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Abstract 
 

Ni-rich layered oxide cathode (Ni> 80%) and lithium metal anode are strong candidates for high 

energy density batteries. However, the commercialization is limited due to the morphological 

instability of the Ni-rich cathode, low coulombic efficiency of lithium metal, and vertical 

growth of dendrites. Herein, we minimize the distance between the cathode and the anode to 

increase limit current density and add a dual additive to form a stable solid electrolyte 

interphase (SEI) layer on the anode and cathode surface. Concentrated ether-based electrolytes 

containing lithium nitrate (LiNO3) and lithium difluoro (bisoxalato) phosphate (LiDFBP) 

improves the capacity retention (80%) in a 20 μm Li|LiNi0.8Co0.1Mn0.1O2 full cell, with a high 

Coulombic efficiency of 99.5% after 245 cycles at 0.9 C rate. This paper, which improves the 

battery performance through optimization of cell structure (distance between electrodes) and 

stabilization of the interface, is expected to help in various lithium metal battery research in the 

future. 
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1. Introduction 

 

1.1. Advantages of Lithium metal batteries (LMB) 

As the various batteries including lithium ion batteries (LiB) have been developed1, we were able to 

use camcorders, laptops, and even electric cars in recent years2,3. However, because LIB has reached its 

theoretical capacity (especially graphite anode), a new anode material is required to get a high capacity 

battery. (figure 1)[4,5].  

Since lithium metal has the lowest electrochemical reduction potential (-3.045 V versus standard 

hydrogen electrode) and a high theoretical capacity (3960 mAh g-1), it is receiving attention as a next-

generation anode material for high energy density batteries6–8. Recently, research on lithium-oxygen 

and lithium-sulfur batteries using such lithium metal as an electrode has been increasing. 9–11 
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Figure 1. (a) Lithium-ion battery capacity increase status4. (b) Electrode material properties of 

secondary battery5 
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1.2. Problems of Lithium metal anode 

 The fact that lithium metal has a low reduction potential serves as an advantage in terms of the energy 

density of the battery, but it also indicates that lithium metal is a highly reactive material. Since the SEI 

layer is formed even when the lithium is in contact with the electrolyte, the surface area of the lithium 

metal anode must be reduced to reduce side reactions with the electrolyte. 

Lithium, unlike graphite, is a hostless negative electrode where lithium plating occurs on the lithium 

metal surface. If the supply speed of lithium ions to the lithium metal surface is faster than the supply 

speed (current density) of electrons, lithium with large particle size in the form of a pencake12 will be 

uniformly electrodeposited. Conversely, if the supply speed of electrons (current density) is faster than 

the supply speed of lithium ions, lithium with a small particle size will be electrodeposited unevenly, 

and this electrodeposition lithium is called dendrite (figure 2a). 

Because the following problems occur when dendrites grow, the biggest problem in using lithium metal 

as an anode is lithium dendrites. (figure 2b)6,13,14. 

1) Cell short circuit  

Since dendrites are very thin, when they grow, they break through the separator and touch the cathode, 

which is called a short circuit. If the anode and cathode are connected inside the cell by dendrites, a 

thermal runaway may occur and the cell may explode. It is the main reason why lithium metal anodes 

cannot be commercialized. 

2) Further adverse reaction 

Since dendrites have a larger contact area with electrolytes than dense lithium, side reactions with 

electrolytes increase. This causes additional consumption of the lithium, which causes low coulomb 

efficiency. 

3) Dead lithium  

When the dendrite enclosed by the SEI layer formed due to side reaction with the electrolyte falls from 

the current collector. In this case, all surfaces of the dendrites that are dropped are covered with an SEI 

layer, so they are electrochemically inert. This condition is called dead lithium and dead lithium does 

not participate in the reaction, so when dead lithium is formed, coulombic efficiency decreases. 
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Figure 2. (a). Scheme of dendrite growth12 (b) Various problems when forming in dendrites6 
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1.3. Strategies for improving reversibility of lithium metal anodes 

1.3.1 Distance between cathode and anode 

One way to increase the supply rate of lithium ions is to reduce the distance between electrodes. As the 

distance between the electrodes decreases, the movement distance of lithium ions becomes shorter and 

the supply speed increases. The concentration distribution of lithium ions at the limit current density is 

as follows (figure 3a). Since the supply speed of lithium ions and the supply speed of electrons coincide, 

the lithium ion concentration at the anode surface is zero. If the distance between electrodes becomes 

closer ((a) -> (b) -> (c)) at the same current density, the lithium ion concentration at the lithium interface 

increases, thereby suppressing the growth of dendrites (figure 3a). This represents an increase in the 

limiting current density and can be expressed as the following equation15. As the distance between 

electrodes gets closer (L becomes smaller), the limit current density and diffusion coefficient increase.  

                                        (1) 

                                        (2) 

As a result of reversibility test of lithium metal according to the distance between electrodes, it was 

confirmed that the closer the distance between electrodes, the higher initial coulombic efficiency. This 

means a reduction in side reactions and a reduction in dead lithium (figure 3b). Also result of XPS 

analysis confirmed that the closer the distance between the electrodes, the thinner the film formed, 

which means that the consumption of the electrolyte additive can be minimized. The thinner the SEI 

layer, the faster the supply of lithium ions because the travel distance of the lithium ions in the SEI layer 

decreases (figure 3c). 

However, when applying a current density lower than the limiting current density, dendrites are 

sometimes formed because of the influence of the SEI layer. This indicates that it is essential to form a 

stable SEI layer to suppress dendrites16.  
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Figure 3. (a) Lithium ion concentration according to the distance from the anode surface at limit current 

density. (b) Initial Coulombic efficiency of Li/Cu cells according to the distance between electrodes, 

2.8 mAh cm-2, 0.1C for precycle, electrolyte was 2M LiFSI DME +5%LiNO3+1%LiPF6. (c) XPS data 

of plated lithium according to the distance between electrodes, electrolyte was 2M LiFSI DME. 
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1.3.2 Highly concentrated electrolytes 

Many studies have been reported to form a wellstructured SEI layer on a lithium metal. When a 

carbonate mainly used as a solvent in LiB is used for LMB, dendritic lithium is electrodeposited and 

exhibits low coulombic efficiency17,18. To solve this, many studies have been conducted using a glmye 

solvent that is more stable for lithium because it has a higher LUMO energy than carbonate. However, 

although glyme has a small reactivity to lithium metal, it has a high HOMO energy level, resulting in 

an electrolyte oxidation problem19,20. 

Henderson reports that high concentration liquid electrolytes using glyme high oxidation stability21,22. 

This is because most solvents are coordination with salts when using high concentration salts. 

As the concentration of the electrolyte increases, the reversibility of the lithium metal anode also 

improves because the composition of the film formed on the anode changes depending on the 

concentration of the electrolyte. At low concentrations, solvent-separated ion pairs (SSIP) exist, which 

means that the cations and anions of the salt are completely separated and dissociated. In this case, since 

there are many free-solvents, an orientation of solvents appears on the anode surface, and therefore, a 

solvent-derived film is formed. As the electrolyte concentration increases (> 2M), the anion 

participating in the solvation sheath increases, so the solvation structure changes from SSIP to contact 

ion pairs (CIP) and cation-anion aggregates (AGGs)23,24. As anions participate in the solvation structure, 

in a high concentration electrolyte, anions are arranged at the interface of the anode, and as a result, an 

anion-derived SEI layer is formed on the anode which can improve the reversibility of lithium metal25–

28 (figure 4,5). 
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Figure 4. (a) Formation process of SEI at low concentration electrolyte. (b) SEI formation process at 

highly concentrated electrolyte27 

 

 

Figure 5. (a) Voltage profiles for the Li/Cu cell with 1M LiFSI DME (b) Voltage profiles for the 

Li/Cu cell with 4M LiFSI DME (c) Polarization of the Li/Cu cell for the 4M LiFSI-DME electrolyte. 

(d) CE of Li/Cu cell with 4M LiFSI DME at different current densities28.  



9 

 

1.3.3 Electrolyte additives 

Various additives have been reported so far to make a wellstructured SEI layer on a lithium. (FEC29–31, 

VC32,33, LiNO3
34-50). Particularly, in the case of the NO3

- anion of LiNO3, the electron-donating ability 

is larger than that of the existing salt anion (PF6
-34, FSI-35) (figure 6,7), so that the ion dipole interaction 

with lithium ions is strong, forming a stable film on the lithium metal anode (LiNxOy
36,37, Li3N34,38,39). 

According to existing studies, LiNO3 is known to be reduced at ~1.6V when ether solvent is used39,40 

(figure 8). However, the reduction of LiNO3 has a problem because it occurs continuously as the cycle 

progresses12,41. Due to the low solubility of LiNO3, various methods have been reported for continuous 

supply of LiNO3
34,39,41,42. In addition, the reversibility of lithium metal anodes improved through 

synergy with other additives12. As such, LiNO3 is well known for stabilizing the lithium metal interface, 

and is mainly used for lithium sulfur (Li-S) batteries12,43,44. 

However, there have been few cases where LiNO3 has been applied to 4V class batteries, and most of 

them use NCM with low nickel content (Ni <80%) or LFP as cathode34,35,38,45. In addition, lithium metal 

stabilization by LiNO3 is explained as a cause of battery performance improvement, there has been no 

report on the cathode mechanism of LiNO3 in 4V class batteries to date.  

Various salt type additives that form a stable film on the cathode have also been reported, such as lithium 

bis(oxalato)borate (LiBOB)46,47, lithium difluoro(oxalato)borate (LiDFOB)48,49, Lithium 

Difluoro(bisoxalato) Phosphate (LiDFBP)50,51 (figure 9). In particular, LiDFBP improves the 

reversibility of the negative electrode by forming a stable film on the anode (decomposed at ~1.9V, 

figure 10). 
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Figure 6. Nature abundance 6Li NMR spectra of the electrolyte34. EC/DEC : 1M LiPF6 EC/DEC(1/1), 

E-LiNO3 : 1M LiPF6 EC/DEC(1/1)+LiNO3
 

 

 

Figure 7. 17O NMR spectra of various electrolytes. LiFSI : 2M LiFSI DME, LiFSI/LiNO3 : 2M LiFSI 

DME+0.2M LiNO3
35 

 

 

Figure 8. Cyclic voltammogram curves of various electrolyte. Working electrode is carbon-coated 

current collector, Li is counter and reference electrode. 
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Figure 9. Schematic diagram showing the effect of LiDFBP film formation on the cathode50. 

 

 

 

Figure 10. Cyclic voltammogram curves of electrolyte with and without LiDFBOP. Working 

electrode is graphite and counter electrode is lithium metal51. 



12 

 

2. Experimental 

2.1 Electrolyte and electrodes 

The reference electrolyte was 2 M lithium bis(fluorosulfonyl)imide (LiFSI, ≥99.7%, Chunbo Fine 

Chem Co., Ltd.) dissolved in a 1,2-dimethoxyethane (DME, ≥99.9%, Sigma-Aldrich). Lithium nitrate 

(LiNO3, ≥99.9%, Sigma-Aldrich) and lithium difluoro(bisoxalato) phosphate (LiDFBP, Chunbo Fine 

Chem Co., Ltd.) were added into the reference electrolyte as additives. Every electrolyte was treated by 

CaH2 and filtered after 30 minutes. 

The composite cathode electrodes were prepared by mixing 95wt.% LiNi0.8Co0.1Mn0.1O2 (NCM811), 

2.5wt.% Super-P, and 2.5wt.% poly(vinylidene fluoride) (PVdF) dissolved in anhydrous N-methyl-2-

pyrrolidinone (NMP, 99.5%, Sigma-Aldrich). The specific capacity was 3 mAh cm-2 and the loading of 

the active material was 15 mg cm-2. 
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2.2 Electrochemical mesasurements 

Coin cells were assembled in an argon-filled glove box which accommodated less than 1 ppm oxygen 

and moisture. The 2032 coin type full cells (NCM811 / Li) were monitored in galvanostatic mode within 

a voltage range of 3.0–4.2 V versus Li+/Li using a computer-controlled battery measurement system 

(WonATech WBCS 3000) at 25 °C. The full cells (NCM811 / Li) were first cycled at 0.1 C. and then 

cycled at 0.5 C rate for three times and cycled at 0.9 C rate. To confirm the leakage current of full cells, 

the full cells (NCM / Li) were charged to 4.2 V at a 0.1 C rate, and then the leakage current of the cells 

was monitored at a constant charging voltage of 4.2 V for 10 hr. The 2032 coin type Li/Cu cells were 

first cycled at 0.1C. Various 2016 coin type lithium/lithium symmetric cells were evaluated under 

various conditions. 

 

 

2.3 Characterization 

Cross-sectional images of the cathodes were acquired using an ion-milling system (IM4000Plus, Hitachi) 

and SEM (FE-SEM; JSM-6700F, JEOL) with energy-disperse spectroscopy (XFlash 6130, Bruker). The 

CEI and SEI structure of the NCM811 cathodes and lithium meatal anodes were examined by ex situ 

X-ray photoelectron spectroscopy (XPS, Scientific K-Alpha system, Thermo Scientific). All XPS 

spectra were energy calibrated to the hydrocarbon peak at a binding energy of 284.8 eV. The morphology 

of Li deposits on a Cu substrate was observed by field-emission scanning electron microscopy (FE-

SEM; JSM-6700F, JEOL) in a high-vacuum environment. The crystal structure of the NCM811 cathode 

was investigated by the X-ray diffraction (XRD). Bruker D2 Phaser powder diffractometer with a Cu 

K∂ radiation source (λ=1.54184 Å) was used. The scanning 2θ range was 10-80° at 1°/min. The 

electrochemical impedance spectroscopy (EIS) measurements for full cells were carried out using an 

IVIUM frequency response analyzer. The frequency range was from 10 mHz to 1MHz and the 

potentiostat signal amplitude was 5mV.
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3. Result and discussion 

3.1 Electrochemical performances of Li/Cathode full cells and analysis. 

The cycling characteristics of the Li/NCM full cell of each electrolyte are shown in Figure 11. When 

each additive was used alone (figure 11a), each exhibited improved life characteristics (retention 80% 

reference electrolyte: 37 cycles, 1% LiDFBP: 161 cycles, 1% LiNO3: 270 cycles). In the case of LiNO3 

(figure 11b), it can be seen that the performance is improved as the content is increased (1%LiNO3: 

270cycle, 3%LiNO3: 325 cycle, 5%LiNO3: 370 cycle), indicating that sufficient supply of LiNO3 is 

required. However, when LiDBP and LiNO3 were used together, the lifespan was slightly reduced 

compared to when LiNO3 was used alone (5%LiNO3 370cycle, 5%LiNO3+1%LiDFBP: 350 cycle based 

on retention 80%). 

Analysis of cathode was performed to know the effect of the additives. The voltage graph for the 

Li/LiNi0.8Mn0.1Co0.1O2 full cell with four electrolyte compositions is shown in figure 12a. Although all 

four compositions show similar initial Coulomb efficiency, the composition of the SEI layer formed in 

each electrolyte composition is expected to be different because the HOMO energy levels of the salt, 

solvent, and additive are different (figure 12b). Since the HOMO energy level of additives (LiNO3, 

LiDFBP) is higher than that of salt, it is expected to make a wellstructrured SEI layer on the cathode by 

oxidative decomposition prior to salt. As a result of the floating test (figure 12c), when the additive is 

applied, it can be seen that the generated current decreases, which means the additive actually forms a 

stable SEI layer on the cathode. 

To confirm that the actual additive inhibited the decomposition of salt (LiFSI), XPS analysis of the 

cathode was performed after the precycle (figure 13,14). Inhibition of salt decomposition by application 

of additives was confirmed through reduction of LiF, SOx, and Li2S peaks (LiF, SOx, Li2S: LiFSI 

decomposition products). This means that the additive is preferentially decomposed to form a stable 

SEI layer. 

The OCV measurement of the full cell after 40 cycles is as follows (figure 15a). The reference 

electrolyte (2M LiFSI DME) showed a reduced value compared to precycle OCV at about 1.0V. This 

difference was due to the increase in the resistance of the full cell (figure 15b). When applying the 

additive, OCV did not drop due to the small resistance. In order to find out which electrode is the main 

reason for the increase in resistance, the evaluation was conducted by changing the electrode of the 

cycle cell and the electrode of the precycle cell. In the case of the first cell (cycle NCM811 / precycle 

lithium), the OCV of the reference electrolyte still has a reduced value (figure 16a) than that of the 

precycle OCV, and the cycle evaluation did not proceed (figure 16b). For the second cell (precycle 

NCM811 / cycle lithium), the OCV of the reference electrolyte had a value similar to that of the precycle 

OCV (figure 16c), and smooth cycle evaluation was performed (figure 16d). Through this, it was 

confirmed that the main deterioration factor of the full cell when using the reference electrolyte was the 

cathode. When an additive is applied, the resistance of the full cell is reduced (figure 15b), and the 

activity of the cycle anode and cathode is still maintained. 

Further analysis was conducted to determine what problems occurred with the cathode of the reference 

electrolyte and what role the additive plays to protect the cathode (figure 17,18). XRD analysis with 40 

cycled NCM811 confirmed that the crystallinity of the cathode decreased when a reference electrolyte 

was used (figure 17a). In addition, as a result of cross-sectional SEM analysis, numerous micro-cracks 

of secondary particles of NCM811 were identified (figure 18a). On the other hand, when the additive 

was applied, it was confirmed that the crystallinity of the cathode was maintained (figure 17b,c,d) and 

that micro-crack did not occur in the secondary particles (figure 18b,c,d). Through this, it was confirmed 
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that the cathode particles are protected when the additive is applied. XPS analysis was performed with 

a 40 cycled NCM to determine the mechanism of the additive at the cathode (figure 19). When the 

additive is applied, LiF decreases (figure 19b,c,d). Considering that LiF is a decomposition product of 

salt (LiFSI), it can be said that the additive inhibited the decomposition of salt. That is, the additive 

decomposes preferentially over the salt to make a stable film on the cathode to inhibit further 

decomposition of the salt, which is consistent with the HOMO energy trend (figure 11b).  

Through the analysis of the cathode, it was confirmed that the main deterioration factor of the reference 

electrolyte was the cathode, which was due to the excessive formation of LiF, a non-conductive material 

due to salt decomposition. When an additive with a higher HOMO energy than that of a salt is applied, 

the additive is preferentially decomposed to make a wellstructured film on the cathode, confirming that 

the cell performance is improved. 
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Figure 11 (a),(b) Cycling performance and (c) coulombic efficiency of (NCM811/ 40𝜇𝑚 lithium) full 

cells with various electrolyte. Reference electrolyte is 2M LiFSI DME (DME). 

 

 

Figure 12 (a) Precycle voltage profiles of full cell with various electrolyte. (b) Visual highest occupied 

molecular orbital (HOMO) and corresponding relative energy of each component. (c) Electrochemical 

floating test of full cell at constant voltage of 4.2V after charging up to 4.2V in different electrolytes. 

Reference electrolyte is 2M LiFSI DME (DME). 
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Figure 13. F 1s spectra of NCM811 cathode after precycle. (a) Reference electrolyte (2M LiFSI DME), 

(b) with 1%LiDFBP, (c) with 5%LiNO3, (d) with 5%LiNO3, 1%LiDFBP. 

 

 

Figure 14. S 2p spectra of NCM811 cathode after precycle. (a) Reference electrolyte (2M LiFSI DME), 

(b) with 1%LiDFBP, (c) with 5%LiNO3, (d) with 5%LiNO3, 1%LiDFBP. 
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Figure 15. (a) Open circuit voltage (OCV), (b) Nyquist plots of AC impedance of NCM811/lithium 

metal full cell after 40 cycle for each electrolyte. Reference electrolyte is 2M LiFSI DME (DME). 

 

 

Figure 16. (a) Open circuit voltage and (b) cycling performance of full cell (40 cycled NCM811 / 

precycled lithium metal). (c) Open circuit voltage and (d) cycling performance of full cell (precycled 

NCM811 / 40 cycled lithium metal). Reference electrolyte is 2M LiFSI DME (DME). 
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Figure 17. XRD patterns of NCM811 after 40cycle. (a) Reference electrolyte (2M LiFSI DME), (b) 

with 1%LiDFBP, (c) with 5%LiNO3, (d) with 5%LiNO3, 1%LiDFBP. 

 

Figure 18. Cross section SEM image of NCM811 after 40 cycle. (a) Reference electrolyte (2M LiFSI 

DME), (b) with 1%LiDFBP, (c) with 5%LiNO3, (d) with 5%LiNO3, 1%LiDFBP. 
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Figure 19 F 1s spectra of NCM811 cathode after 40 cycles. (a) Reference electrolyte (2M LiFSI DME), 

(b) with 1%LiDFBP, (c) with 5%LiNO3, (d) with 5%LiNO3, 1%LiDFBP. 
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3.2 Electrochemical performances of Li/Li, Li/Cu cells and analysis 

The voltage graphs for lithium plating/stripping of the four electrolyte compositions are shown in figure 

20a. Even the reference electrolyte (2M LiFSI DME) shows a high efficiency of 78.7% because the 

distance between the electrodes is very short (the distance between the electrodes: 0.2 mm). When an 

additive is applied, the reversibility of the lithium metal increases because the additive decomposes first 

to form a stable SEI layer. This is consistent with the LUMO energy level (figure 20b). Additives with 

lower LUMO enegy levels than salt (LiFSI) and solvent (DME) decompose first to make a stable SEI 

layer. 

Especially, when LiNO3 is added, it shows a high reversibility of lithium metal of more than 95%, which 

is consistent with the existing research that LiNO3 improves the reversibility of lithium metal anodes 

by forming a stable film on lithium metal34,38,39. When observing the Cu surface after stripping (figure 

20c), when using the electrolyte composition with LiNO3, a black layer can be identified on the Cu 

surface, which is consistent with the previous research41. The black layer also appears when observing 

the lithium electrodeposition process of an electrolyte containing LiNO3 using in-situ OM (figure 20d). 

This is presumed to be Li3N because the Li3N powder is black (figure 20e) which is a decomposition 

product of LiNO3. 

Inhibition of electrolyte decomposition according to the application of additives can also be confirmed 

through XPS analysis after precycle of the full cell (figure 21). The decrease in salt decomposition (SOx, 

Li2S) peak due to the application of the additive indicates that the decomposition of the electrolyte salt 

(LiFSI) can be suppressed when the additive is applied. In addition, when LiNO3 and LiDFBP are used 

at the same time, the decomposition of LiDFBP can be minimized compared to when LiDFBP is used 

alone (reduction of LiPOxFy peak, which is decomposition product of LiDFBP). Since the 

decomposition products of LiNO3 were formed very thin, the peak intensity was very weak in the 

precycle cell. In the case of lithium electrodeposition morphology (figure 22), all four electrolyte 

compositions exhibit particle-like morphologies, because the distance between electrodes is close 

enough (the distance between electrodes is 0.2 mm). 

However, the evaluation result of the lithium/lithium symmetric cell was different from the initial 

lithium reversibility evaluation (figure 23). Unlike the initial coulombic efficiency, which effectively 

inhibited salt decomposition and improved the reversibility of lithium metal when LiNO3 was applied, 

in the long-term evaluation, cell performance was detoriated when LiNO3 was applied (2M LiFSI DME : 

236 cycle, 2M LiFSI DME+5%LiNO3 : 120 cycle). This is because LiNO3 continually decomposes to 

form a SEI layer (overlapping of the film, depletion of additives), which is consistent with the existing 

reports12,41. There is a lot of difference from the life of the full cell (370 cycle based on retention 80%) 

because the reduction of lithium occurs during charging and discharging in the symmetric cell, so the 

reduction of LiNO3 also occurs twice as much as the full cell. When LiDFBP is used with LiNO3, the 

performance of the lithium/lithium symmetric cell increases (2M LiFSI DME+5%LiNO3+1%LiDFBP : 

140 cycle) because LiDFBP with low LUMO energy (figure 20b) decomposes first to suppress the 

continuous decomposition of LiNO3. Using these phenomena, world-class lithium/lithium symmetric 

cell life characteristics were obtained under various evaluation conditions (figure 24). As a result of 

XPS (figure 25), when LiDFBP was used together with LiNO3, decomposition of LiNO3 could be 

suppressed  than when LiNO3 was used alone (Li3N peak reduction), and this was due to preferential 

reduction of LiDFBP. In order to maximize the effect of dual additives, 20um lithium was used to 

evaluate the full cell, and as a result, excellent performance was secured. (figure 26). As a result of 

increasing the burden on the anode side by using ultra-thin lithium, when using the dual additive, it 

showed very good life characteristics (2M LiFSI DME+5%LiNO3+1%LiDFBP: 245 cycle based on 

retention 80%) . 
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Figure 20. (a) Precycle voltage profiles of Li/Cu cell with various electrolyte. Reference electrolyte 

was 2M LiFSI DME (DME) and distance between electrodes was 0.2mm. Capacity was 2.5 mAh cm-

2, and current density was 0.25 mA cm-2 (0.1C rate) and 40 𝜇𝑚 lithium metal was used. (b) Visual 

lowest unoccupied molecular orbital (LUMO) and corresponding relative energy of each component. 

(c) Cu surface of Li/Cu cell after precycle. (d) In situ snapshots of the growth of lithium during the 

electrodeposition with an electrolyte (2M LiFSI DME+5%LiNO3). (e) Li3N powder purchased from 

Sigma-Aldrich. 

 

Figure 21. S 2p, P 2p spectra of lithium metal anode after precycle of full cell. (a) Reference electrolyte 

(2M LiFSI DME), (b) with 1%LiDFBP, (c) with 5%LiNO3, (d) with 5%LiNO3, 1%LiDFBP. 
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Figure 22. SEM images of plating lithium on Cu. (a) Reference electrolyte (2M LiFSI DME), (b) with 

1%LiDFBP, (c) with 5%LiNO3, (d) with 5%LiNO3, 1%LiDFBP. The capacity was 2.5 mAh cm-2 and 

current density was 0.25 mA cm-2. Distance between electrodes was 0.2mm and 40 𝜇𝑚 lithium metal 

was used.  

 

Figure 23. Voltage versus time for a lithium/lithium symmetric cell with various electrolyte at 2.5 mAh 

cm-2, 2.25 mA cm-2 (0.9C rate). 40 𝜇𝑚 lithium metal was used and distance between electrodes is 

0.214 mm. Reference electrolyte is 2M LiFSI DME (DME). 
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Figure 24. Voltage versus time for a lithium/lithium symmetric cell with various electrolyte at (a) 2 

mAh cm-2, 5 mA cm-2 (2.5 C rate) using 40 𝜇𝑚 lithium, (b) 5 mAh cm-2, 2mAcm-2 (0.4 C rate) using 

100 𝜇𝑚 lithium. Distance between electrodes is (a) 0.014mm, (b) 0.394 mm. Reference electrolyte is 

2M LiFSI DME. 

 

 

Figure 25. N 1s, P 2p spectra of lithium metal anode of full cell after 40 cycles.  (a) Reference 

electrolyte (2M LiFSI DME), (b) with 1%LiDFBP, (c) with 5%LiNO3, (d) with 5%LiNO3, 1%LiDFBP. 
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Figure 26. (a) Cycle performance and (b) coulombic efficiency (CE) of full cells with ultra-thin 20𝜇𝑚 

lithium metal anode.  
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4. Conclusion 

Here, it is revealed that the main cause of deterioration of the reference electrolyte (2M LiFSI 

DME) composition full cell is due to the thick LiF film due to the continuous decomposition of 

the LiFSI salt. To prevent the decomposition of LiFSI at the cathode, we applied a dual additive 

with a HOMO energy level higher than that of LiFSI to suppress salt decomposition at the 

cathode. In order to solve the problem of continuous decomposition of LiNO3 that occurs when 

using LiNO3 as an additive, LiNO3 is dissolved as much as possible (5%LiNO3) and the additive 

consumption is reduced by reducing the distance between electrodes. In addition, by using 

LiDFBP with a lower LUMO energy than LiNO3, LiDFBP decomposes prior to LiNO3 to 

suppress the decomposition of LiNO3. Through this, we obtained world-class lithium/lithium 

symmetric cell lifespan results, and long life high energy density full cell (NCM811/20um 

lithium) lifespan results. 
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