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Abstract 

 
Resistive RAM (ReRAM) is a promising technology with such advantages as small device size and 

in-memory-computing capability. However, designing optimal AI processors based on ReRAMs is 

challenging due to the limited precision, and the complex interplay between quality of result and 

hardware efficiency. In this paper we present a study targeting a low-power low-cost image 

classification application. We discover that the trade-off between accuracy and hardware efficiency in 

ReRAM-based hardware is not obvious and even surprising, and our solution developed for a recently 

fabricated ReRAM device achieves both the state-of-the-art efficiency and empirical assurance on the 

high quality of result. 
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Chapter Ⅰ 
 
INTRODUCTION 
 
Recently the resistive RAM (ReRAM) technology is getting much attention [22, 23] due to many 

advantages including small device size, non-volatility, and compatibility with the CMOS technology. 

Also some devices show very high on-off ratio (Roff/Ron) [17], enabling in-memory computing, 

which is crucial to overcoming the von Neumann bottleneck and the memory wall problem in 

computer architecture [24].  

In-memory computing with ReRAM is realized by arranging a number of ReRAM cells in a 

2D crossbar array structure and activating all the rows (wordlines) simultaneously, which produces 

the result of matrix-vector multiplication (MVM) computation at bitlines, performing O(n2) 

computation in a single cycle. The MVM operation is the main computation kernel in neural network 

applications, and there has been much previous work on ReRAM-based neural network hardware, 

suggesting order-of-magnitude improvement in energy efficiency [5, 7, 21–23].  

However, when it comes to actual hardware implementation, there is very little work 

reported, and the reported accuracy is generally low as well (around 91% for the MNIST dataset) [15, 

18]. There are many reasons for that but an important one is the programming difficulty: 

programming ReRAM devices in a crossbar array is extremely difficult due to write disturbance, 

limited endurance, and long write time [27]. Consequently, to avoid frequent re-programming of 

ReRAM cells at runtime, ReRAM-based neural networks unfold all synapses (= ReRAM cells) 

spatially [5, 7, 21], resulting in a fully-parallel architecture, i.e., all neurons/synapses are implemented 

using dedicated resources. Not only that, but all the layers of a network should be unrolled in a fully 

parallel fashion. 

 Thus from the system-level design perspective, designing ReRAM based full-network 

hardware using today’s technology involves two key problems: (i) how to optimize system 

performance (i.e., classification accuracy) while meeting stringent area constraints, and (ii) how to 

efficiently and effectively implement all types of layers, especially normalization layers. The first 

challenge may appear similar to that of digital CMOS-based neural networks, but is in fact very 

different, because unlike digital CMOS-based neural networks, which have the freedom of trading 

between area and delay, ReRAM-based neural networks cannot trade off delay for smaller area. To 

reduce area, one must resort to algorithmic optimizations such as reducing network size and precision, 

which are bound to affect accuracy. This calls for complex algorithm-architecture co-design, which is 

lacking in the current literature.  
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At the same time, to maintain high accuracy in low-precision networks batch normalization 

layers are found to be crucial [6]. But since a straightforward implementation of batch normalization 

is quite expensive especially compared to ReRAM-based layers, it is worthwhile to explore 

alternative methods.  

In this paper we present an accuracy-aware design optimization study for a ReRAM-based 

neural network, targeting low-cost, low-power applications. We explore network size, weight 

precision, activation precision, and various ways to implement batch normalization, and arrive at an 

optimal design in terms of area and accuracy. Compared with previous work on ReRAM-based neural 

networks, whereas the previous work emphasizes on architectural scalability [5, 7, 21], our 

optimization considers both accuracy and efficiency, and is also readily implementable using today’s 

technology. Though we do not consider other ReRAM-specific issues such as read disturbance and 

device variability, they have previously known solutions (e.g., [8]), and are orthogonal to the issues 

considered in this paper.  

In this paper we make the following contributions. First we present an algorithm-architecture 

co-optimization study targeting a low-power, low-cost image classification application scenario such 

as in IoT (internet-of-things) devices, optimizing both accuracy and hardware complexity together. 

Second we analyze efficient ways to implement batch normalization for analog-based neural 

networks, including a novel scheme that is hardware-friendly. Finally, based on the previous work and 

our own circuit implementation, we estimate that our architecture can deliver extremely high 

efficiency (361.02 TOPS/mm2 and 589.57 TOPS/W) at acceptable accuracy (about 95.97% for 

MNIST in simulation, not considering ReRAM nonidealities). 
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Chapter Ⅱ 
 
RELATED WORK 
 
2.1 ReRAM-based Neural Network Hardware 
 
Most of the previous work on ReRAM-based neural network hardware falls into the category of 

architecture study focusing on hardware efficiency (e.g., TOPS/W), without much attention to the 

functional correctness of such systems beyond simple noise analysis (e.g., [21]). In ISAAC [21], 

activation and weights are represented in 16-bit digital signals, which should be sufficient for 

inference but require ADC/DAC. To minimize the overhead of ADC/DAC, ISAAC processes digital 

activation in a bit-serial manner, and analog-todigital conversion, which is at the output of a crossbar 

array, is done by a single ADC in a time-multiplexed manner, which limits computation throughput 

while saving area. Even then, ADC/DAC account for 23.06% of area while ReRAM crossbar takes 

only 0.47%. This shows a potential for higher efficiency of co-optimizing precision and area. 

BISAAC [7] reduces the overhead of peripheral circuit by executing XNOR operation, 

achieving about 2.7× improvement in power consumption over ISAAC. However, all the above work 

considers 

hardware efficiency only, without optimizing the neural network algorithm (e.g., using hardware-

friendly binary or ternary neural networks).  

There are a few papers reporting ReRAM-based deep neural network (DNN) chips that have 

been actually built, but in those cases the reported DNN accuracy is universally low. A ReRAM-based 

DNN was designed and fabricated [18], targeting MNIST with three fully connected layers. While its 

energy efficiency is very high (66.5 TOPS/W), the accuracy is less than 91%. Another ReRAM-based 

neural network chip [15] targeting MNIST consists of two fully-connected layers, and despite the newly 

endowed on-chip learning capability, its accuracy is under 92%. 

On the other hand, very impressive accuracy of 98.8% for MNIST and 88.52% for CIFAR-10 

has been reported [2, 25], but the hardware consists of a ReRAM memory only while the rest of DNN 

computation, even including the subtraction operation between the positive-weight and negative-weight 

crossbar outputs, is implemented on an FPGA and a host computer. On top of that, in this work the 

crossbar columns are accessed sequentially, in a way analogous to ISAAC, to minimize the sneakpath 

problem at the expense of much reduced computation throughput, which cannot realize the full potential 

of a crossbar architecture. 
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2.2 Low-Precision DNN 
 
In this paper precision refers to the number of quantization levels used for a certain variable, such as 

weight and activation, in a quantized neural network. Previous work on neural network quantization 

shows that it is possible to achieve near-baseline performance if we binarize only either activation or 

weights of a neural network (but not both), where the baseline is one that uses floating-point for both 

[4, 9, 16]. For instance, using ternary or binary weights with floating point activation is shown to give 

84∼81% top-5 accuracy on ImageNet [20] classification [16], which is close to the 86.76% baseline. 

However, binarizing both activation and weights [6], which is the most hardware-friendly version, 

seems to work only for mid-to-small datasets such as MNIST [13] and CIFAR-10 [11]. Also the 

authors [6] stress that having batch normalization layers is crucial to achieving high accuracy for low-

precision networks, which agrees with our experimental results. 

 

 

Chapter Ⅲ 
 
DESIGN FRAMEWORK CONSIDERING BOTH 
ACCURACY AND EFFICIENCY 
 
3.1 System Architecture 
 
To illustrate our design framework we consider a small, yet highly efficient neural network processor 

for extremely cost-sensitive applications such as IoT devices. For dataset, we use the MNIST 

handwritten digit recognition dataset [13]. An analysis of the previous work [7, 21] suggests that 

ADC/DAC consumes most of the area/power budget even when ADC is shared across all columns of 

an ReRAM crossbar array. This motivates the use of analog activation, which can eliminate the 

ADC/DAC circuitry between layers. While using digital activation may be necessary to support very 

large DNN models and complex datasets, not all applications must support the largest datasets, and 

certainly not ours targeting IoT devices.  

As mentioned earlier, all layers and all neurons are implemented with dedicated resources, and 

the output of the first layer is fed to the second layer, and so on, possibly with digital or analog buffers 

inserted between layers to maximize throughput, as illustrated in Figure 1.  

To maximize area efficiency, we must minimize area while not sacrificing inference accuracy. 
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In our design, area is directly proportional to the number of neurons and synaptic weights. Therefore, 

we explore different input sizes (e.g., using image cropping) as well as different activation/weight 

precisions. However, there are also normalization layers such as batch normalization (BN) [10] and 

local response normalization (LRN) [12] that are shown to be essential for high accuracy in addition to 

fast training time. How to handle 2 those layers strongly impacts the accuracy and cost of the hardware 

implementation. Thus we next discuss BN, which is popular among extremely low precision networks 

[6]. 

.  

 
Figure 1. System overview. (a) Top-level system architecture where the priority encoder outputs class 

label. (b) A layer is implemented by a ReRAM crossbar array and I-V converters(realizing activation 

function). 
 

 

3.2 Batch Normalization and Activation Quantization 
 
A batch normalization layer is defined as follows, where 𝑦𝑦𝑗𝑗 is the 𝑗𝑗𝑡𝑡ℎ-channel’s output of the 

preceding layer, 𝜇𝜇𝑗𝑗 and 𝜎𝜎𝑗𝑗 are the mean and variance of 𝑦𝑦𝑗𝑗 across the batch, and γ𝑗𝑗 and 𝛽𝛽𝑗𝑗 are 

the trainable parameters of BN. 
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                          BN�𝑦𝑦𝑗𝑗� =  𝑦𝑦𝑗𝑗−𝜇𝜇𝑗𝑗
𝜎𝜎𝑗𝑗

𝛾𝛾𝑗𝑗 + 𝛽𝛽𝑗𝑗                        (1) 

During inference, the batch size is often very small (e.g., 1), in which case a pre-computed version of 

𝜇𝜇𝑗𝑗 and 𝜎𝜎𝑗𝑗 (computed across all training data) is used. Therefore, we can merge BN into the 

preceding layer as follows (Note: BN is applied before activation function). For simplicity, we assume 

that the preceding layer is a fully-connected layer, but it can be merged equally well to convolution 

layers: 𝑦𝑦𝑗𝑗 =  ∑ 𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖𝑗𝑗 +  𝑏𝑏𝑗𝑗𝑖𝑖 . 

 

                         BN�𝑦𝑦𝑗𝑗� =  𝛾𝛾𝑗𝑗
𝜎𝜎𝑗𝑗
�𝑦𝑦𝑗𝑗 + �−𝜇𝜇𝑗𝑗 + 𝜎𝜎𝑗𝑗

𝛾𝛾𝑗𝑗
𝛽𝛽𝑗𝑗��                        (2) 

                               =   � 𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖𝑗𝑗′ +  𝑏𝑏𝑗𝑗′
𝑖𝑖

                             (3) 

 

The above holds true if we define 𝑤𝑤𝑖𝑖𝑗𝑗′  and 𝑏𝑏𝑗𝑗′ as follows. 

 

                             𝑤𝑤𝑖𝑖𝑗𝑗′ =  𝛾𝛾𝑗𝑗
𝜎𝜎𝑗𝑗
𝑤𝑤𝑖𝑖𝑗𝑗 ,                                      (4) 

                              𝑏𝑏𝑗𝑗′ = 𝛾𝛾𝑗𝑗
𝜎𝜎𝑗𝑗

(𝑏𝑏𝑗𝑗 + �−𝜇𝜇𝑗𝑗 + 𝜎𝜎𝑗𝑗
𝛾𝛾𝑗𝑗
𝛽𝛽𝑗𝑗�)                         (5)  

 

This way, we can merge a batch normalization layer into the preceding fully-connected or convolution 

layer for inference. 

 It is important to understand that when quantizing a network, we must quantize the original 

weight 𝑤𝑤𝑖𝑖𝑗𝑗 and not 𝑤𝑤𝑖𝑖𝑗𝑗′ , in order to reap the benefit of BN. Unfortunately, this means that the above 

merging method makes quantized weights no longer quantized after merging. For instance, if 𝑤𝑤𝑖𝑖𝑗𝑗 is 

binary ({-1, +1}), 𝑤𝑤𝑖𝑖𝑗𝑗′  may not be binary, and may require very high precision. While the above 

merging method may still be used (with some error) for high-precision weights, for low-precision 

weights (e.g., binary weights) much larger error can be introduced, except for one case: binary 

activation case. 

 

3.2.1 Binary Activation. If activation is binary, the activation function is the sign function. Hence, we 

can ignore magnitude, and rewrite 𝑦𝑦𝑗𝑗′(activation output after BN) as follows [26]. This is an exact 

method that can merge BN into the preceding layer. 

 

                          𝑤𝑤𝑖𝑖𝑗𝑗′ = sign(𝛾𝛾𝑗𝑗
𝜎𝜎𝑗𝑗

)𝑤𝑤𝑖𝑖𝑗𝑗,                                     (6) 
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           𝑏𝑏𝑗𝑗′ = sign(𝛾𝛾𝑗𝑗
𝜎𝜎𝑗𝑗

)(𝑏𝑏𝑗𝑗 + �−𝜇𝜇𝑗𝑗 + 𝜎𝜎𝑗𝑗
𝛾𝛾𝑗𝑗
𝛽𝛽𝑗𝑗�)                        (7) 

 

3.2.2 Multi-bit Activation and SBN. If activation is non-binary, one possible workaround (to keep 

weights quantized) is to merge BN into the following activation function. For instance, a scaling 

parameter, 𝛾𝛾𝑗𝑗
𝜎𝜎𝑗𝑗

, can be multiplied into the domain of the activation function, which gives 

mathematically identical result. The problem with this method is that the scaling parameter differs 

across channels, leading to very complex hardware design. 

 As an approximate method, we propose shared-parameter BN(SBN), which is to share the 

scaling parameter 𝛾𝛾𝑗𝑗
𝜎𝜎𝑗𝑗

 across all channels, to simplify hardware implementation. However, since this 

reduces the number of BN parameters, performance loss may be inevitable. Therefore, when deciding 

the precision for activation, all the above issues must be taken into account to get the best of both 

accuracy and hardware efficiency. 

 

3.3 Weight Quantization 
 
There are three factors affecting the decision of the weight quantization. First, the network itself 

dictates the minimum precision for weights to guarantee a certain level of inference accuracy. Second, 

multi-bit ReRAM cells [1] can naturally represent multi-bit weight values. Third, if the precision 

required by the algorithm is higher than that of ReRAM cells, multiple ReRAM cells can be used 

together to represent a single weight value, which incurs additional hardware overhead such as digital 

shifter-adder [21] or an analog equivalent to combine the results from multiple bitlines. 
 

Chapter Ⅳ 
 
ALGORITHM-ARCHITECTURE 
CO-OPTIMIZATION 
 
We explore various network designs evaluating their performance. Network performance is reported 

in terms of test accuracy. Our model is based on the MNIST DNN of the BinaryNet framework,1 

which uses binary values for both activation ({0, 1}) and weight ({−1, 1}), but we explore different 

precision and input sizes in a bid to strike a better balance between hardware efficiency and accuracy. 

The BinaryNet for MNIST consists of fully-connected layers only (along with batch normalization), 
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but for other datasets such as CIFAR-10 and SVHN, BinaryNet uses convolutional neural networks 

(CNNs), to which our methodology is equally applicable. For neural network training, we use the 

Torch7 framework with the default setting, which is extended to support our design exploration.  

The final architecture that gives the best tradeoff between accuracy and area, turns out to be 

a binarized network with this configuration: 400-128-128-10. The input size is cropped to 20x20 

(=400), and the two hidden layers have 128 neurons each. The precision of both weights and 

activations is determined to be 1-bit, which allows for the use of a simpler BN implementation. In the 

following, due to space limitation we give a justification of the final architecture instead of the entire 

design exploration, which has a combinatorial complexity. 

 
 
4.1 Effect of Input Cropping 
 
Reducing the input size is primarily motivated by the I/O pin restriction. Moreover, reducing the input 

size can have a huge impact on the total number of synaptic weights. Input cropping is preferred to 

image scaling due to its cheaper computation (we binarized the input). Table 1 summarizes the result 

(i.e., test accuracy) of input cropping, where the rest of the network consists of 2 fully-connected layers 

with 128 neurons each. Our training result shows that there is virtually no degradation until 20 × 20 

compared to the original size, 28 × 28. Cropping further degrades accuracy significantly, over 5 percent 

point (%p) at 12 × 12 image. Due to the relatively large size of the input layer in our DNN, input 

cropping contributes to about 42% reduction of the network size. 

 

Table 1. Input size exploration (hidden size:128,128) 

 

 
4.2 Exploring Hidden Layer Size 
 
Next we consider the effect of different hidden layer sizes (we vary both the layer sizes together). As 

compared in Table 2, increasing layer size gives better result in general but also increases the cost. 

Unlike the input size which is only related to the first layer, the hidden layer size affects every layer, 

actually quadratically in middle layers. Considering both accuracy and cost, the table shows that using 
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128 neurons is the best. 

 

Table 2. Hidden layer size exploration (input size: 20x20) 

 
 

4.3 Exploring Weight Precision 
 
Unlike network size, changing weight precision has deeper consequences. Everything else being 

equal, higher precision should produce better accuracy, but it would not only increase the number of 

ReRAM cells required, but increase the overhead of periphery. For example, if multiple ReRAM cells 

are needed to represent a weight value, we need to combine the results from multiple bitlines, such as 

using shifter-adder or its analog equivalent. Therefore, in this exploration we vary both weight 

precision and the number of weight parameters at the same time such that the total number of weight 

bits remain roughly the same. Table 3 summarizes the result. The batch normalization layer is 

implemented in software. Our result suggests that when the network size is fixed, using 1-bit weights 

gives the highest accuracy. 

 

Table 3. Weight precision exploration (activation: 1-bit, # of neurons is adjusted to make total # of 

synaptic weight bits constant) 

 
 

4.4 Exploring Activation Precision and BN 
 
Table 4 shows how multi-bit activation and batch normalization affect performance (i.e., inference 

accuracy). Without BN, networks fail to train regardless of the activation precision. With BN, the binary 
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case is very compelling, achieving within 1%p degradation compared to 8-bit’s performance. The result 

for SBN is quite surprising, as it suggests that binary activation can be much better than few-bit 

activation; few-bit activation requires costly BN hardware whereas 1-bit activation works well even 

without BN. This is understandable if we remember that the BN problem is about weight precision, 

which is fixed to 1-bit in our case; thus, increasing weight precision doesn’t help.  

The 5th column of Table 4 lists the test accuracy after merging BN layers using (4) and (5) 

(referred to as arithmetic merge). As predicted, large errors are introduced by the arithmetic merge. 

Note that the merged version is mathematically the same as the baseline if weights were not quantized. 

Thus this accuracy drop is due to the forced quantization of w′ to 1-bit (see also Section 4.5). On the 

other hand, if we use (6) and (7) (referred to as signed merge), the accuracy is preserved in the case of 

binary activation.2 Since multi-bit activation could be thought of as a “superset” of the binary case, we 

apply the signed merge to multi-bit activation as well. However, the result shows that the binary case 

is clearly the best. This is because multi-bit activation uses a different activation function (tanh), and 

signed merge is mathematically correct only if it is followed by the sign-activation layer.  

While the above results are without retraining, retraining didn’t improve the performance at 

all. We also tried training the networks from scratch, starting from the merged version, which didn’t 

train at all, probably due to the absence of BN layers.  

In summary the results in this section suggest the following. First, BN is essential for binary-

weight networks. Second, hardware-friendly BN implementations such as SBN can recover the 

accuracy to some degree. Third, the best option, at least for the MNIST network, is to use binary 

activation if weights are binary, meaning that for our application multi-bit analog activation is not 

necessary.  

In addition, these results demonstrate that we must consider network’s inference accuracy 

using actual training experiments in order to determine the best hardware architecture satisfying both 

efficiency and quality of result requirement, reinforcing the need for techniques such as ours. 

 

Table 4 Activation precision and BN exploration (MNIST) 

 

 

4.5 Additional Experiment on BN Merging 
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To see if the accuracy drop in BN merging is really caused by binary weight, we perform an additional 

experiment. Table 5 shows the result of arithmetic vs. signed merge applied to the MNIST DNN with 

multi-bit weights. This result is slightly different from that of Table 3, since the size of the network is 

fixed here. Nonetheless, the result shows that the network with merged BN can achieve near-baseline 

accuracy if weight precision is 3-bit or higher, confirming that accuracy drop in BN merging is due to 

low-precision weights.  

Table 6 summarizes our findings regarding BN merging (see Tables 4 and 5). While signed 

merge was proposed before for binarized neural networks [26], it has not been applied to multi-bit 

networks. We not only extend signed merging for multi-bit networks, but also propose SBN, which can 

be the best option in certain cases.  

Additionally, this result shows that low-precision analog activation may not be very 

advantageous; rather, binary activation multi-bit weight can be a much better combination due to signed 

merge. 

 

 

Table 5. MNIST multi-bit weight accuracy(%) after merging BN (activation: 1-bit, 400-128-128-10) 

 

 

Table 6. Best BN implementation policy for analog computing 
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Chapter Ⅴ 
 
HARDWARE EFFICIENCY EVALUATION 
 

 

5.1 Architecture Detail 
 
Figure 1 illustrates the top-level architecture of our optimized design. The network is a binarized 

neural network, with each layer having 400-128-128-10 neurons. Though our design is small, it is 

agreeable because we are aiming at a chip that can be implemented on a very small silicon area with 

an existing ReRAM fabrication backend, which is not necessarily state-of-the-art. The total number of 

ReRAM crossbar arrays is 6, each being no greater than 128×128. The amount of peripheral circuit is 

minimal as it uses no DAC/ADC except for the primary output.  

Each layer consists of one or more ReRAM crossbar arrays surrounded by peripheral circuit. 

To represent negative weight, we use a reference current of value (ILRS + IHRS)/2 as illustrated in 

Figure 2a. This scheme, which is simpler than using two arrays, is possible due to our weights being 

binary. In our implementation, we create the reference current using a fixed resistor, which is more 

reliable than programming a ReRAM with half the HRS.  

Each column of a crossbar array has two outputs: (i) ISUM, which is the result of a dot-

product between the input and a weight vector, and (ii) the reference current (summed along the 

column, thus having the value of (ILRS +IHRS)/2 ·N, where N is the number of rows). The reference 

current represents how much ISUM is shifted. Thus the I-V converter uses the reference current as a 

threshold to determine the output (see Figure 2b). The I-V converter also serves as the activation 

function, which is a simple binary function. Current mirror is used before the I-V converter to 

minimize the output load effect.  

On the input side, we have flip-flips (for optional pipelining), as well as drivers and buffers 

for programming ReRAMs. Finally, the output of the last layer is encoded as a binary number to be 

output through I/O pins. 
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Figure 2. (a) Operating table and (b) I-V converter’s I/O curve 

 

5.2 Details of Circuits 
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Figure 3. (a) 2T1R Unit Cell, (b) Current Mirror and (c) I-V Converter & Activation 

 
Figure 3 shows the details of the circuits from the cell to activation function. Referring (a) of figure 2, 

when input is 0, the current of (ILRS +IHRS)/2 is generated from MP1 while MN1 is off. The half 

current is mirrored and goes to rail-to-rail amplifier which converts the current into the voltage such 

as Vsum. Then, the strong-arm-latch comparator analyze which is larger between Vsum and Vref. For 

the case of input is 1, MN1 is on and MP1 is off. The current which is determined to the states of 

RRAM, go to the rail-to-rail directly. 

 

5.3 Comparison with Previous Work 
 
To evaluate the efficiency of our architecture, we follow the same modeling framework as in [21], 

except that the new components such as current mirror and I-V converter are implemented using 

Cadence Virtuoso up to layout, from which we obtain area and power. Figure 4 shows the area and 

power breakdown of our design. The operating frequency is determined to be 100 MHz from bandwidth 
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analysis of I-V converter circuit.  

Table 7 summarizes the comparison. Note that the numbers, taken from the literature, are based 

on different process technologies. Clearly, ReRAM-based hardware gives much better area and energy 

efficiency than digital CMOS-based neural networks, whereas the latter has more flexibility and 

scalability for larger neural networks. Among the ReRAM-based ones, we observe significant 

difference in hardware efficiency. To facilitate comparison we also provide the technology-scaled 

efficiency numbers; however, these numbers should be taken with caution as analog components may 

not be as easily scaled as digital components.  

Nevertheless, the comparison shows that our design is much more efficient than ISAAC, 

whose area and power numbers are also estimated using the same methodology. There are several 

factors for this difference. First, ISAAC is comprised of more than 2000 blocks, each of which is about 

the size of our design. Consequently, ISAAC uses a large portion of area to non-computing components 

(e.g., eDRAM buffers and routers). If we consider only one such block (called IMA in [21]), its area 

efficiency is increased to 1.55 TOPS/mm2. Second, ISAAC implements 16-bit multiplication using 2-

bit ReRAMs and assumes much higher operating frequency (1.2 GHz vs 100 MHz of ours). Converted 

into 1-bit multiplication on 1-bit ReRAMs, the effective efficiency is increased by 16 × 8-fold (at 1.2 

GHz). Finally, the remaining gap is explained by the fact that crossbar arrays in ISAAC-CE generate 8 

outputs per cycle due to the ADC bottleneck. By contrast ours generates all outputs at the same time, 

which can give up to 16× speedup for 128-column array. To sum, the main advantage of our design 

comes from precision optimization and ReRAM array-level parallelism.  

In terms of energy efficiency, ours is similar to that of [18], which is also custom-designed for 

MNIST with 1-bit precision. The other work [2], which also targets MNIST only, has much lower 

energy efficiency due to on-chip learning. All in all, our approach can generate very competitive design 

in terms of area and energy efficiency while ensuring high accuracy. 

 

Table 7. Comparison with previous work(efficiency is peak efficiency) 
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Figure 4. Area and power breakdown 

Chapter Ⅵ 
 
CONCLUSION 
 
 
In this paper we presented an extremely cost-efficient neural network based on ReRAM crossbar 

array and analog computing. By replacing costly peripheral circuitry such as ADC/DAC with analog 

counterparts, we can achieve very high efficiency per area and energy, while ensuring that our scaled-

down neural network processor does give high quality of result. One of the key ingredients in such 

low-precision networks is batch normalization, for which we examined multiple methods. Our design 

framework can be useful for applications where precision (or quality of result) can be traded off for 

higher hardware efficiency such as in IoT devices. 
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