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Abstract 

 

 

The success of machine learning (ML) is based on data quality and representation. Noisy and 

unreliable data with much irrelevant and redundant information makes the learning phase of ML 

even more difficult. A feature transformation is well known as an essential step to overcome data 

quality problems in ML problems. 

 

A proper feature transformation depending on the application domain would provide more 

understandable information. Creating new meaningful values contributes to a better understanding 

of a classifier. The present paper focuses on two data quality problems are representative issues of 

multiclass classification problems that arise when collecting or experimenting with data; a class 

imbalance of ordinal data, and drift compensation of Electronic nose (E-nose). First, we proposed 

truncated Singular Value Decomposition for Multiclass Classification (SVDMC) for imbalanced 

ordinal classification. The proposed model is novel in that it can handle the issue without 

modifying the class distribution. Next, we propose a novel compensation method to address sensor 

drift under batch experiments. The proposed model is structured based on the nonlinear parametric 

function of experimental factors.  

 

To improve data quality for multiclass classification, we applied Genetic Algorithms (GAs) to 

optimize both techniques to improve the classification performance. The results based on 

simulations and real datasets show that the classification performance is significantly improved 

after the GAs optimized feature transformations than when using classification models alone. 

 

 

Key words: Data Preprocessing, Feature Transformation, Genetic Algorithm, Class 

Imbalance, Gas Sensor Classification, Singular Value Decomposition, Sensor Drift, 

Correction Model, Data Denoising  
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1. Introduction 

1.1 Background: Data Quality Impact on Multiclass Classification 

The most important factor in Machine Learning (ML) is data quality. Machine learning algorithms 

automatically extract knowledge from data. However, their success in knowledge extraction 

depends on not only their learning performance skills, but also the quality of the data. If the data 

contains a lot of irrelevant information, algorithms may not produce accurate and comprehensible 

results, or they may not learn the data at all. Therefore, in ML, improving the data quality through 

data preprocessing is first and foremost. Preprocessed data provide better discrimination as shown 

by S. Kotsiantis [1]. 

Preprocessing techniques can be divided into seven categories: instance selection and outlier 

detection, processing missing values, discretization, data normalization, feature selection, and 

feature transformation. 

 Instance selection and outlier detection: techniques detecting some possible data quality 

problems and removing instances with excessively deviating instances. 

 Processing missing values: techniques for completing unknown feature values. It is one of 

the most critical issues since most data in the real world is incomplete and contains 

missing values.  

 Discretization: Preprocessing to convert real values to integers. The integer feature values 

sometimes make algorithm learning more effective and faster. 

 Data normalization: a "scaling down" transformation of the features. Normalization 

adjusts the values to lower values or changes the values to a common scale without 

distorting differences in the ranges of the values. 

 Feature selection: the process of identifying meaningful features and reducing dimension 

by removing irrelevant features. This process makes the algorithms run faster and more 

effectively. 

 Feature transformation: techniques for constructing new features from the original feature 

values, resulting in improvement in the representation of the data. 

In supervised learning, the impact of feature transformation is very significant. Transformed 

features can produce more concise and accurate information. Creating new meaningful values 
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contributes to better understanding of a classifier. Therefore, appropriate feature transformation 

related to the application domain can provide a high classification accuracy.  

This dissertation comprises two data quality issues related to multiclass classification problems. 

They are representative issues that may arise when collecting or experimenting with data; Class 

imbalance, and drift compensation. First of all, class imbalances, which have been studied by a lot 

of papers, can occur during data collection. Class imbalance occurs during data collection. Suppose, 

for example, that we are detecting a process defect. Usually, the number of data in the abnormal 

group collected is very small. There exist difficulties in collecting data in the abnormal group, 

which would generate imbalanced information among different groups. Classifiers have low 

classification accuracy for rare events due to the imbalanced information. This example shows the 

effect of class imbalance.  

On the other hand, if we generate data through experiments, we have some control over the effects 

of class imbalance by planning a balanced class distribution in the experimental setup. Suppose, for 

example, that we are experimenting with gas detection with an Electronic nose (E-nose). In the 

experimental setup, we can plan to conduct the same number of experiments for different types of 

gases, which would prevent happening the class imbalance. However, during experimentation, 

various environmental factors can affect data properties. For example, fluctuations in temperatures 

and humidity conditions cause an unexpected chemical reaction inside sensors, and sensor values 

have patterns independent of the gas property. This example corresponds to sensor drift that is most 

well-known problem in E-nose. It makes unexpected sensor values, which makes a classifier 

recognize the odor type of sensor difficult. It impairs the data quality and reliability of sensor array 

data. This dissertation proposed two feature transformation techniques to deal with the two data 

quality problems of data collection and production on multiclass classification problems.  

1.2 Purpose and Outline 

The objective of this dissertation is to improve multiclass classification performance by suggesting 

feature transformation techniques optimized by Genetic Algorithms (GAs). Feature transformations 

are sometimes complicated and contain parameters to be determined. Heuristic methods have been 

mainly applied for determining the parameters. Especially, GAs, one of the heuristic methods, 

successfully search optimal or local optimal values for feature transformation as in [2, 3, 4]. GAs 

belong to a class of probabilistic algorithms based on natural selection and natural genetics to 

perform parallel searches in complex search spaces [5]. It reflects the natural selection process of 

selecting the best-fitted object by reproduction to create the offspring of the next generation. The fit 

of the object is calculated from the given fitness function corresponding to the optimization 
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problem. There are several advantages to it. It does not require derivative information, is faster and 

more efficient than traditional methods, optimizes continuous and discrete functions and multi-

objective problems, and is useful for large search spaces with many parameters. In pattern 

classification, GAs have been used for parameter tuning [6], feature transformation [2, 4], and 

feature selection [7, 8, 9, 10]. Based on the properties of GAs, we proposed two genetic algorithm 

optimized feature transformation techniques for supervised learning on two specific domains; 

imbalanced ordinal classification, gas identification with sensor drift. 

First, we propose Singular Value Decomposing truncation for Multiclass Classification (SVDMC) 

to deal with imbalanced ordinal data. The ordinal data refers to data that contains a meaningful 

order between classes, but the distance between categories cannot be strictly quantified. Also, they 

often suffer from noisy ratings. Not all input ratings are reliable, and noisy ratings can be 

detrimental to the quality of the trained model. Therefore, the ordinal data classification problem is 

quite tricky. Considering the two ordinal data properties, the paper addresses the class imbalance by 

reducing noise and class overlap instead of applying a sampling technique. To do this, we develop 

SVD truncation that is suitable for noise reduction and combine it with GA also helps the model 

find the ultimate data space. The main contribution of this model is a new pre-processing method 

for classifying imbalanced ordinal data using single value singular value reduction. 

Second, we deal with sensor drift, the most well-known problem in the classification of electronic 

nose data. Sensor drift generates unexpected sensor values triggered by several factors such as 

aging, ambient temperature, humidity, pressure, and poisoning. It impairs the data quality and 

reliability of sensor array data. Therefore, drift compensation can improve system reliability and 

increase the accuracy of gas recognition through the sensor array system. The paper proposes a 

model that reconstructs drifted values based on the nonlinear parametric function. If there is not 

enough gas data for gas analysis, the regression algorithm cannot find a solution, so we apply GAs 

to find the parameters. It is an innovative preprocessing technique for sensor drift compensation.  

The rest of the dissertation is organized as follows. Chapter 2 presents the research background on 

GA optimized feature transformations. Chapter 3 and Chapter 4 cover the two issues that make up 

the dissertation work. Each chapter includes the introduction, literature reviews, methodology, 

experiments, and results. Finally, Chapter 5 concludes with the contributions and limitations of the 

dissertation and suggests future research directions. 
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2. Literature Reviews 

2.1 GA Optimized Feature Transformation 

Genetic Algorithms (GAs) have been applied as a method of determining parameters. GAs are 

probabilistic algorithms based on natural selection and natural genetics to perform parallel searches 

in complex search spaces [5]. It reflects the natural selection process of selecting the fittest 

chromosome (or genetic property) by reproduction to create the offspring of the next generation. In 

GAs, the fitness of a chromosome is calculated from a given fitness function. Their most important 

application is machine learning, successfully applied in parameter tuning [6], feature transformation 

[2, 3, 4], and feature selection [9, 7, 10, 8]. 

GAs have several properties such as simple programming capabilities, flexibility in organizing 

fitness function, and robustness to the input data [11]. These features are effective in cases where it 

is difficult to solve or even express the objective function for parameter estimation. The objective 

function for SVDMC is too complicated to express explicitly or implicitly because it is associated 

with singular values in the class matrix and the objective function of a classifier. So, we need an 

optimization solver that provides a simple programming capability and is flexible in configuring 

fitness functions. Meanwhile, the objective function for sensor drift compensation can be expressed 

explicitly. However, drifted sensor data often do not facilitate finding such a solution. In this case, 

traditional hill climbers have not been able to find an optimal solution. GAs, on the other hand, 

have been succeeded in finding robust solutions, which is achieved by operators like selection, 

crossover, and mutation. Based on the properties of GAs, we proposed two genetic algorithm 

optimized feature transformation techniques for supervised learning; imbalanced ordinal multiclass 

classification, sensor drift compensation for mixed gas classification under batch experiments. GA 

optimized feature transformation techniques can be categorized into two groups: wrapper models  

Figure 1: Comparison of wrapper and filter models [4] 
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and filter models. Wrapper models transform features by feedback from the classifier evaluation, 

while filter models do this in a heuristic way. Figure 1 shows the difference between these two 

approaches. An example of wrapper models, Prakash and Murty [2] suggested the combination of 

GAs with Principal Components Analysis (PCA). GAs select an optimal subset of PCs to get the 

best performance. In the paper [4], the authors proposed a new feature weighting and selection 

technique based on wrapper model. GAs determine the weights of the features from 0.0 to 10.0. 

When the determined weight is 0.0, the technique completes the feature selection. Raymer et al. 

[12] presented a feature extraction method in which GAs weight according to the importance of the 

feature. A gaussian windowing function was proposed to improve the classification accuracy of an 

odor classification in [13]. The authors developed the model using GAs to determine the optimal 

parameters for feature extraction. It also has a positive effect on time drift. Compared to the number 

of studies on wrapper models, few studies were done on the filter approach using GAs. The paper 

[3] proposed new framework of GAs that optimize the S-transform of perturbations in electrical 

signals. The fitness function of GAs is to maximize the energy concentration. 

The proposed SVDMC adjusts the data space of classes differently to reduce the imbalance effect, 

which corresponds to wrapper models. GAs determine the amount of data space to reduce to 

maximize classification performance. The feature transformation for drift compensation, on the 

other hand, corresponds to filter models. GAs search for a solution that optimizes a specific fitness 

function, not a classification performance. We suggest a fitness function that is effective on sensor 

drift compensation. It measures class separability based on the ratio for the trace of the between-

class scatter matrix (𝑆𝐵) and that of the within-class scatter matrix (𝑆𝑊). This class separability 

function will be explained in more detail in Section 4.3.2. 

To the best of our knowledge, there are little GA optimized feature transformation techniques for 

class imbalance and sensor drift. So, we also review the preprocessing methods for the ordinal 

classification of imbalanced data and the gas identification with sensor drift in the following 

sections. As a comparison model, we select one GA optimized feature transformation technique 

most relevant to each proposed model, and well-known preprocessing techniques developed in two 

areas.  
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3. SVD Truncation for Multiclass Classification 

(SVDMC) 

3.1 Introduction 

There are a lot of ordinal classification problems in real life such as risk assessment, sentiment 

analysis, diagnostic classification, and image analysis in [14] and [15]. The multiclass ordinal data 

inherently have low probability classes (e.g., the most dangerous disaster class or diagnosed class 

with cancer). In such cases, it is important to detect unusual cases, but it is challenging because they 

have very few observations compared to other groups [16]. Although much attention has been given 

to general imbalanced data, its ordinal counterpart has not received the same attention. This paper 

analyzes ordinal data with class imbalance problems. 

There are mainly three approaches of solutions: the external approach of preprocessing data [17, 18, 

19, 20, 21], the internal approach of modifying algorithms [15, 22, 23], and cost-sensitive learning 

[24, 25]. Cost-sensitive learning helps to accurately classify minority classes by assigning higher 

misclassification costs to minority class than majority class. However, it takes a lot of time to find an 

appropriate cost value for each class, and misclassification costs are often unavailable [26, 27]. The 

internal approach aims at modifying or modeling new algorithms to classify imbalanced data, but 

they cannot deal with the issues at the most basic level and their performance depends on the data. 

Of the three approaches, the external approach is most suitable for reducing the impact of class 

imbalance [28]. Its main advantage is its versatility, as it does not depend on a specific classifier. 

Besides, it can also be flexibly integrated into other types of approaches. The external approach 

mainly consists of sampling techniques, undersampling or oversampling techniques. Undersampling 

techniques aim at deleting some majority class samples and oversampling techniques generating new 

minority class samples. However, they do not seem to take into the properties of an ordinal 

imbalanced data account.  

There are two considerations for ordinal data [29]. First, not all input ratings are reliable, and noisy 

ratings are detrimental to the quality of the trained model. Second, the label ordering of the data is 

meaningful in the topology of the sample space. Many studies for ordinal-imbalanced data consider 

only the second feature, but the first feature is significant in data preprocessing. Sampling techniques 

are based on data class reliability. Unless all input ratings are reliable, oversampled data will have 

more noisy ratings, and undersampled data will suffer from a lot of loss information. Therefore, we 

propose a new external approach not modifying a skewed class distribution. Instead, we aim to 

improve data quality and the reliability of the ratings by reducing noise in all input data to handle 
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ordinal-imbalanced data.   

Our goal is to improve data quality by reducing data noise and overlap regions to handle imbalanced 

ordinal data. Many researchers have asserted that the problem of the imbalance is not by itself but 

other data quality problems while pointing out the importance of reducing noise and overlap areas in 

imbalanced data classification [30, 31]. Data noise and overlap area harm the learning of a classifier 

on imbalanced ordinal data [30]. The authors [31] states that if samples overlap in skewed data, it 

can be challenging to train a classifier effectively. We address the noise and overlap area reduction 

of imbalanced ordinal data by singular value shrinkage.  

Data noise reduction through Singular Value Decomposition (SVD) has been successful in [32, 33, 

34, 35]. SVD is suitable for noise reduction because it allows one to understand the characteristic of 

the data matrix. Matrix factorization allows one to quantify the relationships within the samples, 

within the attributes, and between samples and attributes with singular values. By applying 

information on singular values, it is possible to reduce noise and overlap area in data space. The 

proposed model takes the class order into account and does not reverse the existing order of the 

transformed input data. The main contribution is that the proposed novel preprocessing method does 

not modify a class distribution. Instead, it reduces the additive noise of the data and overlap area 

using singular value shrinkage. To the best of our knowledge, this is the first attempt at utilizing SVD 

to solve imbalances between ordinal classes. 

3.2 Literature Reviews 

In related works, the existing methods for resolving class imbalance can be broadly categorized into 

three approaches: the external approach of preprocessing training sets to balance class distribution 

[17, 18, 19, 20, 21], the internal approach of creating or modifying algorithms to accommodate 

class imbalance problems [15, 22, 23], and a combination of the two [24]. Among the three 

approaches, data preprocessing techniques have been widely used and recognized as appropriate for 

reducing the impact of class imbalances [28].  

The most known approaches of data preprocessing are undersampling and oversampling techniques 

that regenerate a training dataset to create a balance between classes by eliminating some examples 

from data or creating synthetic data. The most well-known undersampling technique is the Wilson’s 

Edited Nearest Neighbor (ENN) rule [36], which edits preclassified samples and reduces the 

number of samples by deleting samples, wherein at least two of the three nearest neighbors are in 

different classes. The most well-known oversampling technique is the Synthetic Minority 

Oversampling TechniquE (SMOTE) [37]. SMOTE synthesizes samples from minority classes 
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based on the distance of the nearest samples. Many adaptive oversampling algorithms are modified 

versions of the SMOTE [38, 39, 40, 41, 16, 42, 43]. Among the adaptive algorithms is SMOTE and 

Cluster-based Undersampling Technique (SCUT) [43], which is a combination of SMOTE and 

cluster-based undersampling. However, these algorithms are designed for imbalanced general data, 

not imbalanced ordinal data. 

Recently, some preprocessing methods have been proposed in an ordinal context. Domingue et al. 

[17] proposed four oversampling techniques based on ordinal data; 2 to 3, feature by feature, 

centroid-based, and principal component analysis (PCA)-based. They generate some samples from 

minority classes based on the main characteristics such as the mean, median, and principal 

components (PCs) of class data. The same authors proposed the iterative oversampling techniques 

called InCuBAtE that outperformed the four methods [18]. The authors argued that the performance 

of sampling improves as the function selection proceeds. The main algorithm is as follows. First, 

RelieF performs feature selection on training data. The dataset is then duplicated, and a classifier 

learns from the duplicated dataset. Sample are then generated and added to the training set, where 

the class of the samples are assigned labels predicted by the classifier. These steps are iteratively 

repeated until enough samples have been generated. Authors in [19] proposed an ordinal 

oversampling method from a graph-based perspective. They demonstrated a good synergy with 

support vector ordinal regression. Nekooeimehr and Lai-Yuen [21] presented adaptive semi-

unsupervised weighted oversampling (A-SUWO) for imbalanced binary classification. A-SUWO 

oversamples each sub-cluster using a semi-supervised hierarchical clustering approach. The main 

algorithm of A-SUWO also contains a denoising step. Cluster-based weighted oversampling for 

ordinal regression (CWOS-Ord) [20] is a modified version of the A-SUWO developed by the same 

authors. Most preprocessing techniques for the ordinal classification or regression favor the 

oversampling approach with denoised data, but few consider reducing overlapping regions and 

noise. Therefore, our approach is a new paradigm for dealing with imbalanced ordinal 

classification. 

3.3 Methodology 

We propose an SVD truncation method for imbalanced ordinal data classification. In Section 3.3.1 

and Section 3.3.2, we briefly review the additive perturbation model and SVD. In Section 3.3.3, we 

discuss a method for determining a proper threshold for successful SVD truncation. In Section 

3.3.4, we present our SVD truncation algorithm for multiclass classification (SVDMC) optimized 

by GAs. 
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3.3.1 Additive Perturbation Model 

Analysis of the additive perturbation model relates to the spectrum changes after a small 

perturbation to a matrix. It is one of the main concepts in the analysis of SVD and spectral methods. 

In other words, it is important to understand how different the data spaces of 𝑋 and 𝑋 + 𝑍 are, 

where 𝑍 is a perturbation model. The additive perturbation model is applicable to a wide range of 

problems, including matrix denoising, clustering, community detection in bipartite, singular space 

estimation of matrix completion, and canonical correlation analysis as demonstrated in [44, 45, 46]. 

In our paper, we analyze ordinal data noise with the additive model. 

Let 𝑌 denote an 𝑛 × 𝑚 data matrix. The additive perturbation model decomposes the data matrix 

into two parts [47]: 

 𝑌 = 𝑋 + 𝜎𝑍 (1) 

where 𝑋 denotes the noise free data and 𝑍 denotes noise. The noise is assumed to be independent 

identically distributed zero-mean Gaussian with unit variance while 𝜎 is a positive real value. For 

matrix decomposition, SVD can be easily applied in the additive perturbation model to extract the 

noise free data 𝑋 from the data matrix 𝑌.  

3.3.2 Singular Value Decomposition (SVD) 

Formally, the singular value decomposition of an 𝑛 × 𝑚 matrix 𝑌 is into the product of three 

matrices of the form 𝑈𝛴𝑉𝑇. 𝑈 is an orthogonal 𝑛 × 𝑛 matrix having columns 𝒖𝑖 =

 [𝑢1𝑖𝑢2𝑖 ··· 𝑢𝑛𝑖]𝑇 for 𝑖 =  1, . . . , 𝑛 and 𝑉 is an 𝑚 × 𝑚 matrix with orthonormal vectors, 𝒗𝑗 =

 [𝑣1𝑗𝑣2𝑗 ··· 𝑣𝑚𝑗]
𝑇

 for 𝑗 =  1, . . . , 𝑚. 𝛴 is an 𝑛 × 𝑚 rectangular diagonal matrix and has non-

negative diagonal elements that are singular values 𝑦𝑖 of 𝑌. The singular values are ordered so 

that 𝑦𝑖 ≥ 𝑦𝑗 for all 𝑖 <  𝑗. In the case of the rank of 𝑟, 𝑌 can be shown as a combination of 𝑟 

matrices [47]: 

 𝑌 = 𝑈Σ𝑉𝑇 = ∑ 𝑦𝑖𝒖𝑖𝒗𝑖
𝑇 .

𝑟

𝑖=1

 (2) 

The matrices 𝑈 and 𝑉 contain information about data observations and data attributes 

respectively. The similarity of columns within 𝑈 or 𝑉 indicates that the corresponding 

observations or attributes are closely related. Also, the singular values 𝑦𝑖 of the matrix Σ indicate 
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the importance of the corresponding orthonormal vectors 𝒖𝑖 and 𝒗𝑖
𝑇, called basis vectors. The 

singular values reflect the variance of the data captured by the corresponding basis vectors. The 

basis vectors are arranged in order of the magnitude of singular values. The first basis vector with 

the largest singular value is in the direction of the largest data variance. The second basis captures 

the orthogonal direction with the second greatest variance, and so on. In geometrically, the singular 

values of the matrix 𝑌 indicate the lengths of the semi-axes of an ellipse so that the truncated 

matrix with smaller singular values has the smaller ellipse. For a finite 𝑛 × 𝑚 matrix 𝑌, the semi-

axes of an 𝑚-dimensional ellipsoid in an 𝑛-dimensional space are represented as singular values 

of the matrix 𝑌. Then, reducing the lengths of the semi-axes makes the elements of matrix 𝑌 

closer. For multiclass classification problems, observations of the same class are relocated nearby 

through SVD truncation with a set of reduced variances.  

3.3.3 Denoising by Truncating Singular Values 

A denoised matrix is estimated using SVD truncation by removing some meaningless bases. Bases 

represent observations as linear combinations composing a matrix, and the rank of a matrix is equal 

to the number of its bases. The matrix can have the optimal rank by eliminating the meaningless 

bases. When the 𝑛 × 𝑚 matrix 𝑌 of rank 𝑟 has singular values 𝑦𝑖 for 𝑖 =  1, . . . , 𝑟. The optimal 

rank of 𝑝 can be estimated using a threshold 𝛿, where  

 𝑦1  ≥ 𝑦2 ≥ ⋯ ≥ 𝑦𝑝 ≥ 𝛿 ≥ 𝑦𝑝+1 ≥ ⋯ ≥ 𝑦𝑟.  

Then, the singular values 𝑦𝑖  are truncated for 𝑖 >  𝑝  and the truncated SVD of the matrix 𝑌 

becomes the matrix 𝑋; 

 
𝑋 = ∑ 𝑦𝑖𝒖𝑖𝒗𝑖

𝑇 .

𝑝

𝑖=1

 
 

It is called truncated SVD using a hard threshold. Some meaningless bases are deleted with the 

threshold 𝛿, but some noise included in the data space related to some remaining singular values 

cannot be reduced. If noise occurs in every vector space composed of singular vectors, it is 

recommended to use a soft threshold for truncating SVD. To delete more noise from every vector 

space composed of singular vectors, a soft threshold is adopted in our experiments. Recall that for 

𝑦𝑖 > 0, 

 𝑋 = ∑ max(0, 𝑦𝑖 − 𝛽)𝒖𝑖𝒗𝑖
𝑇

𝑟

𝑖=1

. (3) 
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We truncate some irrelevant bases and shrink the data space using the soft threshold in Eq.(3). This 

approach has been widely used for scalar and vector noise removal because of its simplicity and 

several optimality properties [48, 49, 50]. There are many studies estimating the threshold 𝛽 of the 

matrix 𝑋 but most of them do not consider the shape of the data matrix 𝑌. For classification, it is 

essential to consider the property of the data space. Thus, it is difficult for them to provide the proper 

threshold for classification. Therefore, we aim to obtain the optimal with the results obtained by 

learning the input data. In the following subsection, we introduce a new truncating singular values 

method for multiclass classification called the SVDMC, and a learning process for finding the 

optimal threshold. 

3.3.4 Truncated SVD using GAs for Multiclass Classification 

 

The proposed SVD truncation method, SVDMC, applies SVD truncation to every class, not just to 

the entire data matrix. This is because that the standard SVD truncation to the data would increase 

overlap regions. Figure 2 illustrates the difference between SVD truncation on entire datasets and 

SVD truncation on every class separately. SVDMC prevents overlapping regions from becoming 

larger by denoising every class. An important question then arises as to how the soft threshold can be 

applied in SVDMC. 

Suppose we have a total number of 𝐾  ordinal classes. Let 𝑌(𝑘)  denote an 𝑛𝑘 × 𝑚  data matrix 

consisting of data points belonging to the 𝑘 th class for 𝑘 =  1, . . . , 𝐾 . According to Eq.(1), the 

additive perturbation model decomposes data matrices in the following manner. 

 
𝑌(𝑘) = 𝑋(𝑘) + 𝜎(𝑘)𝑍, 

 

where 𝑋(𝑘) and 𝜎(𝑘)𝑍 denote the noise-free and the noise matrix of kth class respectively. For each 

𝑌(𝑘), the corresponding value of 𝛽𝑘 determines how shrunk the data space becomes. We construct 

Figure 2: Comparison of SVD truncation approaches: (a) existing approach [60] and (b) SVDMC. The 

solid line represents the untruncated data space, and the dotted line represents the truncated data space. 
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𝐾 thresholds having parameters 𝛽𝑘 , 𝑘 =  1, . . . , 𝐾 for truncating the 𝐾 classes.  

Individual truncated data spaces of classes have an impact on the classification performance, and so 

does the combination of truncated spaces among classes. That is, 𝛽𝑘 are not independent of each 

other. Thus, our goal is to find the optimal combination of 𝛽𝑘 , that is, 𝜷 = (𝛽1, 𝛽2, . . . , 𝛽𝐾)𝑇 that 

maximizes the classification performance on the imbalanced data. The proper threshold 𝜷 helps 

classifiers determine unbiased decision boundaries that can provide good classification performance 

in every class. Therefore, we set the optimal 𝜷 as the value maximizing one of the performance 

measures on imbalanced data. To do find the optimal parameter, we apply GAs as we have been 

discussed. Figure 3 illustrates the pseudocode of SVDMC optimized by GAs.  

 

3.4 Description of Experimental Setup 

This section describes the experimental setup such as comparison techniques, classification 

algorithms, and classification performance measurements. 

Figure 3: Pseudocode of SVDMC 
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The performance of SVDMC is evaluated by comparing four existing preprocessing methods for 

addressing the class imbalance and one singular values-based method using GAs. For preprocessing 

methods for resolving class imbalance, two oversampling algorithms (SMOTE [37] and InCuBAtE 

[18]), one undersampling algorithm (ENN [36]), and one hybrid algorithm (SCUT [43]) are 

considered. For the singular values-based method, the wrapper method of GA optimized feature 

transformation [2] is considered, which is referred to as GAPCs in this paper. Note that 

over/under/hybrid sampling algorithms adjust the number of data points in each class but truncating 

singular values-based methods maintain the original distributions of data points over classes. 

Consequently, we have seven types of training sets: the original training set, SVDMC set, GAPCs 

set, SMOTE set, InCuBAtE set, SCUT set, and ENN set. Preprocessed datasets are learned and 

evaluated by the ordinal classification algorithm 𝑤𝑘NN for the ordinal data version [51]. The 

𝑤𝑘NN is implemented with Euclidean distance and the triangular kernel for weighting at 𝑘 =  7. 

For reference, we applied a genetic algorithm as follows. The crossover rate is 80%, and the 

mutation rate is 0.1. GAs run 100 generations with a population of 100. Evolution stops when there 

has been no improvement over the past 30 generations. GAs were implemented in ‘GAparsimony 

[52]’ that is the R package. All tests have been run on R studio cloud with R 3.5.3 version, which is 

the cloud provided R studio. The computation time was calculated in Section 3.6. 

In this paper, we applied G-mean, and MAUC as performance measures. The geometric mean (G-

mean) and the Area Under the receiver operating characteristic Curve (AUC) are commonly used to 

measure the performance of multiclass imbalance problems [53]. Before explaining the measures, 

we will review the confusion matrix. 

Let’s consider a binary classification problem where data belong to either Class 1 or Class 2. When 

the class imbalance occurs, the majority class is also called the negative class. The other one is 

called the positive class. In our case, we assign Class 1 as the negative class and Class 2 as the 

Figure 4: Confusion matrix in binary classification problem 
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positive class. The confusion matrix provides insight into the distribution of correct/incorrect data 

instances in a class, and what types of errors occur, as well as the performance of the predictive 

model. Figure 4 illustrates a summary of the confusion matrix. It is the framework that formulates 

G-mean, and AUC. 

The true positive rate and the false positive rate are essential concepts in the confusion matrix. The 

true positive rate (the false positive) is the value calculated as the total number of true positive 

(false positive) predictions divided by the sum of the true positives (false positives) and the false 

negatives (true negatives). The true positive rate is called sensitivity or recall. The value of 1 −

the false positive rate is referred to as the specificity. In summary, they can be formulated as 

follows; 

 

 
True positive rate =

TP

(TP+FN)
 

 

 

 
False positive rate =

FP

(FP+TN)
 

 

 

 

 
Specificity = 1- false positive rate  

 

 

The G-mean is then the geometric mean of the sensitivity and the specificity. AUC is the area under 

the ROC curve that is a plot with x-axis as the false positive rate and y-axis as the true positive rate. 

The domains of both measures are from 0 to 1, and the maximum denotes the best classification 

performance. In general, the minimum value of AUC is 0.5.  

The measures are originally designed for binary classification problems so that we use the extended 

G-mean [54] and extended AUC, called MAUC [55], for multiclass problems. The extended G-

mean is defined as the geometric mean of the true positive rates of all classes, and the extended 

AUC is defined as the average AUC of all pairs of classes. We determine the parameters of 

SVDMC with values that maximize G-mean result. This is because G-mean is more sensitive to 

changes in the confusion matrix than MAUC. It is helpful for GAs to find an optimal solution.  

In addition to these performance measures, we measure the overlap regions using a distance-based 

metric called Danger, which is defined as follows. 
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Danger(𝑦, 𝑿)  =

1

𝑞
∑ ∑ |𝑦𝑖 − 𝑦𝑖(𝑙)|

𝑞

𝑙=1

,

𝑛

𝑖=1

  
 

 

where 𝑦𝑖 ∈  {1,2, . . . , 𝐾} is an ordinal class label and 𝑦{𝑖(𝑙)} represents the class label of the 𝑙-th 

nearest neighbor in the feature space defined by 𝑿. This metric measures the homogeneity of the 

data set. It is designed to increase the metric value as more data points are in the overlapping 

regions between classes. If data points are located close to data points having the same class label, 

the value of the metric is close to zero. Danger is used to analyze the characteristic of the original 

data as well as to quantify the effect of SVDMC. Note that a low Danger value does not guarantee 

good classification performance. Rather, if the Danger value of the transformed data is very 

different from the Danger value of this data, the transformed data is likely to have lost the 

characteristics of the data. The purpose of introducing Danger measure is to quantify the overlap 

area characteristics of this data and to analyze the effect of the proposed model based on this. 

For evaluation, data are divided into a training set (80 percent of the data) and a test set (20 percent 

of the data) while preserving the degree of imbalance in the class distribution. For the wrapper 

models, five validation sets are randomly selected as 10 percent of the training set for tuning the 

hyperparameter. Data is randomly dichotomized 50 times into a training set and a test set to avoid 

biased outcomes. Then, empirical results are obtained by averaging the results. 

3.5 Simulation Study 

To study the impact of SVDMC on low-rank ordinal data, we conducted three simulation studies: a) 

binary ordinal classification with different 𝜎, b) binary ordinal classification with different rank 𝑟, 

and c) multiclass ordinal classification. For the first simulation, we expect that the higher the amount 

of noise in the data, the better the classification performance improvement of the proposed model. 

We expect that the proposed model performance will perform well on low rank as well as other data 

for the second simulation. For last, we confirm the performance of the proposed model in multiclass 

classification. 

When generating synthetic data, for simplicity, we assume that 𝑌(𝑘) = 𝑋(𝑘) + 𝜎(𝑘)𝑍 and the rank 

of the matrix 𝑋(𝑘) is 𝑟 for all 𝑘. The entries of the matrix 𝑋(𝑘) are randomly generated from the 

uniform distribution with an unknown interval [𝑎𝑘 , 𝑏𝑘], where 𝑎𝑘 <  𝑏𝑘 and 𝑏𝑘 <  𝑎𝑘+1. In 

addition, the entries of the matrix 𝑍 are randomly generated from a Gaussian distribution with 

zero mean and unit variance. 
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Table 1: Comparison of empirical classification results of synthetic binary data with 𝝈 =  𝟏. 𝟎 

𝑤𝑘NN Original SVDMC GAPCs SMOTE InCuBAtE SCUT ENN 

MAUC 
0.50

± 0.01 

0.55

± 0.06 

0.50

± 0.02 

0.52

± 0.04 

0.50

± 0.03 

0.50

± 0.05 

0.55

± 0.01 

G-mean 
0.08

± 0.10 

0.52

± 0.07 

0.18

± 0.14 

0.44

± 0.08 

0.17

± 0.13 

0.53

± 0.07 

0.00

± 0.00 

 

 

Table 2: Comparison of empirical classification results of synthetic binary data with 𝝈 =  𝟏. 𝟓 

 

 

Table 3: Comparison of empirical classification results of synthetic binary data with 𝝈 =  𝟐 

 

 

Table 4: Danger values and information of 𝜷𝟏 and 𝜷𝟐 of the first simulation. 

 𝝈 =  𝟏 𝝈 =  𝟏. 𝟓 𝝈 =  𝟐 

Danger(original) 0.13 0.14 0.14 

Danger(SVDMC) 0.06 0.07 0.07 

𝛽1 20.73±1.20 30.94±1.74 41.67±2.37 

𝛽2 5.41±1.19 7.04±2.27 9.86±2.68 

 

𝑤𝑘NN Original SVDMC GAPCs SMOTE InCuBAtE SCUT ENN 

MAUC 
0.49  

± 0.01 

0.54

± 0.04 

0.50

± 0.03 

0.50

± 0.05 

0.50

± 0.03 

0.50

± 0.06 

0.51

± 0.00 

G-mean 
0.04

± 0.09 

0.51

± 0.06 

0.15

± 0.18 

0.44

± 0.09 

0.21

± 0.12 

0.50

± 0.07 

0.00

± 0.00 

𝑤𝑘NN Original SVDMC GAPCs SMOTE InCuBAtE SCUT ENN 

MAUC 
0.49

± 0.01 

0.52

± 0.05 

0.50

± 0.03 

0.50

± 0.05 

0.50

± 0.02 

0.50

± 0.06 

0.50

± 0.00 

G-mean 
0.04

± 0.09 

0.49

± 0.07 

0.09

± 0.13 

0.41

± 0.07 

0.19

± 0.12 

0.47

± 0.07 

0.00

± 0.00 



 

 

17 

 

a) Binary ordinal classification with different 𝜎: We conducted binary ordinal classification for 

𝜎 = 1.0, 1.5, 2.0. Denote the majority class as Class 1 and the minority class as Class 2. Class 1 has 

1000 observations with 𝑟 =  1 and 𝑚 =  10. Class 2 has 100 observations with the same 𝑟 and 

𝑚. A low rank matrix has a ratio 
𝑟

𝑚
≤ 0.1 in general, which enables us to choose appropriate 𝑟 

and 𝑚 values. Tables 1, 2, and 3 display the results for 𝜎 =  1.0, 1.5, 2.0 respectively. 

Our goal is to reduce noise in the overlap area. The more noise there is, the more effective our 

model will be. The rate of increase in the classification performance of SVDMC according to the 

rate of the best increase in the classification performance of the compared models were 100%, 

250%, and 300% (see Table 1,Table 2, and Table 3), respectively. The rates with respect to G-mean 

were about 98%, 102%, and 105% (see Table 1,Table 2, and Table 3), respectively. Therefore, the 

proposed model contributed more to improving classification performance for noisy data than other 

comparative models. The results confirm that the proposed model plays a proper role. GAPCs, 

SMOTE, and InCuBAtE model show slightly improved performance results. SCUT, a hybrid 

technique, shows superior results over the two oversampling models. The undersampling technique, 

ENN, no longer seems to fit the imbalance issue.  

In our simulation data, the higher the sigma, the higher the Danger value in Table 4. Original data 

space is more deformed by the additive noise and more noise accumulated in the overlap area. In 

this case, the proposed model will enhance the classification performance a lot. However, the case 

of high the sigma and low the Danger represents the data space is little deformed by noise. The 

proposed model would not improve the data quality a lot.   

b) Binary ordinal classification with different rank 𝑟: In this experiment, we set 𝜎 and 𝑚 to be 

1.5 and 10 respectively, and 𝑋(𝑘) to have different ranks such as 1, 3, and 5. The purpose of this 

experiment is to show the robustness of SVDMC regardless of whether the data is a low-rank 

matrix or not. 

According to Table 2, Table 5, and Table 6, SVDMC outperforms the other approaches for various 

values of 𝑟. Note that estimated values of the parameter 𝜷 are almost constant for different ranks 

as shown in Table 7. This is because that 𝜷 increases with the amount of noise in the data and 

hardly depends on the rank of the data. In the case of the same amount of noise, the rank of the data 

increased, and the amount of noise accumulated in the overlap section decreased (lower Danger 

values). That is, in the case of the same amount of noise, the proposed model performance may be 

better when the rank is small, but looking at Table 5, and Table 6 the rank itself is not significantly 

affected. 
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Table 5: Comparison of empirical classification results of synthetic binary data with 𝒓 =  𝟑 

 

 

Table 6: Comparison of empirical classification results of synthetic binary data with 𝒓 =  𝟓 

 

 

Table 7: Danger values and information of 𝜷𝟏 and 𝜷𝟐 of the second simulation. 

 𝒓 =  𝟏 𝒓 =  𝟑 𝒓 =  𝟓 

Danger(original) 0.14 0.13 0.12 

Danger(SVDMC) 0.07 0.06 0.05 

𝛽1 30.94±1.74 29.90±1.84 29.86±1.80 

𝛽2 7.04±2.27 6.79±2.69 8.89±2.43 

 

 

Table 8: Comparison of empirical classification results of synthetic multiclass data 

𝑤𝑘NN Original SVDMC GAPCs SMOTE InCuBAtE SCUT ENN 

MAUC 
0.53

± 0.02 

0.71

± 0.04 

0.56

± 0.04 

0.61

± 0.05 

0.56

± 0.05 

0.64

± 0.05 

0.51

± 0.02 

G-mean 
0.25

± 0.12 

0.70

± 0.05 

0.42

± 0.11 

0.57

± 0.08 

0.37

± 0.13 

0.63

± 0.07 

0.12

± 0.13 

𝑤𝑘NN Original SVDMC GAPCs SMOTE InCuBAtE SCUT ENN 

MAUC 
0.51

± 0.02 

0.61

± 0.05 

0.52

± 0.04 

0.55

± 0.04 

0.53

± 0.04 

0.58

± 0.05 

0.50

± 0.00 

G-mean 
0.14

± 0.12 

0.59

± 0.06 

0.24

± 0.18 

0.50

± 0.06 

0.29

± 0.13 

0.57

± 0.06 

0.04

± 0.00 

𝑤𝑘NN Original SVDMC GAPCs SMOTE InCuBAtE SCUT ENN 

MAUC 
0.51

± 0.01 

0.52

± 0.03 

0.51

± 0.02 

0.51

± 0.02 

0.50

± 0.02 

0.50

± 0.03 

0.50

± 0.00 

G-mean 
0.04

± 0.06 

0.33

± 0.06 

0.02

± 0.06 

0.30

± 0.05 

0.07

± 0.09 

0.35

± 0.06 

0.00

± 0.00 
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c) Multiclass ordinal classification: We now compare the performance of the seven preprocessing 

methods in the ordinal classification problem with three classes. Let us denote the classes as Class 

1, Class 2, and Class 3. Since most multiclass ordinal data do not have sufficient observations in 

classes with extreme levels, such as the lowest level or the highest level, we set the number of 

observations for Class 1 and Class 3 to 100, and for Class 2 to 1000. We also set the values of 

𝜎, 𝑟, 𝑚 to 2, 1, 10 respectively. The estimated 𝜷 values are (14.89,48.73,15.91) respectively. 

Under this setting, the proposed method still leads to promising results as shown in Table 8. Danger 

values decreased from 0.27 to 0.07 by the proposed model.  

3.6 Real Data Example 

 

The proposed method is applied to the real ordinal dataset collected from the Hungarian National 

Association of Radio Distress-Signaling and Infocommunications (RSOE) from May 2013 to 

December 2014. RSOE monitors emergency and disaster events happening all over the world in real 

time, displaying the information related to the events on its website and making it available to the 

public. All events are categorized separately into several types of disasters such as earthquakes, fire, 

floods, landslides, nuclear events, tornados, volcanic events, etc, with the information described in 

Table 9: Experimental classification results of disaster data on 𝒘𝒌NN (k= 7) algorithm with 7 different 

types of training sets 

 

𝑤𝑘NN Original SVDMC GAPCs SMOTE InCuBAtE SCUT ENN 

MAUC 
0.87

± 0.02 

0.92

± 0.01 

0.87

± 0.08 

0.84

± 0.02 

0.82

± 0.03 

0.86

± 0.03 

0.79

± 0.03 

G-mean 
0.80

± 0.05 

0.87

± 0.02 

0.81

± 0.11 

0.75

± 0.04 

0.65

± 0.03 

0.78

± 0.04 

0.63

± 0.17 

Figure 5: Distributions of the disaster data 
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natural language. In addition, each event is categorized according to its damage level: nominal 

(level1), minor (level2), moderate (level3), severe (level4), or extreme (level5). The level of damage 

is a comprehensive risk index for the damage caused by a disaster and has been assessed and 

categorized by some disaster experts. Figure 5 depicts the distribution of the number of events 

belonging to each level. The data was originally introduced by [15] and we followed their procedure 

to build a term-document matrix from event descriptions. Note that the disaster data contain a lot data 

noise since their attributes (32 words in the term-document matrix) were built from a somehow 

subjective material. Nevertheless, Table 9 shows that our method outperforms other approaches and 

confirms the validity of using the SVDMC for imbalanced ordinal data. The mean of estimated 

parameters 𝛽̂ as 26.69,32.58,35.56,34.07 and 17.49 for levels 1 to 5 respectively.  

The calculation time per iteration was 0.16 min and there was an average of 46 iterations. The total 

calculation time was 7.36 in average. For comparison, a representative wrapper model for imbalanced 

data, the cost-sensitive algorithm based on C-Support Vector Classification was implemented [56]. 

The class weight is optimized by GAs in the same setup. The model had the calculation time 0.18 

min per iteration, and it cannot converge to an optimal solution. Furthermore, the time complexity of 

the proposed model with Big O notation is O(P×I×n×(m+𝑘)) where P and I are the population size 

and number of iterations of GAs respectively, and n and m are the number of observations in a training 

set and the dimension of the data respectively, and 𝑘 is the hyperparameter of the 𝑤𝑘NN algorithm. 

The time complexity of GAs is proportional to the time complexity of a fitness function and number 

of fitness function evaluations, which is O(P×I). The time complexity of fitness function is then the 

sum of them of SVD, O(n × m), and evaluation of the classifier of the training data matrix, 

O(n×(m+𝑘)), so that the time complexity of the fitness function is O(n×(m+𝑘)). Therefore, the time 

complexity of SVDMC is O(P×I×n×(m+𝑘)) based on the classifier, 𝑤𝑘NN algorithm for ordinal 

data. 
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4. Sensor Drift Compensation for Mixed Gas 

Classification under Batch Experiments 

4.1 Introduction 

An electronic nose (E-nose) is a semiconductor composed of an electronic chemical sensor array. It 

has been applied to the identification of individual components or gas mixtures [57, 58, 33], food 

industry quality control [59, 60, 61], public health [62, 63, 64], explosive detection [65] and a space 

program [66]. Especially it is very important to accurately classify mixed gases to reduce the risks of 

hazardous gases since most of the dangerous gases are mixed gases as referred in [67, 68, 69, 70]. 

Unfortunately, mixed gas classification is complicated because one type can contain different 

substances and concentrations.  

Sensor drift under batch experiments is one of the well-known issues in mixed gas classification. 

Sensor drift indicates that a sensor has unexpected sensor values when exposed to complex 

environmental factors such as dynamic temperature, humidity, pressure, and poisoning. It is a major 

factor that makes it difficult to analyze the response of a sensor array and to perform gas recognition 

[71]. Drift can distort a unique pattern for the target odor resulting in poor representation of the target 

odors data. Furthermore, in the mixed gas, other chemical gases can generate an unexpected chemical 

reaction when exposed to the environmental factors. Therefore, it is essential to compensate drift for 

improving system reliability and increasing the accuracy of gas recognition through the sensor array 

system. 

In this paper, we consider sensor array data detected over a short time, so we focus on drift due to the 

environmental covariates, such as temperature and humidity. This paper has the purpose of 

reconstructing drifted value based on a nonlinear parametric function of experimental covariates. The 

nonlinear model was constructed based on the correction model [72] that successfully compensated 

for the effects of ambient conditions. Also, we handle more demanding situations that are expensive 

to perform mixed gas experiments. Many studies for gas sensor analysis proceed with feature 

extraction such as steady state value extraction [73]. But in our difficult situation, machine learning 

faces overfitting because there is little data on gas analysis. To overcome this, we extract additional 

stable state response values are sampled from fixed environmental covariates so that machine 

learning technology can learn various response values under one environmental condition.  

4.2 Literature Reviews 

Much attention has been paid in recent years to address this issue, preprocessing techniques to deal 
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with sensor drift. These methods can be categorized into two categories: adaptive methods and 

feature transformation methods. There are many adaptive methods, for example, models based on 

Self-Organizing Maps (SOM) [74], Active Learning (AL) [75], and Deep Belief Network (DBN) 

[76], and the model applying classifier ensembles based on SVM [77], and an extreme learning 

machine for drift compensation [78] and more, which are passive models to handle sensor drift. 

They do not actively search for a basis occurring drift and only identify the slow changes of sensor 

responses caused by long-term drift. The performance of these models looks good, but they do not 

solve the drift issue using environmental covariates. 

Most feature transformation techniques for drift are component calibration methods that regard the 

drift signal as divisible, so they aim to separate the drift signal from sensors signal. Feature 

transformation techniques for sensor drift conclude Component calibration methods include PCA 

[79], PCA-based Component Correction (PCA-CC) [80], Independent Component Analysis (ICA) 

[81], Partial Least Squares (PLS) [82], Orthogonal Signal Correction (OSC) [83], Discriminant 

Factorial Analysis (DFA) [84], Linear Discriminate Analysis (LDA) [78], Discriminative Domain 

Regularized Component Analysis (D-DRCA) [85], wavelet [86] etc. However, they only identify 

and analyze the effect of temperature and humidity on a specific sensor, not try to restore to the 

value before the drift occurred. 

The model proposed in [87] tried to reconstruct drifted sensor responses based on the Papoulis-

Gerchberg method. They suggest that the relationship between the measurements and the drifted 

signals is linear. They estimated the drifted signal that minimizes the errors in the reconstruction of 

the real sensor response based on the Lorentzian model. However, the paper focused on the drift 

effect as time goes, not fluctuating temperature and humidity values. The model proposed in [88] was 

used to eliminate drift effects due to ambient temperature and humidity fluctuations to obtain 

adequate precision in pollution level measurements. It adopts a nonlinear Multi-Input-Single-Output 

(MISO) system to construct an appropriate parametric structure. It was implemented by an Artificial 

Neural Network (ANN) to perform the transformation and describe the experimental results. The 

simple structure of ANN with one hidden layer was successful in the identification of different 

concentrations of Methanol. However, it is not enough to classify mixture gases under the existence 

of a few observations.  

4.3 Methodology 

We propose a preprocessing method for the drift compensation for accurate electronic nose data 

classification. In Sections 4.3.1, we introduce the correction model and our parametric model to 

handle the sensor drift. For the parameter tuning, in Section 4.3.2, we discuss a statistical function 
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and a heuristic algorithm for determining proper parameters for successful gas identification. 

4.3.1 Sensor Drift Compensation Model 

We assume that temperature and humidity are the main factors that greatly affect the function of 

sensor data. To compensate for the impact of the environmental covariates, we adopt the correction 

model to lead a drift compensation [72]. Let 𝑧𝑖 be a vector of length 𝑛 with the correction values 

with no drift for the sensor 𝑖, and it can be formulated as follows: 

 𝑧𝑖 = (𝛼𝑖1𝑇𝑖 +  𝛼𝑖2𝑅𝐻𝑖 +  𝛼𝑖3𝟏𝑛) ∘ 𝑉Diff𝑖 + 𝛼𝑖4𝑇𝑖 +  𝛼𝑖5𝑅𝐻𝑖 (4) 

 

where 𝑇𝑖 and 𝑅𝐻𝑖 are temperature and relative humidity vectors of length 𝑛, and the Hadamard 

product is described in ∘ notation. 𝑉Diff𝑖 is a vector of length 𝑛 with differences between active 

voltages and reference voltages for the sensor 𝑖. The active voltage responds to both target gas 

concentration and environmental covariates, while the reference voltage is affected only by the 

change of environmental covariates. And, 𝛼𝑖𝑗 are unknown parameters for 𝑗 =  1, . . . ,5.  

Since the sensors are independent, we apply our model to a sensor multiple times for multivariate 

analysis. To be specific, GAs learn temperature, relative humidity, and measurements 𝑉Diff1  of 

sensor 1 to predict the parameters 𝛼1𝑗 for 𝑗 =  1, . . . ,5, and then we get the transformed data via 

Eq.(4). Next, GAs learn the data 𝑉Diff2 of sensor 2 with the environmental covariates to obtain the 

five parameters 𝛼2𝑗 for 𝑗 =  1, . . . ,5, and then we get the transformed data. This process is repeated 

to other sensors.  

The equation Eq.(4) contains the minimum parameters and represents the nonlinear relationship 

between environmental factors and voltages, which is suitable in the case of few observations. For 

reference, our objective is not to accurately formulate the correction value 𝑧𝑖, but to transform the 

observed data into a new data space with improved gas identification.  

4.3.2 Class Separability Criterion of GAs 

The goal is to estimate parameters that achieve sensor drift correction and improved classification 

performance both. We assume that different gases without drift should have different distributions 

and different data space areas. Thus, we set the fitness function for a genetic algorithm as a function 

evaluating how different classes differ in the data space. Note that improper fitness function would 

generate transformed data that lost its originality, so it is essential to determine the appropriate fitness 

features. Our fitness function was originated from the criteria of multiclass linear discriminant 



 

 

24 

 

analysis [89], which has similar objective as ours, finding orthogonal projections with the centers 

(averages) of different categories far from each other and with little variance. 

In [89], the separability measure is defined as the ratio for the trace of the between class scatter 

matrix (𝑆𝐵) and that of the within class scatter matrix (𝑆𝑊). The expressions are as follow: 

 𝑆𝐵 = ∑ 𝑛𝑐(𝑚𝑐 − 𝑚)(𝑚𝑐 − 𝑚)𝑇

𝐶

𝑐=1

 (5) 

 

 𝑆𝑊 =  ∑ ∑(𝑧𝑐,𝑗 − 𝑚𝑐)(𝑧𝑐,𝑗 − 𝑚𝑐)
𝑇

𝑛𝑐

𝑗=1

𝐶

𝑐=1

 (6) 

 

where 𝐶 ≥ 2 is the number of classes, and 𝑛𝑐 and 𝑚𝑐 are the number of individuals 𝑧𝑐,𝑗 and 

the mean of the class 𝑐 for 𝑐 = 1, … , 𝐶. The variable 𝑚 is the mean of the total observations. To 

prevent the impact of the imbalance issue, we normalized the equations Eq.(5) and Eq.(6) by the 

number of observations. Then, our criterion measure is by the ratio of the variance of classes’ 

means 𝑆𝐵
′  to the sum of variances within classes 𝑆𝑊

′  where, 

 𝑆′𝐵 = ∑(𝑚𝑐 − 𝑚)2

𝐶

𝑐=1

  

 

 𝑆′𝑊 =  ∑
1

𝑛𝑐
∑(𝑧𝑐,𝑗 − 𝑚𝑐)

2

𝑛𝑐

𝑗=1

 

𝐶

𝑐=1

  

For scaling, we multiply the number of classes 𝐶 to the ratio. Therefore, our objective function 𝐽 

is, 

 𝐽 = (
𝑆′𝐵

𝑆′𝑊
) (7) 

As we discussed earlier, GAs seek the optimized parameters in Eq.(7) maximizing the fitness function 

𝐽. Figure 6 illustrates the pseudocode of the proposed drift compensation algorithm optimized by 

GAs.  
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The parameter 𝜶 can be solved by a spectrum decomposition of 𝑆′
𝐵
−1

𝑆′𝑊. In the limited number 

of experiments, there often exists singularity to solve 𝑆′
𝐵
−1

 , so the spectrum decomposition 

method cannot achieve an optimal solution. Therefore, a heuristic approach such as GAs is needed 

to find the optimal parameter 𝜶. 

4.4 Description of Experimental Setup 

The performance of our sensor drift compensation model is evaluated by comparing it with the 

existing correction model with ANN [88]. It constructed a nonlinear system to formulate the effect 

of sensor drift based on ANN. We call transformed data by our model and the ANN model by 

Correction set and ANN set respectively. However, in our knowledge, there is no filter model with a 

nonlinear structure to compare with the suggested model. As a classifier, we applied Random 

Forests (RF) [90], a Support Vector Machine (SVM) [91], K-nearest-neighbor (KNN) [92] and 

Multinomial Logistic Regression (MLR) [93]. 

For reference, we applied a genetic algorithm as follows. The crossover rate is 80%, and the 

mutation rate is 0.1. GAs run 100 generations with a population of 100. Evolution stops when there 

Figure 6: Pseudocode of the proposed drift compensation algorithm 
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has been no improvement over the past 30 generations. 

In gas classification, the Misclassification Error Rate (MER) has been used, which is the basic 

concept in measuring and MER is the value calculated by the number of observations in a negative 

class divided by the total number of data. The range of MER is from 0 to 1, and closer to 1 

indicated the better classification performance. 

4.5 Simulation Study 

The goal of this section is to confirm that the proposed model has the role of sensor drift 

compensation through simulation. In this simulation, we assume that different gases have different 

distributions of sensor values if there is no sensor drift. For simplicity, there are three types of odors, 

odor A, odor B, and odor C and five sensors; three of them detect the released gas, and the others 

measure temperature and relative humidity. The three gases, odor A, odor B, and odor C have 

different 𝒛 =  (𝑧1, 𝑧2, 𝑧3)𝑇 values for sensor 1, sensor 2, and sensor 3. We generate 𝒛 values of 

sensor 1, sensor 2, and sensor 3 from uniform distributions of the intervals [220,250], [200,230], and 

[180,210] respectively. For example, odor A has 𝒛 =  (246,208,186)𝑇 , odor B has 

(249,211,200)𝑇 and odor C has (250,218,207)𝑇. Since there are five parameters per sensor, we 

denote the 𝑗 th parameter of sensor 𝑖  as 𝛼𝑖𝑗  for 𝑖 =  1, . . . ,3  and 𝑗 =  1, . . . ,5 . The parameters 

𝛼𝑖1, 𝛼𝑖2, 𝛼𝑖4  and 𝛼𝑖5  follow a uniform distribution of [−1,1] independently, and 𝛼𝑖3  follows the 

same distribution from 0.1 to 1 for 𝑖 =  1, . . . ,3. The range of the third ones, different from others, is 

to avoid singularities and to make that 𝑉Diff𝑖 (= 𝑦𝑖) have a positive relation with 𝑧𝑖. To distinguish 

an estimated parameter through our method, these are called true parameters. We determine 

temperature 𝑇   and relative humidity 𝑅𝐻  values from uniform distributions with the intervals 

[22◦C,28◦C], [40%,60%]. Then, 𝑧𝑖 and control variables 𝑇𝑖 and 𝑅𝐻𝑖 are taken into the inverse of 

Figure 7: Block diagram of the simulation data preprocessing 
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Eq.(4) and add Gaussian noise of variance 𝜎2  ( 𝜎 = 0.1 in our case) to get to the result the 

measurement 𝑦𝑖 for 𝑖 =  1, . . . ,3. We add noise to contain information about different drift effects 

and noise. 

Since performing E-nose experiments are very costly, we consider the number of trials is limited. 

Therefore, we assume that there are only five experiments for each type of odor, which is too small 

to estimate the optimal parameters. To overcome this limitation, we apply a simple sampling 

technique to extract ten different 𝑦𝑖  values under batch experiment. In this simulation, we generate 

ten different 𝑦𝑖  values with different the amount of Gaussian noise. For real gas data, fluctuations in 

the measurements over time are used to complete sampling.  

To train a classifier, four out of five experiments for each type of odor were set up as a training set 

(See Figure 7). We adjust the parameters with GAs using the training set and obtain the modified 

training set test set using the estimated parameters. By the sampling, a model can classify a test set 

into several types of odor. So, we determine the type of gas in the experiment as the type that was 

most frequently identified. This procedure is run a total of five times with different test sets to 

achieve unbiased classification performance.  

Figure 8 illustrates the distributions of the generated data, 𝒛 and 𝒚 for sensor 1, sensor 2, and 

sensor 3. The values 𝑦𝑖 represents sensor values affected by drift in five different environmental  

Figure 8: The distributions of simulation data; From left to right, figures represent the 

sensor values of sensor 1, sensor 2 and sensor 3. 
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Table 10:  Comparison among true parameters 𝜶𝟏𝒋 and the estimated ones  𝜶̂𝟏𝒋 for 𝒋 =  𝟏, . . . , 𝟓 

 

conditions for 𝑖 = 1, … ,3. We observe a large difference between the measured values for five 

experiments and some fluctuations caused by noise within one experiment. As expected, there is no 

variability within classes and no overlaps among classes in values 𝒛. Conversely, it is hard to 

identify the distinct characteristics of odor A, odor B, and odor C from the values 𝒚. They have a 

high variability in one class, and there is a large area of overlap among classes. We reconstruct the 

sensor response 𝒛̂  using the estimated parameters by Eq.(4). 

 

 

Parameters 𝜶𝟏𝟏 𝜶𝟏𝟐 𝜶𝟏𝟑 𝜶𝟏𝟒 𝜶𝟏𝟓 

True 0.46 0.39 0.16 0.04 0.32 

Correction 0.64 0.53 0.50 -0.30 0.48 

Figure 9: The distributions of simulation data; From left to right, figures represent transformed 

training data by true parameters and by the suggested correction model. 
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 Table 11: Result of classifications. The average of classification performances on ANN set was 0.41. 

 

Our goal is to find patterns of sensor values that are not affected by drift. Table 10 represents true 

parameters (True) and estimated parameters (Correction) by GAs. Note that true parameters are not 

the optimal parameters for gas classification due to the Gaussian noise. Therefore, it is much 

valuable to check the similarity, not accuracy. Especially, the fourth and fifth parameters are 

dependent on temperature and relative humidity respectively and are independent of measurement 

𝒚. It is only necessary to confirm that the linear combination with temperature and relative 

humidity by the corresponding coefficients is similar with the combination by true parameters. In 

the table, it has been confirmed that the estimated parameters have a similar pattern to the true 

parameters so that the drift effect can be compensated. This can also be seen in the plots of the 

distributions of 𝒛̂  in Figure 9. The similarity between a reconstructed distribution with true 

parameters and a transformed distribution with estimated ones shows the model’s ability to 

compensate for drift. The transformed data confirms that the suggested model can compensate 

simulated drift successfully. 

 Table 11 lists the contingency table of classification performances: Original is classification results 

of original data and the other performances on transformed data are named as the type of 

parameters. According to the table, the classifiers cannot accurately identify even half of the odors 

when data is affected by drift. On the other hand, all preprocessed data sets improved performance. 

As we expected, the reconstructed data by true parameters had suitable distributions to classify. 

Correction data sets also achieved performance as good as True. The average of classification 

performances on ANN set was 0.41, which there was no improvement on mixed gas identification. 

Therefore, the simulation data confirmed the superior performance of our model in handling drift 

and gas discrimination. 

4.6 Real Data Example 

The proposed method is applied to a real electronic nose data collected from the UCI machine 

learning repository [94]. The set-up system used in the experiment detected the generated the desired 

concentrations of C2H4, CO, CH4, C2H4 +  CO mixtures and C2H4 +  CH4 mixtures. Each  

 RF SVM KNN MLR 

Original 0.42 ± 0.25 0.47 ± 0.31 0.46 ± 0.19 0.80 ± 0.11 

True 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.03 

Correction 0.99 ± 0.02 0.96 ± 0.07 0.95 ± 0.09 0.99 ± 0.01 

 RF SVM KNN MLR 

Original 0.42 ± 0.25 0.47 ± 0.31 0.46 ± 0.19 0.80 ± 0.11 

True 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.03 

Correction 0.99 ± 0.02 0.96 ± 0.07 0.95 ± 0.09 0.99 ± 0.01 
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volatile was released in four different flows providing 30 different mixture configurations: C2H4 

(0ppm, 31ppm, 46ppm, 96ppm), CO (0ppm, 270ppm, 397ppm, 460ppm), CH4   (0ppm, 51ppm, 

115ppm, 131ppm). The E-nose contains eight MOX gas sensors that produce time-dependent 

responses to the different gas stimuli. Temperatures and relative humidity are measured either. Each 

measurement had a total duration of 300 seconds, measured every 100ms. During the first 60 seconds, 

no gas was released from the gas sources, which corresponds to the reference voltage. In 60 seconds, 

the sources begin to release the gas mixtures at the specified flow rate. The detected sensor values 

quickly change to a steady state that corresponds to the active voltage as shown in Figure 10. On the 

other hand, we observed some abnormal sensor values. In the case of a small number of observations, 

ML does not properly operate if outliers exist. For better gas classification, we removed outliers and 

applied our methodology and classifiers. To identify outliers, we used a Local Outlier Factor (LOF) 

that gives the degree of being an outlier of observation [95]. The degree depends on how isolated the 

observation is from the surroundings. We select the value of MinPts, the nearest neighbors, as three. 

We removed nine experiments with values greater than twice the standard deviation from the mean. 

We analyze the discriminative properties of the different concentration levels of C2H4. It was not 

possible to discriminate the concentration levels of C2H4  using only the steady-state response. 

Figure 11 shows the steady state values of sensor 1 by the group. 𝐸𝑡𝐻 represents a group of mixed 

gas observations with high ethanol concentrations. 𝐸𝑡𝑀 and 𝐸𝑡𝐿 are with medium and low ethanol 

concentrations respectively. Observations of mixed gas without ethanol are 𝐸𝑡𝑛 . As the ethanol 

concentration of the mixed gas decreases, the sensor value is generally reduced. However, the overlap 

regions between classes are very large so it is hard to identify distinct feature of groups.  

Figure 10: A gas is measured during 3000ms. Reference voltages and effective voltages belong the areas 

marked with blue solid and red dotted lines respectively 
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Table 12: Summary of classification performance 

 

nearest neighbors, as three. We removed nine experiments with values greater than twice the standard 

deviation from the mean. We analyze the discriminative properties of the different concentration 

levels of C2H4. It was not possible to discriminate the concentration levels of C2H4 using only the 

steady-state response. Figure 11 shows the steady state values of sensor 1 by the group. 𝐸𝑡𝐻 

represents a group of mixed gas observations with high ethanol concentrations. 𝐸𝑡𝑀 and 𝐸𝑡𝐿 are 

with medium and low ethanol concentrations respectively. Observations of mixed gas without ethanol 

are 𝐸𝑡𝑛 . As the ethanol concentration of the mixed gas decreases, the sensor value is generally 

reduced. However, the overlap regions between classes are very large so it is hard to identify distinct 

feature of groups.  

As we discussed earlier, we get 𝑉Diff𝑖 by a difference between of active voltage and reference voltage. 

Since there are some fluctuations in measurements, we extracted 100 measurements from ranges 

corresponding to the active voltage and reference voltage respectively and averaged those samples. 

For a reference voltage, we took randomly 100 measurements from 1 to 500ms as shown by the blue 

solid lines in Figure 10. To get an active voltage, we took randomly 100 measurements from 1501 to  

 RF SVM KNN MLR 

Original 0.66 ± 0.10 0.74 ± 0.10 0.64 ± 0.10 0.73 ± 0.11 

Correction 0.78 ± 0.08 0.79 ± 0.08 0.69 ± 0.09 0.77 ± 0.09 

Figure 11: A scatter plot showing the steady state values of sensor 1 by the group. 
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2000ms as shown by the red dotted lines in the figure. In addition, we used one temperature value 

and one humidity value that are the average values of temperature and humidity measured for 300 

seconds. Like the simulation, the sampling was introduced so that the data consisted of ten different 

𝑉Diff𝑖 under batch experiments for 𝑖 = 1, … ,8. This process allows us to have various sensor values 

without losing the properties of the gas sensor values of the experiment.  

The proposed method confirms that the modified dataset for drift improved the classification 

performance of all classifiers (See Table 12). The proposed method enhanced the performance of 

classification up to 18.18%. The classification accuracy on ANN set was about 0.44. It is obvious 

because it requires many observations to predict parameters. 

In the UCI data, eight sensors independently detect gas signals so that different sensors have different 

Figure 13: Scatter plots of original sensor 8 values and corrected sensor 8 values from left to right 

Figure 12: Scatter plots of original sensor 1 values and corrected sensor 1 values from left to right 
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effects on temperature and relative humidity. Not all of them are affected by covariates, so some of 

gas arrays were hardly transformed and some were transformed properly. Specifically, the values of 

sensor 1, 2, 3, and 4 did not show significant improvement in reducing within-variance and overlap 

regions among classes. Figure 12 represents two scatter plots of sensor 1 from original data set and 

correction data set from left to right. For comparison, we proceed a scale transformation on the values. 

We confirmed that the parameters 𝛼̂11 and 𝛼̂12 were close to zero, which means that the corrected 

value 𝑧1 has meaningful relationship with only 𝑉Diff1. On the other hand, corrected sensor values 

form sensor 5, 6, 7 and 8 showed significant reduction in within-variance and overlap regions. Figure 

13 describes the results of our model regrading sensor 8. Thus, the UCI data seems to have only half 

of sensors that are affected by environmental covariates. When more sensors affected by temperature 

and humidity; the degree of improvement will increase. 
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5. Conclusion 

5.1 Summary and Contributions 

In supervised learning, the impact of feature transformation is very significant. Transformed features 

can produce more concise and accurate information. The transformed features exist in a new space 

with higher data quality and better separability. This paper proposed two feature transformation 

techniques for ordinal-imbalanced data and sensor array data with drift. SVDMC reduces the additive 

noise in ordinal data resulting in making a balance in information among different classes. The sensor 

drift compensation for mixed gas classification under batch experiments successfully corrects for the 

effect of environmental covariates on sensor arrays. They improve classification performance by 

solving imbalance and sensor drift problems, respectively. The empirical results on simulation 

datasets and real datasets showed consistent improvement in learning performance. 

We proposed a novel preprocessing method called SVDMC to diminish the effect of class imbalance 

problems in ordinal data multiclass classification. The proposed method solves the imbalance 

problem by reducing data noise and the class overlap area, without modifying the distribution of 

observations over multiple classes. In this paper, we argue that the key to solving the imbalance issue 

in ordinal data is not to adjust the number of data points over classes but to improve the data quality 

by reducing the noise of the data. From the results of numerical experiments, the proposed method 

generally outperformed other existing approaches based on two different accuracy measures: MAUC 

and G-mean. 

Gas sensors drift generates serious limitations in the appliance and development of electronic noses. 

The ideal operating state of the electronic nose is to maintain the same response whenever the same 

volatile compound comes on the gas sensor surface. But in the real appliance, sensors are aging and 

being affected by various environmental factors. This results in sensor drift that significantly reduces 

the ability of the electronic nose. In this paper, in order to compensate for the drift, we reconstruct 

sensor values based on the nonlinear parametric compensation model. The parameters are determined 

by values that optimize a well-defined objective function. We propose an objective function with 

greater value as the variance of individual groups becomes smaller and the difference between 

different classes becomes larger. It helps to correct the sensor drift caused by the environmental 

covariates, but also substantially improves classification performance. 

5.2 Limitations and future research 

In our future research, we will analyze the behavior of SVDMC when combined with various ordinal 
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data classifiers. Moreover, based on the literature on matrix denoising [96], solving the optimal 

shrinkers for ordinal classification of imbalanced data would be considered for future research. 

Developing the proposed model with a filter method reduces calculation time and makes it easier to 

interpret the results.  

In addition, for the sensor drift compensation model, we desire to create a mixture model based on 

our method. It would be more effective because the drift effect varies depending on the type of gas. 

In this study, we attempted to infer a pattern of corrected sensor values, but estimating specific values 

using chemical information is considered for future research.  

 

  



 

 

36 

 

References 

 

[1]  S. Kotsiantis, D. Kanellopoulos and P. E. Pintelas, "Data preprocessing for supervised leaning," 

International Journal of Computer Science, vol. 1, no. 2, pp. 111-117, 2006.  

[2]  M. Prakash and M. Narasimha Murty, "A genetic approach for selection of (near-) optimal subsets 

of principal components for discrimination," Pattern Recognition Letters, vol. 16, no. 8, pp. 781-

787, 1995.  

[3]  P. Sánchez, F. G. Montoya, F. Manzano-Agugliaro and C. Gil, "Genetic algorithm for S-transform 

optimisation in the analysis and classification of electrical signal perturbations," Expert Systems 

with Applications, vol. 40, no. 17, pp. 6766-6777, 2013.  

[4]  Z. Huang, M. Pei, E. D. Goodman, Y. Huang and G. Li, "Genetic Algorithm Optimized Feature 

Transformation—A Comparison with Different Classifiers," in Genetic and Evolutionary 

Computation Conference, 2003.  

[5]  G. Zames, N. Ajlouni, J. Holland, W. Hills and D. Goldberg, "Genetic algorithms in search, 

optimization and machine learning.," Information Technology Journal, vol. 3, no. 1, pp. 301-302, 

1981.  

[6]  N. A. Abolkarlou, A. A. Niknafs and M. K. Ebrahimpour, "Ensemble imbalance classification: 

Using data preprocessing, clustering algorithm and genetic algorithm," in 2014 4th International 

Conference on Computer and Knowledge Engineering (ICCKE), 2014.  

[7]  G. Stein, B. Chen, A. S. Wu and K. A. Hua, "Decision tree classifier for network intrusion 

detection with GA-based feature selection," in Proceedings of the 43rd annual Southeast regional 

conference-Volume 2, 2005.  

[8]  T.-S. Li, "Feature selection for classification by using a GA-based neural network approach," 

Journal of the Chinese Institute of Industrial Engineers, vol. 23, no. 1, pp. 55-64, 2006.  

[9]  C.-L. Huang and C.-J. Wang, "A GA-based feature selection and parameters optimizationfor 

support vector machines," Expert Systems with applications, vol. 3, no. 2, pp. 231-240, 2006.  

[10]  C. D. Stefano, F. Fontanella, C. Marrocco and A. Scotto di Fr, "A GA-based feature selection 

approach with an application to handwritten character recognition," Pattern Recognition Letters, 

vol. 35, pp. 130-141, 2014.  

[11]  A. Meyer-Baese and V. J. Schmid, "Genetic Algorithms," in Pattern recognition and signal 

analysis in medical imaging, Elsevier, 2014, pp. 135-149. 

[12]  M. L. Raymer, W. F. Punch, E. Goodman, L. A. Kuhn and A. K. Jain, "Dimensionality reduction 

using genetic algorithms," IEEE transactions on evolutionary computation, vol. 4, no. 2, pp. 164-

171, 2000.  

[13]  D. E. Courte, M. M. Rizki, L. A. Tamburino and R. Gutierrez-Osuna, "Evolutionary optimization 

of Gaussian windowing functions for data preprocessing," International Journal on Artificial 



 

 

37 

 

Intelligence Tools, vol. 12, no. 1, pp. 17-35, 2003.  

[14]  A. Agresti, Analysis of ordinal categorical data, New York : John Wiley & Sons, 2019.  

[15]  S. Kim, H. Kim and Y. Namkoong, "Ordinal classification of imbalanced data with application in 

emergency and disaster information services," IEEE Intelligent Systems, vol. 31, no. 5, pp. 50-56, 

2016.  

[16]  H. He and E. A. Garcia, "Learning from imbalanced data," IEEE Transactions on Knowledge & 

Data Engineering, no. 9, pp. 1263-1284, 2008.  

[17]  I. Domingues, J. P. Amorim, P. H. Abreu, H. Duarte and J. Santos, "Evaluation of oversampling 

data balancing techniques in the context of ordinal classification," in 2018 International Joint 

Conference on Neural Networks (IJCNN), 2018.  

[18]  F. C. Marques, H. Duarte, J. A. M. Santos, I. Domingues, J. P. Amorim and P. H. Abreu, "An 

iterative oversampling approach for ordinal classification," in Proceedings of the 34th 

ACM/SIGAPP Symposium on Applied Computing, 2019.  

[19]  M. Pérez-Ortiz, P. A. Gutiérrez, C. Hervás-Martínez and X. Yao, "Graph-based approaches for 

over-sampling in the context of ordinal regression," IEEE Transactions on Knowledge and Data 

Engineering, vol. 27, no. 5, pp. 1233-1245, 2015.  

[20]  I. Nekooeimehr and S. K. Lai-Yuen, "Cluster-based weighted oversampling for ordinal regression 

(CWOS-Ord)," Neurocomputing, vol. 218, pp. 51-60, 2016.  

[21]  I. Nekooeimehr and S. K. Lai-Yuen, "Adaptive semi-unsupervised weighted oversampling (A-

SUWO) for imbalanced datasets," Expert Systems with Applications, vol. 46, pp. 405-416, 2016.  

[22]  M. Pérez-Ortiz, A. Sáez, J. Sánchez-Monedero, P. Gutiérrez and C. Hervás-Martínez, "Tackling 

the ordinal and imbalance nature of a melanoma image classification problem," in 2016 

International Joint Conference on Neural Networks (IJCNN), 2016.  

[23]  R. Cruz, K. Fernandes, J. F. Pinto Costa, M. P. Ortiz and J. S. Cardoso, "Ordinal class imbalance 

with ranking," in Iberian conference on pattern recognition and image analysis, 2017.  

[24]  M. Dorado-Moreno, M. Pérez-Ortiz, M. D. Ayllón-Terán, P. A. Gutiérrez and C. H. Martínez, 

"Ordinal evolutionary artificial neural networks for solving an imbalanced liver transplantation 

problem," in International Conference on Hybrid Artificial Intelligence Systems, 2016.  

[25]  L. Jiang, C. Qiu and C. Li, "A novel minority cloning technique for cost-sensitive learning," 

International Journal of Pattern Recognition and Artificial Intelligence, vol. 29, no. 4, p. 

1551004, 2015.  

[26]  Y. Sun, M. S. Kamel, A. K. Wong and Y. Wang, "Cost-sensitive boosting for classification of 

imbalanced data," Pattern Recognition, vol. 40, no. 12, pp. 3358-3378, 2007.  

[27]  S. Wang and X. Yao, "Multiclass imbalance problems: Analysis and potential solutions," IEEE 

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 4, pp. 1119-

1130, 2012.  



 

 

38 

 

[28]  G. E. Batista, R. C. Prati and M. C. Monard, "A study of the behavior of several methods for 

balancing machine learning training data," ACM SIGKDD explorations newsletter, vol. 6, no. 1, 

pp. 20-29, 2004.  

[29]  T.-M. Chang and W.-F. Hsiao, "Model-based collaborative filtering to handle data reliability and 

ordinal data scale," in 2011 Eighth International Conference on Fuzzy Systems and Knowledge 

Discovery (FSKD), 2011.  

[30]  J. V. Hulse and T. Khoshgoftaar, "Knowledge discovery from imbalanced and noisy data," Data 

& Knowledge Engineering, vol. 68, no. 12, pp. 1513-1542, 2009.  

[31]  D. Devi, S. K. Biswas and B. Purkayastha, "Learning in presence of class imbalance and class 

overlapping by using one-class SVM and undersampling technique," Connection Science, pp. 1-

38, 2019.  

[32]  S. Puthusserypady and D. Narayana Dutt, "SVD based technique for noise reduction in 

electroencephalographic signals," Signal Processing, vol. 55, no. 2, pp. 179-189, 1996.  

[33]  S. K. Jha and R. D. S. Yadava, "Denoising by singular value decomposition and its application to 

electronic nose data processing," IEEE Sensors Journal, vol. 11, no. 1, pp. 35-44, 2010.  

[34]  J. J. Jena, G. Girish and M. Patro, "Evaluating Effectiveness of Color Information for Face Image 

Retrieval and Classification Using SVD Feature," in International Conference on Advances in 

Computing and Data Sciences, 2018.  

[35]  W. A. Sethares, A. Ingle, T. Krč and S. Wood, "Eigentextures: An SVD approach to automated 

paper classification," in Signals, Systems and Computers, 2014 48th Asilomar Conference on, 

2014.  

[36]  D. L. Wilson, "Asymptotic properties of nearest neighbor rules using edited data," IEEE 

Transactions on Systems, Man, and Cybernetics, no. 3, pp. 408-421, 1972.  

[37]  N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, "SMOTE: synthetic minority 

over-sampling technique," Journal of artificial intelligence research, vol. 16, pp. 321-357, 2002.  

[38]  J. Stefanowski and S. Wilk, "Improving rule based classifiers induced by MODLEM by selective 

pre-processing of imbalanced data," in Proc. of the RSKD Workshop at ECML/PKDD, Warsaw, 

2997.  

[39]  K. Napierała, J. Stefanowski and S. Wilk, "Learning from imbalanced data in presence of noisy 

and borderline examples," in International Conference on Rough Sets and Current Trends in 

Computing, 2010.  

[40]  H. Han, W.-Y. Wang and B.-H. Mao, "Borderline-SMOTE: a new over-sampling method in 

imbalanced data sets learning," in International Conference on Intelligent Computing, 2005.  

[41]  C. Bunkhumpornpat, K. Sinapiromsaran and C. Lursinsap, "Safe-level-smote: Safe-level-

synthetic minority over-sampling technique for handling the class imbalanced problem," in 

Pacific-Asia conference on knowledge discovery and data mining, 2009.  



 

 

39 

 

[42]  J. A. Sáez, J. Luengo, J. Stefanowski and F. Herrera, "SMOTE--IPF: Addressing the noisy and 

borderline examples problem in imbalanced classification by a re-sampling method with 

filtering," Information Sciences, vol. 291, pp. 184-203, 2015.  

[43]  A. Agrawal, H. L. Viktor and E. Paquet, "SCUT: Multi-class imbalanced data classification using 

SMOTE and cluster-based undersampling," in KDIR 2015 - Proceedings of the International 

Conference on Knowledge Discovery and Information Retrieval, part of the 7th International 

Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management 

(IC3K 2015), 2015.  

[44]  T. T. Cai and A. Zhang, "Rate-optimal perturbation bounds for singular subspaces with 

applications to high-dimensional statistics," The Annals of Statistics, vol. 46, no. 1, pp. 60-89, 

2018.  

[45]  K. Konstantinides and K. Yao, "Statistical analysis of effective singular values in matrix rank 

determination," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 36, no. 5, 

pp. 757-763, 1988.  

[46]  G. W. Stewart, "Perturbation theory for the singular value decomposition," in SVD and Signal 

Processing, II: Algorithms, Analysis and Applications, 1991.  

[47]  H. Golub and C. F. Van Loan, "Matrix computations," Press, London, 1996.  

[48]  D. L. Donoho, "De-noising by soft-thresholding," IEEE transactions on information theory}, vol. 

41, no. 3, pp. 613-627, 1995.  

[49]  D. L. Donoho and I. M. Johnstone, "Adapting to unknown smoothness via wavelet shrinkage," 

Journal of the american statistical association, vol. 90, no. 432, pp. 1200-1224, 1995.  

[50]  D. L. Donoho, I. M. Johnstone, G. Kerkyacharian and D. Picard, "Wavelet shrinkage: 

asymptopia?," Journal of the Royal Statistical Society: Series B (Methodological), vol. 57, no. 2, 

pp. 301-337, 1995.  

[51]  K. Hechenbichler and K. Schliep, "Weighted k-nearest-neighbor techniques and ordinal 

classification," Discussion Paper 399, SFB, 2004.  

[52]  A. Sanz-Garcia, J. Fernandez-Ceniceros, F. Antonanzas-Torres, A. Pernia-Espinoza and F. 

Martinez-de-Pison, "GA-PARSIMONY," Appl. Soft Comput., vol. 35, no. C, pp. 1568-4946, 2015.  

[53]  S. Wang and X. Yao, "Multiclass imbalance problems: Analysis and potential solutions," IEEE 

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 4, pp. 1119-

1130, 2012.  

[54]  Y. Sun, M. S. Kamel and Y. Wang, "Boosting for learning multiple classes with imbalanced class 

distribution," in Sixth International Conference on Data Mining (ICDM'06), 2006.  

[55]  D. J. Hand and R. J. Till, "A simple generalisation of the area under the ROC curve for multiple 

class classification problems," Machine learning, vol. 45, no. 2, pp. 171-186, 2001.  

[56]  C.-C. Chang and C.-J. Lin, "{LIBSVM}: A library for support vector machines," ACM 



 

 

40 

 

Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 27:1-27:27, 2011.  

[57]  J. W. Gardner and P. N. Bartlett, "A brief history of electronic noses," Sensors and Actuators B: 

Chemical, vol. 13, no. 1, pp. 210-211, 1994.  

[58]  F. J, R.-L. I, T. M, V. A and H. R, "Chemical discrimination in turbulent gas mixtures with mox 

sensors validated by gas chromatography-mass spectrometry," Sensors, vol. 14, no. 10, pp. 19336-

19353, 2014.  

[59]  T. Konduru, G. C. Rains and C. Li, "Detecting sour skin infected onions using a customized gas 

sensor array," Journal of Food Engineering, vol. 160, pp. 19-27, 2015.  

[60]  Y. Dai, R. Zhi, L. Zhao, H. Gao, B. Shi and H. Wang, "Longjing tea quality classification by 

fusion of features collected from E-nose," Chemometrics and Intelligent Laboratory Systems, vol. 

144, pp. 63-70, 2015.  

[61]  V. Y. Musatov, V. Sysoev, M. Sommer and I. Kiselev, "Assessment of meat freshness with metal 

oxide sensor microarray electronic nose: A practical approach," Sensors and Actuators B: 

Chemical, vol. 144, no. 1, pp. 99-103, 2010.  

[62]  D. Li, T. Lei, S. Zhang, X. Shao and C. Xie, "A novel headspace integrated E-nose and its 

application in discrimination of Chinese medical herbs," Sensors and Actuators B: Chemical, vol. 

221, pp. 556-563, 2015.  

[63]  Y. Adiguzel and H. Kulah, "Breath sensors for lung cancer diagnosis," Biosensors and 

Bioelectronics, vol. 65, pp. 121-138, 2015.  

[64]  O. Burfeind, M. Bruins, A. Bos, I. Sannmann, R. Voigtsberger and W. Heuwieser, "Diagnosis of 

acute puerperal metritis by electronic nose device analysis of vaginal discharge in dairy cows," 

Theriogenology, vol. 82, no. 1, pp. 64-70, 2014.  

[65]  A. Norman, F. Stam, A. Morrissey, M. Hirschfelder and D. Enderlein, "Packaging effects of a 

novel explosion-proof gas sensor," Sensors and Actuators B: Chemical, vol. 95, no. 1, pp. 287-

290, 2003.  

[66]  R. C. Young, W. J. Buttner, B. R. Linnell and R. Ramesham, "Electronic nose for space program 

applications," Sensors and Actuators B: Chemical, vol. 93, no. 1, pp. 7-16, 2003.  

[67]  A. Somov, A. Karelin, A. Baranov and S. Mironov, "Estimation of a gas mixture explosion risk 

by measuring the oxidation heat within a catalytic sensor," IEEE Transactions on Industrial 

Electronics, vol. 64, no. 12, pp. 9691-9698, 2017.  

[68]  S. Kiani, S. Minaei and M. Ghasemi-Varnamkhasti, "Application of electronic nose systems for 

assessing quality of medicinal and aromatic plant products: A review," Journal of Applied 

Research on Medicinal and Aromatic Plants, vol. 3, no. 1, p. 2016, 1-9.  

[69]  A. Loutfi, S. Coradeschi, G. K. Mani, P. Shankar and J. B. B. Rayappan, "Electronic noses for 

food quality: A review," Journal of Food Engineering, vol. 144, pp. 103-111, 2015.  

[70]  A.-C. Romain and J. Nicolas, "Long term stability of metal oxide-based gas sensors for e-nose 

environmental applications: An overview," Sensors and Actuators B: Chemical, vol. 146, no. 2, 



 

 

41 

 

p. 2010, 502-506.  

[71]  A. Hierlemann and R. Gutierrez-Osuna, "Higher-order chemical sensing," Chemical reviews, vol. 

108, no. 2, pp. 563-613, 2008.  

[72]  P. Wei, Z. Ning, S. Ye, L. Sun, F. Yang, K. C. Wong, D. Westerdahl and P. K. Louie, "Impact 

analysis of temperature and humidity conditions on electrochemical sensor response in ambient 

air quality monitoring," Sensors, vol. 18, no. 2, p. 59, 2018.  

[73]  B. Mumyakmaz, A. Özmen, M. Ali Ebeoğlu, C. Taşaltın and İ. Gürol, "A study on the 

development of a compensation method for humidity effect in QCM sensor responses," Sensors 

and Actuators B: Chemical, vol. 147, no. 1, pp. 277-282, 2010.  

[74]  S. D. Carlo, M. Falasconi, E. Sánchez, A. Scionti, G. Squillero and A. Tonda, "Exploiting 

evolution for an adaptive drift-robust classifier in chemical sensing," in European Conference on 

the Applications of Evolutionary Computation, 2010.  

[75]  M. Liu, C. Xu, Y. Luo, C. Xu, Y. Wen and D. Tao, "Cost-sensitive feature selection by optimizing 

f-measures," IEEE Transactions on Image Processing, vol. 27, no. 3, pp. 1323-1335, 2017.  

[76]  T. Liu, D. Li, J. Chen, Y. Chen, T. Yang and J. Cao, "Active Learning on Dynamic Clustering for 

Drift Compensation in an Electronic Nose System," Sensors, vol. 19, no. 16, p. 3601, 2019.  

[77]  A. Vergara, S. Vembu, T. Ayhan, M. A. Ryan, M. L. Homer and R. Huerta, "Chemical gas sensor 

drift compensation using classifier ensembles," Sensors and Actuators B: Chemical, vol. 166, pp. 

320-329, 2012.  

[78]  L. Zhang and D. Zhang, "Domain adaptation extreme learning machines for drift compensation 

in E-nose systems," IEEE Transactions on instrumentation and measurement, vol. 64, no. 7, pp. 

1790-1801, 2014.  

[79]  A. Ziyatdinov, S. Marco, A. Chaudry, K. Persaud, P. Caminal and A. Perera, "Drift compensation 

of gas sensor array data by common principal component analysis," Sensors and Actuators B: 

Chemical, vol. 146, no. 2, p. 2010, 460-465.  

[80]  T. Artursson, T. Eklöv, I. Lundström, P. Mårtensson, M. Sjöström and M. Holmberg, "Drift 

correction for gas sensors using multivariate methods," Journal of chemometrics, vol. 14, no. 5-

6, pp. 711-723, 2000.  

[81]  M. Kermit and O. Tomic, "Independent component analysis applied on gas sensor array 

measurement data," IEEE Sensors Journal, vol. 3, no. 2, pp. 218-228, 2003.  

[82]  R. Gutierrez-Osuna, "Drift reduction for metal-oxide sensor arrays using canonical correlation 

regression and partial least squares," Electronic Noses and Olfaction, pp. 147-152, 2000.  

[83]  M. Padilla, A. Perera, I. Montoliu, A. Chaudry, K. Persaud and S. Marco, "Drift compensation of 

gas sensor array data by orthogonal signal correction," Chemometrics and Intelligent Laboratory 

Systems, vol. 100, no. 1, pp. 28-35, 2010.  

[84]  C. Delpha, M. Lumbreras and M. Siadat, "Discrimination and identification of a refrigerant gas 

in a humidity controlled atmosphere containing or not carbon dioxide: application to the electronic 



 

 

42 

 

nose," Sensors and Actuators B: Chemical, vol. 98, no. 1, pp. 46-53, 2004.  

[85]  Z. Yi and C. Li, "Anti-drift in electronic nose via dimensionality reduction: a discriminative 

subspace projection approach," IEEE Access, vol. 7, pp. 170087-170095, 2019.  

[86]  L. Jun-hua, S. Zhong-ru and D. hui, "Drift reduction of gas sensor by wavelet and principal 

component analysis," Sensors and Actuators B: Chemical, vol. 96, no. 1-2, pp. 354-363, 2003.  

[87]  D. Huang and H. Leung, "Reconstruction of drifting sensor responses based on papoulis--

gerchberg method," IEEE Sensors Journal, vol. 9, no. 5, pp. 595-604, 2009.  

[88]  F. Hossein-Babaei and V. Ghafarinia, "Compensation for the drift-like terms caused by 

environmental fluctuations in the responses of chemoresistive gas sensors," Sensors and 

Actuators B: Chemical, vol. 143, no. 2, pp. 641-648, 2010.  

[89]  K. T. Abou-Moustafa, F. De La Torre and F. P. Ferrie, "Pareto models for discriminative multiclass 

linear dimensionality reduction," Pattern Recognition, vol. 48, no. 5, pp. 1863-1877, 2015.  

[90]  L. Breiman, "Random forests," Machine learning, vol. 45, no. 1, pp. 5-32, 2001.  

[91]  B. E. Boser, I. M. Guyon and V. N. Vapnik, "A training algorithm for optimal margin classifiers," 

in Proceedings of the fifth annual workshop on Computational learning theory, 1992.  

[92]  E. Fix, Discriminatory analysis: nonparametric discrimination, consistency properties, USAF 

school of Aviation Medicine, 1951.  

[93]  D. Hosmer and S. Lemeshow, "The multinomial logistic regression model," Hosmer D, Lemeshow 

S. Applied Logistic Regression. New York: John Wiley & Sons, pp. 260-287, 2000.  

[94]  D. Dua and C. Graff, "UCI Machine Learning Repository," URL http://archive.ics.uci.edu/ml, 

2017.  

[95]  M. M. Breunig, H.-P. Kriegel, R. T. Ng and J. Sander, "LOF: identifying density-based local 

outliers," in Proceedings of the 2000 ACM SIGMOD international conference on Management of 

data, 2000.  

[96]  M. Gavish and D. L. Donoho, "Optimal shrinkage of singular values," IEEE Transactions on 

Information Theory, vol. 63, no. 4, pp. 2137-2152, 2017.  

 

 

 



 

 

 

 

Acknowledgements 

 

Foremost, I would like to express my special thanks of gratitude to my academic advisor Professor, 

Sungil Kim for the continuous support of my master’s degree and research, for constant 

encouragement and overall support for a meaningful academic life. He gave me a lot of 

opportunities to have many valuable expertise and study these interesting topics. I wouldn’t reach 

this point without his presence.  

 

Besides my advisor, I would like to thank to my committee for their continued support and 

encouragement: Professor, Chiehyeon Lim and Professor, Junghye Lee. Thanks to their many 

stimulating questions, the project was able to complete successfully. Also, meetings and 

conversations with them were very important in encouraging me to think of comprehensive and 

objective criticism from multiple perspectives. 

 

I would also like to thank the following people, without whom I would not have been able to 

complete this research, and without whom I would not have made it through my master’s degree: 

Thanks to every member of DA lab and the 209 classmates for their support and encouragement. 

They guided me so positively and always made me feel confident in my abilities. And for my love 

Yun and family, thanks for all their constant love and support. I simply couldn’t have done this 

without them, special thanks. 



 

 

 

 

 


	1. Introduction
	1.1 Background: Data Quality Impact on Multiclass Classification
	1.2 Purpose and Outline

	2. Literature Reviews
	2.1 GA Optimized Feature Transformation

	3. SVD Truncation for Multiclass Classification (SVDMC)
	3.1 Introduction
	3.2 Literature Reviews
	3.3 Methodology
	3.3.1 Additive Perturbation Model
	3.3.2 Singular Value Decomposition (SVD)
	3.3.3 Denoising by Truncating Singular Values
	3.3.4 Truncated SVD using GAs for Multiclass Classification

	3.4 Description of Experimental Setup
	3.5 Simulation Study
	3.6 Real Data Example

	4.  Sensor Drift Compensation for Mixed Gas Classification under Batch Experiments
	4.1 Introduction
	4.2 Literature Reviews
	4.3 Methodology
	4.3.1 Sensor Drift Compensation Model
	4.3.2 Class Separability Criterion of GAs

	4.4 Description of Experimental Setup
	4.5 Simulation Study
	4.6 Real Data Example

	5. Conclusion
	5.1 Summary and Contributions
	5.2 Limitations and future research

	References


<startpage>11
1. Introduction 1
 1.1 Background: Data Quality Impact on Multiclass Classification 1
 1.2 Purpose and Outline 2
2. Literature Reviews 4
 2.1 GA Optimized Feature Transformation 4
3. SVD Truncation for Multiclass Classification (SVDMC) 6
 3.1 Introduction 6
 3.2 Literature Reviews 7
 3.3 Methodology 8
  3.3.1 Additive Perturbation Model 9
  3.3.2 Singular Value Decomposition (SVD) 9
  3.3.3 Denoising by Truncating Singular Values 10
  3.3.4 Truncated SVD using GAs for Multiclass Classification 11
 3.4 Description of Experimental Setup 12
 3.5 Simulation Study 15
 3.6 Real Data Example 19
4.  Sensor Drift Compensation for Mixed Gas Classification under Batch Experiments 21
 4.1 Introduction 21
 4.2 Literature Reviews 21
 4.3 Methodology 22
  4.3.1 Sensor Drift Compensation Model 23
  4.3.2 Class Separability Criterion of GAs 23
 4.4 Description of Experimental Setup 25
 4.5 Simulation Study 26
 4.6 Real Data Example 29
5. Conclusion 34
 5.1 Summary and Contributions 34
 5.2 Limitations and future research 34
References 36
</body>

