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Abstract 

 

We address the joint problem of learning and scheduling in multi-hop 

wireless network without a prior knowledge on link rates. Previous efficient 

scheduling algorithms need the link rate information and most learning 

algorithms require a centralized entity with polynomial complexity, which 

becomes a major obstacle to develop a learning-based scheduling scheme for 

large-scale multi-hop networks. In this work, we incorporate a low-complexity 

scheduling algorithm into the learning procedure and develop a new joint scheme 

for learning and scheduling. We show that it achieves rate optimal performance 

in learning and also achieves close-to-optimal throughput performance. Further, 

we extend it to practically distributed algorithm that is amenable to implement in 

large-scale networks. To our best knowledge, it is the first 𝑂(1)-complexity 

distributed scheme for both learning and scheduling. We verify our results 

through simulations. 
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I. INTRODUCTION 

 

As one of the key functions in wireless communication networks, link scheduling determines 

which links should be activated at what time. The problem is challenging due to non-linear 

interference relationship between wireless links. The seminal work of Tassiulas and Ephremides 

has shown that the Maximum Weighted Matching (MWM) algorithm that maximizes the queue 

weighted rate sum can achieve the optimal throughput [24]. Due to high computational complexity 

of MWM [14], alternative low-complexity scheduling solutions with comparable performance such 

as Greedy Maximal Matching (GMM) or Longest Queue First (LQF) have attracted much attention 

[13][20]. However, since GMM still has linear complexity that increases with the network size, it 

can be hardly used in large size multi-hop networks. 

There has been extensive research on developing efficient scheduling algorithms that have 

sublinear complexity, yet perform provably well in multi-hop wireless networks. An approximation 

to GMM with logarithmic complexity has been developed in [16]. Random access technique with 

explicit neighborhood information exchanges has been explored at some expense of performance 

[15][19][26]. Several studies have shown that the optimal throughput performance is achievable, 

either by taking the pick-and-compare approach [5][10], or by exploiting the carrier-sensing 

functionality [11][22]. There have been also attempts to develop provably efficient scheduling 

algorithms that work with time-varying wireless channels [12][16] or with complex SINR 

interference model [4][7]. The aforementioned scheduling schemes, however, operate with 

deterministic link rates that are known a priori or at the time of scheduling. The extension of these 

scheduling schemes to the case when the link rates are unknown is not straightforward. 

In this work, we consider the scheduling problem in multi-hop wireless networks, where link 

rates and statistics are unknown a priori. The uncertainty is often caused by wireless fading, 

interference, limited feedback, measurement error, system dynamics, etc [23][27]. We assume that 

an instance link rate is revealed when it is accessed/scheduled, and it is drawn from an unknown 

static distribution. Our goal is to find a sequence of non-interfering link sets (i.e., feasible schedules) 

to maximize throughput performance while learning link rates. 

From the learning aspect, the problem can be viewed as a variant of Multi-Armed Bandit (MAB) 

problems, in which one repetitively plays a set of arms to maximize the reward sum [6]. The 

performance of a learning algorithm is often evaluated by regret, which is the difference in the total 

expected reward obtained by an optimal policy and that by the learning algorithm. Lai and Robbins 

have shown that the regret grows at least at logarithmic rate of time [18], and several index-type 

learning algorithms with the order-optimal regret have been developed [2][3]. 
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For a large-scale multi-hop wireless network, it is imperative for the algorithms to be amenable 

to implement in a distributed manner. In [21], the authors have developed a distributed learning 

algorithm that selects best 𝑀 out of 𝑁 arms, where each of 𝑀 users selects an arm taking into 

consideration mutual collision. By employing a time-division selection approach, the scheme is 

shown to achieve logarithmic regret. The works of [1][8] have addressed the problem in cognitive 

radio network settings and developed distributed schemes with logarithmic regret through 

prioritized ranking and adaptive randomization. Although these learning algorithms are amenable 

to distributed implementation, they are limited to a single-hop network with a fixed number 𝑀. Gai 

et al. [9] and Chen et al. [6] have considered more general problems of combinatorial MAB (CMAB) 

with arbitrary constraint that is applicable to multi-hop networks. They have employed an (𝛼, 𝛽)-

approximation oracle that can achieve 𝛼  fraction of the optimal value with probability 𝛽 , and 

developed learning schemes that can achieve the logarithmic growth for αβ fraction of the optimal 

expected regret (denoted by 𝛼𝛽-regret). However, an oracle with good 𝛼𝛽 (i.e., close to 1) often 

has a high-order polynomial complexity, and thus as the network scales, it is not clear whether the 

scheme is amenable to implement in a distributed manner. 

Recent work of Stahlbuhk et al. [23] is the most related to ours. They have incorporated GMM, 

which is (
1

2
, 1)-approximation oracle with linear complexity, for both learning and scheduling in 

multi-hop wireless networks with unknown link rates, and shown that the GMM-based scheme 

achieves the logarithmic growth for 
1

2
 -regret. Albeit interesting, its stability region is limited to 

1

2
 

of the capacity region and has linear complexity that makes it less attractive for large-size networks. 

In this work, we consider the joint problem of learning and scheduling, and develop low-

complexity scheme that achieves near-full capacity region. Further, we extend it to distributed 

implementation. Our contribution can be summarized as follows: 

 We incorporate the augmentation algorithm of [10] into the CMAB framework.  

 We show that the augmentation algorithm, which can be considered as an (𝛼, 𝛽) - 

approximation oracle, achieves the rate-optimal logarithmic growth of 𝛼 − 𝑟𝑒𝑔𝑟𝑒𝑡, for any 

𝛽 > 0. 

 We show that our scheme achieves the stability region that is arbitrarily close to the capacity 

region. 

 We develop a modified version of the scheme that is amenable to implement in a distributed 

manner. 

The rest of paper is organized as follows. Section Ⅱ describes our system model. In Section Ⅲ, 

we introduce the augmentation algorithm and incorporate it into our joint scheme of learning and 

scheduling. After analyzing the performance of the proposed scheme in Section Ⅳ, we extend our 
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algorithm to distributed implementation in Section Ⅴ. Finally, we evaluate our schemes through 

simulations in Section Ⅵ and conclude our work in Section Ⅶ.   

 

II. SYSTEM MODEL 

 

We consider a multi-hop wireless network denoted by graph 𝒢 = (𝒱, ℒ) with the set 𝒱 of nodes 

and the set ℒ of bidirectional links. We assume that the links are reciprocal, i.e., if (𝑢, 𝑣) ∈ ℒ, then 

(𝑣, 𝑢) ∈ ℒ. A set of links that can be scheduled at the same time is constrained by the primary 

interference model, under which any node 𝑣 in the network can communicate with at most one of 

its neighbor nodes 𝒩(𝑣), where 𝒩(𝑣) = {𝑢 ∈ 𝒱 | (𝑣, 𝑢) ∈ ℒ}. It can model Bluetooth or FH-

CDMA networks as well as captures the essential feature of wireless interference [20][23]. At each 

time slot, a set of links that satisfies the interference constraints can be simultaneously activated. 

Such a set of links is called a matching and let 𝒮 denote the set of all available matchings in  𝒢.  

At each link 𝑖 ∈ ℒ, we assume packets arrive following a Bernoulli process with probability 𝜆𝑖. 

Let 𝝀 denote its vector and 𝑎𝑖(𝑡) ∈ {0,1} denote the number of arrived packets in time slot 𝑡. We 

have 𝔼[𝑎𝑖(𝑡)] = 𝜆𝑖. We assume that the rate of link 𝑖 is time-varying due to multi-path fading and 

unknown interference, and it is independently drawn from a (possibility different) distribution with 

mean 𝜇𝑖 . Let 𝝁 denote its vector and 𝑋𝑖(𝑡) ∈ [0,1] denote the instance rate of link 𝑖 when it is 

activated at time slot 𝑡. We have 𝔼[𝑋𝑖(𝑡)] = 𝜇𝑖. We assume that that 𝝀 and 𝝁 are unknown. 

At time slot 𝑡, if a policy activates matching 𝑆𝑡, then each link 𝑖 ∈ 𝑆𝑡 accesses the medium and 

transmits 𝑋𝑖(𝑡) packets1 during the time slot. Each link 𝑖 is associated with an unbounded buffer 

that queues up packets for transmission. Let 𝑞𝑖(𝑡) denote the queue length at link 𝑖 at the beginning 

of time slot 𝑡, which evolves as  

where [⋅]+ = max{⋅, 0} . Let 𝒒(𝑡)  denote its vector, and let 𝑞∗(𝑡) = max𝑖∈ℒ 𝑞𝑖(𝑡)  denote the 

maximum queue length in the network at time slot 𝑡. 

We consider a frame structure where each frame has length of 𝑇 time slots. 𝑛-th frame begins at 

time slot 𝑡𝑛 = (𝑛 − 1)𝑇 + 1. During the 𝑛-th frame, i.e., for time slots 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1), we define 

weight 𝑊𝑖(𝑡) and its mean 𝑤𝑖 of link 𝑖, respectively, as  

 𝑊𝑖(𝑡) =
𝑞𝑖(𝑡𝑛)

𝑞∗(𝑡𝑛)
𝑋𝑖(𝑡), and 

𝑞𝑖(𝑡𝑛)

𝑞∗(𝑡𝑛)
𝜇𝑖. (2) 

 
1or transmits 1 packet with probability 𝑋𝑖(𝑡). 

 𝑞𝑖(𝑡 + 1) = {
[𝑞𝑖(𝑡) − 𝑋𝑖(𝑡)]+ + 𝑎𝑖(𝑡),      if 𝑖 ∈ 𝑆𝑡,   

𝑞𝑖(𝑡) + 𝑎𝑖(𝑡),                        if 𝑖 ∉ 𝑆𝑡,
 (1) 
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For 𝑞∗(𝑡𝑛) = 0, we define 𝑊𝑖(𝑡) = 𝑋𝑖(𝑡) and 𝑤𝑖 = 𝜇𝑖. Let 𝒘 denote its vector (𝑤1, 𝑤2, ⋯ , 𝑤|ℒ|), 

where |⋅| is the cardinality of the set. We denote the link weight sum of matching 𝑆 by 

 𝑟𝒘(𝑆) = ∑𝑖∈𝑆 𝑤𝑖. (3) 

For convenience, we let 𝑟𝒘
∗ = max𝑆∈𝒮 𝑟𝒘 (𝑆) denote the largest weight sum over all matchings and 

we also denote a set of optimal matchings by 𝒮𝒘
∗ = arg max𝑆∈𝒮 𝑟𝒘(𝑆). For 𝛼 ∈ (0,1], we define a 

set of near-optimal matchings with respect to vector 𝒘 as 

 𝒮𝒘
𝛼 = {𝑆 ∈ 𝒮 | 𝑟𝒘(𝑆) ≥ 𝛼 ⋅ 𝑟𝒘

∗ } (4) 

and define its complement as  𝒮𝒘̅
𝛼 = 𝒮 − 𝒮𝒘

𝛼  . 

In the CMAB framework, a link corresponds to an arm, a matching to super arm, and the instance 

link rate to the reward of the link, respectively. We use the terms interchangeably. Note that the 

regret its defined as the accumulated expected difference between the reward sum associated with 

an optimal matching and that obtained by the CMAB algorithm. Similar to [6], we define 𝛼 −

𝑟𝑒𝑔𝑟𝑒𝑡 as, for some 𝛼 ∈ (0,1], 

 𝑅𝑒𝑔𝛼(𝑡) = 𝑡 ⋅ 𝛼 ⋅ 𝑟𝒘
𝛼 − 𝔼[∑𝜏=1

𝑡 𝑟𝒘(𝑆𝜏)],  (5) 

       Which evaluates the performance of an CMAB task at time 𝑡. 

In the viewpoint of resource allocation, achieving a high reward sum is equivalent to achieving 

a larger queue-weighted link rate sum, which implies that the links with high demands and high 

service rates are scheduled first, and thus tends to stabilize the network. A network is said to be 

stable if the queues of all links are rate stable, i.e., lim𝑡→∞
𝑞𝑖(𝑡)

𝑡
= 0 with probability 1 for all 𝑖 ∈

ℒ. Let Λ denote the capacity region, which is the set of arrival rate vectors 𝝀 such that for any 𝝀 ∈

𝚲, there exists a policy that can make the network stable. We say that a policy has the stability 

region 𝛾Λ for some 𝛾 ∈ (0,1], if it can stabilize the networks for any arrival 𝝀 ∈ 𝛾Λ 

 

III. ALGORITHMS 

 

Motivated by [5] and [17], we develop an efficient joint scheme of learning and scheduling, by 

employing augmentation algorithm [5]. We first describe the main characteristics of augmentation 

algorithm and restate it for the ease of explanation. Then, we incorporate it into our online scheme 

for learning and scheduling. 

  

3.1 Augmentation algorithm 

Firstly, we explain the overall procedure of the original version of algorithm that first appeared in 

[5], briefly. Based on it, we recompile the algorithm with some changes and restate the description 
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of it in detail, which is necessary for both completeness and accessibility of this work. We start 

with some definitions. Given a matching 𝑆, an augmentation 𝐴 of matching 𝑆 is a path or cycle 

where links inside and outside 𝑆 are connected alternatively and has the property that if all links in 

𝐴 ∩ 𝑆 are removed from 𝑆 and all links in 𝐴 − 𝑆 are added to that 𝑆, then the resulting set of links 

is another matching in 𝒢. The latter process of finding new matching is called augmenting 𝑆 with 

𝐴, and the resulting matching is denoted by 𝑆 ⊕ 𝐴 = (𝑆 − 𝐴) ∪ (𝐴 − 𝑆). A pair of augmentations 

𝐴1 and 𝐴2 of matching 𝑆 is disjoint if no two links in 𝐴1 − 𝑆 and 𝐴2 − 𝑆 are adjacent, i.e., if they 

do not share a common node. Let 𝒜 denote a set of disjoint augmentations of matching 𝑆 where 

every pair in 𝒜 is disjoint. Then 𝑆 ⊕ (⋃ 𝐴𝐴∈𝒜  ) is also a matching in 𝒢. The original algorithm 

builds such a set of disjoint augmentations in a distributed fashion to make a matching for the next 

schedule. 

The overall procedure of the original augmentation algorithm is as follows. At the beginning of 

each time slot 𝑡, suppose that each link 𝑖 is associated with some known weight 𝑤𝑖,𝑡. (i) Given a 

valid matching 𝑆𝑡−1  that is the schedule at time 𝑡 − 1 , it generates a set 𝒜  of disjoint 

augmentations of 𝑆𝑡−1, and (ii) compares the weight sum of 𝐴 − 𝑆𝑡−1 and 𝐴 ∩ 𝑆𝑡−1 for each 𝐴 ∈

𝒜 . Let 𝐵(𝐴)  be the one with the larger weight sum among the two. (iii) The augmentation 

algorithm obtains the new schedule 𝑆𝑡 as ⋃ 𝐵(𝐴)𝐴∈𝒜 ∪ (𝑆𝑡−1 − 𝒜). For the comparison of the 

weight sum, we define the gain of augmentation 𝒜 as 

 𝐺𝑡
𝒘(𝐴) = ∑ 𝑤𝑖,𝑡

𝑖∈𝐴−𝑆𝑡−1

− ∑ 𝑤𝑗,𝑡
𝑗∈𝐴∩𝑆𝑡−1

 (6) 

and obtain new schedule 𝑆𝑡 by augmenting 𝑆𝑡−1 with all 𝐴 ∈ 𝒜 of 𝐺𝑡
𝒘(𝐴) > 0. This comparison 

makes controller select better schedule than prior one. 

 

 

Now, we improve the original algorithm to another one for the ease of understanding its 

implementation and better performance. Also, the revised augmentation algorithm can accomplish 

the above procedure in a distributed fashion. The algorithm needs two configuration parameters 

𝑝 and 𝑘, and consists of the following three stages in each time slot: building augmentations, 

Figure 1: Time-slot structure 



 

7 

 

checking a cycle, and switching(back-propagation)/scheduling. For the ease of exposition, we 

consider additional time structure of discrete mini-slots, as shown in Fig. 1 and all the three stages 

end in 4𝑘 + 2 mini-slots. Additionally, let the term “old link” denote a link that belongs to the 

previous schedule, then 𝑆𝑡−1 can be seen as a set of old links. The term “new link” is the converse 

of the concept of old link. In this algorithm, the size of augmentation is defined as the number of 

new links included in the augmentation. The term “active node” denotes the extending point of 

augmentation (there is at most one active node for each augmentation). 

 

■ Building augmentation 

1. Each node selects itself as a seed node with probability 𝑝. 

(a)  Each seed node 𝑠 initializes its augmentation 𝐴𝑠. 

(b) Each seed node 𝑠 randomly sets 𝑘𝑠 ∈ [1, 𝑘]. 

(c) Each seed node 𝑠 becomes the active node of 𝐴𝑠 

2.  At each mini slot 𝜏 ∈ [1,2𝑘 + 1], 

(a) Active node 𝑣 of each augmentation selects node 𝑢 in 𝑁𝐿(𝑣): 𝑢 = select_next_hop(𝑣). 

i. If 𝑢 == 𝑁𝑈𝐿𝐿, 

- node 𝑣 becomes inactive and sets itself as the terminus. 

- Go to 2. (c)    /* 𝐴𝑠 with the terminus stops extending */ 

(b) Active node 𝑣 sends REQ to node 𝑢   /* If node 𝑢 does not belong to other augmentation 

𝐴𝑠′  and receives only one REQ, then node 𝑢 responds with an RES. */ 

i. If node 𝑣 receives one RES, 

- Append link (𝑣, 𝑢) into 𝐴𝑠 

- Active node changes from node 𝑣 to node 𝑢. 

- If the number of old links in 𝐴𝑠 equals 𝑘𝑠 + 1, node 𝑢 becomes inactive and sets 

itself as the terminus. 

ii. If node 𝑣 does not receive any RES, 

- Node 𝑣 becomes terminus. 

- If link (𝑣, 𝑢) ∈ 𝑆𝑡−1, append link (𝑣, 𝑢) into 𝐴𝑠. 

(c) Repeats step 2 for 𝐴𝑠 such that 

i. 𝐴𝑠 does not have a terminus, and 

ii. the number of new links in 𝐴𝑠 is less than or equal to 𝑘𝑠. 

 

In the original algorithm [5], the order of appending link into augmentation and receiving RES 

changes when the last included link is old link. We revise it to get appending link after receiving 

RES regardless of the condition. This revised procedure makes readers understand more clearly 
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and generates the same result of the original one (we add appending condition for the same result 

in 2.b.ii). Actually, for its implementation, an active node needs to send REQ to a candidate node 

with some updated information about its augmentation up to that time like its gain 𝐺𝑡
𝒘(𝐴𝑠). Then, 

terminus can immediately decide to switch or not when just stop extending. The function 

select_next_hop(𝑣), which requires an active node 𝑣, returns a candidate for the next active node 

to extend augmentation.  

 

Algorithm 1 Select_next_hop(v) 

1:  if active node 𝑣 is the seed node then 

2:      if ∃𝑤 s.t. (𝑣, 𝑤) ∈ 𝑆𝑡−1 𝐭𝐡𝐞𝐧 

3:         set 𝑢 ← 𝑤 

4:      else 

5:         set 𝑢 at random in 𝒩(𝑣) 

6:      return 𝑢 

7: else /* node 𝑣 is not a seed node */ 

8:      There exists the previous active node 𝑣′ 

9:      if (𝑣′, 𝑣) ∉ 𝑆𝑡−1 and ∃𝑣′′ s.t.(𝑣, 𝑣′′) ∈ 𝑆𝑡−1 then 

10:       set 𝑢 ← 𝑣′′ 

11:    else if (𝑣′, 𝑣) ∈ 𝑆𝑡−1 and ∃𝑣′′ (≠ 𝑣′) ∈ 𝒩(𝑣) then 

12:       set 𝑢 at random in 𝒩(𝑣) − {𝑣′} 

13:    else 

14:       set 𝑢 ← 𝑁𝑈𝐿𝐿 

15:    return 𝑢 

 

Remarks:  In our description, we present 𝑆𝑡−1 as if it is a global variable, but each node 𝑣 indeed 

requires only the local view of it, i.e., {(𝑣, 𝑣′) | 𝑣′ ∈ 𝒩(𝑣)}  ∩ 𝑆𝑡−1, which can be obtained during 

the back-propagation in the last stage. After all the stages, a set of augmentations (one per a seed 

node) will be generated. Since a size of augmentation 𝐴𝑠 can have at most 𝑘𝑠 + 1 links of 𝑆𝑡−1 and 

𝑘𝑠 new links, the number of total links in 𝐴𝑠 can be up to 2𝑘𝑠 + 1 ≤ 2𝑘 + 1. 

Fig.2 illustrates an example operation of the augmentation algorithm during time slot 𝑡 in a 3 × 4 

grid topology. Nodes are dots, and solid lines are links. The previous schedule 𝑆𝑡−1 is marked by 

thick solid lines in Fig.2 (𝑎). At the beginning of time slot 𝑡, each node selects itself as a seed with 

probability 𝑝. Suppose that three nodes are selected in the overall view, which are marked by (white) 

numbered circles in Fig.2 (𝑎). We use these numbered circles to denote current active nodes. 

According to the algorithm, active nodes of 1 and 2 will select the previous scheduled link for next 
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active node, while active node 3 will select one of three neighboring nodes at random. These 

selected next active nodes are pointed by short bold arrows. Then they exchange REQ/RES with 

necessary information. In the next mini-slot, active nodes change as shown in Fig. 2(𝑏). Narrow 

dotted arrows denote the augmentations up to now. The procedure repeats until at most 2𝑘 + 1-th 

mini-slot, or the augmentation cannot be extended. (the algorithm waits for 2𝑘 + 1-th mini slot 

even if all augmentation cannot be extended before that). In the meantime, if two augmentations 

collide as shown by active nodes 2 and 3 in Fig. 2(𝑏), both the augmentations end. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The node at the collision point belong to the augmentation that follows a link in 𝑆𝑡−1, as shown in 

Fig.2 (𝑐), where the terminus nodes are marked by solid (black) number circles. After the last 

operation of the 2𝑘 + 1-th mini-slot as shown in Fig.2 (𝑑), building the augmentation finishes. 

Each augmentation is enclosed by a dotted line in Fig.2 (𝑒). Then the back-propagating stage starts. 

Each terminus makes the final decision from the accumulated gain, and propagates the decision 

backward through the augmentation, which results in new schedule 𝑆𝑡 as shown in Fig.2 (𝑓). 

Figure 2: Example operation of Augmentation algorithm with 𝒌 = 𝟐 
 After the procedure, links in augmentation  are altered. 
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The maximum intended size 𝑘 of augmentation determines the performance bound. If we can 

set the weight in (6) to 𝑤𝑖 = 𝑞𝑖(𝑡) ⋅ 𝜇𝑖, then the augmentation algorithm achieves 
𝑘−1

𝑘+1
 fraction of 

the capacity region Λ [5]. This approach, however, requires a priori knowledge of 𝜇𝑖 for each link 

𝑖, which is not available in our scenarios and has to be learned from 𝑋𝑖(t) that is drawn from 

unknown distribution. 

On the other hand, the augmentation algorithm can serve as an (𝛼, 𝛽)-approximation oracle that 

takes weight 𝒘 as input, and outputs matching 𝑆  such that Pr{𝑆 ∈ 𝒮𝒘
𝛼} ≥ 𝛽  with 𝛼 =

𝑘−1

𝑘+1
. By 

adopting this oracle, one can develop a learning algorithm that achieves the logarithmic growth of 

𝛼𝛽-regret with 𝛼 =
𝑘−1

𝑘+1
 [6]. However, as the network scales, the probability 𝛽 of the augmentation 

algorithm can be very small (see Proposition 1), leading to a performance bound that is not much 

meaningful. 

In this work, we develop an analysis framework that characterizes the performance of our 

scheme based on the augmentation algorithm, and show that it can achieves the rate-optimal 

logarithmic growth of 
𝑘−1

𝑘+1
 -regret regardless of the network size, and further it has the stability 

region that equals 
𝑘−1

𝑘+1
Λ. 

 

3.2 Learning through augmentation 

The problem of link-rate learning in our settings can be considered a CMAB problem with linear 

reward, i.e., the goal is to maximize the total (weighted) reward sum, and of semi-bandit type, i.e., 

individual reward of each played arm is revealed. For this class of learning problems, the well-

known UCB index [3] is widely used, and we also adopt it. 

We consider a frame structure, where each frame time corresponds to an independent learning 

period: when a new frame starts, all the learning parameters are reset, and new learning period 

starts. The frame-based approach allows us to decouple the learning from the scheduling as in [23]. 

In this section, we present our algorithm during one frame time. For the ease of exposition, we 

assume that our algorithm runs for time slot [1, 𝑇], where 𝑇 is the frame length. 

We start with some definitions. Let 𝑞𝑖 = 𝑞𝑖(1) and 𝒒 denote the initial queue length of link (arm) 

𝑖 and its vector, respectively, and 𝑞∗ = 𝑞∗(1) denote their maximum value in the network. Let  𝜏̂𝑖,𝑡 

denote the number of times that arm 𝑖 is played up to time slot 𝑡, and let 𝜏̂𝑆,𝑡 denote the number of 

times that matching 𝑆 is played. The UCB index of arm 𝑖 [3] is defined as 

 𝑤̅𝑖,𝑡 = 𝑤̂𝑖,𝑡−1 + √
(|ℒ|+1) ln 𝑡

𝜏̂𝑖,𝑡−1
  , (7) 
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where 𝑤̂𝑖,𝑡 =
𝑞𝑖

𝑞∗ ⋅
1

𝜏̂𝑖,𝑡
∑ 𝑋𝑖(𝜏) ⋅ 𝕀{𝑖 ∈ 𝑆𝜏}𝑡

𝜏=1   denote average reward of arm 𝑖  at time slot 𝑡.  Let 

𝒘̅𝑡 = (𝑤̅1,𝑡, 𝑤̅2,𝑡, ⋯ , 𝑤̅|ℒ|,𝑡  ) denote the index vector. Then we denote 𝑟𝒘̅𝑡
(𝑆) and 𝑟𝒘̅𝑡

∗  as the index 

sum over links in matching 𝑆 and its maximum value over all matchings, respectively. Also, we 

denote 𝑆𝒘̅𝑡

∗  and  𝑆𝒘̅𝑡

𝛼  as the set of matchings that achieve  𝑟𝒘̅𝑡

∗  and those that achieve at least 𝛼 ⋅  𝑟𝒘̅𝑡

∗ , 

respectively. 

 

Algorithm 2 Learning-based scheduling for a frame 

1:  Obtain queue constant 𝒒 and 𝑞∗ 

2:  Initialize 𝑤̂𝑖 and 𝜏̂𝑖 for all 𝑖 ∈ ℒ 

3:  for 𝑡 = 1 to |ℒ| do 

4:      Schedule arbitrary matching 𝑆𝑡 that has link 𝑡  

5:      Update 𝑤̂𝑖 and 𝜏̂𝑖  for each link 𝑖 ∈ 𝑆𝑡 

6:  for 𝑡 = |ℒ| + 1 to 𝑇  do 

7:      Compute UCB index 𝑤̅𝑖 ← 𝑤̂𝑖 + √
(|ℒ|+1) ln 𝑡

𝜏̂𝑖
 

8:      < Select matching 𝑆𝑡 with gain 𝐺𝑡
𝒘̅(⋅) >  

 

Our learning-based scheduling algorithm is shown in Algorithm 2, where we omit subscript 𝑡 of 

𝑤̂𝑖,𝑡 and 𝜏̂𝑖,𝑡 for brevity. At time slot 𝑡 = 1, it obtains two constant weight parameters 𝒒 and 𝑞∗(line 

1), and schedules arbitrary matchings for |ℒ| time slots such that each link can be scheduled at least 

once (lines 3-5). Afterwards, it computes the index of each arm (line 7), selects matching 𝑆𝑡 with 

gain using the indices instead of 𝒘 (line 8), and schedules it (lines 9-10). 

We develop a joint scheme of learning and scheduling, by plugging the augmentation algorithm 

into line 8 of Algorithm 2, and setting the index 𝒘̅𝑡 as its input weight. We denote the scheme by 

𝐴𝑘-UCB, where parameter 𝑘 denotes the maximum augmentation size. Note that it greatly reduces 

the algorithm complexity down to 𝑂(1). On the other hand, it no longer provides every-time-slot 

guarantee on the index sum as the greedy algorithm does in [23]. In the following section, we show 

that, with appropriate settings, 𝐴𝑘 -UCB achieves 
𝑘−1

𝑘+1
 fraction of the optimal expected reward, 

regardless of the network size, and thus achieves 
𝑘−1

𝑘+1
 fraction of the capacity region, which can be 

arbitrarily close to 1 by increasing 𝑘. 

 

IV. PERFORMANCE EVALUATION 
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We first characterize the regret performance of 𝐴𝑘-UCB in a single frame, and then consider its 

throughput performance across frames. 

 

4.1 Regret performance in a single frame 

We aim to show that 𝐴𝑘-UCB has distribution-dependent upper bound of 𝑂(log 𝑇) on the regret 

in a frame of length 𝑇 . We start with one lemma and one proposition, which state that the 

augmentation algorithm is an (𝛼, 𝛽)-approximation oracle with 𝛼 =
𝑘−1

𝑘+1
 and 𝛽 = 𝛿 for some 𝛿 >

0. Their proofs follow the same line of analysis of [5], and can be found in Appendices A and B. 

 

LEMMA 1. Given matching 𝑆𝑡−1, 𝑤𝑒𝑖𝑔ℎ𝑡 𝒘̅𝑡, and a fixed 𝑘 > 0, the augmentation algorithm can 

generate a set 𝒜∗of disjoint augmentation of 𝑆𝑡−1 such that  

𝑟𝒘̅𝑡
(𝑆𝑡−1 ⊕ 𝒜∗) ≥

𝑘 − 1

𝑘 + 1
⋅ 𝑟𝒘̅𝑡

∗ , 

and every augmentation 𝐴 in 𝒜∗ has a size no greater than 𝑘.  

 

Lemma 1 also holds when using 𝒘 instead to  𝒘̅𝑡 . 

 

PROPOSITION 1. Given any 𝑆𝑡−1, 𝑤𝑒𝑖𝑔ℎ𝑡 𝒘̅𝑡, and a fixed 𝑘 > 0, there exists 𝛿 > 0 such that, with 

probability at least 𝛿, the augmentation algorithm generates a set 𝒜∗of disjoint augmentations 

that satisfies (𝑆𝑡−1 ⊕ 𝒜∗) ∈ 𝒮𝒘̅𝑡

𝛼 , i.e., Pr{(𝑆𝑡−1 ⊕ 𝒜∗) ∈ 𝒮𝒘̅𝑡

𝛼 } ≥ 𝛿, or equivalently, 

Pr{𝑟𝒘̅𝑡
(𝑆𝑡−1 ⊕ 𝒜∗) ≥ 𝛼 ⋅ 𝑟𝒘̅𝑡

∗ } ≥ 𝛿                                    (8) 

where 𝛼 =
𝑘−1

𝑘+1
.  

 

It can be shown that 𝛿 ≥ min {1, (
𝑝

1−𝑝
)

|𝒱|

} ⋅ (
1−𝑝

𝑘∑
)

|𝒱|
, where 𝑝 is the seed probability, |𝒱| is the 

number of nodes, and ∑ is the maximum node degree. 

Next, we need a generalized version of the decomposition inequality for 𝛼-regret. From (5), we 

have 

 

𝑅𝑒𝑔𝛼(𝑡) = 𝑡 ⋅ 𝛼 ⋅ 𝑟𝒘
∗ − 𝔼 [∑ 𝑟𝒘(𝑆𝜏)

𝑡

𝜏=1
]  

                                                            = ∑ ∑ 𝔼[𝕀{𝑆𝜏 = 𝑆} ⋅ (𝛼𝑟𝒘
∗ − 𝑟𝒘(𝑆))]

𝑆∈𝒮

𝑡

𝜏=1
 (9) 

   ≤ ∑ 𝔼[𝜏̂𝑆,𝑡] ⋅ Δmax
𝛼

𝑆∈𝒮
,  

where Δmax
𝛼 = 𝛼𝑟𝒘

∗ − min𝑆∈𝒮𝒘̅
𝛼  𝑟𝒘(𝑆) is the maximum near-optimal gap. 
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The following lemma, inspired by [17], ensures that if a non-near-optimal matching in 𝒮𝒘
𝛼 is 

played many times, then its index sum is smaller than that of any near-optimal matching in 𝒮𝒘
𝛼. Let 

Δmin
𝛼 = 𝛼𝑟𝒘

∗ − max𝑆∈𝒮𝒘̅
𝛼  𝑟𝒘(𝑆) denotes the minimum near-optimal gap. 

 

LEMMA 2. Given time slot 𝑡 > 0, if a non-near-optimal matching 𝑆 ∈ 𝒮𝒘̅
𝛼 is played more than 

𝑙𝑡 = ⌈
4|ℒ|2(|ℒ|+1) ln 𝑡

Δmin
𝛼 ⌉ times by 𝑡-th time slot in the frame, then the probability that the total sum 

of UCB indices over 𝑆 at time slot 𝑡 is greater than that over any near-optimal matching 𝑆′ ∈

 𝒮𝒘
𝛼  is bounded by  

Pr{𝑟𝒘̅𝑡
(𝑆) ≥ 𝑟𝒘̅𝑡

(𝑆′)} ≤ 2|ℒ|𝑡−2, (10) 

for all 𝑡 ≤ 𝑇 such that  𝜏̂𝑆(𝑡) ≥ 𝑙𝑡 .  

 

We highlight that 𝒮𝒘
𝛼 and 𝒮𝒘̅

𝛼  are defined with true weight 𝒘, while the matching comparison is 

based on UCB index 𝒘̅𝑡. The lemma shows that the augmentation algorithm may still work well, 

even when the true weight is replaced by the UCB index. The proof of the lemma is analogous to 

Lemma A.1 of [17], and included in Appendix C. Using Lemma 2, we can obtain the following 

regret bound of 𝐴𝑘-UCB, which is one of our main results. 

 

PROPOSITION 2. For a network graph 𝒢 = (𝒱, ℒ), 𝐴𝑘-𝑈𝐶𝐵  achieves the regret performance 

bound of  

𝑅𝑒𝑔𝛼(𝑡) ≤ Δmax
𝛼 [𝐷1 ⋅

log 𝑡

(Δmin
𝛼 )2

+ 𝐷2] 

for all 𝑡 ∈ {1,2, … , 𝑇} , where 𝐷1 = (1 +
1

𝛿
) ⋅ 4|ℒ|2(|ℒ| + 1) ⋅ (|𝒮| − 1), 𝐷2 =

|𝒮|−1

𝛿
(1 +

|ℒ|𝛿𝜋2

3
+

|ℒ|(|𝒮|−2)𝜋2

3
) +

1−𝛿

𝛿
+

2|ℒ|𝜋2

3𝛿
 , 𝛼 =

𝑘−1

𝑘+1
, 𝑎𝑛𝑑 𝛿 = min {1, (

𝑝

1−𝑝
)

|𝒱|

} ⋅ (
1−𝑝

𝑘∑
)

|𝒱|
.  

 

Proposition 2 shows that 𝐴𝑘-UCB achieves the logarithmic growth 𝑂(log 𝑇) of 𝛼-regret. Note 

that although the result is somewhat similar to the previous works, the proof technique is quite 

different. At time slot 𝑡, 𝐴𝑘-UCB randomly generates a set 𝒜𝑡  of augmentations based on the 

previous schedule 𝑆𝑡−1 and 𝑆𝑡−1 ⊕ 𝒜𝑡 are non-near-optimal. This implies that we cannot ensure 

that the index sum of the chosen schedule (i.e., either 𝑆𝑡−1 or 𝑆𝑡−1 ⊕ 𝒜𝑡) is greater than 𝛼 ⋅ 𝑟𝒘̅𝑡

∗ , 

because the comparison is done only between the two non-near-optimal matchings. Thus, the 

traditional technique for the regret analysis cannot be directly applied. We successfully address the 

technical difficulties by considering the plays of non-near-optimal matchings as a group. The 

detailed proof can be found in Appendix D. 
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4.2 Scheduling efficiency 

We now consider the throughput performance of 𝐴𝐾-UCB across multiple frames. 

 

PROPOSITION 3. For a sufficiently large frame length 𝑇, 𝐴𝑘-UCB is rate-stable for any arrival 

rate strictly inside 
𝑘−1

𝑘+1
Λ. 

 

Proof. We use the standard Lyapunov technique with time unit of frame length. Given any 𝝀 

strictly inside 𝛼Λ with 𝛼 =
𝑘−1

𝑘+1
 , we consider the Lyapunov function 𝐿(𝑡𝑛) =

1

2
∑ (𝑞𝑖(𝑡𝑛))

2
𝑖∈ℒ   at 

the start time 𝑡𝑛 of the 𝑛-th frame. If the Lyapunov function has a negative drift for sufficiently 

large queue lengths, then all the queues will remain finite. 

From the queue evolution (1), we have  

𝑞𝑖(𝑡𝑛+1) ≤ (𝑞𝑖(𝑡𝑛) − ∑ 𝑋𝑖(𝑡)
𝑡𝑛+𝑇−1

𝑡=𝑡𝑛

⋅ 𝕀{𝑖 ∈ 𝑆𝑡})

+

+ ∑ 𝑎𝑖(𝑡)
𝑡𝑛+𝑇−1

𝑡=𝑡𝑛

, 

where {𝑆𝑡}  denotes the sequence of matchings chosen by 𝐴𝑘 -UCB. Let 𝐷(𝑡𝑛) = 𝐿(𝑡𝑛+1) −

𝐿(𝑡𝑛). The drift during a frame time can be written as 

𝔼[𝐷(𝑡𝑛) | 𝒒(𝑡𝑛)] ≤ 1/2 ∑ 𝔼 [(∑ 𝑎𝑖(𝑡)
𝑡𝑛+𝑇−1

𝑡=𝑡𝑛

)

2

|  𝒒(𝑡𝑛)] 
𝑖∈ℒ

 

                                                        + 1/2 ∑ 𝔼 [(∑ 𝑋𝑖(𝑡) ⋅
𝑡𝑛+𝑇−1

𝑡=𝑡𝑛

𝕀{𝑖 ∈ 𝑆𝑡} )

2

|  𝒒(𝑡𝑛)] 
𝑖∈ℒ

 

                                                        + ∑ 𝔼 [∑ 𝑞𝑖(𝑡𝑛)𝑎𝑖(𝑡)
𝑖∈ℒ

− ∑ 𝑞𝑖(𝑡𝑛)𝑋𝑖(𝑡)
𝑖∈𝑆𝑡

 | 𝒒(𝑡𝑛)]
𝑡𝑛+𝑇−1

𝑡=𝑡𝑛

     

where the first two terms can be bounded by 𝐶𝑇 for some constant 𝐶, because 𝑎𝑖(𝑡), 𝑋𝑖(𝑡), and |ℒ| 

are bounded. Suppose that we have weight vector 𝒘 at time 𝑡𝑛. Let 𝑆∗ denote an optimal matching 

during the corresponding frame time, i.e., 𝑆∗ ∈ 𝒮𝒘
∗ = arg max𝑆∈𝒮  ∑ 𝑤𝑖𝑖∈𝑆 , and let 𝑟𝒘

∗ = ∑ 𝑤𝑖𝑖∈𝑆∗ . 

Since 𝝀 strictly inside 𝛼Λ, there exists 𝜖 > 0 such that 𝝀 + ϵ𝟏 ∈ 𝛼Λ, where 𝟏 is the vector of all 

ones. Then from 𝑤𝑖 =
𝑞𝑖(𝑡𝑛)

𝑞∗(𝑡𝑛)
𝜇𝑖, we can obtain 

𝔼[𝐷(𝑡𝑛) | 𝒒(𝑡𝑛)]  ≤ 𝐶𝑇 + ∑ 𝔼 [∑ 𝑞𝑖(𝑡𝑛)𝑎𝑖(𝑡)
𝑖∈ℒ

| 𝒒(𝑡𝑛)]  
𝑡𝑛+𝑇−1

𝑡=𝑡𝑛

 

                                     − ∑ 𝔼 [∑ 𝑞𝑖(𝑡𝑛)𝑋𝑖(𝑡)
𝑖∈𝑆𝑡

 | 𝒒(𝑡𝑛)]
𝑡𝑛+𝑇−1

𝑡=𝑡𝑛

 

                                = 𝐶𝑇 + 𝑞∗(𝑡𝑛) ∑ (∑
𝑞𝑖(𝑡𝑛)

𝑞∗(𝑡𝑛)
𝜆𝑖

𝑖∈ℒ
− 𝛼𝑟𝒘

∗)  
𝑡𝑛+𝑇−1

𝑡=𝑡𝑛

 

+𝑞∗(𝑡𝑛) ∑ (𝛼𝑟𝒘
∗ − 𝔼 [∑ 𝑟𝒘(𝑆𝑡)

𝑖∈𝑆𝑡

 | 𝒒(𝑡𝑛)])  
𝑡𝑛+𝑇−1

𝑡=𝑡𝑛
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                               ≤ 𝐶𝑇 − 𝜖𝑇 ∑ 𝑞𝑖(𝑡𝑛)
𝑖∈𝑆𝑡

+ 𝑞∗(𝑡𝑛) ⋅ 𝑅𝑒𝑔𝛼(𝑇) 

Where the equality holds due to the independence of link rates, and the last inequality holds since 

𝝀 + ϵ𝟏 ∈ 𝛼Λ and thus ∑
𝑞𝑖(𝑡𝑛)

𝑞∗(𝑡𝑛)
(𝜆𝑖 + 𝜖) <𝑖∈ℒ 𝛼𝑟𝒘

∗. Dividing both sides by 𝑇, we have  

1

𝑇
𝔼[𝐷(𝑡𝑛)| 𝒒(𝑡𝑛)]   ≤ 𝐶 − 𝜖 ∑ 𝑞𝑖(𝑡𝑛)

𝑖∈𝑆𝑡

+ 𝑞∗(𝑡𝑛) ⋅
𝑅𝑒𝑔𝛼(𝑇)

𝑇
 . 

Since Proposition 2 implies that 
𝑅𝑒𝑔𝛼(𝑇)

𝑇
< 𝜖 for sufficiently large 𝑇, we have a negative drift for  

sufficiently large queue lengths. □ 

 

V. DISTRIBUTED ALGORITHM 

 

We note that the augmentation algorithm is amenable to implement in a distributed fashion with 

𝑂(1) complexity [5]. However, in 𝐴𝑘-UCB, we need to compute the index 𝒘̅𝑡, which requires 

global information 𝑞∗(𝑡𝑛) − the largest queue length in the network at the start of frame 𝑛. The 

same problem can be observed in the previous greedy algorithm [23]. 

We pay attention to the fact that 𝐴𝑘-UCB  indeed learns the expected value of the queue weighted 

link rate, i.e., 𝑞𝑖(𝑡𝑛) ⋅ 𝔼[𝑋𝑖(𝑡)], within a frame time. The global information 𝑞∗(𝑡𝑛) takes the role 

of normalizing the weight in the range of [0,1]. 

This implies that we may separate the normalizing parameter from the learning and develop a 

practically distributed version of 𝐴𝑘-UCB, denoted by 𝑑𝐴𝑘-UCB. In the following, we describe 

the differences of 𝐴𝑘-UCB and 𝑑𝐴𝑘-UCB. For the ease of exposition, we assume that 𝒜𝑡 consists 

of a single augmentation. 

(1)  Local normalizer: Each node 𝑣 maintains a local normalizer  𝑞̃𝑣, which is initialized to 

max𝑢∈𝒩(𝑣) 𝑞(𝑢,𝑣)(𝑡𝑛) at the beginning of each frame time. At each time slot 𝑡 of frame 𝑛, 

node 𝑣  in an augmentation updates its local normalizer twice as follows. 1)  In the 

initialization stage and the path augmenting stage, each REQ message from 𝑢  to 𝑣 

includes additional information of 𝑞̃𝑢. The receiving node 𝑣 sets 𝑞̃𝑣 ← max {𝑞̃𝑢, 𝑞̃𝑣}. This 

repeat while building the augmentation. When the stage of checking a cycle finishes, the 

terminus 𝑤 has 𝑞̃𝑤 = 𝑞̃∗ that is the largest local normalizer in the augmentation resets 

𝑞̃𝑣 ← 𝑞̃∗. Hence, at the end of the time slot, all the nodes in the augmentation have the 

same local normalizer value 𝑞̃∗. 

(2)  Gain separation: In the meantime, we change the way to compute the gain in order to 

use the local normalizer 𝑞̃∗ in the place of the global normalizer 𝑞̃∗(𝑡𝑛). To elaborate, let 

𝐺𝑢
′  denote the new gain normalized by 𝑞̃𝑢. At each mini-slot in the path augmenting stage, 
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whenever node 𝑢 transmits an REQ message to node 𝑣, we compute the gain 𝐺𝑢,1
′  for 

average reward (normalized by factor 𝑞̃𝑢 ) and the gain 𝐺𝑢,2
′  for confidence interval 

separately (i.e., 𝐺𝑢
′ = 𝐺𝑢,1

′ + 𝐺𝑢,2
′ ), and include both in the REQ message. Then, the 

receiving node 𝑣, after updates its local normalizer 𝑞̃𝑣, re-normalizes the received reward 

gain as 𝐺𝑢,1
′ ⋅ 𝑞̃𝑢/𝑞̃𝑣 . Once the next link is decided as 𝑖 = (𝑣, 𝑛) , it computes 𝐺𝑣,1

′  

accordingly by either adding or subtracting its average reward normalized by 𝑞̃𝑣 , 

i.e.,  𝑤̂𝑖
′(𝑡) =

𝑞𝑖(𝑡𝑛)

𝑞̃𝑣
⋅

1

𝜏̂𝑖,𝑡
∑ 𝑋𝑖(𝑗) ⋅ 𝕀{𝑖 ∈ 𝑆𝑗} ⋅ 𝐺𝑢,2

′𝑡
𝑗=𝑡𝑛+1  can be obtained simply by adding 

the confidence interval. As this repeat during the augmenting stage, at the terminus, we 

can obtain the gain from the indices normalized by 𝑞̃∗. 

Remarks: During a frame time, the local normalizer of a node is non-decreasing over time slots. In 

addition, at the same time slot, two nodes in the network may have a different normalizer value. 

Hence, our previous analysis results for 𝐴𝑘-UCB cannot be directly applied to 𝑑𝐴𝑘-UCB. However, 

we highlight that, given a time slot, all the nodes in the same augmentation have the same value of 

the (local) normalizer, which is of importance, since the gain comparison for making a decision 

occurs only within an augmentation. On the other hand, as the time slot 𝑡, increases, the value of 

the global normalizer 𝑞∗(𝑡𝑛) is disseminated throughout the network and all the local normalizers 

will converge to this value. Considering that it is not difficult to show that there exists some 𝑇′ 

such that all nodes 𝑣 have 𝑞̃𝑣 = 𝑞∗(𝑡𝑛) with probability close to 1 for all 𝑡 > 𝑇′, we believe that 

𝑑𝐴𝑘-UCB also achieves 𝑂(log 𝑇) regret performance and 
𝑘−1

𝑘+1
Λ capacity, if the frame length 𝑇 is 

sufficiently large. Rigorous proof remains as future work, and we verify our claim through 

numerical results. 

 

VI. NUMERICAL RESULTS 

 

We evaluate the performance of our proposed schemes through simulations. We consider a 

4 × 4 grid network topology with the primary interference model. Time is slotted, and at each time 

slot, a packet arrives at link 𝑖 with probability 𝜆𝑖 = 0.08 for all 𝑖. The instance link rate 𝑋𝑖(𝑡) is 

drawn from an i.i.d. Bernoulli distribution with mean 𝜇𝑖, where 𝜇𝑖 is set uniformly at random in 

range [0.25, 0.75]. 

We first investigate the regret performance of 𝐴𝑘 -UCB and 𝑑𝐴𝑘 -UCB. We set the seed 

probability 𝑝 = 0.2, and set a large frame length of 𝑇 = 106 time slots to observe the regret growth. 

Fig. 3 show the regret performance of the two schemes with different 𝑘. Each value is an average 
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of 10 simulation runs. For comparison across frames, the regret value is set to 0 at each frame start 

and normalized with respect to the maximum expected reward sum 𝑟𝒘
∗ within the frame. 

(𝑎) Regret of 𝐴𝑘-UCB  (𝑏) Regret of 𝑑𝐴𝑘-UCB  

(𝒄) 𝜶-regret of 𝑨𝒌-UCB 

       Figure 3: Regret performance. 

 

Fig.3 (𝑎) and Fig.3 (𝑏) illustrate the logarithmic regret growth for both 𝐴𝑘-UCB and 𝑑𝐴𝑘-UCB, 

respectively, during a frame time, respectively. Note that the difference between the two schemes 

is not significant, which is consistently observed throughout our numerical results. Henceforward, 

we omit some results of 𝑑𝐴𝑘-UCB due to the limited space. We note that the regret performance 

of Fig.3(𝑎) is much better than our analysis, which provides the logarithmic growth of only 𝛼-

regret, with 𝛼 =
𝑘−1

𝑘+1
. The performance in terms of 𝛼-regret is shown in Fig. 3(𝑐) for 𝐴𝑘-UCB. The 

gap from 0 can be interpreted as the level of practical difficulty in achieving analytic performance 

bound: it gets relatively harder to achieve 
𝑘−1

𝑘+1
 -regret as 𝑘 increases.  

Next, we evaluate throughput performance of our schemes. We set the arrival rate 𝜆𝑖 = 𝜆 for all 

𝑖  and increase 𝜆 . We consider the same simulation settings with different 𝑇 ’s and 𝜆 ’s. Each 

simulation continues for 106 time slots. We run 10 simulations for each 𝜆, and measure average 

queue length when the simulations end. Note that, under any scheduling scheme, when the arrival  

For the performance comparison across frames, the regret is reset to 𝟎 at each frame boundary 
(𝑻 = 𝟏𝟎𝟔 time slots). We also normalize the regret by the maximum expected reward 𝒓𝒘

∗ . 
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(𝑎) 𝐴𝑘-UCB with 𝑘 = 3 and different frame length 𝑇 (𝑏) Scheduling performance of 𝐴𝑘-UCB 

(𝑐) Scheduling performance of 𝑑𝐴𝑘-UCB 

 

rate gets closer to the boundary of its stability region, the queue length soars quickly. Thus, we can 

estimate the performance bound of the scheme from the queue lengths. Fig. 4(𝑎) demonstrates how 

the bound changes according to the frame length. From the results, we can observe that the critical 

point of 𝜆, around which the queue length starts soaring, initially increases for 𝑇 ≤ 106 and then 

decreases for 𝑇 ≥ 2 ⋅ 106. It can be expected since too small frame length leads to incomplete 

learning while too large frame length leads to slow response to the queue dynamics. 

We now compare the performance of 𝐴𝑘-UCB with two comparable schemes: One is the optimal 

MWM that operates with the knowledge of 𝝁. It finds the optimal matching with weight of 𝑞𝑖(𝑡)𝜇𝑖 

at each time slot 𝑡 as described in [24] and schedules the optimal matching. The other is the index-

based GMM (or online GMM [23]) that uses the UCB index and finds a feasible schedule in the 

largest-index-first manner. Note that both are a centralized algorithm with polynomial time 

complexity. For 𝐴𝑘-UCB, we set 𝑇 = 5000 and 𝑝 = 0.02. 

Fig. 4(𝑏) and Fig. 4(𝑐) demonstrate the queue lengths of 𝐴𝑘-UCB and 𝑑𝐴𝑘-UCB, respectively, 

after 106 time slots that corresponds to 200 frames. The queue length of MWM soars at round 𝜆 =

Figure 4: Queue lengths 

As the arrival rate gets closer to the stability region of a scheme, queue lengths soar quickly. 
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0.09, which can be considered as the boundary of the capacity region Λ since MWM achieves the 

optimal performance. Under of 𝐴𝑘-UCB and 𝑑𝐴𝑘-UCB with 𝑘 = 2,3,4, the queue lengths increase 

quickly around 𝜆 = 0.084  for all 𝑘,  which exceeds their theoretic bound 
𝑘−1

𝑘+1
⋅ 0.09 =

0.03, 0.045, 0.054, respectively. Note that a value 𝑘 > 4 is not helpful due to the small network 

size. Interestingly, the impact of 𝑘 on empirical throughput seems to be not significant (which may 

not be true when the network size is larger), but larger 𝑘 leads to lower queue lengths in all arrival 

rates, and thus, better delay performance. The index-based GMM achieves better throughput 

performance close to MWM, which is also far beyond its theoretic bound 
1

2
. Similar results have 

also been reported [15]. 

 

Fig. 5 shows that in a certain scenario, the index-based GMM has poor performance. Motivated 

by [13], we consider a 6-link ring topology, where the links are numbered from 1 to 6 in a clockwise 

direction. The service rate of each link follows a Bernoulli distribution with mean 
1

2
 and the packet 

arrival on each link is also a Bernoulli process with mean 
1

6
+ 𝜖 where 𝜖 = 0.08. We set the frame 

length 𝑇 = 6000. Other environment settings are the same as before, except that the initial queue 

length is {
3𝑇

6
,

2𝑇

6
,

𝑇

6
,

3𝑇

6
,

2𝑇

6
,

𝑇

6
}. The results show that while the queue lengths of 𝐴𝑘-UCB and 𝑑𝐴𝑘-

UCB are stabilized, those of the index-based GMM keep increasing. This is because, the greedy 

algorithm tends select a matching while the two links of the largest queue at the beginning of each 

frame. In contrast, 𝐴𝑘-UCB and 𝑑𝐴𝑘-UCB select a matching with three links by considering their 

weight sum. 

 

Figure 5: Stability in a 6-link ring topology 
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(𝑎) Randomly generated network topology (𝑏) Scheduling performance of 𝐴𝑘-UCB 

Figure 6 : Stability in a large-scale network topology 

 

We also experiment in a larger, randomly generated network (of 50 nodes and 200 links). Due 

to the high order computational complexity, it is hard to simulate MWM in larger network graphs, 

which takes very long time. So, we compared our algorithm with GMM instead MWM and Fig. 6 

shows the index-based GMM may lead to instability under moderate traffic load. In contrast, our 

algorithm 𝐴𝑘-UCB is analytically proven to not lead to instability for any traffic 𝝀 ∈
𝑘−1

𝑘+1
Λ and has 

better performance than GMM’s, indeed. 

 

VII. CONCLUSION 

 

In this work, we addressed the joint problem of learning and scheduling in multi-hop wireless 

networks. Without a priori knowledge on link rates, we aim to find a sequence of schedules such 

that all the queue lengths remain finite. By incorporating the augmentation algorithm into a learning 

procedure, we develop provably efficient low-complexity schemes that (i) achieve logarithmic 

regret growth in learning, (ii) have the throughput performance that can be arbitrarily close to the 

optimal. (iii) We extend the result to a distributed scheme that is amenable to implement in large-

scale networks. We also verify our results through simulations. 
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     APPENDIX 

 

A. PROOF OF LEMMA 1 

 

The lemma shows the possibility for our algorithm to yield a disjoint augmentation of 𝑆𝑡−1 

satisfying the inequality. To this end, we consider the best augmentation set that the algorithm can 

generate. It can be obtained by combining the previous schedule 𝑆𝑡−1 and an optimal matching 𝑆𝒘
∗  

with the largest weight sum.  

We consider two specific matchings (i.e., super arms) of 𝑆𝑡−1, the schedule at the previous time 

slot, and 𝑆𝒘
∗ ∈ 𝒮𝒘

∗ , and optimal matching with the largest weight sum under weight 𝒘. Let us define 

symmetric difference 𝑆𝑑 = 𝑆𝑡−1Δ𝑆𝒘
∗ = (𝑆𝑡−1 − 𝑆𝒘

∗ ) ∪ (𝑆𝒘
∗ − 𝑆𝑡−1) , and consider graph 𝒢′ =

(𝒱, 𝑆𝑑  ) that contains only the links in 𝑆𝑑. Note that for any vertex in 𝒢′, its degree is at most 2 

because 𝑆𝑡−1 and 𝑆𝒘
∗  are a matching. Further, we can define component as a set of connected links 

in 𝒢′, which is either a path or an even-length cycle such that links in 𝑆𝑡−1 and links in 𝑆𝒘
∗  are 

alternating, i.e., an augmentation. There can be multiple components in 𝒢′. For a component 𝐶, let 

𝐶𝑜𝑝𝑡 = 𝐶 ∩ 𝑆𝒘
∗  and 𝐶𝑡−1 = 𝐶 ∩ 𝑆𝑡−1. We note that 𝑠𝑖𝑧𝑒(𝐶) = |𝐶𝑜𝑝𝑡| and both 𝐶𝑜𝑝𝑡 and 𝐶𝑡−1 are a 

matching in 𝒢. 
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Given weight 𝒘, let  𝐺𝑡
𝒘(𝒜) denote the gain of augmentation defined as in (6). We also extend 

the definition to a set 𝒜  of disjoint augmentation by adding up the gains, i.e., 𝐺𝑡
𝒘(𝓐) =

∑ 𝐺𝑡
𝒘(𝐴)𝐴∈𝒜 . The following two lemmas show that each component 𝐶 can be decomposed into 

small-size augmentations with a set of large-weight sum links.  

 

LEMMA 3. For component 𝐶 that is a path, there exists a set of disjoint augmentations 𝒜(𝐶) ⊂ 𝐶 

such that  

(1) 𝑠𝑖𝑧𝑒(𝐴) ≤ 𝑘 for all augmentations 𝐴 ∈ 𝒜(𝐶), 

(2) 𝐺𝑡
𝒘(𝒜(𝐶)) ≥

𝑘

𝑘+1
⋅ 𝑟𝒘(𝐶𝑜𝑝𝑡) − 𝑟𝒘(𝐶𝑡−1) . 

 

Proof. When 𝑠𝑖𝑧𝑒(𝐶) ≤  𝑘, we set 𝒜(𝐶)  =  𝐶. The gain, by definition, equals 𝐺𝑡
𝒘 (𝒜(𝐶))  =

 𝑟𝒘(𝐶𝑜𝑝𝑡) − 𝑟𝒘(𝐶𝑡−1). Thus, the two conditions are satisfied. 

When 𝑠𝑖𝑧𝑒(𝐶) >  𝑘, we construct a family of augmentation sets {𝒜𝑖} and show that at least one 

of the sets satisfies the two conditions. For path C, we select an endpoint. From the endpoint, we 

denote the first (𝑘 +  1)  links in 𝐶𝑜𝑝𝑡  by 𝑒1, 𝑒2, . . . , 𝑒𝑘+1 . For each 𝑒𝑖 , we can construct an 

augmentation set as follows. From 𝐶, we remove 𝑒𝑖 and every 2(𝑘 +  1)-th link thereafter (until 

we reach the other endpoint). Since 𝐶 is an augmentation and 𝑒𝑖 ∈ 𝐶𝑜𝑝𝑡, any subsequently removed 

links also belong to 𝐶𝑜𝑝𝑡 . After the removals, augmentation 𝐶  is divided into a set of disjoint 

augmentations, each of which includes at most 𝑘 links of 𝐶𝑜𝑝𝑡 . Let 𝒜𝑖 denote this set of disjoint 

augmentations. By repeating the procedure for each 1 ≤  𝑖 ≤  𝑘 +  1, we can construct a family 

of augmentation sets {𝒜𝑖}𝑖=1
𝑘+1 such that any augmentation 𝐴 ∈∪𝑖=1

𝑘+1 𝒜𝑖 satisfies 𝑠𝑖𝑧𝑒(𝐴)  ≤  𝑘. 

Note that, in the construction procedure of {𝒜𝑖}𝑖=1
𝑘+1, each link of 𝐶𝑜𝑝𝑡 is removed exactly once, 

and no link of 𝐶𝑡−1is removed. This implies that the gain sum over {𝒜𝑖} satisfies ∑ 𝐺𝑡
𝒘 (𝒜𝑖)𝑘+1

𝑖=1  =

 𝑘 ⋅ 𝑟𝒘(𝐶𝑜𝑝𝑡) − (𝑘 + 1) ⋅ 𝑟𝒘(𝐶𝑡−1). Hence, there exists at least one 𝑗 such that 

 

𝐺𝑡
𝒘(𝒜𝒋) ≥

𝑘

𝑘 + 1
⋅ 𝑟𝒘(𝐶𝑜𝑝𝑡) − 𝑟𝒘(𝐶𝑡−1). 

 □ 

Lemma 3 shows the existence of a good set of disjoint augmentations in every path component 

in graph 𝒢′. We use Lemma 3 to prove a slightly weaker result for a cycle component in 𝒢′. 

 

LEMMA 4. For component 𝐶 that is a cycle, there exists a set of disjoint augmentations 𝒜(𝐶) s.t. 

(1) 𝑠𝑖𝑧𝑒(𝐴) ≤ 𝑘 for all augmentations 𝐴 ∈  𝒜(𝐶), 

(2) 𝐺𝑡
𝒘(𝒜(𝐶)) ≥

𝑘−1

𝑘+1
⋅ 𝑟𝒘(𝐶𝑜𝑝𝑡) − 𝑟𝒘(𝐶𝑡−1) . 
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Proof. As in the proof of Lemma 3, when 𝑠𝑖𝑧𝑒(𝐶)  ≤  𝑘, we can set 𝒜(𝐶)  =  𝐶, and the two 

conditions are satisfied. Thus, we assume that size(C) > k.  

Let 𝑒 ∈ 𝐶opt denote the link with the smallest weight in 𝐶opt. Consider path  𝐶̂  =  𝐶 −  𝑒 and 

define 𝐶̂opt =  𝐶̂ ∩ 𝑆𝒘
∗   and 𝐶̂𝑡−1 =  𝐶̂ ∩  𝑆𝑡−1. Since 𝐶̂opt is obtained by removing the link of the 

smallest weight from 𝐶opt, it has a larger average weight than 𝐶opt, i.e., 
𝑟𝒘(𝐶̂𝑜𝑝𝑡 )

|𝐶𝑜𝑝𝑡 |−1
  ≥

𝑟𝒘(𝐶𝑜𝑝𝑡 )

|𝐶𝑜𝑝𝑡 |
  , 

which implies that, from |𝐶𝑜𝑝𝑡|  =  𝑠𝑖𝑧𝑒(𝐶)  >  𝑘, 

𝑟𝒘(𝐶̂opt) ≥
𝑘

𝑘 + 1
⋅ 𝑟𝑤(𝐶𝑜𝑝𝑡). 

Lemma 3 tell us that there exists a set 𝒜(𝐶̂) of disjoint augmentations, where (i) the size of each 

augmentation is at most 𝑘, and (ii) the following inequality holds: 

𝐺𝑡
𝒘(𝒜(𝐶)) ≥

𝑘

𝑘 + 1
⋅ 𝑟𝒘(𝐶̂opt) − 𝑟𝒘(𝐶̂𝑡−1) ≥

𝑘 − 1

𝑘 + 1
⋅ 𝑟𝒘(𝐶𝑜𝑝𝑡) − 𝑟𝒘(𝐶𝑡−1) 

 □ 

We now build 𝒜∗ for the proof of Lemma 1. For each component 𝐶 of 𝑆𝑑 , the corresponding 

𝒜(𝐶) can be specified by Lemma 3 or Lemma 4. We set 𝒜∗  =  ⋃ 𝒜(𝐶)𝐶 . Then all augmentations 

𝐴 ∈ 𝒜∗have 𝑠𝑖𝑧𝑒(𝐴)  ≤  𝑘. Further, we have 

𝐺𝑡
𝒘(𝒜∗) ≥

𝑘

𝑘 + 1
⋅ ∑ 𝑟𝒘(𝐶𝑜𝑝𝑡)

𝐶

− ∑ 𝑟𝒘(𝐶𝑡−1)

𝐶

≥
𝑘

𝑘 + 1
⋅ ∑ 𝑤𝑖

𝑖∈𝑆𝒘
∗

− ∑ 𝑤𝑖

𝑖∈𝑆𝑡−1

. 

Hence, we have 𝑟𝒘(𝑆𝑡−1 ⊕  𝒜∗)  =  𝐺𝑡
𝒘(𝒜∗)  + 𝑟𝒘(𝑆𝑡−1)  ≥

𝑘−1

𝑘+1
𝑟𝒘

∗. 

B. PROOF OF PROPOSITION 1 

 

Suppose that, given 𝑆𝑡−1, our algorithm has generated the set 𝒜 of disjoint augmentations. Let 

𝒜∗  denote a near optimal set of augmentations satisfying 𝑟𝒘(𝑆𝑡−1 ⊕ 𝒜∗) ≥
𝑘−1

𝑘+1
𝑟𝒘

∗ , which 

consists of d disjoint augmentations {𝐴1, 𝐴2, . . , 𝐴𝑑  }. For each 𝐴𝑖 , let 𝑛𝑖  denote an (arbitrary) 

endpoint of 𝐴𝑖 if 𝐴𝑖 is a path, or an arbitrary node in 𝐴𝑖 if 𝐴𝑖 is a cycle. Consider an event 𝓔 under 

our algorithm such that all the following are true: 

⚫ the set of self-selected seeds equals {𝑛1, 𝑛2. . . , 𝑛𝑑  }, 

⚫ all seed nodes 𝑛𝑖 select its intended size as 𝑠𝑖𝑧𝑒(𝐴𝑖), and 

⚫ the generated set of augmentation 𝒜 equals 𝒜∗. 

Since it is clear that Pr{𝒜 = 𝒜∗ | 𝑆𝑡−1} ≥ Pr{𝓔 | 𝑆𝑡−1}, we focus on a lower bound of Pr{𝓔 | 𝑆𝑡−1}. 

Note that i) the seed selection of {𝑛𝑖} occurs with probability 𝑝𝑑  (1 − 𝑝)𝑉−𝑑 , where 𝑉 = |𝒱|, 

and ii) the probability that all seeds 𝑛𝑖 independently select its intended size of 𝑠𝑖𝑧𝑒(𝐴𝑖) is 𝑘−𝑑 . 

iii) Finally, we compute the probability that the generated set of augmentation 𝒜 equals 𝒜∗, which 
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occurs when, at each iteration, each active node selects its corresponding neighbor that belongs to 

𝒜∗ . Each selection has probability 𝛴−1  , where Σ is the maximum node degree, and total 𝑉 

selections will be made under the algorithm. Thus, combining the three probabilities, we have that 

 

 Pr{𝓔 |𝑆𝑡−1} ≥ 𝑝𝑑  (1 − 𝑝)𝑉−𝑑 ⋅ 𝑘−𝑑 ⋅ 𝛴−V ≥ min {1, (
𝑝

1 − 𝑝
)

𝑉

} (
1 − 𝑝

𝑘Σ
)

𝑉

. (11) 

 

setting 𝛿 = min {1, (
𝑝

1−𝑝
)

𝑉
} (

1−𝑝

𝑘Σ
)

𝑉
 completes the proof. 

□ 

 

C. PROOF OF LEMMA 2 

 

At time 𝑡 > 0, define 𝑙𝑡 = ⌈
4|ℒ|2(|ℒ|+1) ln 𝑡

Δmin
𝛼 ⌉. Suppose that a non-near-optimal matching 𝑆 ∈ 𝒮𝒘̅

𝛼 

such that 𝜏̂𝑆(𝑡) ≥ 𝑙𝑡 is scheduled. It also implies 𝜏̂𝑖 (𝑡) ≥ 𝑙𝑡  for all links 𝑖 ∈  𝑆. Also, consider an 

arbitrary near-optimal matching 𝑆′ ∈  𝒮𝒘
𝛼 , and let 𝑆 = {𝑒1, 𝑒2, . . . , 𝑒𝐴} and 𝑆′ = {𝑒1 , 𝑒2 , . . . , 𝑒𝐵 }, 

where 𝐴 = |𝑆| and 𝐵 = |𝑆′|, respectively. We consider the event that the total index sum over links 

in 𝑆 is greater than that over links in 𝑆′.  

 

    𝕀{𝑟𝒘̅𝑡
(𝑆) ≥ 𝑟𝒘̅𝑡

(𝑆′)} = 𝕀 {∑ 𝑤̅𝑒𝑖,𝑡

𝐴

𝑖=1
≥ ∑ 𝑤̅𝑒𝑗

′,𝑡

𝐵

𝑗=1
} 

                    ≤ 𝕀 { max
𝑙𝑡≤𝑐1,…,𝑐𝐴<𝑡

∑ (𝑤̂𝑒𝑖,𝑐𝑖
+ √

(|ℒ| + 1) ln 𝑡

𝑐𝑖
)

𝐴

𝑖=1
     

≥ max
0<𝑐1

′ ,…,𝑐𝐵
′ <𝑡

∑ (𝑤̂𝑒𝑗
′,𝑐𝑗

′ + √
(|ℒ| + 1) ln 𝑡

𝑐𝑗
′ )

𝐵

𝑗=1
  } 

(12) 

which is bounded by ∑ ⋯ ∑ ∑ ⋯𝑡
𝑐1

′=1
∑ 𝕀{ℤ}𝑡

𝑐𝐵
′ =1

𝑡
𝑐𝐴=1

𝑡
𝑐1=1 , where event ℤ is defined as 

∑ (𝑤̂𝑒𝑖,𝑐𝑖
+ √

(|ℒ| + 1) ln 𝑡

𝑐𝑖
)

𝐴

𝑖=1
≥ ∑ (𝑤̂𝑒𝑗

′,𝑐𝑗
′ + √

(|ℒ| + 1) ln 𝑡

𝑐𝑗
′ )

𝐵

𝑗=1
. 

For the ease of explanation, we set 𝑤̂𝑒𝑖,𝑐𝑖
 to denote the sample mean of link 𝑒𝑖 scheduled 𝑐𝑖 times. 

We further decompose ℤ into {𝔸𝑖}, {𝔹𝑗} and ℂ as 

 

 𝔸𝑖: 𝑤̂𝑒𝑖,𝑐𝑖
− √

(|ℒ| + 1) ln 𝑡

𝑐𝑖
≥ 𝑤𝑒𝑖

   (13) 
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𝔹𝑗: 𝑤̂𝑒𝑗
′𝑐𝑗

′ + √
(|ℒ| + 1) ln 𝑡

𝑐𝑗
′ ≤ 𝑤𝑒𝑗

′   

ℂ: ∑ 𝑤𝑒𝑗
′

𝐵

𝑗=1
− ∑ 𝑤𝑒𝑖

𝐴

𝑖=1
< 2 ∑ (√

(|ℒ| + 1) ln 𝑡

𝑐𝑖
)

𝐴

𝑖=1
 

Note that if 𝕀{ℤ } = 1, we should have ∑ 𝕀{𝔸𝑖}𝐴
𝑖=1 + ∑ 𝕀{𝔹𝑗}𝐵

𝑗=1 + 𝕀{ℂ} ≥ 1, which can be easily 

shown by contradiction. The probability of each event of 𝔸𝑖  and 𝔹𝑗  can be bounded by the 

Chernoff-Hoeffding bound as 

 

Pr {𝑤̂𝑒𝑖,𝑐𝑖
− √

(|ℒ| + 1) ln 𝑡

𝑐𝑖
≥ 𝑤𝑒𝑖

 } ≤ 𝑡−2(|ℒ|+1), 

Pr { 𝑤̂𝑒𝑗
′𝑐𝑗

′ + √
(|ℒ| + 1) ln 𝑡

𝑐𝑗
′ ≤ 𝑤𝑒𝑗

′  } ≤ 𝑡−2(|ℒ|+1), 

(14) 

Further, we can show Pr{ℂ} = 0 if 𝑐𝑖 ≥ ⌈
4|ℒ|2(|ℒ|+1) ln 𝑡

Δmin
𝛼 ⌉ for all links 𝑒𝑖 ∈ 𝑆 as follows. Suppose 

that ℂ occurs. Then we should 0 > ∑ 𝑤𝑒𝑗
′

𝐵
𝑗=1 − ∑ 𝑤𝑒𝑖

𝐴
𝑖=1 − 2 ∑ (√

(|ℒ|+1) ln 𝑡

𝑐𝑖
)𝐴

𝑖=1 . The right term is 

no smaller than 𝛼 · 𝑟𝒘
∗  − max

𝑆∈𝒮𝒘̅
𝛼

𝑟𝒘(𝑆) − Δmin
𝛼  , which equals 0 by definition of Δmin

𝛼 , resulting in a 

contradiction.  

Using these and taking expectation on (12), we have 

Pr{𝑟𝒘̅𝑡
(𝑆) ≥ 𝑟𝒘̅𝑡

(𝑆′)} ≤ ∑ ⋯ ∑ ∑ ⋯
𝑡

𝑐1
′=1

∑ Pr{ℤ}
𝑡

𝑐𝐵
′ =1

𝑡

𝑐𝐴=1

𝑡

𝑐1=1
 

≤ ∑ ⋯ ∑ ∑ ⋯
𝑡

𝑐1
′=1

∑ (∑ Pr{𝔸𝑖}
𝐴

𝑖=1
+ ∑ Pr{𝔹𝑗}

𝐵

𝑗=1
)

𝑡

𝑐𝐵
′ =1

𝑡

𝑐𝐴=1
 

𝑡

𝑐1=1
  

≤ 𝑡𝐴+𝐵 ⋅ 2|ℒ|𝑡−2(|ℒ|+1) ≤ 2|ℒ|𝑡−2. 

 □ 

D. PROOF OF PROPOSITION 2 

 

Overall, we show that the number of explorations to non-near optimal matchings is bounded. To 

this end, we consider a sequence of time points where a non-near-optimal matching is sufficiently 

played at each point. They serve as a foothold to count the total number of plays of non-near-

optimal matchings.   

To begin with, for the horizon time T > 0, let 𝑙𝑇 = ⌈
4|ℒ|2(|ℒ|+1) ln 𝑡

Δmin
𝛼 ⌉, and let 𝑇′ denote the first 

time when all non-near-optimal matchings are sufficiently (i.e., more than 𝑙𝑇 times) explored, i.e., 
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𝑇′ = min{𝑡 | 𝜏̂𝑆,𝑡 ≥ 𝑙𝑇 for all 𝑆 ∈ 𝒮𝒘̅
𝛼}. 

(𝟏) When 𝑇′ ≤ 𝑇  : Let 𝒮𝒘̅
𝛼 = {𝑆1, 𝑆2, … , 𝑆𝑀} with 𝑀 = |𝒮𝒘̅

𝛼|. Further we define  𝒮̅(𝑡) = {𝑆 ∈

𝒮𝒘̅
𝛼  | 𝜏̂𝑆,𝑡 ≥ 𝑙𝑇}, which is the set of non-near-optimal matchings that are scheduled sufficiently many 

times by time 𝑡 , and 𝒮(𝑡) = 𝒮𝒘̅
𝛼 − 𝒮̅(𝑡) denotes the set of not-yet-sufficiently-scheduled non-near-

optimal matchings. Also, let 𝑇𝑛 denote the time when matching 𝑆𝑛 is sufficiently scheduled, i.e., 

𝜏̂𝑆𝑛(𝑇𝑛) = 𝑙𝑇. Without loss of generality, we assume 𝑇1 < 𝑇2 < ⋯ < 𝑇𝑀 = 𝑇′. 

To apply the decomposition inequality (9), we need to estimate the expected value of ∑ 𝜏̂𝑆,𝑇′𝑆∈𝒮𝒘̅
𝛼 , 

which can be written as 

 

 

∑ 𝜏̂𝑆,𝑇′

𝑆∈𝒮̅𝒘
𝛼

= ∑ ∑ 𝕀{𝑆𝑡 = 𝑆}
𝑇′

𝑡=1𝑆∈𝒮𝒘̅
𝛼

 

           = 𝑙𝑇𝑀 + ∑ ∑ ∑ 𝕀{𝑆𝑡 = 𝑆}
𝑆∈𝒮̅(𝑇𝑛)

𝑇𝑛+1

𝑡=𝑇𝑛

𝑀−1

𝑛=1
 

(15) 

 

Hence, we need to estimate ∑ Pr{𝑆𝑡 = 𝑆}𝑆∈𝒮𝒘̅
𝛼  for 𝑡 ∈ (𝑇𝑛, 𝑇𝑛+1], which can be obtained as in the 

following lemma. 

 

LEMMA 5. For each 𝑡 ∈ (𝑇𝑛, 𝑇𝑛+1], we have 

              ∑ Pr{𝑆𝑡 = 𝑆}
𝑆∈𝒮𝒘̅

𝛼
≤ (1 − 𝛿) ⋅ ∑ Pr{𝑆𝑡−1 = 𝑆}

𝑆∈𝒮𝒘̅
𝛼

  

(16) 

                + Pr{𝑆𝑡−1 ∈ 𝒮(𝑇𝑛)} + (|𝒮̅(𝑇𝑛)| + 𝛿) ⋅ 2|ℒ|𝑡−2 

 

Proof. We first divide the case into three exclusive sub-cases based on the previous schedule 

𝑆𝑡−1: events 𝔸 = {𝑆𝑡−1 ∈ 𝒮𝒘
𝛼},  𝔹 = {𝑆𝑡−1 ∈ 𝒮(𝑇𝑛)} and ℂ = {𝑆𝑡−1 ∈ 𝒮̅(𝑇𝑛)}, and. Then we have 

                                                  ∑ Pr{𝑆𝑡 = 𝑆}
𝑆∈𝒮̅(𝑇𝑛)

 

 = ∑ Pr{𝑆𝑡 = 𝑆 | 𝔸} ⋅ Pr{𝔸}
𝑆∈𝒮̅(𝑇𝑛)

 (17) 

 + ∑ Pr{𝑆𝑡 = 𝑆 | 𝔹}
𝑆∈𝒮̅(𝑇𝑛)

⋅ Pr{𝔹} (18) 

 + ∑ Pr{𝑆𝑡 = 𝑆 | ℂ} ⋅ Pr{ℂ}
𝑆∈𝒮̅(𝑇𝑛)

 (19) 

 

Let 𝒜𝑡 denote the set of augmentations chosen under our algorithm at time 𝑡. We can obtain a 

bound on (17) as  

                ∑ Pr{𝑆𝑡 = 𝑆 | 𝔸} ⋅ Pr{𝔸}
𝑆∈𝒮̅(𝑇𝑛)

. 
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                   ≤ ∑ Pr{𝑟𝒘̅𝑡
(𝑆) ≥ 𝑟𝒘̅𝑡

(𝑆𝑡−1) | 𝔸} ⋅ Pr{𝔸}
𝑆∈𝒮̅(𝑇𝑛)

 

               ≤ |𝒮̅(𝑇𝑛)| ⋅ 2|ℒ|𝑡−2 (20) 

where the last inequality comes from Lemma 2. The result holds for all 𝑡 ∈ (𝑇𝑛, 𝑇𝑛+1]. For the 

second term (18), we have 

 ∑ Pr{𝑆𝑡 = 𝑆 | 𝔹}
𝑆∈𝒮̅(𝑇𝑛)

⋅ Pr{𝔹} ≤ Pr{𝔹} (21) 

Finally, the third term (19) denotes the probability to transit from a sufficiently-played non-near-

optimal matching to a sufficiently-played non-near-optimal matching, and thus we have 

                                  ∑ Pr{𝑆𝑡 = 𝑆 | ℂ} ⋅ Pr{ℂ}
𝑆∈𝒮̅(𝑇𝑛)

 

≤ ∑ Pr{𝑆𝑡 ∈ 𝒮̅(𝑇𝑛) | 𝑆𝑡−1 = 𝑆} ⋅ Pr{𝑆𝑡−1 = 𝑆}
𝑆∈𝒮̅(𝑇𝑛)

. 

Letting 𝑆′ = 𝑆 ⊕ 𝒜𝑡 , the conditional probability can be derived as 

Pr{𝑆𝑡 ∈ 𝒮̅(𝑇𝑛) | 𝑆𝑡−1 = 𝑆} 

≤ Pr{𝑆𝑡 ∈ 𝒮̅(𝑇𝑛) | 𝑆𝑡−1 = 𝑆, 𝑆′ ∈ 𝒮𝒘
𝛼} ⋅ Pr{𝑆′ ∈ 𝒮𝒘

𝛼} + Pr{𝑆′ ∈ 𝒮𝒘̅
𝛼} 

≤ Pr{𝑆𝑡 ∈ 𝒮̅(𝑇𝑛) | 𝑆𝑡−1 = 𝑆, 𝑆′ ∈ 𝒮𝒘
𝛼} ⋅ 𝛿 + 1 − 𝛿 

≤ Pr{𝑟𝒘̅𝑡
(𝑆) ≥ 𝑟𝒘̅𝑡

(𝑆𝑡−1) | 𝑆 ∈ 𝒮𝒘̅
𝛼 , 𝑆′ ∈ 𝒮𝒘

𝛼} ⋅ 𝛿 + 1 − 𝛿 

≤ 2|ℒ|𝑡−2 ⋅ 𝛿 + 1 − 𝛿. 

where the second inequality comes from Proposition 1, the equality holds since 𝑆𝑡 should be 𝑆 

(otherwise, 𝑆𝑡 = (𝑆 ⊕ 𝒜𝑡  ) ∉  𝒮̅(𝑇𝑛)) and thus 𝑆 should have the larger weight sum to be chosen 

by the augmentation algorithm, and the last inequality comes from Lemma 2. Hence, the third term 

(19) can be upper bounded by 

 

∑ Pr{𝑆𝑡−1 = 𝑆} ⋅ (2𝛿|ℒ|𝑡−2 + 1 − 𝛿)
𝑆∈𝒮̅(𝑇𝑛)

 

≤ 2𝛿|ℒ|𝑡−2 + (1 − 𝛿) ∑ Pr{𝑆𝑡−1 = 𝑆}
𝑆∈𝒮̅(𝑇𝑛)

, 

(22) 

for all 𝑡 ∈ (𝑇𝑛, 𝑇𝑛+1]. 

The result can be obtained by combining (20), (21), and (22). □ 

 

In order to apply Lemma 5 to (15), we rewrite it in a recursive form. Let 𝜂 =  1 −  𝛿 , 𝐻𝑛 =

(|𝒮̅(𝑇𝑛)| + 𝛿) ⋅ 2|ℒ| = (𝑛 +  𝛿) ·  2|ℒ|, and 𝛩𝑛(𝑡) = ∑ Pr{𝑆𝑡 = 𝑆}𝑆∈𝒮̅(𝑇𝑛) . We have a recursive form 

of (16) as 

                                             𝛩𝑛(𝑡) ≤ 𝜂𝑡−𝑇𝑛
𝛩𝑛(𝑇𝑛)  (23) 

                                                                     +𝐻𝑛 ∑ 𝜂𝑡−𝑖𝑖−2
𝑡

𝑖=𝑇𝑛+1
 (24) 
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                                                                     + ∑ 𝜂𝑡−𝑖 ⋅
𝑡

𝑖=𝑇𝑛+1
Pr{𝑆𝑡−1 ∈ 𝒮(𝑇𝑛)}. (25) 

By summing it over 𝑡 ∈ (𝑇𝑛, 𝑇𝑛+1] on the both sides, we obtain the following lemma. 

 

LEMMA 6. The total number of times that sufficiently played non-near-optimal matchings are 

selected during (𝑇𝑛, 𝑇𝑛+1]  is bounded by  

∑ 𝛩𝑛(𝑡)
𝑇𝑛+1

𝑖=𝑇𝑛+1
≤

1

𝛿
(1 +

𝜋2

6
𝐻𝑛 + 𝔼 [∑ 𝜏𝑆,𝑛+1

𝑆∈𝒮(𝑇𝑛)
]), 

(26) 

where 𝜏𝑆,𝑛+1 denote the number of time slots that 𝑆 is scheduled in (𝑇𝑛, 𝑇𝑛+1]. 

 

The proof of Lemma 6 follows the same line of analysis as [17] and included for the completion.  

 

Proof. By summing up (25) over 𝑡 ∈ (𝑇𝑛, 𝑇𝑛+1], we have 

 ∑ ∑ 𝜂𝑡−𝑖 ⋅
𝑡

𝑖=𝑇𝑛+1
Pr{𝑆𝑡−1 ∈ 𝒮(𝑇𝑛)}

𝑇𝑛+1

𝑡=𝑇𝑛
  

 
= ∑ Pr{𝑆𝑡−1 ∈ 𝒮(𝑇𝑛)}

𝑇𝑛+1

𝑡=𝑇𝑛
⋅ (∑ 𝜂𝑖

𝑇𝑛+1−𝑡

𝑖=0
) 

 

 
≤

1

1 − 𝜂
𝔼 [∑ 𝕀{𝑆𝑡−1 ∈ 𝒮(𝑇𝑛)}

𝑇𝑛+1

𝑡=𝑇𝑛
] 

 

 =
1

𝛿
𝔼 [∑ 𝜏𝑆,𝑛+1

𝑆∈𝒮(𝑇𝑛)
], (27) 

where the inequality holds because ∑ 𝜂𝑖𝑇𝑛+1−𝑡
𝑖=0 ≤

1

1−𝜂
, Pr{𝑆𝑡−1 ∈ 𝒮(𝑇𝑛)} = 𝔼[𝕀{𝑆𝑡−1 ∈ 𝒮(𝑇𝑛)}], 

and 𝕀{𝑆𝑇𝑛 ∈ 𝒮(𝑇𝑛)} = 0  since the matching scheduled at 𝑇𝑛  does not belong to 𝒮(𝑇𝑛)  by 

definition. 

Also, by summing up (24) over (𝑇𝑛, 𝑇𝑛+1], we have 

 ∑ 𝐻𝑛 ∑ 𝜂𝑡−𝑖 ⋅
𝑡

𝑖=𝑇𝑛+1
𝑖−2 ≤ 𝐻𝑛 ⋅

1

𝛿
⋅

𝜋2

6
.

𝑇𝑛+1

𝑡=𝑇𝑛
 (28) 

Similarly, we take the sum of (23) as 

 ∑ 𝜂𝑡−𝑇𝑛
𝛩𝑛(𝑇𝑛)

𝑇𝑛+1

𝑡=𝑇𝑛
≤ ∑ 𝜂𝑡−𝑇𝑛

𝑇𝑛+1

𝑡=𝑇𝑛
≤

1

𝛿
 (29) 

Combining (27), (28), and (29), we obtain the result. □ 

 

Now, by taking expectation on (15), we can obtain the expected total number of times that non-

near optimal matchings are selected up to time 𝑇′(≤ 𝑇) as 

      ∑ 𝔼[𝜏̂𝑆(𝑇′)]
𝑆∈𝒮̅𝒘

𝛼
= 𝑙𝑇𝑀 + ∑ ∑ 𝛩𝑛(𝑡)

𝑇𝑛+1

𝑡=𝑇𝑛

𝑀−1

𝑛=1
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≤ 𝑙𝑇𝑀 +

1

𝛿
∑ (1 +

𝐻𝑛𝜋2

6
+ 𝔼 [∑ 𝜏𝑆,𝑛+1

𝑆∈𝒮(𝑇𝑛)
])

𝑀−1

𝑛=1
 

 

 
≤ 𝑙𝑇𝑀 +

𝑀

𝛿
(1 +

|ℒ|𝛿𝜋2

6
+

|ℒ|(𝑀 − 1)𝜋2

6
+ 𝑙𝑇). 

 

The last inequality holds since (i) ∑ 𝐻𝑛
𝑀−1
𝑛=1 = ∑ (𝑛 + 𝛿) ⋅ 2|ℒ| ≤ 𝑀 ⋅ |ℒ| ⋅ (2𝛿 + (𝑀 − 1))𝑀−1

𝑛=1 , 

and (ii) ∑ 𝜏𝑆,𝑛+1𝑆∈𝒮(𝑇𝑛)  is the total number that the matchings that have been chosen less than 𝑙𝑇 

up to 𝑇𝑛 are chosen during (𝑇𝑛, 𝑇𝑛+1] and thus results in ∑ ∑ 𝜏𝑆,𝑛+1𝑆∈𝒮(𝑇𝑛)
𝑀−1
𝑛=1 ≤ ∑ 𝑙𝑇

𝑀
𝑘=2 ≤ 𝑙𝑇𝑀. 

From 𝑀 ≤  |𝒮|  −  1, we have 

 
∑ 𝔼[𝜏̂𝑆(𝑇′)]

𝑆∈𝒮̅𝒘
𝛼

≤ 𝐷1 ⋅
ln 𝑇

(Δmin
𝛼 )2

+
|𝒮| − 1

𝛿
(1 +

|ℒ|𝛿𝜋2

6
+

|ℒ|(|𝒮| − 2)𝜋2

6
) 

 

(30) 

where 𝐷1 = (1 +
1

𝛿
) ⋅ 4|ℒ|2(|ℒ| + 1) ⋅ (|𝒮| − 1). 

This provides a bound on the number of times that non-near optimal matchings are selected up 

to 𝑇′. For the rest time, 𝑡 ∈ (𝑇′, 𝑇], we need to compute ∑ Pr{𝑆𝑡 ∈ 𝒮𝒘̅
𝛼}𝑇

𝑡=𝑇′ . Let 𝑆′ =  𝑆𝑡−1 ⊕ 𝒜𝑡. 

Since next schedule 𝑆𝑡  is either 𝑆𝑡−1 and 𝑆′  under the algorithm, we divide the event 

{𝑆𝑡 ∈ 𝒮𝒘̅
𝛼} into three sub-cases based on 𝑆𝑡−1 and 𝑆′, and compute the probability as 

 Pr{𝑆𝑡 ∈ 𝒮𝒘̅
𝛼} = Pr{𝑆′ ∈ 𝒮𝒘̅

𝛼 , 𝑆𝑡−1 ∈ 𝒮𝒘̅
𝛼}  

 + Pr{𝑆′ ∈ 𝒮𝒘̅
𝛼, 𝑆𝑡−1 ∈ 𝒮𝒘

𝛼 , 𝑟𝒘(𝑆′) ≥ 𝑟𝒘(𝑆𝑡−1)}  

 + Pr{𝑆′ ∈ 𝒮𝒘
𝛼, 𝑆𝑡−1 ∈ 𝒮𝒘̅

𝛼 , 𝑟𝒘(𝑆′) ≤ 𝑟𝒘(𝑆𝑡−1)}  

This leads to  

 Pr{𝑆𝑡 ∈ 𝒮𝒘̅
𝛼} ≤ Pr{𝑆′ ∈ 𝒮𝒘̅

𝛼  | 𝑆𝑡−1 ∈ 𝒮𝒘̅
𝛼} ⋅ Pr {𝑆𝑡−1 ∈ 𝒮𝒘̅

𝛼}  

 + Pr{𝑟𝒘(𝑆′) ≥ 𝑟𝒘(𝑆𝑡−1) | 𝑆′ ∈ 𝒮𝒘̅
𝛼 , 𝑆𝑡−1 ∈ 𝒮𝒘

𝛼}  

 + Pr{𝑟𝒘(𝑆′) ≤ 𝑟𝒘(𝑆𝑡−1) | 𝑆′ ∈ 𝒮𝒘
𝛼, 𝑆𝑡−1 ∈ 𝒮𝒘̅

𝛼}.  

From Proposition 1, we have Pr{𝑆′ ∈ 𝒮𝒘̅
𝛼 | 𝑆𝑡−1 ∈ 𝒮𝒘̅

𝛼} = 1 − Pr{𝑆′ ∈ 𝒮𝒘
𝛼  | 𝑆𝑡−1 ∈ 𝒮𝒘̅

𝛼} ≤  1 −

 𝛿 =  𝜂. Since  𝜏̂𝑆(𝑡) ≥ 𝑙𝑇 for all 𝑆 and 𝑡 ∈ (𝑇′, 𝑇],  Lemma 2 provides an upper bound 2|ℒ|𝑡−2 

on each conditional probability in the second and the third terms. As a result, we can obtain 

Pr{𝑆𝑡 ∈ 𝒮𝒘̅
𝛼} ≤ 𝜂 Pr{𝑆𝑡−1 ∈ 𝒮𝒘̅

𝛼} + 4|ℒ|𝑡−2. 

By extending the inequality in a recursive manner down to𝑇′, we obtain that 

 Pr{𝑆𝑡 ∈ 𝒮𝒘̅
𝛼} ≤ 𝜂𝑡−𝑇′

Pr{𝑆𝑇′ ∈ 𝒮𝒘̅
𝛼} + 4|ℒ| ∑ 𝜂𝑡−𝑖𝑖−2 

𝑡

𝑡=𝑇′+1
  

 = 𝜂𝑡−𝑇′
+4|ℒ| ∑ 𝜂𝑡−𝑖𝑖−2 

𝑡

𝑡=𝑇′+1
  

where the last equality holds since Pr{𝑆𝑇′ ∈ 𝒮𝒘̅
𝛼} = 1 from the definition of 𝑇′. Summing over 𝑡 ∈

(𝑇′, 𝑇] on the both sides, and from 𝜂 =  1 −  𝛿, we have 

 ∑ Pr{𝑆𝑡 ∈ 𝒮𝒘̅
𝛼} 

𝑇

𝑡=𝑇′+1
≤

1 − 𝛿

𝛿
+

2|ℒ|𝜋2

3𝛿
. (31) 
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Combining (30) and (31), we obtain  

∑ 𝔼[𝜏̂𝑆(𝑇)]
𝑆∈𝒮̅𝒘

𝛼
= ∑ 𝔼[𝜏̂𝑆(𝑇′)]

𝑆∈𝒮̅𝒘
𝛼

+ ∑ Pr{𝑆𝑡 ∈ 𝒮𝒘̅
𝛼} 

𝑇

𝑡=𝑇′+1
 

 ≤ 𝐷1 ⋅
ln 𝑇

(Δmin
𝛼 )2

+ 𝐷2 (32) 

where 𝐷1 = (1 +
1

𝛿
) ⋅ 4|ℒ|2(|ℒ| + 1) ⋅ (|𝒮| − 1) , and 𝐷2 =

|𝒮|−1

𝛿
(1 +

|ℒ|𝛿𝜋2

6
+

|ℒ|(|𝒮|−2)𝜋2

6
) +

1−𝛿

𝛿
+

2|ℒ|𝜋2

3𝛿
. 

 

(𝟐) When 𝑇′ > 𝑇 (i.e., ∃𝑆 such that 𝜏̂𝑆 < 𝑙𝑇) : With the same definitions of 𝑙𝑇, 𝒮̅(𝑡), and 𝒮(𝑡), let 

|𝒮̅|  =  |𝒮̅(𝑇)| and |𝒮|  =  |𝒮(𝑇)|. At this time, we define 𝒮̅(𝑇)  =  {𝑆1, 𝑆2, . . . , 𝑆|𝒮̅|} and let 𝑇𝑛 

denote the time at which matching 𝑆𝑛 is sufficiently scheduled, i.e., 𝜏̂𝑆𝑛(𝑇𝑛) = 𝑙𝑇. Without loss of 

generality, we assume 𝑇1 < 𝑇2 < ⋯ < 𝑇|𝒮̅|. By time slot 𝑇, 𝒮(𝑇) is non-empty (since 𝑇′ > 𝑇), 

and it is clear that ∑ 𝜏̂𝑆,𝑇𝑆∈𝒮(𝑇) ≤ 𝑙𝑇|𝒮|. 

Similar to the case when 𝑇′ ≤ 𝑇, we can obtain 

 ∑ 𝔼[𝜏̂𝑆(𝑇)]
𝑆∈𝒮𝒘̅

𝛼
= ∑ 𝔼[𝜏̂𝑆,𝑇]

𝑆∈𝒮(𝑇)
+ ∑ ∑ Pr{𝑆𝑡 = 𝑆}

𝑆∈𝒮̅(𝑇)

𝑇

𝑡=1
  

 
≤ 𝑙𝑇|𝒮| + 𝑙𝑇|𝒮̅| + ∑ ∑ ∑ 𝛩𝑛(𝑡)

𝑆∈𝒮̅(𝑇)

𝑇𝑛+1

𝑡=𝑇𝑛+1

|𝒮̅|

𝑛=1
 

 

 
≤ 𝑙𝑇𝑀 + ∑

1

𝛿
(1 +

𝐻𝑛𝜋2

6
+ 𝔼 [∑ 𝜏𝑆,𝑛+1

𝑆∈𝒮(𝑇𝑛)
])

|𝒮̅|

𝑛=1
, 

 

where the last inequality comes from Lemma 6. As in (30), we can obtain 

 
≤ 𝑙𝑇𝑀 +

|𝒮̅|

𝛿
(1 +

|ℒ|𝛿𝜋2

6
+

|ℒ|(|𝒮̅| + 1)𝜋2

6
+ 𝑙𝑇) 

 

 ≤ 𝐷1 ⋅
ln 𝑇

(Δmin
𝛼 )2

+ 𝐷2 (33) 

where the last inequality holds due to |𝒮̅| ≤ 𝑀 − 1. 

Proposition 2 can be obtained by applying (32) and (33) to the decomposition inequality (9). 

 □ 
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