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Abstract  

The optical dipole force using nonresonant optical field has been studied as an important tool to 

manipulate the center-of-mass motion of molecules. When the non-spherical molecules are in an optical 

field, the rotational states of the molecules are hybridized and thereby the dipole moment, which is 

induced in the molecules by the optical field, is aligned or oriented with respect to the polarization 

direction of the optical field. Because the imparted optical force is proportional not only to the gradient 

of the interaction potential between the optical field and the field-induced dipole moment but also to 

the molecular polarizability that depends on the molecular rotational states, the molecular polarizability 

with the rotational state-dependent alignment must be considered to interpret the optical dipole force. 

Here, we demonstrate the dispersion of carbon disulfide molecules using an optical standing wave 

to show the distinct effect of the state-dependent alignment. The experiments are performed at 

stagnation pressure of 81 and 21 bar, with rotational temperatures estimated as 1 and 35 K, respectively. 

The effect of the molecular alignment becomes weak at high rotational temperature because the 

molecules are distributed in high rotational states. We chose carbon disulfide as a target molecule 

because the polarizability of the linear molecules along the molecular axis is larger than its 

perpendicular components when the molecules are aligned within the field so that it can be manipulated 

effectively. The theoretical simulations of dispersion trajectories are compared using the Monte-Carlo 

method to verify the state-dependent alignment effect. At the low rotational temperature, the state-

dependent effect appears in the molecular dispersion with increasing field intensity. These results verify 

that the state-dependent alignment is required to interpreting the optical dipole force correctly.  
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1. Background 

 

1.1 Introduction 

The manipulation of small particles using an optical force took the first step with a pioneering work 

of Ashkin and co-workers in 1970 [1]. In that paper, they achieved the acceleration and trapping of tiny 

latex spheres using the focused laser beam. Based on their study, they proposed that the optical force is 

applicable to manipulating the center-of-mass motion of atoms and molecules. Afterward, the optical 

force has been studied extensively as an important tool to manipulate the atoms and molecules at a wide 

range of fields. Especially, this subject has attracted great attention from atomic and molecular physics. 

As atom-optical components, the optical fields are applicated to a lens [2], a diffraction grating [3] and 

a mirror [4]. Since molecules are much abundant than atoms in nature, the application for molecules 

has been studied to such as lenses [5-7], prisms [8-10], as well as decelerators [11-15]. One of great 

research about optical forces is about cooling and trapping methods of atoms and molecules with laser 

beams, which was a topic of the Nobel prize award for Physics in 1997 [16-18]. Furthermore, the laser 

cooling technique made it possible to observe Bose-Einstein condensate (BEC) which is predicted by 

Bose and Einstein in the early 1920s [19,20]. This achievement is recognized by the Nobel Prize for 

Physics in 2001 [21,22]. Even in the biology field, the optical force is applicated usefully as an optical 

tweezer to control a single DNA molecule [23,24], proteins [25,26], and biological particles like a 

bacteria and virus [27-29]. 

As aforementioned, the understanding optical dipole force to manipulate molecules is of important 

in various field. The optical dipole force is directly related to the molecular polarizability with 

considering laser-induced alignment in the nonresonant laser field. Here, the induced alignment is 

affected from the rotational state of molecules. In order to interpret the optical dipole force correctly, 

the understanding of polarizability should precede that. However, the molecular polarizability didn’t 

use to be considered significantly. Herein, the dispersion of carbon disulfide molecules is demonstrated 

using an optical standing wave to show the effect of the state-dependent alignment.  

The conceptual schemes for the molecular dispersion are illustrated in Fig. (1). Figure 1(a) shows a 

case for the absence of an optical field. The molecular beam goes through directly to the detector without 

any force since there is no extra field. If the optical standing wave lies in the path of the molecular beam 

as shown in Fig. 1(b), the molecules experience the optical force to the laser-propagating direction and 

then they are dispersed. The effect of the molecular alignment become weak at high rotational 

temperature because the molecules are distributed in high rotational states. Thus, we employed two 

different source pressure to make the different rotational temperature of the molecules. Carbon disulfide, 

one of the typical linear molecules, is chosen as a target molecule who has a large polarizability 
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component along the molecular axis while perpendicular components are small. This polarizability 

anisotropy allows the molecules to be manipulated facilely by an optical field. The theoretical 

simulations of dispersion trajectory are compared using the Monte-Carlo method to verify the state-

dependent alignment effect with different rotational temperature. This study will help us to understand 

and tailor the optical dipole force with the state-dependent alignment effect accurately. 

 

 

 

Figure 1. Conceptual schemes for the molecular dispersion. (a) The molecular beam, indicated as a green beam, goes through 

a field-free space, thereby the initial velocity of the molecular beam doesn’t change at all. The molecules are detected at the 

final position between the green dash lines with maintaining their initial velocity. (b) When a nonresonant optical standing 

wave is exerted on the molecular beam (blue beam), the molecules who pass through the standing wave can experience the 

optical dipole force along the laser propagating axis. As a result, the molecules are accelerated along the laser propagating axis. 

The final position of the dispersed molecules is within the blue dashed lines. 

 

  

 

1.2 Manipulation of atoms 

The optical dipole forces on atoms can be formed not only by a near-resonant optical field, but also 

a nonresonant optical field. When an atom is exposed by a resonant laser, a linear momentum ℏk of a 

photon can be transferred to the atom. After the absorption of the momentum, the atoms release photons 

into a random direction. In the photon emitting process, the momenta of the atom are changed as much 

as nℏk along the laser propagating direction with n-cycles of absorptions and emissions. Such reversible 

energy transfer creates an optical dipole force acting on the atoms. This energy transfer cycle makes it 

possible to cool and trap atoms [18,30]. Due to the resonance property of the absorption, it doesn’t 

require a strong laser intensity when the frequency of the laser is matched to the target atoms. One of 

the well-known cooling techniques is Doppler cooling which employs a red-detuned laser. Here, the 

atoms can absorb the red-detuned light only when the detuned laser becomes resonant with atoms that 

move toward the laser beam while the laser is off-resonant with the rest of the atoms. Therefore, the 

cooling of atoms is achieved because fast atoms lose their kinetic energy. 

The optical dipole force can be exerted on atoms with a nonresonant optical field based on the 
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polarizability of atoms [31]. It implies that this technique can be applied as a general method to control  

atoms and molecules. However, the interaction between the atoms and the nonresonant laser field is so 

weak that it is hard to obtain a sufficient optical force using a continuous laser beam. Thereby, it requires 

a pulsed laser with a strong laser intensity to achieve a measurable optical dipole force on the atoms. 

On the other hand, the strong nonresonant field can exert a strong optical dipole force to any atoms 

without cooling them. It is especially useful to manipulate inert atoms such as helium or argon. For 

example, the focusing of neutral xenon gas is reported by Barker and co-workers using an IR pulsed 

laser which forms a far-off resonant optical field with a xenon atom [32]. 

 

1.3 Manipulation of molecules 

Applying the optical dipole force to molecules is more complicated than the atomic case and it is 

difficult to employ a resonant optical field because of their complex energy structure. The molecules 

can fall into dark states easily, which cannot absorb and emit photons, during the energy transition. Thus, 

it is difficult to maintain the energy transition cycles required for control of molecules with a resonant 

laser. Only few achievements of decelerating and cooling are reported using simple and specific 

molecules, mostly diatomic molecules. One of the reported molecules is strontium monofluoride (SrF). 

Researchers achieved a cooling of the molecules down to a few millikelvin using the magnetic field of 

a Helmholtz coil [33,34] and a quadrupole [35], which together are called the magneto-optical trap 

(MOT) [33-35]. In this research, they employed repumping lasers to prevent the molecules from falling 

into dark states. The deceleration of yttrium monoxide (YO) is also reported recently [36]. In that case, 

microwaves are mixed with resonance optical fields. Because of the difficulties of the molecular 

manipulation using resonant optical field, the nonresonant optical dipole force has been studied 

extensively as a general tool for molecular manipulation. 

When a molecule is in a nonresonant optical field, a dipole moment is induced in the molecule. The 

interaction between the electric field of the laser and the dipole leads to the optical Stark interaction, 

and consequently, the Stark interaction creates an optical dipole force acting on the molecules. It 

requires an intense laser field because the induced dipole is too weak to get enough force to manipulate 

the molecules under the continuous beam laser. Therefore, the pulsed lasers are employed usually to 

create an optical dipole force. The Stark interaction potential U between a molecule in the ground state 

and a laser intensity I can be described as below [37, 38]: 

 

I,ααEU 0Z
2

1

4

1 2 −=−=                              (1) 

 

where  is the polarizability of the molecule and E is the electric field of the laser, and 0 is vacuum 
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impedance. This relationship tells us that the ground state molecules in the nonresonant optical field are 

always high field seekers because the eigenvalues of the ground state are shifted to lower energy as the 

field intensity increases [39]. It means that the molecules are forced toward the center of an 

inhomogeneously distributed optical field such as a molecular lens when the optical field is formed by 

a TEM00 Gaussian beam. Here, the spatial gradient of the interaction potential is the attractive optical 

force U−=F on the molecules. Thus, the optical dipole force can be enhanced by making the field 

gradient steeper. 

The optical dipole force has been used to create molecule-optical components like a lens or a prism. 

Deflection and focus of neutral molecules are demonstrated with carbon disulfide [5-7, 10], benzene 

[7,8] and nitric oxide [8], via a focused nonresonant pulsed laser beam. The molecules are deflected 

when they pass near the center of the focused laser beam. Here, the applied force is proportional to the 

polarizability of the molecule. Hence, the molecular separation is proposed based on different molecular 

polarizabilities. In the research, benzene is deflected more than nitric oxide because the polarizability-

to-mass ratio of benzene is larger than the ratio of nitric oxide [8]. Not only the re-direction of molecules 

but also acceleration and deceleration have been studied using a single focused laser beam. When the 

focused laser beam and the molecular beam are orthogonal to each other, the molecules that pass 

through the center of the focused laser beam experience a force along their propagating direction. This 

was suggested theoretically [40] and demonstrated using benzene [11] and carbon disulfide molecules 

[12]. As an extension of the study, the slowing of molecules has been studied via an optical lattice 

potential. Deceleration of hydrogen molecules was obtained by crossing two identical laser beams that 

consist of two counter-propagating laser beams at a shallow angle [13]. Here, the optical dipole force 

can be enhanced by an optical standing wave because a potential gradient induced by the optical 

standing wave is steeper, even the depths of their potential are same.  

Furthermore, it has been tried to achieve the rapid deceleration of the target molecules by a 

constantly moving interaction potential. In the standing wave potential, the molecules that undergo a 

half rotation in the phase space are decelerated most. It was demonstrated by slowing nitric oxide [14] 

and benzene [15]. In those studies, a moving optical lattice is formed by the intersection of near-counter-

propagating laser beams. Here, one of the two laser beams is chirped to control the time-dependent 

frequency, so that the optical lattice becomes moving in the reverse direction of the molecular beam. As 

a result, they showed the slowing of molecules and proposed a general and effective way to control the 

molecular longitudinal motion by a moving standing wave.  

On the other hand, selection of molecules in particular rotational states has been studied using an 

optical standing wave, which is formed by two identical counter-propagating laser beams [9, 41]. In 

that study, the optical standing wave leads to the transverse acceleration of neutral carbon disulfide 

molecules. As it was mentioned previously, the alignment effect, which is related to the molecular 
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rotational state, should be considered to interpret the optical dipole force. Thus, a sufficiently low 

rotational temperature is desirable to create a clear state-dependent alignment effect because the effect 

of the rotational states might be smeared out when the molecules occupy rotational states of large 

rotational energy with a wide distribution at high rotational temperature. The previous dispersion 

experiments were performed with a rotational temperature of 35 K [9]. However, the alignment effect 

wasn’t considered. Afterward, the theoretical study of molecular dispersion was carried out with 

considering rotational state-dependent alignment effect at a rotational temperature of 1K and 35 K to 

show the distinct effect of rotational state-dependent alignment [41]. However, this wasn’t demonstrated 

experimentally, yet. Thus, this thesis is written to demonstrate the rotational state-dependent alignment 

effect. 

 

1.4 Adiabatic alignment and orientation of molecules 

Alignment or orientation effects of molecules are of interest for the interpretation of various physical 

phenomena involving molecules because most molecules are anisotropic. Here, the term of alignment 

(orientation) describes a state where the molecular axes are parallel to each other without (with) 

considering their head and tail direction. The control of alignment and orientation of molecules has been 

regarded as an essential technique to understand steric dynamics. Until a few decades ago, molecular 

alignment (or orientation) was poorly studied. A molecule whose permanent dipole moment is 

extremely large can be oriented by a strong electrostatic field, named brute force alignment [42]. On 

the other hand, the orientation of polar molecules (CH3Cl and CHF3) was tried by using inhomogeneous 

electrostatic fields formed by a hexapole in 1990 [43]. All of the aforementioned studies were for the 

polar molecules that have a permanent dipole moment. However, it is hard to apply this to nonpolar 

molecules that don’t have a permanent dipole moment. Thereby, lots of research has been tried to align 

nonpolar molecules. The aligning method of nonpolar molecules is based on the induced dipole under 

the strong nonresonant laser field [37,44]. In the interaction potential, the molecules show the limited 

angular motion, which is called pendular motion, with the eigenstates consisting of hybridization of its 

field-free rotational state, namely pendular states. Here, the rotational states with the quantum numbers 

J and M, where J and M describe quantum numbers associated with the molecular angular momentum 

and its projection onto the laser polarization axis, respectively, are transitioned adiabatically to specific 

pendular states by an intense laser field. This process occurs slowly relative to the molecular rotation 

period, which is called the adiabatic process [45]. Thus, the adiabatic process requires a longer laser 

pulse duration than the molecular rotational period. When the molecules occupy low-lying rotational 

states, the transition to well-aligned pendular states, which are in lower energy states, is preferred. 

Consequently, the degree of molecular alignment can be increased by lowering the rotational 

temperature of molecules. The alignment experiments were performed with various nonpolar molecules 
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such as I2 [46], ICl, CS2, CH3I and C6H5I molecules [47] using a pulsed single longitudinal mode laser. 

As the technique developed, the orientation techniques have been developed further by combining 

electrostatic field with an intense nonresonant laser field. This concept was designed in 1999 [48,49] 

and then the first experiment was performed for a polar molecule of OCS using a linearly polarized 

laser pulse and electrostatic field [50]. Since the OCS molecule is a linear molecule, the molecular axis 

is oriented along the laser polarization axis of the laser field, which is termed one-dimensional 

orientation. Afterwards, the molecular alignment and orientation was demonstrated in one- and three-

dimension using larger molecules such as iodobenzene [51], 3,4-dibromothiophene [52] and 2,6-

difluoroiodobenzene [53]. For the three-dimensional alignment and orientation, an elliptically polarized 

laser beam was used. Under the elliptically polarized laser beam, the largest polarization axis and the 

second most polarizable axis of a molecule can be aligned along the major axis and minor axis of the 

elliptical optical field, respectively. Therefore, the molecule in the elliptically polarized optical field 

can be aligned in three-dimension.   
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2. Theoretical development 

 

2.1. Interaction potential and optical dipole force 

The interaction potential between a 1 molecule, such as a linear molecule CS2 in the ground state, and 

a laser field with the intensity I can be described as below: 

 

( ) IU MJ 0
22

||,  Zsincos
2

1
 ⊥+−=  

( )  I,0
2

||  Zcos
2

1
⊥⊥ +−−=                        (2) 

 

where || and ⊥ are the polarizability components which are parallel and perpendicular to the 

molecular axis, respectively. The polar angle  means an angle between the molecular axis and the 

polarization axis of the laser field. The symbol of the vacuum impedance is Z0. Here, the intensity I of 

the standing wave is given by  
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where I0, 0,  and  are the peak intensity, waist radius, pulse duration as a full width at half maximum 

(FWHM) and wavelength of the laser beam, respectively. Herein, we use a nonresonant laser with the 

wavelength of 1,064 nm. The waist radius was estimated as 21.5 m with the pulse duration of 7.5 ns.  

When the laser field isn’t exerted (I = 0), all molecules rotate freely. It is represented by the 

Hamiltonian H0 = BJ2, where J2 is the square of angular momentum operator and B is a rotational 

constant of the molecule. For CS2 molecule, the rotational constant is 0.109 cm-1. The rotational motion 

of the molecules can be described by the spherical harmonics Yj,M = |j,M〉, where j is the rotational 

angular momentum quantum number and M is the projection of the angular momentum on the laser 

polarization axis. In the case of 12C32S2, quantum number j can be even integers only because 32S has 

the zero nuclear spin [54]. 

When the molecules are in the interaction field (I > 0), the angular motion of the molecules is limited, 

like a pendulum. Here, the eigenstates of the molecule, namely pendula states, consist of the 

superposition of the field-free rotation, jMICI
J

MJ
jMJ )()( ,

, =  for a linear molecules [55]. The 
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rotational states with the quantum states J and M are transitioned adiabatically to specific pendular 

states by a strong laser field. Consequently, the molecular axes are aligned about the polarization vector 

of the laser field. The adiabatic process occurs slowly relative to the period of the molecular rotation. 

Thus, the adiabatic alignment requires a longer laser pulse duration than the molecular rotational period. 

In our system, the laser pulse duration (7.5 ns) is much larger than the rotational period of CS2 molecules 

(49 ps), so it undergoes alignment adiabatically. If the molecules occupy low-lying rotational states, the 

transition to well-aligned pendular states which are in lower energy states is preferred. Consequently, 

the degree of molecular alignment can be increased by decreasing the molecular rotational temperature. 

For the adiabatic alignment process, the wave function of aligned molecules can be described by the 

time-independent Schrödinger equation with the perturbed Hamiltonian H = H0 + U, thus H = BJ2 + U. 

Within the laser field, the degree of molecular alignment can be represented by the expectation value 

of cos2, which is termed alignment cosine. The expectation value of the alignment cosine <cos2>J,M(I) 

with rotational states J and M can be obtained by )(cos)( ,
2

, II MJMJ   . It shows the degree of 

alignment of molecules is relied not only to the intensity of the laser field but also their rotational states. 

In this paper, we write <cos2>J,M as the same meaning as <cos2>J,M(I) for convenience. We can 

describe the interaction potential with considering rotational state-dependent alignment effect of the 

molecules as below: 
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Here, we reformed the equation for interaction potential with the effective polarizability 
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including the molecular rotational state-dependent alignment along the laser polarization axis [56].  

Since the optical dipole force F due to the interaction field is the gradient of the potential, it can be 

written as  
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Here, the polarizability )(IαU
MJ, is substituted as )(Iα MJ,

F with its gradient term to describe the force 

directly. 
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Thus, the exerted force can be rewritten simply as below: 

 

.tIIα MJ, ),(Z)(
2

1
0 rF
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The equation shows clearly that the optical force F is directly proportional to both the polarizability 

and gradient of the interaction potential. These effective polarizabilities )(IαU
MJ,  and )(Iα MJ,

F  

facilitate interpretation of the interaction potential U and the optical dipole force F due to the interaction 

field. 

 

2.2. Effective polarizability 

As we discussed previously, we need to consider the effective polarizability )(IαU
MJ,  and )(Iα MJ,

F  

involving the rotational states-dependent alignment of the molecules with the laser field intensity I for 

the interaction potential and the optical dipole force, respectively. Figure 2 shows the effective 

polarizabilities for CS2 molecules with the quantum number J and M against laser intensity I as three 

rows. From the top to bottom, each row corresponds to the condition of J ≤ 4, J = 10, and J = 20, 

respectively. For the same J value, the polarizability lines for various M  value are represented by 

different brightness; the higher M  value, the darker lines. Here, the calculation of the effective 

polarizability is focused on the rotational temperature Trot of 1 and 35 K because the rotational 

temperatures of the experiments are estimated as 1 and 35 K. For Trot = 1 K, the population of the 

rotational states is the largest at J = 2 and the near-half maximum at J = 0 and 4. At Trot = 35 K, the 

population of the rotational states has its maximum at J = 10 and near-half of the maximum at J = 2 and 

20. In the second row of Fig. 2, the black and red solid lines indicate the state-averaged polarizabilities 

with considering rotational state distribution for Trot = 1 and 35 K, respectively. Here, the effective 
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polarizability curves show different aspect from the averaged polarizabilities curves definitely. 

Furthermore, we can confirm that the effective polarizability is larger generally at 1 K than at 35 K until 

they converge to the high-field limit:  
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for ( )M-J  is even number and 
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for ( )M-J  is even number [37,44]. In the Fig.2, the polarizabilities for even ( )M-J  are drawn as 

solid lines while the curves of odd ( )M-J  are drawn as dashed lines. To make the molecules reach 

the high-field limit, the larger rotational energy molecules have, the stronger laser intensity is required. 

If the molecules are, however, close to the high-field limit by intense laser field, the state-dependent 

alignment effect in molecular dispersion becomes diluted because each polarizability is converged 

closely. Thereby, the molecular dispersion should be demonstrated relatively weak intensity, such as 

10×1010 W/cm2 , to obtain the various dispersion aspect of each polarizability.  

 In the standing wave field, the field intensity is a function of time and space. Thus, the effective 

polarizability )(IαU
MJ,  and the interaction potential U can be expressed for the intensity variation of 

the given standing wave. Figure 3(a) shows the spatial intensity variation of a pulsed standing wave 

field along the x-axis at the center of space (y = z = 0) and time (t = 0). When the standing wave consists 

of two laser beams with the peak intensity I0 = 3.2 × 1010 W/cm2, the maximum intensity of the standing 

wave becomes 4I0 = 13 × 1010 W/cm2. Figure 3(b) shows the alignment cosine )(cos
,

2 I
MJ

 (left scale) 

with the corresponding molecular polarizability )(IαU
MJ, (right scale) at the given laser intensity profile. 

In Fig. 3(b), the black line is for the rotational states J = 0 while the red, blue and green lines correspond 

to J = 2 with |M|= 0, 1 and 2. Respectively. Here, J = 2 is the most populated rotational state (about 

58%) of CS2 molecules at Trot = 1 K. Generally, )4( 0IαU
MJ,  is larger than )0(U

MJ,α  except for the 

rotational state of J = 2 and M = 0 near the standing wave node (x = ±0.25) with very small I0. This 

state contributes minor effect to the optical force since it occupies a small portion compared to all states. 

Consequently, the interaction potentials UJ,M[I(x)] between the molecules and standing wave field are 
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shown at Fig. 3(c) for each rotational state. Here, the solid lines indicate the potential with considering 

the alignment effect while the dashed lines correspond the potential without considering the alignment 

effect. They share the color code with the alignment cosine and its potential curves in Fig. 3(b). Here 

the red solid curve is hard to distinguish because it is overlapped almost with the green curve. 
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Figure 2. Effective polarizability )(IαU
MJ,   and )(Iα MJ,

F
  of carbon disulfide molecules for each rotational state. The 

effective polarizabilities are plotted as a function of laser peak intensity. From the top to bottom, each row corresponds to the 

condition of J ≤ 4, J = 10, and J = 20, respectively.  The polarizability lines of the higher |M| are represented darker lines for 

same J value. The polarizability for the even and odd ( )M-J  are drawn as solid and dashed lines, respectively. The state-

averaged polarizabilities are plotted using black and red solid lines for Trot = 1 and 35 K, respectively. The aspects of the 

effective polarizability and state-averaged polarizability are different obviously. 
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Figure 3. Effective polarizability and corresponding interaction potential along with the given standing wave intensity 

variation. (a) The intensity profile of an optical standing wave. The profile is calculated along the x-axis at the center of the y- 

and z-axis (x = y = 0) and time (t = 0). (b) The alignment cosine (left scale) with the effective polarizability (right scale) 

considering molecular state-dependent alignment effect at given standing wave field intensity. For the rotational state J = 0, 

the curve is plotted as a black solid line. For the rotational states J = 2, the curves have the red, blue and green color for |M|= 

0, 1 and 2, respectively. (c) The interaction potential of molecules with (solid lines) and without (dashed lines) considering the 

alignment effect. 
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3. Experimental  

 

3.1. Experimental setup 

The experimental scheme is shown in Fig. 4. Here, every experimental device is synchronized at 10 

Hz repetition rate by four digital delay generators. The optical standing wave is formed by two identical 

counter-propagating IR pulses, namely IR1 and IR2. These IR1 and IR2 are defined to be forward- and 

backward-propagating beams along the x-axis, respectively. A single IR pulse from an injection-seeded 

Nd: YAG laser is separated by a beam splitter into IR1 and IR2 pulses to make the counter-propagating 

IR pulses. Each split IR pulse is adjusted to have equal pulse energy and the same linear polarization 

direction via two sets of a zero-order half-wave plate and a Glan-laser calcite polarizer. The polarization 

direction of the IR beams is adjusted to be vertical to the optical table and this direction is chosen as the 

y-axis in our experimental system. Thus, the z-axis is defined to be orthogonal to both x- and y-axis. 

The split IR pulses, having identical properties with  = 1,064 nm wavelength and  = 7.5 ns FWHM 

pulse width, propagate the same distance to the detection chamber. At both sides of the detection 

chamber, along the x-axis, two identical plano-convex lenses with a nominal focal length of 177 mm 

make each laser pulse focused on the center of the detection chamber. Here, the waist radii w0 of both 

focused IR laser pulses are estimated as 21.5 m. 

A pulsed tunable dye laser, which is pumped by a third-harmonic beam from another Nd: YAG laser, 

is used to tune the wavelength of the probe beam. The wavelength of the probe pulse is tuned to 477.7 

nm using Coumarin 480 (Coumarin 102) dye because CS2 molecules can be ionized through a (3+1) 

resonance-enhanced multiphoton ionization (REMPI) process with the transition 

  ( )1 11
2 u u gnp X +    [57,58]. In the same way as adjusting IR pulses, the probe pulse is adjusted 

to have pulse energy of ~1 mJ and linear polarization along the y-axis by a combination of a zero-order 

half-wave plate and a Glan-laser calcite polarizer. The wavelength difference between IR and probe 

beams induces a displacement of their foci, namely chromatic aberration. To correct the chromatic 

aberration, the beam divergences of both the IR and the probe beam are adjusted by combinations of a 

plano-concave lens and a plano-convex so that the foci of all laser beams are on the same point.  

After the adjustment of beam divergence, the probe beam goes through an optical low-pass filter to 

propagate nearly the same pathway with the IR2 pulse. Then it is focused by the same plano-convex 

lens focusing the IR2 pulse. The focused probe pulse is separated in time and space along the z-axis 

from the IR standing wave pulse to avoid multi-color processes and to ionize the dispersed molecules 

selectively. 

A CS2 molecular beam is generated by an Even-Lavie pulsed valve and directed into a high vacuum 

chamber with He carrier gas at a stagnation pressure of P0 = 81 and 21 bar. The molecular beam source 
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is produced by vaporizing CS2 molecules at a vapor pressure of 427 mbar at 295 K. Under high 

stagnation pressure, the molecular beam is cooled adiabatically by a supersonic expansion to make the 

distribution of rotational states narrow, including only low-energy states. At the previous study, the 

rotational temperature of the molecules was estimated as 1 and 35 K at P0 = 81 and 21 bar, respectively 

[10]. The rotationally cold molecular beam propagates almost parallel to the z-axis with the most 

probable initial velocity v0z of 1,740 (1,720) m/s for 81 (21) bar. The pulsed molecular beam is 

collimated by two skimmers, namely skimmer1 and skimmer2, of 3- and 1-mm diameter. Each skimmer 

is mounted 170 and 525 mm away from the pulsed molecular valve. After the skimmer2, the molecular 

beam enters a detection chamber section. At 177 mm downstream of skimmer2, a vertical slit, which 

has a 200-m width, makes molecular beam collimated further along the x-axis. Based on the line-of-

sight argument, the initial velocity distribution of the molecular beam is determined approximately as 

the FWHMs v0x = 4.3 and v0y = 3.6 m/s. In the detection chamber, the collimated molecular beam 

passes through an optical standing wave at a near-perpendicular angle on the x-z plane with very small 

degrees. By this optical standing wave, the molecular beam is dispersed. After a 30 ns time delay, the 

tightly focused probe pulse is injected with a distance of 52 m on the z-axis, which corresponds to the 

flying distance of the molecules during the 30 ns delay, to ionize the dispersed CS2 molecules that pass 

through the vertical center of the pulsed standing wave. 

The velocity distribution of CS2 molecules in the x-y plane is analyzed by the velocity mapping 

technique [59,60]. For the velocity mapping, an ion lens is set in the detection chamber. The ion lens 

makes the ionized molecules accelerated and focused onto a microchannel plate (MCP) after flying 

through a time-of-flight (TOF) tube of 342-mm length. Here, the ions who have the same initial velocity 

are mapped onto the same position onto the MCP. This ion lens consisted of three electrodes made from 

a thin stainless steel plate, which are a repeller, an extractor and a ground, whose thickness and diameter 

are 2 mm and 90 mm, respectively. The electrodes are coaxial with the z-axis and spaced 16 mm apart 

along the z-axis. While the repeller has a hole of 4-mm diameter at the center, the extractor and the 

ground have a 20-mm diameter hole at the center of them. To fulfill the velocity map imaging condition, 

the repeller and the extractor are charged as 900 and 644 V, respectively.  

The ion signals are amplified and converted into luminescence signal by a set of a Chevron-type 

MCP and a phosphor screen(P47). After the conversion to luminescence signals, an intensified charged-

coupled device (ICCD) camera captures the image of ions. On the other hand, a photomultiplier tube 

(PMT) also detects the luminescence signal and transfers it to a digital oscilloscope. Using the signal 

from the PMT, we monitor the TOF spectrum to gate the imaging devices. Therefore, these imaging 

devices can be regulated to record CS2
+ ion signals only. 
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Figure 4. The experimental setup for the experiment. The CS2 molecular beam is generated by the Even-Lavie pulsed valve 

with the source pressure of 81 and 21 bar. The propagating molecular pulse is collimated by set of two skimmers and a slit. 

This collimated molecular beam is dispersed by the optical standing wave, which is created by two counter-propagating IR 

beams along the x-axis. After a delay of 30 ns and adjusted spatial separation from the IR beam, the molecules are ionized by 

REMPI process with a probe laser. The molecular ions are detected by the combination of microchannel plate (MCP) and 

phosphor screen (PS). The ions are mapped onto the detector plan with their velocity regardless of their initial positions, 

namely velocity-mapping. For the velocity-mapping system, the voltages of 900 and 644 V are applied to the repeller and the 

extractor electrodes. The detected 2-dimensional ion images are obtained by an ICCD camera. The ion signal from the 

phosphor screen is detected simultaneously to monitor the time-of-flight signal.  

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

3.2. Optical layout 

 

 

Figure 5. The optical layout for the experiment. The optical components with the laser lines are shown here. For the detail of 

optical layout, the main section (yellow shaded region) is magnified above with labels for each optical component. The 

nonresonant IR beam and the probe beam is indicated using red and blue lines, respectively. The IR beam is split by a beam 

splitter. These split two IR beam are adjusted to have same intensity and laser polarization axis. 
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The layout of the optical system is shown in Fig. 5. The main section of optical components is 

indicated in a black dashed yellow rectangular box. For the details of the optical layout, a magnified 

scheme of the main section is represented with labels of the optical components. The IR laser beam (red 

solid line) is filtered by two polarizing beam splitters with 10000:1 extinction ratio and a zero-order 

half-wave plate to extinct other polarization components. Here, the half-wave plate is located between 

two polarizing beam splitters to control the laser pulse energy primarily. Then, the IR beam passes 

through a Faraday optical isolator to prevent damage on the laser instruments from a counter-

propagating laser beam. After that, a non-polarizing plate beam splitter divides the IR beam into IR1 

and IR2 beam identically. The pulse energies of the split IR beams are modulated by two sets of zero-

order half-wave plate and a Glan-laser calcite polarizer to make laser intensity equal. The combinations 

of a plano-concave lens and a plano-convex lens whose nominal focal length f are 150 and 200 mm, r

espectively, are used to adjust beam divergence of the split IR beams. After the split IR beams 

propagate same distant to the vacuum chamber, each beam is focused by the 177-mm-focal-length 

plano-convex lenses. The laser intensity and divergence of the probe beam are adjusted as the IR beam 

is. Here, the combinations of a plano-concave lens and a plano-convex lens have a nominal focal length 

of 150 and 250 mm, respectively. 
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4. Result and discussion 

 

4.1 Simulated dispersion of the molecules 

As a sampling method, the Monte Carlo method is applied for the simulation with the initial 

velocities (v0x, v0y, v0z) and initial positions (x0, y0, z0) of each individual molecule, whose distributions 

are given by a Gaussian function. The molecular initial position on the z-axis z0 is determined by an 

equation of z0 = vmp,ztdet – v0ztsimul, where the most probable velocity vmp,z of 1,740 m/s with FWHM of 

174 m/s. In the equation, tdet and tsimul are the detection time and total simulation time, respectively. Thus, 

the individual molecule arrives at the detection plane z = vmptdet at t = tdet. Here the pulse duration of 4 

ns and waist radius of 5 m for the probe beam are included to the detection time and position. In our 

simulation, we set t = 0 when the molecules are pass through the center of the IR laser beam, which has 

1 ns jitter. The molecules who passed the IR laser beam are ionized after 30 ns by the probe beam, 

thereby the detection time tdet = 30 ns in our time frame with the total simulation time of 60 ns. For the 

transverse axis, x0 and y0, the position of molecules is chosen randomly within a 200-m-long line and 

a Gaussian distribution with a 2.9-m wide FWHM, respectively.  

Since the optical force exerted on a molecule is defined as ),,,(),,,( tzyxUtzyx J,MJ,M −=F , the 

velocity change of molecules passing through a standing wave is calculated by the following equation: 

 

),,,(),,,(
1

zyxidttzyxF
m

v ii ==                             (11) 

                   

where m is a molecular mass. By calculation using 20,000 molecular trajectories for the changed 

velocity vi = v0i + vi (i = x, y, z), we obtain the transverse velocity distribution function. If the standing 

wave field is absent, there is no optical force. Therefore, the final velocity distribution is equal to the 

initial transverse velocity distribution when the field intensity is zero. 

For the precise simulation, we need to understand that the resulting velocity functions are convoluted 

functions, mainly of the velocity distribution of the initial transverse velocity, velocity change electron 

recoil during ionization, and detector blurring. We approximate the initial transverse velocity 

distribution of the molecule beam as a two-dimensional Gaussian function centered at initial velocity 

of <v0x> = 10 m/s and <v0y> = 0 m/s with FWHMs of v0x = 4.3 and v0y = 3.6 m/s. Here, we estimated 

<v0x> = 10 m/s by fitting with the obtained data. The velocity change by electron recoil is estimated as 

2.7 m/s in the given REMPI process [12]. The FWHMs of the detector blurring is estimated to 12.9 ± 

1.5 and 13.3 ± 1.5 m/s for x- and y-axis, respectively, by analyzing profiles of single ion images. Since 

the detector blurring is dominant in our experimental system, the velocity distribution in the absence of 
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the laser field is dominated by the detector blurring.  

 

4.2 Experimental result 

The velocity map images of CS2 molecules are measured of various condition: the stagnation 

pressure P0 of the molecules and peak intensity I0 of the IR laser pulse. The velocity distribution data 

of the dispersed CS2 molecules are shown in Fig. 6 and 7 for P0 = 81 and 21 bar, respectively, for eight 

I0 values. The peak intensities to form the optical standing wave are set as I0 = 0.0, 0.8 × 1010, 1.68 × 

1010, 2.48 × 1010, 3.28 × 1010, 3.98 × 1010, 4.78 × 1010 and 6.3 × 1010 W/cm2 from (a) to (h) in Fig. 6 and 

7. In each data set, the top and middle image show the measured and simulated velocity distribution 

image, respectively. The accumulation time of every measured image is 1,200 seconds, which 

correspond to 12,000 laser shots. In the bottom of each data set, a measured velocity profile along the 

x-axis and corresponding simulation are plotted with a gray-filled curve and a black solid curve, 

respectively. Here, the velocity profiles are normalized so that they sum to 1. 

For Fig. 6(a) and 7(a), in the absence of the laser field, their velocity distribution is dominated by 

the blue effect as we discussed previously. Thus, these two velocity profiles have the same velocity 

distribution. Within the standing wave field, the dispersion of the CS2 molecules varies drastically with 

increasing the intensity I0. The drifting maximum peak near the center of the x-axis and appearance of 

the outer peaks are the most noticeable difference. The drifting maximum peak near the center is due to 

the rotation in the phase space of the standing wave potential. The appearing outer peaks are associated 

with a rainbow-like singularity [9,61] These variances are much apparent in Fig. 6 (P0 = 81 bar) because 

the state-dependent alignment effect appears clearly at the low rotational temperature Trot = 1 K. 

The simulations are performed to reproduce the molecular dispersion by the standing wave with 

considering the rotational state-dependent alignment effect. Here, we chose the <v0x> value as 10 m/s 

based on comparing the width and center of velocity profiles between the simulations and the 

measurements. The difference of the velocity width W and the velocity center C at 50% (W0.5 and 

C0.5) and 10% (W0.1 and C0.1) of the maximum intensity show how well the simulations agree with the 

measurement at Trot = 1 and 35 K in Fig. 8 and Fig. 9, respectively. The Fig. 8(a) shows I
0
(W)2, which 

indicates the sum of (W)2 each of W0.5 (blue), and W0.1 (green), for the measured I0 against the most 

probable initial velocity on the x-axis <v0x> from 6 to 14 m/s. Furthermore, the variation ratio of the 

total (W)2 is obtained by dividing each total (W)2 at given initial velocity to the average of total (W)2, 

which is termed 〈I
0
(W)2〉, in Fig. 8(b). The comparison for the velocity centers is plotted at the Fig. 

8(c) and (d) for the sum of (W)2 and the variation ratio of the total (C)2. The same analysis is 

performed for Trot = 35 K at the Fig. 9. Here, the analysis of the velocity width and center show the 

minimized difference at <v0x> = 10 m/s, except the velocity center at Trot = 1 K. The velocity center 



21 

 

shows the minimal difference at <v0x> = 11 and 12 m/s for of W0.1 and W0.5, respectively. Consequently, 

the dispersion simulations results agree with the measurements at <v0x> = 10 m/s generally.  

Additionally, the simulations using the alignment-considered polarizability J,M(I) and 

alignment-ignored polarizability J,M(0) are compared with the experimental data. Here, the effective 

polarizability J,M indicates U
J,M. Figure 10 shows the comparison of the velocity widths with 

considering and ignoring alignment effect. The velocity profiles widths W0.5 and W0.1 about Fig. 6(e), 

where I0 = 3.2 × 1010 W/cm2, are indicated in Fig. 10(a). The profiles for the alignment-considered and 

alignment-ignored velocity are represented as black solid and dashed lines, respectively. For a more 

quantitative comparison of alignment-considered and alignment-ignored polarizabilities, the velocity 

widths of W0.5 and W0.1 at various laser intensities are compared with the experimental results in Fig. 

10(b) for Trot = 1 K and (c) for Trot = 35 K. In the figures, the experimental data are plotted using blue 

triangles and green squares for W0.5 and W0.1, respectively. The calculations, which are performed with 

100,000 molecules for precision, with and without considering alignment effect are represented with 

solid lines and dashed lines, respectively. The color code for the velocity width is shared with each other. 

As shown in Fig. 10(a), it is shown that the calculation with alignment-ignored polarizabilities can’t 

reproduce the experimental data while the calculation with alignment-considered polarizabilities can 

reproduce more similarly. On the other hand, Fig. 10(c) shows almost the same velocity widths, except 

the wide tails, for any laser intensities due to the high rotational temperature. In Fig. 10(b), the abrupt 

changes of W0.5 are obtained at different threshold laser intensities I0
*. When I0 is equal to I0*, the half 

period of the motion in phase space is similar to the duration of the pulsed standing wave , [14,62]. 

Here, the half period is proportional to the potential well depth, which is the product of 4I0 and J,M (4I0) 

or J,M (0). Therefore, I0* is smaller for the molecule occupying rotational states of larger J,M (4I0). 

Consequently, the different I0* values for the two simulations conditions make the different aspect of 

the velocity profiles in Fig. 10(a). The widening of W0.1 with I0 indicates that the potential well depth 

increases as a function of the laser field intensity I0 and J,M (4I0) or J,M (0) proportionally. Here, W0.1 

with considering alignment effect shows larger generally than the W0.1 without considering alignment 

because J,M (4I0) is larger than J,M (0) generally.  

Consequently, the simulations with considering of alignment effect reproduce the experimental data 

much similarly. However, the simulation condition should be adjusted further for the correct 

reproduction of the experimental data. The simulation results with the alignment-ignored polarizability 

J,M (0) show strong disagreement with the experimental data for Trot = 1 K. At the respectively high 

rotational temperature, Trot = 35 K, the rotational state-dependent alignment effect is diluted thus the 

simulation with J,M (4I0) and J,M (0) doesn’t exhibit much different dispersion aspect. These 

comparisons show the effect of state-dependent molecular alignment on molecular scattering by an 

optical standing wave.  
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Figure 6. Dispersion of CS2 molecules at P0 = 81 bar with various intensities. Each set show the comparison of dispersion of 

CS2 molecules with the calculations for different laser intensity I0 = (a) 0.0 (b) 0.8 × 1010 W/cm2 (c) 1.6 × 1010 W/cm2 (d) 2.4 

× 1010 W/cm2 (e) 3.2 × 1010 W/cm2 (f) 3.9 × 1010 W/cm2 (g) 4.7 × 1010 W/cm2 (h) 6.3 × 1010 W/cm2. Each set consists of the 

measured (first panel), simulated (second panel) velocity distribution along the x-axis at P0 = 81 bar and their velocity profiles 

(third panel). To obtain the molecular dispersion, the accumulation time for every measurement is 1,200 seconds, which 

correspond to 12,000 laser shots. In the absence of the laser field, the velocity distribution is dominated by the detector blur 

effect. A increasing the laser field intensity, the velocity profiles show distinct change. The drifting peak and appearing outer 

peaks are noticeable. The simulations are agreed well with considering state-dependent alignment effect for Trot = 1 K.  
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Figure 7. Dispersion of CS2 molecules at P0 = 21 bar with various intensities. The measured (first panel) and simulated (second 

panel) velocity distribution along the x-axis at P0 = 21 bar with their velocity profiles (third panel). For each data form (a) to 

(h), the laser intensity I0 is equal with the corresponding data of Fig. 6. The accumulation time for every measurement is 1,200 

seconds too. For P0 = 21 bar, we estimate the rotational temperature as 35 K. Here, the dispersion aspect is not apparent as in 

P0 = 81 bar data.    
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Figure 8. Difference of the velocity width W and the velocity center C about W0.5 and W0.1 at Trot = 1 K. (a) The sum of 

(W)2 about W0.5 (blue) and W0.1 (green) are plotted for the demonstrated I0 against the most probable initial velocity on the x-

axis <v0x> from 6 to 14 m/s. (b) The variation ratio of the total (W)2 is obtained by dividing each total (W)2 at given initial 

velocity to the average of total (W)2. The sum of (C)2 and variation ratio of the total (C)2 about C0.5 (blue) and C0.1 (green) 

are illustrated in (c) and (d), respectively. The velocity widths of the simulations agree with the measurement generally at <v0x> 

= 10 m/s. The velocity center, however, shows the minimal difference at <v0x> = 11 and 12 m/s for of W0.1 and W0.5, respectively. 
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Figure 9. Difference of the velocity width W and the velocity center C about W0.5 and W0.1 at Trot = 35 K. (a) The sum of 

(W)2 each of W0.5 (blue), and W0.1 (green) for the demonstrated I0 against <v0x> from 6 to 14 m/s. (b) The variation ratio of 

the total (W)2 is obtained by dividing each total (W)2 to 〈I0
(W)2〉 at given initial velocity. (c) The sum of (C)2 and (d) 

variation ratio of the total (C)2 are figured. The measured velocity widths and centers agree well with the simulations at <v0x> 

= 10 m/s. Consequently, we chose initial velocity along the x-axis of 10 m/s. 
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Figure 10. Comparison of the velocity profiles width. (a) The measured velocity profile and the simulation results with J,M(I) 

and J,M(0) for I0 = 3.2 × 1010 W/cm2 are plotted. The velocity profile for the measured data is represented using a gray-filled 

curve. The simulation result with (without) considering alignment effect is plotted using a black solid (dashed) line. The widths 

of the velocity profile at 50% (blue) and 10% (green) of the maximum intensity are indicated as W0.5 and W0.1, respectively. 

(b) The velocity width of W0.5 and W0.1 for the measured data at P0 = 81 bar and simulated data with J,M(I) and J,M(0) at Trot 

= 1 K are plotted as a function of the laser peak intensity. The simulation with J,M(I) reproduce well the dispersion aspect of 

measurement. (c) The same analysis was performed for the measurement at P0 = 21 bar and for the simulation at Trot = 35 K. 

Due to the high rotational temperature, the both simulation results show almost same aspect with well-agreement measured 

velocity profiles. 
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5. Conclusion 

 As a conclusion, we have shown how state-dependent alignment affects the optical dipole force 

in CS2 molecules. Herein, we demonstrate the dispersion of carbon disulfide molecules using an optical 

standing wave at a stagnation pressure of 81 and 21 bar, which corresponds to Trot = 1 and 35 K, 

respectively. The simulations of dispersion trajectories were performed to interpret the dispersion of the 

molecules with and without considering state-dependent alignment effect. At Trot = 1 K, the state-

dependent alignment effect becomes manifest due to the low-lying rotational states. Thus, the 

simulations that consider the state-dependent alignment effect reproduce the experimental data while 

the simulations that ignore the alignment effect on the polarizability exhibit strong disagreement. At Trot 

= 1 K, a relatively high rotational temperature, the effect of the molecular alignment becomes weak 

because the molecules are in high-J rotational states, predominantly. Thus, the state-dependent 

alignment effect is smeared out. Thereby, the simulation with and without considering state-dependent 

alignment effect shows almost the same aspect of molecular dispersion. These results verify that the 

state-dependent alignment contributes the optical dipole force and is modeled correctly. Consequently, 

we propose the importance of considering the molecular alignment with their rotational states to 

manipulate molecules. By considering state-dependent alignment effect, we can interpret the optical 

dipole force more accurately. Furthermore, this study can provide a cornerstone to develop the 

molecular physics and new method, such as a selection of specific state of nonpolar molecules.   
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Appendix A. 

IR pulse analysis 

 

 

 

Figure A. (a) 3-diensional illustration for measuring the laser properties. (b) Top view of measuring scheme for the laser 

properties. (c) Arrival time difference between IR1 and IR2. (d) Peak intensity difference of IR1 and IR2 for each laser shot. 

 

Two PIN photodiodes, known as a positive-intrinsic-negative diode, (EOT ET-2030) are used to 

measure the arrival times of the counter-propagating IR pulses, namely TIR1 and TIR2. Each photodiode 

is located 16 cm apart from the corner of the detection chamber near the TOF tube symmetrically with 

respect to the z-axis. In a similar way, there are two fluorescent papers in front of the windows on both 

sides to make the IR pulses scattered. The photodiodes record the temporal profiles of each scattered 

pulse of IR1 and IR2 simultaneously. The 3-dimensional and 2-dimensional illustrations of measuring 

schemes are shown in Fig. A(a) and (b), respectively. 

We recorded 30 temporal profiles each for the IR1 and IR2 with the pulse energy of 4 mJ, and then 

analyzed them to get their arrival times and power stability using a Gaussian function. The arrival time 

of pulses is obtained as the centers of the fitted curves. Each of the black points in Fig. A(c) show the 
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differences of arrival time between the IR1 and IR2 pulses. A red solid line and red dotted lines indicate 

the average value of arrival time difference (5.1 ps) and their standard deviation (19.7 ps), respectively. 

Because the pulse duration of the IR beam (7.5 ns) is much longer than the arrival time difference, the 

arrival time difference is so trivial that it can be ignored. 

The recorded peak intensities of pulses are plotted in Fig. A(d) as black (red) dots for the IR1 (IR2) 

pulses. I plotted here also lines for an average value (standard deviation) using a solid (dotted) lines. 

The average of peak intensities (standard deviation) are estimated as 160.0 mV (1.59 mV) and 162.4 

mV (1.94 mV) for IR1 and IR2, and therefore the power stabilities of IR1 and IR2 pulses were estimated 

as 0.994% and 1.195%, respectively. 
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Appendix B 

Calibrating pixel resolution of the ICCD camera 

 

 

 

Figure B. Obtained image of a graph paper using ICCD camera. 

 

Figure B shows a graph paper captured by the ICCD camera to calibrate the pixel resolution of the 

ICCD camera. We installed a macro lens of AF-S Micro NIKKOR 60 mm f/2.8G ED (Nikon’s 

equivalent of a macro lens) on the ICCD camera and stuck the graph paper, which has an interval of 10 

mm of solid lines, on the rear surface of the phosphor screen. As a result of calibration, the pixel 

resolution of the ICCD camera is 16.4 m/pixel. 
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Appendix C 

Magnification factor of velocity map imaging 

 

 

 

Figure C.1. Velocity map image of oxygen fragments. 

 

To calibrate the magnification factor of the velocity map imaging of our experimental system, 

fragmentation of oxygen molecules is used as a reference because this reaction has been studied well 

[60]. The calibration is performed by the comparison between measured and calculated velocities. The 

O2 molecule absorbs the third photon after two-photon excitation to the Rydberg state to form a 

superexcited state O2* which decays in several channels as shown below:  

 

(a)  O2
* → O(3P) + O*(3p 5P) + 0.68 eV (KER) 
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(b)  O2
* → O(3P) + O*(3p 3P) + 0.43 eV (KER) 

(c)  O2
* → O(1D) + O*(3s 5S) + 0.30 eV (KER)  

 

Here, the total kinetic energy release (KER) must be divided between two fragmented O atoms. 

Figure C.1 shows the velocity map image of oxygen fragmentations at 224.96 nm with the red circles 

indicating the calculated contour lines for a speed of each fragment. The speed of the fragmented two 

oxygen atoms can be calculated using the equation for the kinetic energy release (KER) of via:  

 

,2
2

1
KERO Evm 2 =                              (12) 

 

where mO is the mass of an oxygen atom. Thus, the speeds of a fragmented oxygen atom are calculated 

for each process by the below equations, respectively. 
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Here, NA and e are Avogadro's number and elementary charge, respectively. 

 

 

Figure C.2. (a) Speed distribution of the obtained fragment image. (b) Comparison of the obtained speed and the calculated 
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for each fragmentation channel. 

 

The captured image is analyzed with the speed distribution after reconstruction via an Abel inversion 

using the Basis-Set Expansion method (BASEX) [63]. The speed distribution of the obtained image is 

presented in Fig. C.2(a) with labels of three fragmentation processes. The outermost peak at 2600.7 m/s, 

corresponding to total KER of 0.81 eV, is undefined. Figure C.2(b) shows the measured (black squares) 

and calculated (red circles) speed for each fragmentation process. The magnification of velocity map 

imaging can be calibrated by the ratio between the measured and calculated speed of each fragmentation 

process. The slope of measured speeds for their positions is 9.94 m/s·pixel while the slope of calculated 

speeds is 8.43 m/s·pixel. Here, the intercepts of the linearly fitted lines must be fixed at the zero because 

the speed of a fragmented atom must be zero at the zero position. Thus, the magnification factor of 

velocity map imaging is obtained as 1.18. In other words, the obtained image must be corrected 1.18 

times smaller because the detector obtains 1.18 times magnified image than the ideal image in our 

experimental system. 
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