1, 3, 6, and 10 min). Percent inhibition 

was calculated based on the measured absorbance at 734 nm [% inhibition = 100 x (A0 – A)/A0; A0 = 

absorbance of control well without compounds; A = absorbance of wells treated with compounds] and 

plotted as a function of compounds’ concentration. The TEAC values of each time point were calculated 

as the ratio between the slope of compounds and the slope of Trolox. All measurements were carried 

out in triplicate. 

 

3.4.8. Calculation of redox potentials 

All calculations were performed based on the density functional theory (DFT)60 with the Jaguar 9.1 

suite61 at the B3LYP-D362-64 level of theory. The optimization of compounds’ structures were carried 

out with the 6-31G** basis set.65-67 Following geometry optimization, the electronic energies of the 

optimized flavonoid structures were recalculated with a high quality triple-ζ basis set cc-pVTZ(-f).68 

Vibrational frequencies for the optimized structures were calculated at the same level of theory as the 

geometry optimization procedure. Vibrational entropy correction along with the zero point vibrational 

energies were considered for proper thermodynamic approximations. Based on the optimized gas phase 

geometries, solvation correction energies were deduced. Self-consistent reaction field (SCRF)69-71 

approximations were considered to calculate the linearized Poisson-Boltzmann equations with the 

dielectric constant ε. The solvation energy used in the system was treated with ethanol (ε = 24.5). The 

Gibbs free energies in solution phase were computed as the following equations: 

 

G(sol) = G(gas) + G(solv)   (1) 

G(gas) = H(gas) – TS(gas)   (2) 

H(gas) = E(SCF) + ZPE    (3) 

 

G(sol) represents the Gibbs free energy with solvation correction G(solv) from the gas phase free energy 

G(gas); H(gas) is the enthalpy of the molecule in gas phase; T is the temperature (298.15 K); S(gas) is 

the entropy of the molecule in the gas phase; E(SCF) is the self-consistent field converged electronic 

energy; ZPE represents the vibrational zero-point energy. To calculate the redox potential, the free 

energy of the one-electron oxidized form of the flavonoid was deduced by the free energy of its neutral 

form. Note that the dihedral angle was defined as the angle between two planes: A mean plane calculated 
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from ten carbon coordinates of the A/C rings using the least-squares method and another mean plane 

consisted of six carbon coordinates of the B ring. 

 

3.4.9. AChE activity assay 

The activity of AChE was determined by a change in fluorescence of Amplex Red under optimized 

conditions. eeAChE was dissolved and diluted to 400 mU/mL in 50 mM Tris-HCl, pH 7.4. The eeAChE 

solution (50 L) was first added to a 96 well plate. Varying concentrations of compounds (1 L) in 

dimethyl sulfoxide (DMSO) were then introduced to the 96 well plate. After shaking, the mixtures of 

eeAChE and compounds were pre-incubated for 15 min. A reaction mixture solution (50 L) containing 

500 M ACh, 50 M Amplex Red, 1 U/mL horseradish peroxidase, and 250 mU/mL choline oxidase 

in 50 mM Tris-HCl, pH 7.4 was added to each well to initiate the catalytic reaction yielding a 

fluorescence readout (ex/em = 540/590 nm). The inhibitory activities of compounds against eeAChE 

was calculated by measuring fluorescence intensities from each well following a 10 min incubation 

period. The measured values were normalized to that of the compound-untreated control containing 1% 

v/v DMSO. All experiments were performed in triplicate. 

 

3.4.10. Docking studies 

Ligand docking studies were carried out to obtain plausible ligand bound conformations. With 

Autodock Vina,72 the aforementioned DFT optimized structures of Que, Lut, Oro, DHF, and HF were 

docked to the CAS near the S203 of eeAChE (PDB 1C2O)51. The tetrameric structure was simplified 

to the dimeric form using PyMOL73 to reduce the computational cost that resulted in a model with 1078 

residues in total (Figure 3.6b). The docking grid for the ligand binding region was set as 20 x 30 x 20 

Å3 in dimension with a 0.375 Å grid spacing. Four ligand-bound structures with the highest binding 

affinity were chosen for each compound for further MD simulations. 

 

3.4.11. MD simulation 

Both apo and ligand-bound dimer models were simulated with the Amber1674 software package. We 

considered the docked structures selected from the initial docking studies as the structural models of 

holo state. The Amber FF99SB force field75 was used for the eeAChE dimer and the Generalized Amber 

Force Field (GAFF)76 was used to parameterize the covalent bonding parameters of the ligands. Atomic 

partial charges of the ligands were computed as follows. First, we used the Gaussian09 software77 to 

achieve ESP potentials around each molecule at HF/6-31G(d) level of theory. Then atomic partial 

charges were retrieved based on the Merz-Singh-Kollman algorithm. All simulation systems were 

immersed in octahedral solvation boxes filled with TIP3P78 water molecules with a margin of 12 Å from 

the solvation boundary. Sodium ions (Na+) were added to achieve electrostatic neutrality of the solvated 

simulation system which consists of approximately 285,000 atoms in total. The integration time step 
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was 2 fs for all MD simulations. The preliminary procedure was initiated by the energy minimization 

for 4,000 cycles. Next, the solvated system was equilibrated with the Berendsen thermostat at 300 K 

using the NVT ensemble for 5 ns. During these two steps, all carbons in the ligand as well as the Cα of 

the hydrophobic pocket residues present within 5.0 Å from the docked ligand were restrained with a 

restraint force constant of 5.0 kcal/mol/Å2. As the third step, an isobaric ensemble (NPT) was used for 

10 ns where the pressure was controlled to maintain 1 atm with a relatively weaker restraint force 

constant (0.1 kcal/mol/Å2). At last, a 100 ns equilibrium step was performed without any restraints with 

the Langevin thermostat and the Monte Carlo barostat to keep the temperature at 300 K and the pressure 

at 1 atm. In addition, the particle mesh Ewald method79 was used to treat the long-range electrostatic 

interactions and the SHAKE algorithm was employed to constrain the hydrogens. 

 

3.4.12. aMD simulation 

aMD simulation is a promising method to add a non-negative boost potential to the system and therefore 

accelerates the conformational sampling of the protein–ligand complex.52 From the initial unbiased MD 

simulations (100 ns) mentioned above, the parameter sets were obtained for the aMD calculations. The 

detailed parameters used for the simulations are listed: αD = 0.2, αP = 0.2, and EPerResidue = 3.5. aMD 

simulations were then performed for ca. 150 ns for each ligand-bound case by boosting both the 

torsional and non-bonded degrees of freedom of the model systems. 

 

3.4.13. Analysis of the conformations sampled from the aMD simulations 

The trajectories were merged with the VMD software80 and the backbone coordinates of the seven 

residues in the hydrophobic pocket (i.e., W86, G121, G122, S203, F297, F338, and H447) were aligned. 

For each aligned trajectory, the coordinates were clustered based on the RMSD metric of the ligand 

with a cutoff of 1.5 Å. In-house scripts for VMD and CPPTRAJ81 were used to conduct clustering 

analysis. For each ligand-bound aMD simulation, the most populated major clusters were presented in 

Figure 3.6c. Detailed analyses of each cluster were conducted as explained in the following sections. 

Hydrogen Bond Analysis. To assess the interactions between the ligand and the enzyme, the number of 

intermolecular hydrogen bonding was determined. Hydrogen bonds that fell within the criteria (D–A 

lower than the cutoff distance 3.0 Å and A–D–H lower than the cutoff angle 30° (D: H-bond donor; A: 

H-bond acceptor; H: Hydrogen) were counted using the VMD hbonds function. 

Solvent Accessible Surface Area (SASA). The SASA values of the chosen hydrophobic residues (Ala, 

Ile, Leu, Phe, Val, Pro, Gly, Met, and Trp) residing within 6.0 Å from S203 in the AChE dimer model 

were calculated. The selected hydrophobic residues are W117, G120, G121, G122, F123, G201, S203, 

A204, G205, A206, A207, V209, G230, W236, F295, F297, F338, V407, G448, and I451.  
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Water Molecules in the Binding Pocket. To determine the presence of water molecules within the 

binding site, we counted the number of water molecules within 8.0 Å from the Cα atom of S203 in both 

apo and holo cases for each frame. 
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Chapter 4 

 

Drug Repurposing: Multifunctional Molecules against  

Cu(II)–Amyloid-, Reactive Oxygen Species, and Acetylcholinesterase 

 

 

 

 

 

 

 

 

 

The results presented in this chapter will be included in the publication (Nam, G; Lim, M. H. Manuscript 

in Preparation). The synthesis of BMX, the studies of Cu(II) interaction, A aggregation/A analysis, 

and experiments of free organic radical scavenging and AChE inhibition were performed myself. 
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4.1. Introduction 

Alzheimer’s disease (AD) is a complex neurodegenerative disorder with fatal ramifications. The clinical 

symptoms of AD include progressive memory loss, deterioration of cognitive function, and abnormal 

psychological changes.1 Research endeavors striving to understand the causative factors behind 

neurodegeneration in AD has led to the proposal of several hypotheses regarding its pathogenesis: (i) 

amyloid cascade, (ii) metal ion, (iii) oxidative stress, (iv) cholinergic.1 The amyloid cascade hypothesis 

focuses on the role of A, an aggregation-prone peptide connected to AD, in developing the pathology 

of the disease.2 Recent evidence indicates soluble amyloid- (A) dimers as principal bioactive 

neurotoxins undermining neuronal function through the hyperexcitation of glutamatergic neurons by  

interfering with extracellular glutamate reuptake.3 Metal ion dyshomeostasis and 

miscompartmentalization in the brain present dualistic detriments with implications in driving 

neurodegeneration: loss-of-function and gain-of-toxicity.4 The redox-active metal ion, Cu(II), is 

denoted to contribute to AD pathology through its ability to generate reactive oxygen species (ROS) 

and interact with A.1 Considering the notable reactivity of ROS towards biomolecules, oxidative stress 

is often viewed as a general conditional pathology leading to disruption of homeostasis with implicated 

connections to neuroinflammation.5 Neurons exhibit a greater sensitivity towards high concentrations 

of ROS due to their weaker antioxidant capabilities.6-8 These observations indicate the enhanced 

neurodegenerative detriment presented by oxidative stress in the central nervous system (CNS). The 

cholinergic hypothesis pinpoints the deficit in the levels of the neurotransmitter acethylcholine (ACh) 

as a main cause of AD.9 A majority of the currently available symptomatic treatments of AD controls 

the availability of ACh by inhibiting the catalytic activity of the enzyme responsible for its hydrolysis: 

acethylcholinesterase (AChE).1  

The aforementioned hypotheses regarding AD pathology present four pathological factors with 

neurodegenerative implications. In addition to these individual factors, recent research has led to the 

introduction of hybrid concepts such as metal-bound A (metal–A).10-11 The close association between 

A and metal ions in amyloid plaques, found in the brains of AD patients, has led to the investigation 

of their pathological involvement. Reports indicate that the interactions between A and metal ions [e.g., 

Cu(II) and Zn(II)] (i) alter A aggregation in a manner potentially stabilizing toxic oligomers, (ii) 

aggravate the miscompartmentalization of metal ions, and (iii) promote the generation of ROS through 

Fenton-like reactions.1 Such observations suggest that the different pathogenic factors of AD may 

contribute towards neurodegeneration through interconnected pathways. This notion is further 

corroborated by the clinical failures of approaches individually targeting them. In recent years, a shift 

in paradigm towards understanding the pathogenic inter-relations among different causative factors of 

AD has been revealing a more complex picture of AD that is only beginning to be explored. Such 

experimental efforts prove that multifunctional molecules exhibiting modulative reactivities towards 
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multiple pathological factors of AD can be useful as investigative chemical tools or potential therapeutic 

candidates. 

Drug repurposing presents an efficient and effective method of redeveloping previously utilized 

therapeutic molecules. The numerosity of pre-approved drug molecules provides an immense library of 

compounds accompanied with the corresponding pharmacological information including their 

metabolism, toxicity, and side effects. Therefore, researchers are able to search for molecules with a 

specific motivation and repurpose them without the need to face the grueling conventional drug 

development process, which can take up to 10 to 17 years from target discovery to clinical studies.13 

Major depressive disorder is a noncognitive symptom of AD affecting 5-30% of those affected by the 

disease.14-15 The complexity of AD regarding the practical issues of diagnosis and patient compliance is 

reported to significantly affect the psychological evaluation of depression.16 Therefore, the exact 

association between the two conditions remain poorly understood. Growing evidence, however, 

indicates a connection between depression and AD with implications in aggravating the cognitive and 

psychological health of the patients.17 This notion is further supported by the consistent association 

between the severity of dementia and risk of depression.18-19 Recently, alterations in the glutamatergic 

neurotransmitter system and microglial dysfunction have been shown to contribute towards the 

neurobiology linking depression and cognitive impairment.20-22 For these reasons, our structural 

screening of potential multifunctional compounds for repurposing began with anti-depressants. In this 

work, four drug repurposing candidates were selected based on their psychological effects and 

molecular structures: isoniazid (ISNZ), iproniazid (IPNZ), benmoxin (BMX), and quetiapine (QTP) 

(Figure 4.1). The selected molecules exhibit (i) the efficacy in treating major depressive disorders, (ii) 

potential bidentate metal chelation sites, (iii) moderate structural similarity with previously reported 

A-binding compounds, and the ability to bypass the blood-brain barrier (BBB).23-25 Our biochemical 

and biophysical studies demonstrated the multifunctionality of ISNZ, IPNZ, and BMX: (i) notable 

modulative reactivity towards Cu(II)–A40/A42, but not metal-free or Zn(II)-treated A40/A42, (ii) 

capability to scavenge free organic radicals, and (iii) modest inhibitory activity against AChE. 

 

 

Figure 4.1. Chemical structures of the selected drug candidates studied in this work. 
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4.2. Results and discussion 

4.2.1. Rational selection of repurposing candidates 

A large collection of antidepressant molecules was primarily screened based on their influence on 

cognition and the ability to cross the BBB.26 The molecular structures of the compounds were then 

examined, and those exhibiting the possibility for metal binding, structural similarity to previously 

reported A-interacting molecules, and an adequate balance of hydrophilicity/lipophilicity were 

selected. Thereafter, a more in-depth inquiry of literature was performed to finalize the list of 

repurposing candidates: ISNZ, IPNZ, BMX, and QTP (Figure 4.1). 

ISNZ is currently administered as a tuberculosis treatment based on its inhibition of monoamine 

oxidase (MAO).27 Although the antidepressant effects of ISNZ are not utilized as the primary 

therapeutic purpose, the drug is noted to show the sufficient efficacy towards major depressive disorders, 

most likely as a result of its inhibitory effect on the activity of MAO.28 A single study reported ISNZ’s 

ability to alter the aggregation pathways of metal-free A42.29 IPNZ was previously used to treat 

depression through the irreversible and nonselective inhibition of MAO.30 IPNZ was also reported to 

modify the aggregation pathways of metal-free A42.29 BMX is another antidepressant capable of 

irreversibly and non-selectively inhibiting the activity of MAO.32 Lastly, QTP is an oral antipsychotic 

drug used to treat schizophrenia, bipolar disorder, and major depressive disorder through its antagonistic 

actions against dopamine, serotonin, histamine H1, and muscarinic ACh receptors.33-34 Two separate 

studies reported that QTP was able to reduce the cytotoxicity of A25-35 by modulating oxidative stress 

and the expression and localization of Bax and BCl-XL, two apoptotic regulators associated with the 

mitochondria. Previous reports of the selected compounds indicate their potential reactivity against 

pathogenic elements of AD. Therefore, these four antidepressant molecules, i.e., ISNZ, IPNZ, BMX, 

and QTP, were chosen and their modulative multifunctionality against four pathological factors of AD 

including metal-free A, metal–A, ROS, and AChE were investigated. Upon establishing our series of 

repurposing candidates, the compounds were commercially obtained with the exception of BMX that 

was synthesized following a previously reported procedure, as described in Scheme 4.1.35 

 

Scheme 4.1. Synthetic routes to benmoxin (BMX). 
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4.2.2. Modulating activity against the aggregation of metal-free A42 and metal–A42 

To assess the effect of our repurposing candidates on the aggregation of A40/A42 in the absence and 

presence of metal ions, gel electrophoresis with Western blotting (gel/Western blot) and transmission 

electron microscopy (TEM) were utilized to examine the molecular weight distribution and the 

morphology of compound-treated A species, respectively. Two types of experiments were carried out: 

inhibition and disaggregation experiments (Figures 4.2 and 4.3). For the inhibition experiments, freshly 

prepared A was incubated with the compounds for 24 h in the absence or presence of metal ions to 

determine whether the repurposing candidates could inhibit the formation of metal-free and metal-

treated A aggregates. In the disaggregation experiments, the samples of metal-free A and metal–A 

were pre-incubated for 24 h to allow the generation of aggregates that were then treated with the 

compounds for an additional 24 h to evaluate if our selected molecules could disassemble preformed 

aggregates. Under our experimental conditions, A alone spontaneously aggregates resulting in a 

heterogeneous mixture of A ensembles including large assemblies that are detected via TEM, but are  

 

 

Figure 4.2. Effects of the repurposing candidates on the formation of A40 and A42 aggregates in the 

absence and presence of metal ions [i.e., Zn(II) and Cu(II)]. (a) Scheme of the inhibition experiments. 

(b) Analysis of the MW distribution of the resultant A species by gel/Western blot using an anti-A 

antibody (6E10). Conditions: [A40 or A42] = 25 μM; [CuCl2 or ZnCl2] = 25 M; [compound] = 50 

M; 20 mM HEPES, pH 7.4 [for metal-free and Zn(II)-containing samples] or pH 6.6 [for Cu(II)-added 

samples], 150 mM NaCl; 37 °C; 24 h incubation; constant agitation. 
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Figure 4.3. Impact of the repurposing candidates on preformed metal-free and metal-treated A40 and 

A42 aggregates. (a) Scheme of the disaggregation experiment. (b) Analysis of the molecular weight 

distribution of the resultant A42 species by gel/Western blot with an anti-A antibody (6E10). 

Conditions: [A40 or A42] = 25 M; [CuCl2 or ZnCl2] = 25 M; [compound] = 50 M; 20 mM HEPES, 

pH 7.4 [for metal-free and Zn(II)-containing samples] or pH 6.6 [for Cu(II)-added samples], 150 mM 

NaCl; 37 °C; 24 h incubation; constant agitation. 

 

too big to penetrate the gel matrix and be visualized by gel/Western blot.36-38 The smaller A species 

(e.g., monomers and low molecular weight oligomers) cannot be visualized by TEM; however, they 

produce visible bands with various molecular weights in gel/Western blot.39,40 

Interestingly, the repurposing candidates only exhibited noticeable modulative reactivity against 

A aggregation in the presence of Cu(II) in both the inhibition and disaggregation experiments. In the 

inhibition experiments employing Cu(II)–A40 (Figure 4.2), the treatment of ISNZ led to the detection 

of small A oligomers in the range of ca. 7-20 kDa and the increased smearing band corresponding to 

aggregate species larger than ca. 100 kDa. IPNZ also resulted in the formation of small A oligomers 

in the range of ca. 7-20 kDa and increased smearing at ca. 50-240 kDa. BMX induced the generation 

of small A oligomers in the range of ca. 7-20 kDa and enhanced smearing bands corresponding to 

larger aggregate species ca. 100-270 kDa. In the case of Cu(II)–A42, both IPNZ and BMX notably 

altered the molecular weight distribution of Cu(II)–A42 by causing an increase in intensity of the 

smearing bands spanning ca. 7-240 kDa. ISNZ’s modulative reactivity towards Cu(II)–A42 was 
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relatively less significant in comparison to IPNZ and BMX leading to a decrease in the smaller 

oligomer species (ca. 7-20 kDa) and an increase in the smearing band (ca. 50-100 kDa). The 

disaggregation experiments demonstrated similar trends where only Cu(II)–A aggregation was 

affected by ISNZ, IPNZ, and BMX (Figure 4.3). The treatment of these three molecules led to an 

increase in smearing at ca. 100-270 kDa and band intensity of ca. 7-20 kDa in the samples of Cu(II)–

A40. In the case of Cu(II)–A42, the treatment of (i) ISNZ led to a general decrease in the band 

intensities of the species within the range of ca. 4-270 kDa; (ii) IPNZ resulted in a more significant 

decrease in the smaller oligomer species (ca. 4-20 kDa) and a less significant decrease in the band 

smearing at ca. 70-240 kDa; (iii) BMX induced a mild decrease in the overall band intensities and an 

increase in the species with the molecular weights of ca. 50-100 kDa. None of the compounds exhibited 

notable reactivity towards metal-free or Zn(II)-treated A40 and A42 under our experimental conditions 

in both the inhibition and disaggregation experiments. QTP did not display modulative reactivity 

against the aggregation pathways of A40 and A42 even in the presence of Cu(II). 

 

4.2.3. Cu(II) interaction studies 

Interactions between Cu(II) and the repurposing candidates were investigated by monitoring the optical 

changes in the ultraviolet–visible (UV–Vis) range (Figure 4.4). ISNZ, IPNZ, and BMX indicated 

discernible changes in the spectra with the addition of increasing the concentration of Cu(II), indicative 

of their interactions with Cu(II) in solution. The addition of Cu(II) to the solution of QTP did not show 

noticeable optical changes. Further studies regarding Cu(II) binding of ISNZ, IPNZ, and BMX will be 

carried out in the future to provide their binding affinities in solution. 

 

 

Figure 4.4. UV–Vis spectra monitoring the interactions between the repurposing candidates and Cu(II) 

in solution. Conditions: [Compounds] = 50 M; [CuCl2] = 0, 25, 50, 100, and 250 M; 20 mM HEPES, 

pH 7.4, 150 mM NaCl; room temperature. 



75 

 

4.2.4. Interactions with Cu(II)-treated and metal-free A 

To better understand the mechanistic details behind the modulative reactivity of ISNZ, IPNZ, and BMX 

towards Cu(II)–A, samples of Cu(II)–A with and without the repurposing candidates were analyzed 

via electrospray ionization-mass spectrometry (ESI-MS). Treatment of the repurposing candidates (i.e., 

ISNZ, IPNZ, and BMX) with modulative reactivity towards Cu(II)–A led to the detection of singly 

oxidized A in the samples of both Cu(II)–A40 and Cu(II)–A42 (Figure 4.5). More specifically, peaks 

corresponding to singly oxidized A40 at 1449.39 m/z were observed in the Cu(II)–A40 samples treated 

with ISNZ, IPNZ, and BMX (Figure 4.5a). In the case of Cu(II)–A42, oxidation of both metal-free 

A42 (1510.78 m/z for ISNZ, IPNZ, and BMX) and Cu(II)–A42 (1531.42 m/z for ISNZ, IPNZ, and 

BMX) was observed under our experimental conditions (Figure 4.5b).  

 

 

Figure 4.5. Interactions between the repositioning candidates and Cu(II)-bound A monitored by ESI–

MS. Spectra of the samples of (a) Cu(II)–A40 and (b) Cu(II)–A42 upon incubation with the compounds. 

Conditions: [A40 or A42] = 100 M; [CuCl2] = 100 M; [compound] = 200 M; 20 mM ammonium 

acetate, pH 7.4; 37 C; 3 h incubation; no agitation; the incubated samples were then diluted by ten-fold 

with ddH2O and injected into the mass spectrometer. 
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 It should be noted that minor peaks corresponding to the singly oxidized A40 and A42 were  

also detected when metal-free A40 and A42 was treated with ISNZ, IPNZ, and BMX (Figure 4.6). 

The magnitude of the aforementioned peaks, however, was significantly smaller compared to that of 

the peaks detected in the presence of Cu(II). Such distinctions in the degree of A oxidation may explain 

the difference in the modulative reactivity of ISNZ, IPNZ, and BMX towards the aggregation pathways 

of metal-free A and Cu(II)–A. Our MS studies suggest that oxidation of A in the presence of Cu(II) 

is responsible for the ability of ISNZ, IPNZ, and BMX to specifically alter the aggregation of Cu(II)–

A for both isoforms of the peptide. 

 

 

Figure 4.6. Interactions between the repositioning candidates and metal-free A detected by ESI–MS. 

Spectra of the samples of (a) metal-free A40 and (b) metal-free A42 upon incubation with the 

compounds. Conditions: [A] = 100 M; [compound] = 200 M; 20 mM ammonium acetate, pH 7.4; 

37 C; 3 h incubation; no agitation; the incubated samples were then diluted by ten-fold with ddH2O and 

injected into the mass spectrometer. 

 

4.2.5. Free radical scavenging capacity and Inhibitory activity against AChE 

The Trolox equivalent antioxidant (TEAC) assay was utilized to evaluate the free radical scavenging 

capacity of the compounds, relative to Trolox, a vitamin E analog.42 As shown in Table 4.1, The TEAC 

values of ISNZ, IPNZ, and BMX were determined to be 0.89 ± 0.06, 0.98 ± 0.10, and 0.82 ± 0.083, 
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respectively, which suggests that these three compounds are capable of scavenging free radicals at a 

magnitude comparable to Trolox. Moveover, the inhibitory capacity of the repurposing candidates 

against AChE was determined using a fluorometric AChE activity assay. As a reference, tacrine, a potent 

AChE inhibitor,43 was first tested and its inhibitory activity against AChE was determined under our 

conditions (IC50 = 24.9 ± 2.0 nM). Thereafter, the AChE inhibitory activities of the repurposing 

candidates were determined under the same conditions (Table 4.1). The IC50 values of ISNZ, IPNZ, 

and BMX against AChE were calculated to be 56.1 ± 15.1, 1710 ± 934, and 141 ± 25.2 M, respectively. 

In contrast, QTP did not exhibit notable inhibitory activity against free organic radicals and AChE 

under our experimental conditions. 

 

Table 4.1. Inhibitory activity against free organic radicals and AChE determined via TEAC and 

fluorometric assays, respectively. 

 

 
an/a, not applicable. bn.d., not determined. The inhibitory activity of QTP against free organic radicals 

and AChE was not significant enough to be detected under our experimental conditions. 

 

4.3. Conclusions 

Three pre-approved pharmaceutical compounds (i.e., ISNZ, IPNZ, and BMX) were identified as 

multifunctional molecules exhibiting modulative reactivity towards Cu(II)–A40/A42, free organic 

radicals, and AChE. These molecules indicated an unexpected specificity against the aggregation 

pathways of Cu(II)–A40/A42. Mechanistic studies demonstrated that the oxidation of A induced by 

the compounds in the presence of Cu(II) could be responsible for such modulative reactivity. It is worth 

noting that these compounds did not demonstrate the ability to modify the aggregation of metal-free A 

under our experimental conditions, in contrast from a previous report.29 Such distinction could be a 

result of the intricacies of our experimental subject in association with differences in experimental 

conditions and peptide samples. Moreover, ISNZ, IPNZ, and BMX displayed notable antioxidant 

properties comparable to that of Trolox. The modest AChE inhibitory activities of these repurposing 

candidates were observed with the IC50 values in the micromolar range. Our multidisciplinary studies 

indicate the potential utility of the benzohydrazide functionality as a multifunctional structural feature 

against multiple pathological factors found in the brain of AD. Although the modulative reactivity 

towards only three AD pathogenic elements were shown in this study, we believe that further studies 

could reveal additional utility of benzohydrazide. The multifunctional molecules discovered in this 

study could serve as investigative chemical tools and potential therapeutics that can simultaneously treat 
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depression in AD. More specifically, the specific modulative reactivity of ISNZ, IPNZ, and BMX 

towards Cu(II)–A40/A42 could prove useful in clinically investigating the pathological contribution 

of Cu(II)–A40/A42 towards neurodegeneration associated with AD. Such findings could facilitate the 

development of multifunctional molecules as therapeutics capable of stopping the progression of AD. 

 

4.4. Experimental section 

4.4.1. Materials and methods 

All reagents were purchased from commercial suppliers and used as received unless noted otherwise. 

NMR and high-resolution mass spectrometric analyses of small molecules were conducted on an 

Agilent 400-MR DD2 NMR spectrometer (KAIST Department of Chemistry, Daejeon, Republic of 

Korea) and Accurate-Mass Q-TOF LC/MS (Agilent Technologies, Santa Clara, CA, USA), respectively. 

Absorbance and fluorescence values for biological assays were measured on a Molecular Devices 

SpectraMax M5e microplate reader (Sunnyvale, CA, USA). Trace metal contamination was removed 

from buffers and solutions used in metal binding and A experiments by treating with Chelex overnight 

(Sigma-Aldrich, St. Louis, MO, USA). Optical spectra were recorded on an Agilent 8453 UV−Vis 

spectrometer. A40 and A42 (A42 = DAEFRHDSGYEVHHQKLVFFAEDV-

GSNKGAIIGLMVGGVVIA) were purchased from Peptide Institute (Osaka, Japan). 

Acetylcholinesterase assay kit was purchased from Abcam (Cambridge, UK). Double-distilled H2O 

(ddH2O) was obtained from a Milli-Q Direct 16 system (18.2 MΩ⋅cm; Merck KGaA, Darmstadt, 

Germany). TEM images were taken using a Tecnai F30 (FEI) transmission electron microscope (KAIST 

Analysis Center for Research Advancement, Daejeon, Republic of Korea). 

 

4.4.2. Synthesis of benmoxin (BMX) [N’-(1-phenylethyl)benzohydrazide]. Acetic acid (99%; 0.5 

mL) was added to a CH3OH solution (5 mL) containing acetophenone (226 g, 1.9 mmol) and 

benzohydrazide (256 mg, 1.9 mmol) at 0 °C. The mixture was then allowed to reach room temperature 

and stirred for 1 h. -picoline borate (201 mg, 1.9 mmol) was then added to the reaction mixture and 

stirred for 5 min. The solution was then cooled to 0 °C and a 3 M solution of aqueous HCl (2.5 mL) 

was added. The resulting mixture was then allowed to reach room temperature and stirred for 30 min. 

The reaction was then quenched with an aqueous solution of 25% w/v Na2CO3 (10 mL). The products 

were extracted using EtOAc three times and the combined organic phase was washed with a saturated 

brine solution, dried with MgSO4, and filtered. The filtrate was concentrated in vacuo. The crude 

product was then purified via silica gel column chromatography (hexanes–EtOAc, 10:1–1:20) to give 

our final product (52% yield). 

 

4.4.3. A aggregation experiments. A was dissolved in ammonium hydroxide [1% v/v NH4OH (aq)]. 

The resulting solution was aliquoted, lyophilized overnight, and stored at −80 °C. A stock solution of 
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A was then prepared by dissolving the lyophilized peptide using NH4OH (aq) (10 L, 1% v/v) and 

diluting with ddH2O. All A samples were prepared following previously reported procedures.44-47 The 

concentration of the peptide solution was determined by measuring the absorbance of the solution at 

280 nm ( = 1,450 M-1cm–1 for A40;  = 1,490 M-1cm–1 for A42). The buffered solution [20 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), pH 6.6 for Cu(II)-treated samples or pH 7.4 

for metal-free and Zn(II)-present conditions, 150 mM NaCl] was used for the preparation of A samples. 

For the inhibition studies, compounds (final concentration, 50 M; 1% v/v DMSO) were added to the 

samples of A (25 M) in the absence and presence of Cu(II) or Zn(II) (25 M) followed by incubation 

for 24 h at 37 °C with constant agitation. For the disaggregation studies, A (25 M) was incubated 

with and without Cu(II) or Zn(II) (25 M) for 24 h at 37 °C with constant agitation to generate 

preformed A aggregates. The resulting A aggregates were then treated with the compounds (50 M) 

and incubated for an additional 24 h with constant agitation. 

 

4.4.4. Gel/Western Blot. The resultant A species from the inhibition and disaggregation experiments 

were analyzed through gel/Western blot using an anti-A antibody (6E10).44-47 The samples (10 L) 

were separated on a 10−20% Tris-tricine gel (Invitrogen, Carlsbad, CA, USA). Following separation, 

the peptides were transferred onto nitrocellulose membranes and blocked with bovine serum albumin 

(BSA; 3% w/v; Sigma-Aldrich) in Tris-buffered saline (TBS) containing 0.1% v/v Tween-20 (Sigma-

Aldrich) (TBS-T) for 4 h at room temperature or overnight at 4 °C. The membranes were incubated 

with 6E10 (1:2,000, Covance, Princeton, NJ, USA) in a solution of BSA (2% w/v in TBS-T) for 2 h at 

room temperature or overnight at 4 °C. After washing with TBS-T (three times, 10 min each), a 

horseradish peroxidase-conjugated goat anti-mouse secondary antibody (1:5,000 in 2% w/v BSA in 

TBS-T; Cayman Chemical Company, Ann Arbor, MI, USA) was added for 2 h at room temperature. 

Lastly, a homemade ECL kit49 was used to visualize gel/Western blot data on a ChemiDoc MP Imaging 

System (Bio-Rad). 

 

4.4.5. Cu(II) interaction studies. The interaction of the repurposing candidates with Cu(II) was 

monitored by UV–Vis spectroscopy. UV–Vis experiments were carried out in Chelex-treated buffered 

solution [20 mM HEPES, pH 6.6, 150 mM NaCl]. The solutions of compounds were titrated up to 5 

equiv of CuCl2 at room temperature. The mixture solution was allowed to equilibrate for 5 min after the 

addition of CuCl2 at room temperature before the spectra were recorded.  

 

4.4.6. ESI-MS measurements. A (100 M) was incubated with compounds (200 M; 1% v/v DMSO) 

in 1 mM ammonium acetate, pH 7.4 at 37 °C with constant agitation. The incubated samples were 

diluted by 10-fold with ddH2O and immediately prior to injection into the mass spectrometer. The 
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capillary voltage, nozzle voltage, and gas temperature were set to 5.8 kV, 2 kV, and 300 °C, respectively. 

More than 200 spectra were obtained for each sample and averaged for analysis. 

 

4.4.7. TEAC assay. The free radical scavenging capacity of the selected compounds was determined 

by the TEAC assay based on the decolorization of ABTS [2,2’-azino-bis(3-ethylbenzothiazoline-6-

sulfonic acid)diammonium salt] cation radical in comparison to that of the vitamin-E analog, Trolox, 

known for its antioxidant properties.50 The TEAC assay was conducted in EtOH following previously 

reported methods.40 Blue ABTS+• cation radicals were generated by dissolving ABTS (7.0 mM) with 

potassium persulfate (2.5 mM) in ddH2O (5 mL) water and incubating the solution for 16 h at room 

temperature in the dark. Then the solution was diluted with EtOH to an absorbance of ca. 0.7 at 734 

nm. The ABTS+• solution (200 L) was then added to a clear 96 well plate and incubated for 5 min at 

25 ºC. Various concentrations compounds or Trolox were added to the 96 well plate and incubated at 

25 ºC for various time periods (1, 3, 6, and 10 min). Percent inhibition was calculated based on the 

measured absorbance at 734 nm [% inhibition = 100 X (A0 – A)/A0; A0 = absorbance of control well 

without compound; A = absorbance of wells treated with compound] and plotted as a function of 

commpound concentration. The TEAC values of each time point was calculated as the ratios between 

the slope of the compounds and the slope of Trolox. All measurements were carried out in triplicate. 

 

4.4.8. AChE activity assay. AChE inhibitory activities of the selected compounds were determined 

using a fluorometric AChE assay kit (Abcam, Cambridge, MA, USA) following the manufacturer’s 

protocol with slight modifications. eeAChE was dissolved and diluted to a working solution of 400 

mU/mL. 50 L of the eeAChE solution was added to a 96 well plate. Varying concentrations of 

compounds in DMSO were then added to a 96 well plate. After shaking, the mixtures of eeAChE and 

flavonoids were pre-incubated for 5 min. A reaction mixture solution containing ACh, AChE probe, and 

AbRedTM was added to the 96 well plate to initiate the reaction. Calculations of the AChE inhibition 

activity were made based on the fluorescence intensity (ex/em = 540/590 nm) of the wells detected 

after 15 min of incubation. Data were normalized to the control (DMSO). All experiments were 

performed in duplicate. 
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