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Abstract

We study solitary waves of the Euler-Poisson (EP) system. More precisely, we study the
asymptotic behavior and linear stability of small amplitude solitary wave solutions to the
EP system.

The first main result states that in a stretched moving frame, small amplitude solitary
waves of the EP system converge to the KdV solitary waves. The proper choice for the speed
of moving frame and the associated KdV equation is crucially used in the derivation of the
remainder equation. To overcome a difficulty, arising from indefinite signs of the remainder
equation, we divide the interval and conduct the analysis separately. We obtain the uniform
estimates for the remainder near the peak using the Gronwall-type inequality. For the far-
field region, we obtain the uniform decay estimates of the remainder by estimating uniform
lower bound of the speed of trajectory curves.

The second main result states that solitary waves of the EP system linearly asymptot-
ically stable modulo two non-decaying modes. The solution of the linearized EP system
will be represented by the semigroup generated by the linearized operator around the soli-
tary wave solutions to the EP system. Introducing e”®-weighted L? norm, we perturb the
operator in such a way that the essential spectrum of the perturbed operator lies on the
open left-half plane of the complex plane. The zero eigenvalue of the operator, resulting
from the translation invariance and the speed parameter, is then isolated with algebraic
multiplicity two. We study the eigenvalue problem applying the Evans function, which is
particularly useful for detecting eigenvalues and their algebraic multiplicity. While calculat-
ing the Evans function is not simple in general, the Evans function for the KdV equation
is explicitly known. Considering a special scaling, we show that the Evans function for the

EP system converges to that for the KdV equation.
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1 Overview

The study of ‘solitary waves’ is an important subject not only in mathematics but also
in many other scientific scenes. We concern the mathematical study of solitary waves of the
Euler-Poisson (EP) system. More precisely, we study the asymptotic behavior and the linear
stability of small amplitude solitary wave solutions to the EP system.

The EP system is a fluid model which describes the dynamics of ions in electrostatic plasmas.
In Section 2, we briefly introduce the EP system and its physical meaning. Also some basic
properties of the EP system as well as its derivation will be presented.

In Section 3, we study the asymptotic behavior of small amplitude solitary wave solutions to
the EP system. In particular, in a stretched moving frame, they converge to the KdV solitary
waves (Bae and Kwon [1]).

The KdV equation is one of the most celebrated partial differential equations. Historically,
the KdV equation was first derived from the inviscid Euler equation by Boussinesq (1871,
[4]) and Korteweg and de Vries (1895, [21]), to describe Russell’s observation (1844, [30]) of
traveling solitary waves along a narrow channel. The KdV equation was not much studied
until it was discovered in the early 1960s that it is also derived from the other fields such as
the study of hydromagnetic waves (Gardner and Morikawa [15]). Among others, the formal
connection between the EP system and the KdV equation were found by plasma physicists
(Sagdeev [31], Washimi and Taniuti [34]). Later on, the formation and propagation of solitary
waves in electrostatic plasma were experimentally observed (Ikezi et al [19]).

We study the asymptotic similarity of the EP solitary waves to the KdV solitary waves in a
rigorous manner. The proper choice for the speed of moving frame (the ion sound speed) and
the associated KdV equation is crucially used in the derivation of the remainder equation. A
difficulty in the analysis of the remainder system stems from indefinite signs of the remainder
equation near the peak and near the far-field. Hence we divide the interval and conduct the
analysis separately. We obtain the uniform estimates of the remainder near the peak using the
Gronwall-type inequality. For the uniform estimates of the remainder near the far-field region,
we obtain the uniform decay estimates of the remainder by estimating uniform lower bound of
the speed of trajectory curves.

In Section 4, we study the linear stability of solitary wave solutions to the EP system. The
terminology ‘stability’ is somewhat vague; in which sense are solitary waves stable? We need to
establsih suitable notions of stability, and it would depend on the properties of the waves and
the underlying structures of PDEs. On the other hand, the stability of the KdV solitary waves
has been extensively studied (Benjamin [2], Bona [3], Pego and Weinstein [26], [27]). We will
investigate those notions of stability in the context of our problem. Then we study the linear
stability of solitary waves as the first step toward the nonlinear asymptotic stability (Bae and
Kwon, unpublished). We remark that the global existence for the initial value problem of the

one-dimensional EP system is not known yet.



The solution of the linearized EP system will be represented by the semigroup generated by
the linearized operator around the solitary wave solutions to the EP system. The spectral in-
formation of the generator gives the asymptotic behavior of the associated semigroup. The zero
eigenvalue of the operator, resulting from the translation invariance and the speed parameter,
is embedded in the essential spectrum in L? space. However, by introducing e"’*-weighted L>
norm, one can perturb the operator in such a way that the essential spectrum of the perturbed
operator lies on the open left-half plane of the complex plane, and the zero eigenvalue of the
operator is then isolated with algebraic multiplicity two. We show that small amplitude soli-
tary waves of the EP system linearly asymptotically stable modulo two non-decaying modes,
the generalized eigenvectors corresponding to the zero eigenvalue. We study the eigenvalue
problem applying the Evans function, which is particularly useful for detecting eigenvalues and
their algebraic multiplicity. While calculating the Evans function is not simple in general, the
Evans function for the KdV equation is explicitly known. The approach here is to show that in
a special scaling, the Evans function for the EP system converges to that for the KdV equation.

The Evans function was first introduced by Evans ([11], [12], [13], [14]) in the study of
stability of some class of traveling waves. It is a complex analytic function in the spectral
paramter, and its zeros are related to the eigenvalues of the linearized operator around the
nonlinear wave under consideration. In Section 5, we introduce the construction and properties
of the Evans function as well as its application to the instability of solitary waves for the
generalized KdV equation given in [26]. Also, the general description on the linear asymptotic
stability of nonlinear waves and some prerequisites such as the spectral and semigroup theory
will be covered referring to textbooks of Coppel ([6], [7]) for the asymptotic behavior of ODEs,
Engel and Nagel [10], Kato [20], Pazy [25] for the spectral and semigroup theory, Pego and
Weinstein [26], Sandstede [32], Kapitula and Promislow [35] for the Evans function and its

applications.



2 Fluid Description of Electrostatic Plasma

2.1 The Euler-Poisson System

The ion dynamics in an electrostatic plasma is described by the Euler-Poisson system for

1oms: in the nondimensionalized form

om+V - (nu) =0, (2.1a)
n(Owu+ (u-V)u) + KVn = —nVe, (2.1b)
—Ap=n—e?, (2.1¢)

where n,¢ : (t,z) € R x R® — R are unknown functions for the ion number density and the
electric potential, u = (u1,uz,u3)’ : (t,z) € R x R> — R3 is the velocity vector field of the
ions, and K = T;/T. > 0 is a constant representing the ratio of the ion temperature 7; and the
electron temperature T,. Here, v-V := Zi:l u Oz, . The system (2.1) is called the pressureless
if K =0, and the isothermal if K > 0.} In the model (2.1), the electron density is determined
by ¢ via the Boltzmann relation (2.18). The system (2.1) is a common fluid model for ions in
a plasma, and it well describes a variety of phenomena arising in plasma physics such as the
formation of double layers and plasma sheaths. For more physicality of (2.1), we refer readers
to [5, 9].

The system (2.1) is derived from the two-fluid Euler-Mazwell for ions and electrons under

the following major assumptions?:

e electrostatic — there is no magnetic field;
e isothermal pressures — the temperatures for the ions and the electrons are constant;
e massless electron — the mass of the electrons is zero.

The derivation will be presented in Section 2.2. We remark that for the adiabatic ions, the

isothermal pressure term Kn of (2.1) is replaced by the adiabatic pressure law
p(n) = An”,

where A > 0 and v > 1 are constants.
Unlike the compressible Euler system for neutral gases, the Euler-Poisson system has a
dispersive character due to the presence of the electric potential, and this aspect makes the

system contain rich and interesting phenomena.

' As an ideal case for a plasma with T; < Ty, the pressureless model is frequently used in plasma physics.
2The assumptions of the isothermal electron pressure and the massless electron are based on the physical fact

that for every plasma environment, the mass of the electron is very small and negligible compared to the mass

of the ion. The mass of the hydrogen ion is 1836 X m., where m. ~ 9.1 x 10" kg is the mass of the electron.



Dispersion Relation We consider the linearized system for (2.1) around the uniform state
solution (n,u, ) = (1,0,0). Substituting the small perturbations (eni,eu1,ep1) = (n — 1,u, @)

into (2.1), and then neglecting €2 order terms, we obtain the linearized system for (2.1):

o1 +V-up =0,
Owur + KVny = =V, (2.2)
—A¢1 =n1 — 1.

In what follows, we do not consider the adiabatic ion pressure since the analysis is similar to
the case K > 0, in which K is replaced by Ay > 0. Taking the Fourier transform of (2.2) in ¢
and z (or simply plugging an Ansatz (ni,u1, ¢1) = (A, 61, ¢1)e'® =) into (2.2)), we obtain

the dispersion relation for (2.1):

w?(k) = |k|? (K + 1+1\k:|2> , (ke RY). (2.3)

We note that (1 + |k|?)”! term comes from the Poisson equation. In low and high frequency
regimes, the behavior of w is given as follows: w(k) ~ +VK|k| as |k| = 400 and w(k) ~
+v/1+ K|k| as |k| — 0. We note that while the asymptotic behavior of w for K > 0 are similar
to that of the compressible Euler system for neutral gases, w? (k) = |k|?, the behavior of w for
K =0 is completely different on those regimes (see Figure 1). In plasma physics, the constant
V1 + K is called the ion sound speed, and it will frequently appear throughout this thesis.
Now we consider the plane wave solutions to (2.2) and consider the long-wavelength limit.?

We choose a smooth branch of (2.3) satisfying w(k) > 0 for £ > 0. Expanding it at k = 0, we

obtain
3

1 k
E)=ky K+ —— =1+ Kk — ——
w(k) 11 k2 Wi+ K

Up to the third order, (2.4) is the dispersion relation of the linear KdV equation

O+ V1+ Kdv+ (2V1+ K) 'o2v = 0.

+ O(K®). (2.4)

We shall investigate some similarities in the asymptotic behaviors of the one-dimensional EP

system and the KdV equation in a certain scale.

Conserved Quantities For the smooth solutions to (2.1) such that as |z| — oo, (n,u,d) —

(1,0,0) and their derivatives converge to 0, we have the following invariants:

N(t) = /R (n— 1)(t, ) dz = N(0), (2.50)

M(t) == /]R3 (nu)(t,x) dez = M(0), (2.5b)
nlul2 2
H(t) := /]R3 (‘2| + P(n) + W2¢| + (¢ —1)e? + 1) (t,x)dx = H(0), (2.5¢)

3Long; waves compared to the Debye length Ap = \/ KpTe/4mncoe?. See the non-dimensionalization (2.20).



(a) (b)

Figure 1: (a) The graphs of w?(k) = k?(0.2 + 1+k:2) ( dashed).

(b) The graphs of w(k) = ——£— (solid), w(k) = k (dashed) and w(k) =k — £ (dotted).

solid) and w?(k) = 1 ji; (

V1+k?
where
K(nlnn—n+1) forp(n)=Kn, K >0,
P(n) = AnY A
(n) no_ 4 for p(n) = An™, A >0,y > 1.
y—1 ~—-1

Using the Poisson equation (2.1c), we note that H can be written in another form

nu2 2
H(t):/RS <‘2|+P(n) yv;p\ g — +1>( 2) dz. (2.6)

These two forms of H have their own advantages. The form (2.5¢) clearly shows that H(¢) > 0
for n > 0. On the other hand, one can easily derive the Euler-Poisson (2.1) from the form of

H in (2.6). Indeed, it is a Hamiltonian of the EP system (2.1). For simplicity, we consider

the 1-dimensional case. Let Hy(t) := / |33;¢| + n¢ — e + 1dz. By taking the variational
derivatives? of (2.6), we have
0H
Orn = —8xﬁ = —0z(nu),
H 2 6H,
8tu:—8x5—:—8x U—+K1nn+—¢ .
on 2 on

We recall that ¢ = ¢(n) is determined by n through the Poisson equation (2.1c). By a formal

chain rule, we obain

6H, _ 0H, | 6Hy

N 0Hy
on on o

0o

where 0,¢(n) is a formal derivative of the operator n +— ¢ in n. On the other hand, we see that

p(n) = ¢ Inp(n) (2.8)

6H
(; :/a§¢+n—e¢dx=o. (2.9)

i H(u+eh) — H(u) _ 0H (u)

h dx for each function h.
e=0 € ou




Hence, the 1D Euler-Poisson system can be written as

o (n) _ <5H/6n> _ ( 0 —8$> <5H/5n> |
u 0H/bu -0, O 0H/éu

where 7 is a skew-symmetric operator in L? x L? space, for instance. Now it is easy to see that

the Hamiltonian H in (2.6) is conserved:

0H o0H O0H  60H O0H _ O6H
H = _— _— = — — Oy — —_— _—
OH (n,u) 5 omn + S O dz 5n 0, 51 + 505

In what follows, we derive (2.5) in another way. It is easy to see that (2.5a) follows integrating

Oy dr = 0.

(2.1a) in z over R? and then applying the divergence theorem. From (2.1a) and (2.1b), we obtain

O(nu) = =V - ((nu) @ u) — Vp — nVe, (2.10)

where
V- ((nu) @ u) = (V- (nuyu), V - (nugu), V - (nuzu))’ .
Using (2.1c¢) and integrating by parts, one has that
—nVé = (A¢ — e’)V¢
= VAP + V(pAg) — Ve?

wary [V (#V0n9) (2.11)
— 7 (TEL) — | v 09au.0) | +90620) - ves.
V- (6V05,0)

Now (2.5b) follows from (2.11) into (2.10) by applying the divergence theorem.
Taking the dot product of (2.1b) with u, and then using (2.1a), it is straightforward to see
that for p(n) = Kn,

9 2
O (n;| + K (nlnn — (n — 1))> + V- <n\;¢| u—l—Knulnn) = —nu -V, (2.12)
and for p(n) = An?,
5 njul? n D v n|u|2u+i u) = —nu-Vo (2.13)
\T2 T 2 1) ' '

Using (2.1a) and (2.1c), we obtain
—nu-Vé=V-(nu)p —V - (nug)
=—0m¢— V- (nug)
= Aat¢¢ - 6¢at¢¢ -V (nu¢) (2‘14)
==V Vo + V- (Vord) — 0 (6= 1)e?) = V- (nug)

— 9, <|V§’2> — 0 ((qs - 1)e¢) + V- (Vo) = V - (nug)

From (2.12)—(2.14), we get (2.5¢).



2.2 Model Derivations

We start from the following fundamental model of plasmas:

The two-fluid Euler-Maxwell system

orn; +V - (nju;) =0, (2.15a)
Orne + V- (neue) = 0, (2.15b)
mini(Oru; + (i - V) = —Vpi + nge <E + 4 : B> : (2.15¢)
Mene(Ortte + (e - V)te) = —Vpe — nee (E + e : = ) : (2.15d)
V xB= 4—7(:6(71111,, — Nele) + iaTE, (2.15¢)
V x B = —%aTB, (2.15f)
V- E = 4mwe(n; — ne), (2.15g)
V-B=0, (2.15h)

where n4,m. : (T,X) € R x R® = R are the density functions for the ion and the electron,
ui, ue 1 (T, X) € R x R® = R? are the velocity fields of the ion and electron, E,B : (T, X) €
R x R? — R? are the electric field and the magnetic field, and ¢ and +e are physical constants
representing the speed of light and the charge of an ion and an electron. Here, p; and p. are
the pressure of the ion and electron, respectively.

Before we proceed, we briefly discuss some underlying assumptions in (2.15) and the meaning
of equations of (2.15). First of all, the model (2.15) assumes that the plasma is fully ionized
(there is no neutral particle) and that it is composed of electrons and singly charged ions (the
charge of an ion particle is e). A neutral gas may interact with the components of a plasma
through collisions.

The equations (2.15a)—(2.15b), called the mass conservation law for ions and electrons,
say that there is no net creation (or loss) of ions and electrons. If the recombination rate
of a plasma is not negligible, one needs to consider the relevant source (or sink) terms. The
equations (2.15¢)—(2.15d), called the momentum balance equations for ions and electrons, are
simply the fluid version of Newton’s second law. It is assumed that the net force applied to
the infinitesimal volume elements of the ions (or the electrons) following the flow is the sum of
the electromagnetic force and the pressure gradient force. The ions and the electrons interact
with each other through the electromagnetic forces generated by Mazwell’s equations (2.15e)—
(2.15h). For the adiabatic flow, the pressure is given by p(n) = An”, where A > 0 and v > 1
are constants. For the isothermal flow, p(n) = kpT'n, where kp is the Boltzmann constant and
T is a constant temperature. The choice of the pressure law depends on the physical situations.

We remark that the system (2.15) has 14 unknown functions and 16 equations. By taking
divergence of (2.15e) and (2.15f), however, we see that (2.15a)—(2.15b) implies (2.15g)—(2.15h).



The two-fluid Euler-Poisson system If we assume that a plasma is electrostatic®, we have
V x E = 0 from (2.15f). Hence, there exists the electrostatic potential function ® : (T, X) €
R x R?® — R satisfying E = —V®, and (2.15) becomes the two-fluid Euler-Poisson system for

ions and electrons:

orn; + V - (nju;) =0, (2.16a)
Orne + V- (neue) =0, (2.16b)
min; (Oru; + (u; - V)u;) + Vp; = —nieVo, (2.16¢)
Mene(Orue + (Ue - V)te) + Vpe = neVOP, (2.16d)
— A® = 47e(n; — ne). (2.16e)

Here, (n;, u;, ne, te, ®) = (n40,0,neo,0,0) with a positive constant n;g = nep > 0 is a uniform
state solution of (2.16). We remark that by taking divergence of (2.15e) and using (2.15a)—
(2.15b), we obtain 97 (4we(n; — ne) + A®) = 0, which is equivalent to (2.16e).

The Euler-Poisson system for ions We assume that the electron mass m, is zero and that

the electron pressure is isothermal, p.(n.) = kpTene. Then, (2.16d) becomes

kTeVne = n.eVe. (2.17)

Dividing (2.17) by ne, integrating the resulting equation, and then imposing that ® — 0 and

Ne — Nep as | X | — oo, we derive the Boltzmann relation for electrons:

0]
Ne = Nep €XP ( ¢ > ) (2.18)

kpTe
The physical meaning of the Boltzmann relation is that due to their small inertia, electrons
almost instantaneously react to the plasma fluctuation so that the pressure gradient and elec-
trostatic forces acting on them are balanced (see (2.17)).
Assuming that the isothermal pressure for the ion, p;(n;) = kgTen;, we have the one-fluid

Euler-Poisson system for ions

Oorn; +V - (nzuz) =0,

mznz(ﬁTuZ + (ul . V)UZ) + kgT;Vn; = —n;eV®, (2‘19)
)
—A® = 4re [n, — Ney €XP <k2Te>} .

Now, (2.1) is obtained upon an appropriate non-dimensionalization

py AT w0

X
Tr = 5 t= 9
kBT, /4mnege? m; e VEkBTe/m; ¢ kpTe

_ pi(neﬂn) _ Ai(neon)v
neokpTe neokpTe

For the adiabatic pressure, (2.20) leads p(n) : =: An7.

®Indeed, electrostatic assumption only requires that &rB is zero or negligible. On the other hand, if the
motion of a plasma is one-dimensional (plane wave), then the magnetic force terms in the momentum equations

become zero.



3 Small Amplitude Limit of Solitary Waves for the Euler-Poisson
System

3.1 Introduction

We consider the one-dimensional EP system

On + 0s(nu) =0,

O+ udsu + K™ = o6, (1DEP)

n
83(]5: e¢—n,

where K > 0 is a constant, with the far-field conditions

n—1, u—=0, ¢—=0 as |[s|— oo, (FC)

We aim to show that for V = /1 + K, the ion sound speed, there holds

sup |(Jn — 1 — enkav| + [u — eVnkav| + |¢ — enkav]|) e€/?| < Ce? (3.1)
£eR
for all small € > 0, where

£:=e2 (s = (V +e)t), (3.2)

nkav(§) := 3nysech2 (U ?5) . (3.3)

is the solitary wave solution to the KdV equation

and

1

3 I( \/
= —

Orv + Vodzv +
traveling with a speed v > 0, that is, £ = T — 1.

In what follows, we illustrate how (1DEP) is related to (KdV), and then critically discuss
some related results. We introduce two approaches: the reductive perturbation method [34]

and the Sagdeev potential method [31].

Reductive perturbation® We present a formal derivation of (KdV) from (1DEP). This

result was first found in [34] for the pressureless case.

By introducing a specific scaling, called the Gardner-Morikawa transformation,”

T=c(s—Vt), t=e%2, (GM)

5As its name indicates, this method can be applied to reduce a complicated system into a simple scalar

equation.
"For more details on the Gardner-Morikawa transformation, we refer to [15].



we obtain from (1DEP) that

edm — Vozn + 0z(nu) = 0,
ajn

n

edpu — VOozu + udzu + K
£02¢ = e? — n.

= —0z0, (3.4)

We suppose that the solutions to (3.4) is given by

[o¢] o0 o0
n= 1%—2:5’“7%7 uzZakuk, ¢ = Zskqﬁk. (3.5)
k=1 k=1 k=1

Then we substitute (3.5) into (3.4) and set the coefficients of " zero.
The coefficients of €*: We do not have £° order terms.

The coefficients of €': At the order of ¢, we have

vV 1 0\ [0omm 0
K -V 1|]|ou]|=]0]. (3.6)
1 0 -1) \o: 0

Hence, in order to have a non-trivial first order profiles, V must satisfy V? = 1+ K. We choose
V =1+ K. From (3.6), we have the relation®

up =Vni, ¢1=ny. (3.7)

The coefficients of €2: At the order of €2, we get

o1 — VOzno + Ozus + n10zu1 + Ozniug = 0, (3.8a)

3,5-u1 — VOzug + u10zu1 + K(@,;nQ — n10zn1 = *8@@%)2, (38b)
1

Dz = b2+ 5(61)" — na. (3.8¢)

We multiply (3.8a) by V, differentiate (3.8¢c) in x, and then add each equation of (3.8)
together. Then the second order profiles (ng, ug, ¢2) are canceled since V = V1 + K. Using the
relation (3.7), it is straightforward to see that n; satisfies the KdV equation (KdV).

A mathematical validity of the formal expansion (3.5) has been studied in [16], where it
is shown that on any fixed time interval, the solutions to (3.4) with some well-prepared initial

data converge to the solutions to (KdV) as ¢ tends to zero.

Sagdeev potential We present a formal approximation of the EP solitary wave solutions

to in terms of the KdV solitary wave solutions. This result was first introduced in [31]. We also

8V = V1 + K and (3.7) imply that (3.6) is not overdetermined.

10



refer to [5] and [9].

We assume that (n,u, ¢)(§), where & = s — Mt for a constant M > 0, is a solution to
(1DEP). By imposing n — 1,u,¢ — 0 as £ — —oo, we have

(M —u)n =M, (3.9a)
(M —u)? 4+ 2K 1Inn = M? — 2¢, (3.9b)
8§¢ =e? —n. (3.9¢)

If n >0, then M —u > 0 since M > 0. Hence, n is explicitly expressed in terms of ¢, and we

obtain from (3.9) that

M 0

where —U(¢) is called the Sagdeev potential. Multiplying (3.10) by J¢¢ and imposing 9g¢p — 0

as £ - —oo, we have

%(agqs)? =e? + M/ M2 —2¢— (14+ M?*) =U(¢). (3.11)

M2
From (3.11), we see that U(¢) must be positive at least for small 0 < ¢ < - By expanding

U(¢) around ¢ = 0, we find

U0) = (5 ga7) # + 0@

and thus, we must have M? > 1. Since we assumed that ¢ is a solitary wave, there is some
2

M
&« € R such that (95-(;5(5*) = 0. Hence, we must have U(¢) = 0 for some 0 < ¢ < < and this

happens only if
M? M?
exp (2> -(1+MH=U <2> <0.

Thus 1 < M < (p, where (p is a unique positive root of (3.25), is a necessary condition for the
existence of solitary wave solutions to (3.10). In fact, via a phase plane analysis, it is shown
in [22] that 1 < M < (p is a sufficient condition for the existence of solitary wave solutions to
(3.10).

Now we let M = 1 + ~e for sufficiently small v¢ > 0 and assume that ¢ is small. By
expanding the RHS of (3.10) for, one can obtain

020 — 2ved + ¢% = O (10](1rel® + 101)) -

By neglecting the RHS terms, we formally obtains

¢ ~ 3e sech? (\/2*175 5_) = 3yesech? (\/2*175 [s —(1+ ys)t]) . (3.12)

Here we can rewrite the argument of (3.12) as
(V2) 7 [(29) (s = 1) — ()21 (3.13)

11



and this suggests that (GM) is a suitable transformation for (1DEP) to detect solitary waves
with the amplitude of order O(~¢). By introducing the scaling (3.2), we see that the RHS of
(3.12) is nothing but enkqy for K = 0.

Discussion While the result of [16] well describes the asymptotic behavior of small am-
plitude solutions to (IDEP) up to the order of t = 0(6_3/2), this setting does not give a fully
satisfactory answer to the KdV limit of the solitary waves for the EP system. Also, the formal
result of [31] for (3.12) has not yet been completely justified in a rigorous manner.

The main results of this section assert that the formal expansion (3.5) is valid in the presence
of solitary waves, and also justify the formal approximation (3.12). Moreover our results covers

the isothermal case.

Remark 1. In the previous section, we observed that up to third order, the dispersion relation

(2.4) of the EP system is that of a linear KdV equation
o+ V1+Kosv+ (2V1+K) 'adv =0,

or equivalently,

L _g%—o (3.14)

o0+ ————
oI+ K

with the change of variable
T=s—V1+Kt t=t. (3.15)
This suggests that (3.15) is a suitable moving frame to obtain (KdV) from (1DEP). Now we

consider the nonlinear term vdzv and (3.14) together to find an appropriate time and length

scale for a small amplitude v = O(g). By setting

t=e¢%, z=¢% (3.16)
for Z,t = O(1), we get
«

v — 17 wdzv — 2P 9P — 1738

In light of that the existence of solitary wave solutions to the KdV equation is due to the exact
balance between nonlinear transport and dispersion effect, we first set 5 = —1/2 and, accrdingly,
set @« = —3/2. This choice of o and 3, together with (3.15)—(3.16), lead the transformation
(GM) with V =1+ K.

3.2 Main Results

We plug (n, u, ¢)(€) into (IDEP)—(FC), where ¢ is given by (3.2). Then we obtains

— (V 4+7e)n” + (nu) =0, (3.17a)
/

— (V+ye)u +u +K% =—¢, (3.17b)

e =e® —n, (3.17c)

12



with the far-field condition
n—1, u—0, ¢ =0 as || — oo, (3.18)

where ' denotes the derivative in £&. We note that (3.17) has the translation invariance.

Definition. The solution (n,u, ¢) to (3.17)—(3.18) is called solitary wave if the following hold:

(i) (symmetry)
n(§) =n(=¢£), u(§) =u(=E), ¢(§) =¢(=¢) for§ €R, (3.19)
(i) (monotonicity)
n'(€), u'(§), ¢'(§) <0 forg e (0,00). (3.20)
We observe that (n,u, ¢) satisfying (3.18)(3.20) have their unique maximum values (., ., ¢»)
at £ = 0, that is,
(1,1, 0)(0) = (n, s, P4), (3.21)

and there hold
n(&) >1, u(&) >0, ¢ >0 for £ R (3.22)

To present the existence theorem, we define some parameters. When K > 0, let (x be a

unique root of

K
2K [K(z—1)>+1] =exp <2 (2% — 1)) (3.23)
1+ K
satisfying (g > —;( > 1. We have that
K 2 K
2N [K(z— 1) +1] > exp <2 (2 — 1)> for z € (1,(k). (3.24)

For the case K = 0, let (p be the unique positive root of
22 +1 = exp(2?/2). (3.25)
It is east to check that (y > 1 and
22 41 > exp(22/2) for z € (0,¢p). (3.26)

We refer to Appendix for (3.23)—(3.24).

Let (V,7,¢) be the positive numbers satisfying

1+ K  V+ne
< < when K >0, 3.27a
V& Nice CK ( )
1<V 4y <o when K =0. (3.27b)
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Theorem 3.1. Suppose that (V,~,¢e) satisfies (3.27). Then the equation (3.17)—(3.18) admits a
unique (up to a shift) non-trivial smooth solution (n,u,®). Moreover, it satisfies (3.19)—(3.22)
upon a suitable shift of phase.

Remark 2. By inspection, one can check that (3.27) is necessary for the existence of non-trivial
smooth solutions to (3.17)-(3.18).

Theorem 3.1 holds true as long as (3.27) is satisfied. However, for Theorem 3.2, we restrict

our analysis to the case V =+ K 4 1 and consider only € > 0 as a parameter for fixed V and ~.

For the solitary wave solution (n°, u®, ¢°) to (3.17)—(3.18) satisfying (3.19)—(3.22), we define

the remainders as
g .__ € g .__ € £ .__ £
ng:=n° —1—engqy, ug:=u°—eVngay, of:=¢° —enkav. (3.28)

We denote the k-th derivative of f in z by f ), We present the main theorem on the asymptotic

behavior of the EP solitary waves.

Theorem 3.2 (Bae and Kwon, [1]). Let V =vV1+4+ K, K >0 and v > 0 be fized. Let k be any
non-negative integer. Then there exist positive constants €1, «, and Cy > 0 such that for all

0<e<eq,

up €172 (5, ) 45, ®) g2 (0)(€)| < Cpe? (3.29)
S

holds. Here a and Cy are independent of €, and « is independent of k.

Theorem 3.1-3.2 assert that the EP system admits solitary wave solutions traveling slightly
faster than the ion sound speed V = +/1+ K, and that they are well approximated by solitary
wave solutions to the KdV equation.

For the proof of Theorem 3.1, we derive a system of first-order ODEs, equivalent to (3.17)-
(3.18). Then we employ a phase plane analysis in a similar fashion as [8]. To prove Theorem

3.2, we derive the remainder equation for ¢%:

¢ER” - E(Zﬁ{ - ‘37

F.(¢) =2V~ — 2V2ngay — VZ%,

(3.30)

where M5 is a function of nkqv,n%, uy and ¢%. In the derivation of (3.30), the choice of the
ion sound speed V = V1 + K and the fact that nixqy satisfies the associated KdV equation are
crucially used. One of the main difficulties in the analysis of (3.30) stems from the indefinite
sign of F.(£). Indeed, from a careful observation of the phase plane analysis, we obtain a sharp

estimate for the peak values of the solitary wave solution. We set (nf,us, ¢5) := (n°,u®, ¢°)(0).

Proposition 3.3. Let V =vV1+ K, K >0 and v > 0 be fired. Then for all 0 < € < g,
|ni —-1- 37V*15‘ + |u§ — 3ye| + ‘qﬁi — 37V*15} < 20, (3.31)

Moreover, V =1+ K is necessary for hH(l) n, =1.
E—
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From (3.31) and (3.18), we observe that igT(l) F.(0) = —4Vy < 0 while 61520 F.(§) = 2Vy
for all e. Hence we need to divide the interval [0, c0) into two parts and conduct the analysis
separately.

We observe that the coefficient 3v/V of € in (3.31) is exactly the peak value of nkqv(§)
in (3.3). This implies that at least at £ = 0, (n%,u%,¢%) is O(e?) as ¢ — 0. This fact
together with Gronwall’s inequality, we get the local uniform estimate for €*2¢§} around £ =0
in Proposition 3.9.

To obtain the local uniform decay estimate for 6_2¢% around & = oo, we need a careful
analysis. It is not clear if we may choose a uniform & > 0 in such a way that F.(£) has a
positive sign on [£1, 00) for all . In other words, as € — 0, the time £ > 0 at which F.(&) =0
is realized can tend to co. Verifying existence of such a uniform time & is a important step in
obtaining the uniform estimate for the remainders in the far-field region. To this end, we obtain
the uniform lower bounds for the speed of trajectory curves e '(n®, E%)(£) in Lemma 3.5-3.6,
where the estimate (3.31) plays a crucial role again. Then we obtain the uniform decay estimate
for e71(n® — 1,u%, ¢°)(€) (Proposition 3.7), which yields the local uniform decay estimate for
£72¢% around ¢ = oo (Proposition 3.10). Using that ¢% is symmetric about & = 0 together with
Proposition 3.9-3.10, we obtain the uniform decay estimate for s_zgiﬁq on R. The estimates for
£72n% and £ 2u% immediately follow from (3.115).

Some numerical tests for the convergence of e *(n° — 1) to ngqy are presented in Figure
2. We employ RK4 to solve the ODE system (3.39) with the suitably chosen initial values by
using the first integral (3.43)—(3.44).

Remark 3. Unlike the pressureless case, the isothermal system can not be reduced to the explicit

second-order ODE. Instead we consider the explicit system of ODEs (3.39).

Notation: In this section, we set
J=J(Ee)=V1I+K+ye=V+ne. (3.32)

3.3 Existence of Solitary Waves

We reduce (3.17) to a system of first-order ODEs and prove the existence theorem via a

phase plane analysis.

3.3.1 Reduction to the System of First-order ODEs

We assume (n,u, ¢) is a solution of (3.17)-(3.18). Integrating (3.17a)—(3.17b) in &, we get

— (V4+rye)n+nu=—(V+~e), (3.33a)

1
—(V4+y)u+ v+ Klnn = —¢. 3.33b
2
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(b) K =0 and ¢ = 0.01

25

051 / A

(¢) K=2and e =0.1 (d) K=2and e =0.01

Figure 2: Numerical tests for comparison of nxqy (dashed) with ¢! (n® —1) (solid) in the frame

E=e?(z— (WI+ K +et)).

We note that (3.33a) is solvable for u in terms of n. Hence (3.33) is written as

u=(V+n~e) (1 - ;) , (3.34a)
¢ = H(n), (3.34b)

where )
H(n) := W (1 - nlg> — Klnn. (3.35)

We differentiate (3.34b) in £ to obtain

¢ = h(n)n’, (3.36)
where ,
h(n) := dlfh(ln) - 2375) —% (3.37)
We define
E() == —¢/(). (3.38)
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From (3.36) and (3.17c), we then obtain an ODE system for (n, E):

{ — h(n)n' = E, (3.39a)
eE =n—eflM, (3.39b)

Multiplying (3.39b) by E, we have from (3.39a) and (3.37) that

g (E?) = —nh(n)n + "™ h(n)n’
2 / (3.40)
:(U/+%ﬂ<+Kn+emm>.
n
We integrate (3.40) in £ to obtain
2
%EQ U 0 R S [ B (3.41)

for some constant c. From (3.41) and (3.18), n and E must satisfy the far-field condition

n) —1, EE) —0, as [¢— oo. (3.42)

Conversely, we assume that (n, E) satisfies (3.39) and (3.42). Then (n,u, ¢), where u and
¢ are defined by (3.34), satisfies (3.17a)-(3.17b) and (3.18). Moreover, we have E = —¢' from
(3.36) and (3.39a). Hence, by (3.39b), (n,u,¢) also satisfies (3.17c). We remark that (3.41)
yields a first integral of (3.39) with (3.42):

%E2—g@)+gﬂ)20, (3.43)

where

(V +ve)?

g(n) = + Kn+ 0, (3.44)

3.3.2 Stationary Points

Next we find the stationary points of (3.39). From (3.37), we observe that when K > 0,
=0, (TL = ns)a

>0, (0<n<ng,

where
V + e
Ng 1= , 3.46
VE (3.46)
and when K =0,
h(n) >0, (n>0). (3.47)

We henceforth assume that

(A1) n<ns when K > 0.
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It will be shown later that the assumption (A1) is valid. Then we have that h > 0 for K > 0,
and the points at which

E
=0, n=elM 3.48
s =0 n=e (3.48)
hold are the stationary points of (3.39). Thus the stationary points must lie on n axis. We note

that
n=e"™ iff I(n):=Inn—H(n)=0 (3.49)
for n > 0. It is easy to check that [(n) strictly decreases on the interval (0,n.) and strictly
increases on the interval (n.,c0), where
- V + e
‘T VITK
The condition (3.27) implies that 1 < n. for K > 0. Moreover, since lim [(n) = oo and

n—o0
[(1) = 0, we find that the function ! has only two zeros n = 1 and n = n.. such that

(3.50)

1 < ne < Nee.- (3.51)

Therefore, (3.39) has only two stationary points (nce,0) and (1,0). We observe that for K > 0,

n < e forn e (1,nc), (3.52)
n> e forn € (nge, o). .
3.3.3 Local Behavior
The Jacobian matrix of (3.39) is given by
E dh(n) -1
L 12 odn . ho . (3.53)
—((1—he") 0

£
At stationary points (1,0) and (ne,0), the trace of (3.53) is zero. Since n = 1 satisfies the

equation (3.49), we obtain from (3.45)—(3.47) and (3.27) that
— h(1)eH ™) 1+ K~ (V+9e)°
eh(1) eh(1)
Thus, the stationary point (1,0) is saddle for K > 0. Since n = n.. also satisfies (3.49), we see
from (3.50)—(3.51) that

<0.

1= h(nee)ef ") =1+ K — w
- (3.54)
— _ (ne)?
= (1 + K) (]. (nce)2> > 0.

When K = 0, the stationary point (n,0) is center by (3.47) and (3.54). On the other hand,
when K > 0, (ne,0) can be center or saddle depending on the location of n. with respect to

ns (see (3.45)). We will see later that (3.27a) implies that
(A2) ne < ns when K > 0.

We observe that (ng,0) is a center under (A2).
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3.3.4 Direction of Vector Fields

From (3.52) and (3.39b), we see that E’ < 0 in the region where 1 < n < ng, and E' > 0
in the region where n > ng. Since h(n) > 0 by (A1), (3.45) and (3.47), we find from (3.39a)
that n’ > 0 in the region where E < 0, and n’ < 0 in the region where E > 0 (see Figure 3).

Figure 3: Trajectory curve

3.3.5 First Integral

We see from (3.43)—(3.44) that the trajectory starting from the point (1,0) with £ < 0

2(g(n) —g9(1))
NG

satisfies E(n) = — . Taking the derivative in n,

e N 49, 1 .
an ™= " et gty )
where ( 2
@n :—7‘/4_76 n)et (™)
dn( ) T K + h(n) (3.56)

= —h(n) (n — eH(")) .

We recall that n = 1 and n = ne satisfy (3.49) and that they are only such points. Hence,
in the case K > 0, (3.56) vanishes only at 1, n. and ns. From (A2), (3.45) and (3.52), we see

that g(n) strictly increases on (1, n.) and strictly decreases on (nee,ns). This yields that if

9(1) > g(ns), (3.57)

there is a unique n, such that (see Figure 4)

1 <Mee <y <ms, g(n«) =g(1). (3.58)
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We shall show that (3.27a) implies (3.57) in Lemma 3.4.

When K =0, g(n) is strictly increasing on (n.e, 00) since h(n) > 0 for n > 0. By (3.26) and

(3.27b), one has
lim g(n) = V19?2 o (V+72)* +1=g(1).

n—oo

Hence there is a unique n, satisfying

1 < Mee <myy,  g(ng) =g(1).

Figure 4: Graphs of g(n) — g(1)

Now we show that the condition (3.27a) implies g(1) > g(ns).
Lemma 3.4. (3.27a) implies (3.57).
Proof of Lemma 3.4. From (3.44), it is enough to show that

(V 4 7¢)?
Ns

By the definition (3.46) of ng, (3.60) can be written as

(V4+y)?+K+1> + Kn® + 1),

K(ng)?+ K 41> 2Kn, + ),

On the other hand, from (3.35) and (3.46), we have

2
H(ng) = (V—;’VE) (1 — (;)2) — Klnng

((ns)* —1) — K Inns.

K
2
Therefore, (3.61) is equivalent to
2 -K K 2

K(ng)*+ K+1>2Kns+ (ns)” ™ exp <2 ((ns) — 1)> ,

and equivalently, we have
K 2 K 2
(ns) [K(nS -1+ 1] > exp 5 ((ns) — 1) .

From the definition of n, (3.24), and (3.62), we find that (3.27a) implies (3.57).
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Proof of Theorem 3.1. We show that Lemma 3.4 verifies the assumption (A2). If ne, > ng,
then by (3.45) and (3.52), we see from (3.56) that g(n) is strictly increasing on (1,ns). This
implies that g(1) < g(ns), which contradicts (3.57).

By the stable manifold theorem, a smooth solution (n, E) exponentially decaying to the
saddle point (1,0) as & — —oo exists. This solution can be extended until it reaches a neigh-
bourhood of (n.,0). By expanding n(E) near E = 0, we find that there exists some integer
m > 1 such that

d™n

n(E) — n(0) = E™ <dEm(0) + O(E)>

for E' < 0 since from (3.55)-(3.56) and (3.58)—(3.59), we have

dE
lim —(n) = +oo for K > 0.

n—ny dn

Hence we have E ~ —(n, —n)"/™ for sufficiently small E. Using (3.39a), we have
¢ _h(n(g)) dn " h(n) " h(n)
e-6= [ - de= [ -pirans [ dn.
6 B d§ ne, E(n) ney (T — n)L/m

The integral on the RHS converges as ne — n, since m > 1. Hence, the trajectory reaches

at the point (n.,0) in finite time. On the other hand, from (3.43), we observe that the phase

portrait is symmetric about n-axis. The symmetric phase portrait together with the direction
of vector fields yields that the trajectory follows a homoclinic orbit. Now the assumption (A1)
is justified since n, < ngs from (3.58). Thus there exists a non-trivial smooth solution (n, E) of
(3.39) satisfying (3.42), and equivalently, a non-trivial smooth solution (n,u, ¢) of (3.17)—(3.18)
exists. From (3.34), it is easy to check that (n,u, ¢) satisfies (3.19)—(3.22) up to a shift so that
(3.21) holds. O

3.4 Peak of Solitary Waves

The proof of Proposition 3.3 consists of four steps. We first prove that

limni =1 (3.63)

e—0

and that V' = +/1 + K is a necessary choice for (3.63). We derive a rough estimate of n; — 1 in
Step 2. In Step 3, this estimate will be used to obtain the sharp estimate of n5. In Step 4, we

derive the sharp estimates of u5 and ¢5.

Proof of Proposition 3.3. Step 1: By (3.51) and (3.58) (or (3.59) for K = 0), we have 1 < n_ <
nt. Together with (3.50), this implies that V = v/1 + K is necessary for (3.63).

When K > 0, we observe from (3.58)—(3.59) that nf is defined as a unique root such that
1 <nf <nf and g(n$) = ¢g(1) hold. We examine the behavior of the function g(n) as € tends to
0 considering the limiting case ¢ = 0. From (3.44), it is clear that for any L > 1, g(n) uniformly

converges to
1+ K

n

1+ K 1+K
2 2n?

+Kn+exp< —Klnn)

go(n) :
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as € tends to 0 on the interval [1, L]. On the other hands, we have

d 1+K K 1+K 14K
ﬁ:-(ﬁ—n> {n—exp( 5 92 —Klnn)]. (3.64)

=:go(n)

It is easy to see that go(n) has a unique zero n = 1 and that

go(n) >0 for ne(1,00). (3.65)

1+ K

K
(3.65) that go is strictly increasing on the interval (1,7n2). This implies go(n) < go(1) on (1,7n2).

d
Hence, when K > 0, %(n) vanishes only at 1 and n? := , and it follows from (3.64)—
n

Thus by the uniform convergence of g to gy and the construction of n, (3.63) holds. Similarly,
we can verify that (3.63) holds for K = 0.
Step 2: By expanding ¢(1) = g(n) about n = 1, we have

31 @ (ng)
€ g e gr’\n
I " (nf—-1)%+ 3!( )(n* — 1)+ 1 b

(nf—1)=0 (3.66)

for some 1 < ny < n;. Using that lin[l) ns = 1, a direct calculation yields that there are constants
E—

€09, C' > 0 and some functions go, g3 of € such that for all ¢ € (0, ¢¢),

gD (1) = 2Vre + 2g4(e), (3.67a)
g (1) = —2(1 + K) + egs(e), (3.67b)
g™ (nf)] +lgs

T tleE)l +les(e) < C (3.67¢)

(see Appendix for (3.66) and (3.67)). Dividing (3.66) by (nS — 1)? and using (3.67a), we have

(nf — 1) (_g<3><1> 9V

3! 4l

2
(ns — 1)) = Ve + %92. (3.68)

From (3.63) and (3.67b)—(3.67c), there is sufficiently small g9 > 0 such that for all € € (0, &¢),

(3) 1) (ne (3)
g (1) g (), . g 1 _1+K 1 _1
- - - - — - —->C. .
3! T T S T (3.69)
Dividing (3.68) by the LHS of (3.69), we get
0 < nS —1 < 8Vre + 4eg,. (3.70)
g® (1)
Step 3: We divide (3.68) by — 30 to get
6V 302 5 9W(ng) 2
nt—1+——-ec=-— gf —=— (nf —1)° =: g4. (3.71)
g®(1) g¥(1) " 4g®(1)
By (3.67b)—(3.67c) and (3.70), there is a positive constant C' such that
g <€°C (3.72)
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for all € € (0,£0). Subtracting 34V e from (3.71), one has

—6V2 — 3¢90 (1)

e _ 1 _ —1 —
n,—1-3yV" ¢ V@ (1)

Ve + g4. (3.73)

Using (3.67b)—(3.67c) and V = v K + 1, we find that there exists a positive constant C' such
that
1
v

6V2 + 3¢90 (1)
g3 (1)

Now (3.72)—(3.74) imply that there exists some positive constant C' such that

< Cl6V? 4 3¢®)(1)| = 3Ce|gs| < eC. (3.74)

InS —1-3yVle| <2C (3.75)

for all € € (0, 0).
Step 4: By expanding (3.34a), we get

uE = (V4 e) [~ 1) - <ni—1>2] (3.76)

(n3)?

for some 1 < ny < nf. Subtracting 3ve from (3.76) and then applying (3.75), one has

uS — 3ve| = |V (n — 1 =37V e)

2V 2
— (S — 1) 4 ye(nf — 1) <1 - (n§ — 1)> ' 3.77
EoE e 10
< £2C.
In a similar fashion, we obtain from (3.34b) that
€ 2.2 € dh € € 2
6 = (14 2V +722)(nE — 1) + 2 (m) (s — 1) (3.78)

dn

for some 1 < n§ < n. Subtracting 3yV "' from (3.78) and using (3.75), we obtain

|65 =37V le| = |(nf —1 =34V e)

dh
+ve(n — 1)(2V +7¢) + %(ni)(ni —1)2 (3.79)
< £%C.
Now (3.31) follows from (3.75), (3.77) and (3.79). O

3.5 Asymptotic Behavior of Solitary Waves

In order to prove Theorem 3.2, it is enough to show that (3.29) holds on the half-interval
[0, +00) due to (3.19).
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3.5.1 Uniform Decay Estimate

For notational simplicity, we let

R =" g By = EO 270

3.80
€ € € ( )

throughout this subsection. From Theorem 3.1, we know that Ne >0 for £ € R and Ea > 0 for
€ €]0,400). We first prove some lemmas. In Lemma 3.6, it is enough to control only N. since
the RHS of (3.39) is linear in E°.

Lemma 3.5. There exist positive constants €y, C, and 0y such that the following statements
hold.

1. For all e € (0,g9),

N.(0) > 29V, (3.81a)

49% > EL(0) > 292, (3.81h)

1/2 < sup h(n®) < 3/2, (3.81c)
£eR

sup (INL()| + |E-(&)| + |EL(©)]) < C. (3.81d)

£eR

2. If0<8< 8 and N. <8 for alle € (0,e0), then there holds

|E.| > /7 N: (3.82)
for all 0 < e < &y.
Here §, 69 and C are independent of £ and ¢.

Proof. Tt is trivial that (3.81a) holds for all small € by (3.31). Using (3.31), we see from (3.39b)
that there exists some function g(e,nZ) such that

1

EL(0) = 5 (n°(0) = ")

1 (3.83)
= o5 (=2Vye(ns = 1) + (1 + K)(nf = 1)?) +ed(e, n),

where g(e,n;) is bounded by some positive constant C' uniformly in ¢ € (0,&g), and thus

lim E'(0) = 3v°

e—0

(see Appendix for (3.83)). Hence, (3.81b) holds for small .
Since 1 < n®(§) < nf for £ € R, there is a positive constant C' such that for all 0 < € < &,

sup |h(n®) — 1| < sup }(V +7e)? — K(nf)? — (n5)3|

§ER ¢ER
<(VA4ye)?—(K+1)+ ?elg |K (1= (n°)?) + (1 — (n°)?)| (3.84)
<eC,
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where we used V = v/K + 1 and (3.31) in the third inequality. It is obvious that (3.84) implies
(3.81c) for all small e. Now we choose g9 > 0 so small that (3.81a)— (3.81c) hold.

To obtain (3.81d), we apply the Taylor expansion to the RHS of (3.43) about n = 1 and
divide the resulting equation by 27 3. Then we obtain

- @) (1) ~ G)(ng) ~
(E.)? = g 5( )(Na)2+ g ?E”b)(NE)?a (3.85)
for some nj, € (1,n°), where
gD (1) = 42 (2V + ) (1 4 2Vre + 72e?) (3.86)

(see Appendix for the explicit forms of ¢ and ¢®®). From (3.31) and that 1 < n°(¢) < n for
¢ € R, we see that the RHS of (3.85) is uniformly bounded by some positive constant C' for all
€ € (0,e0) and £ € R as long as 1 < nj < n°. Hence, we have

sup | E.(£)] < C. (3.87)
£eR

Dividing (3.39a) by ch, we have from (3.87) and (3.81c) that

- | Ee|
sup | V.| = sup
¢eR  ¢cer [P(n7)]

<C. (3.88)
Taking the derivative of (3.39b) in &, the mean value theorem yields that
~ 1, ~ :
sup [EZ| = sup = |N/[|1 — ") n(n®)|
£€R ¢eR €

< sup [N (Cln® = 1]+ 1+ K — (V +72)2]) (3.89)
£eR &
<C,
where we used n° > 1 in the second line, and (3.88), (3.31) and V' = v/1 + K in the last line.
From (3.87)—(3.89), we obtain (3.81d).
From (3.85)—(3.86), we get

IE!—\/ \/ 350 N>\/>N\/1+ ())N (3.90)

since Ne >0 for £ € Rand V > 1. We choose dg > 0 so that

B)(ne
egWng)| 1
dosup sup |—s | < <. 391
0£€£0<€£€0 392)(1) 2 ( )
Then (3.82) follows from (3.90). In (3.91), the supremum exists by (3.86) and (3.31). ]

Lemma 3.6. There exist constants 9,91 > 0 such that the following statement holds: for each

0 < d < 01, there exists £ > 0 such that for all £ > &5 and 0 < € < g,
0< N(§) <6

Here 01, 9, and &s are independent of & and €.
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Proof. From Theorem 3.1, we see that for each ¢, Elim N.-(€) = 0 and N.(€) is strictly increasing
—00
on [0,00). This observation and (3.81a), together with the intermediate value theorem, yields
that for each 0 < § < 4V ~! and 0 < € < €, there is a unique &6 > 0 such that
N.(£.5) = 6. (3.92)

By (3.82) and (3.92), we see that for all 0 < £ < g9 and 0 < § < min{dy, vV 1},

E.(&5) > V70 (3.93)
since E.(€) > 0 on [0,00). Here the mean value theorem yields that
EL(§) = EL(0) - EZ(§)¢
for some & € (0,&). Thus, using (3.81b) and (3.81d), we have that there is a small & > 0,
independent of €, such that

EL(&) > (3.94)
holds for all € € (0,e9) and £ € (0,&). Integrating (3.94) over [0,£] for £ € (0,&p), we have

E.(§) > 7% (3.95)

since E.(0) = 0. Thus for all § > 0 with 7_%5 < &y, we have

E-(y"25) > /70 (3.96)
For a moment, we assume that there exists a number §; < min{éo,'yv_l,ygéo} such that
forall 0 < d < d; and 0 < € < g,
holds. Then (3.93) and (3.96)—(3.97) imply that

E.(§) > 76 (3.98)

for all £ € [7_%5, &.5) and 0 < € < gg (see Figure 3). Applying (3.81c) and (3.98) to the ODE

(3.39a), we have

E.(¢)
h(ne)

~RUe) = o > 2 A (3.99)

for £ € [7*%5, &) and 0 < € < g¢. Integrating (3.99) from 7*%5 to & 5, we obtain

~ 2 _3 ~ 3
0 < Ne(es) < —5v70(6es —7720) + sup Ne(y729). (3.100)
0<e<eg
Now it is clear that {s := sup &5 < oo for each 0 < ¢ < d7. If not, then there is a sequence
0<e<eo

{ek} such that the RHS of (3.100) diverges to —oo as k — oo, which is a contradiction. Hence,
we have that for each 0 < § < d1,

0= j\vfs(feﬁ) > NE(&(S) > Nf(g)
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for all 0 < e < gg and & > &s.
To complete the proof, we verify (3.97). It is sufficient to show that there exists §; <
min{dy, 7V 1, 7350} such that

v25 < inf &4 (3.101)

0<e<ep
for all 0 < § < ;. Here we note that the infimum in (3.101) exists and finite since 0 < & 5 < 0.
To verify (3.97), we suppose o inf & 5=0forsome0 <¢ < AV~ Then for some sequence
<e<ep

{ek}, we have &, s — 0 as k — oo. By the mean value theorem, (3.81a) and (3.92) imply that

> ~ 2
ka(o) - ka(fekﬁ) > V’Y —0
gek,é o fsk,é
for some 0 < &, 5 < &, . This is a contradiction since the RHS of (3.102) tends to +oo as
k — oo while the LHS of (3.102) stays bounded by (3.81d). Thus we obtain . inf &5 >0 for
<e<ep

—N. (€8) = >0 (3.102)

all 0 < 6 <~V ~!. By the definition, &5 decreases in 0 for each fixed €. This implies that

e |
038y S0 2 2, S (3103

for all 0 < § < 4V ~1. We let §; := min{do, vV 1, v2&, 72 Jdnf & 2} Then (3.103) implics
e<eo
that (3.101) holds for all 0 < 6 < d;.
O

Now using Lemma 3.5 and Lemma 3.6, we show the uniform exponential decay estimates

for the solutions. This will play an important role in remainder analysis.

Proposition 3.7. Let k be any non-negative interger. Then there exist constants Cy,e1 > 0,

and Cy > 0 such that

INEV(©)] + | EX) ()] < Cre ¢, (3.104a)
e(k) (k)
lu €<s)|+|¢ f)‘ oGt (3.104b)

for alle € (0,e1) and § > 0. Here Cy and Cy, are uniform in § and €. C, is independent of k.

Proof. Applying Taylor’s expansion, (3.39) is written as

(na B 1) —A (" - 1) + <R1> : (3.105)
E* E* R

. < 0 (K — J2)1>
1+ K- J% 0

is the Jacobian matrix of (3.39) at (n%, E°) = (1,0) (see (3.53)). Here, R; and R2 are functions
of (n°, Ef), and there is a constant C' > 0 such that

where

{ IRi| < C ((nf —1)%+ (n° — 1)E7), (3.106a)
IRy < e lC(nf —1)? (3.106b)
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for all € € (0,¢0) by (3.31) (see Appendix). The eigenvalues of A are

[J? — 1 — 2Vy + 42%¢
3.107
\f \/1 +2Vre + (ye)?’ ( )

where we have used (3.32). Let A = A\(¢) be the positive eigenvalue of A. By (3.107), we can

choose sufficiently small e, = e,(K,7) > 0 such that

d\ 1 721 —4V?) +0(e)

<0
de == 2X(g) (1 4+ 2V e + y2e2)?

for all € € (0,e,) since V =1+ K. Hence A(¢) decreases in € on (0,e,). Now we fix such e,.
One may easily check using (3.107) that (J%(¢) — K)A(¢) decreases in . Hence we obtain that
for all € € (0,¢e4),

— A< —A(ew), (3.108a)
{ V2V < (J2 = KX\ < (J%(gy) — K)A(es). (3.108b)

Considering diagonalization of the matrix A, (3.105) can be written as

()0 ()
P = P +P : (3.109)
E° 0 —\ E° Ro

1 (1 —[(J?=K)\N!
P:= - .
2 (1 [(J? — K)\ ! )

We multiply the second component of (3.109) by 2¢~! and then use (3.106) to obtain

where

N+ [(F2 = KONTEL < =\ (N +[(2 = KON E: )
=1 (3.110)
+eCN2 + eCN.E. + C[(J* — K)\7'N2.

Since N, > 0 and E. > 0 for £ € [0, 00), we have from (3.108) that

- Il S —)\(E*)Il

12 (R4 (e - KoMe)) T E) (3.111)

=:15

By Lemma 3.6 and (3.108b), we can choose a sufficiently small § € (0,01) such that

~ ~ o~ ~ 1
I+ eCN? + eCN.E. + C[(J* — K)\|7'N? < 312 <0 (3.112)

holds for all € € (0,e9) and £ > &5. Let £; := min{e,, 9}. Combining (3.110)—(3.112), we get

N+ [(J* = K)N'EL < —M;*) (NE +[(J? — K))\]_IE€> . (3.113)

28



We multiply (3.113) by R G| integrate the resultant over [5,&] to get

N-(§) + (JQE_% < [Na(fa) + U]j—%] e 256, (3.114)

Let Cy := 27'\(e,). Then (3.104a) for the case k = 0 easily follows from (3.114) by using
the bounds (3.81d), (3.108b), and the estimate (3.31). (3.104b) is obtained from (3.104a) and
(3.34). This finishes the proof for the case k = 0. By the induction argument, one can prove
the cases k > 1 by using the system (3.39) (see (3.140)). O

3.5.2 Proof of Theorem 3.2—Derivation of the Remainder Equations

In what follows, we derive the equations for the remainders (ng, u%, ¢%):

up — Vng = Mj, (3.115a)
0% — Vug + Kng = M5, (3.115Db)
¢5% — n% = VM + M5, (3.115¢)
and
OR" — Fr9f = M, (3.116)
where
Fo(§) :=2Vy — 2V?nkay — Vzij (3.117)

and M5 (i = 1,2,3), defined in (3.119)—(3.120) and (3.127), are some functions of nxqy, ng, u%p,
and ¢%. For notational simplicity, we let nxqy = ni. Since nk(§) = ngx(z — t) satisfies
(KdV), it also satisfies

—ynle + Vngnle + (2V) 0l = 0. (3.118)

Putting (3.28) into (3.33a), a direct calculation yields (3.115a), where

M5 = (ye — eVing)ng — (enk + nS)uf + 2 (ynk — Vi)

+e(Vng — Vig). (3.119)
(S —
=0
Similarly, we obtain (3.115b) from (3.28) and (3.33b), where

uzl* | K 2 3

M5 = (ye —eVng)up — 1; + 5 (2engng + |ng|%) — KOpe(e”)
VZn2  Kn2 (3.120)

+ &2 <7VnK— 2”1{ ;K>—5(nK—V2nK+KnK)

1
and Oy (e%) :=Innf — (n°—1)+ i(n8 —1)2. On the other hand, (3.115c¢) follows from (3.115a)—
(3.115b) since V = V1 + K.
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Now we derive (3.116)-(3.117). Plugging (3.28) into (3.17c), we obtain
1
nS — ¢% = —e’nlly —ed%” + 5(571;( + ¢%)? + Oge (%), (3.121)

E 1
where Oye (€%) 1= ¥ — 1 — ¢° — 5(<;5€)2. By adding (3.115b) and (3.121), the term ¢% in the
LHS of (3.121) is canceled, and one obtains

2

n 1
—Vug + (1 + K)n% = &2 <—n}’( + 2K> —e¢%" + 3 (2enk¢% + !(]5%\2)

+ Oge (%) + M5,

(3.122)

Multiplying (3.115a) by V, and then adding the resultant to (3.122), the LHS of (3.122) is
canceled from V = v/1+ K. Thus we have

0 = VMS + {the RHS of (3.122)}

1
= V{(he —eVn)nf — (en +nj)ug] — 6" + 5 (2enkdf + [651°)
R K (3.123)
- ’“5‘ + 5 (2enknf + Ingl*) = KOs (%)

Ving 14K
+ Oye (€3) + &2 <2V’ynK—V2n%(— 2K+ 5 n%—n'k)

£

+ (ve — eVng)ug

Since V' = v/1 + K and ng satisfies (3.118), the underlined terms of (3.123) are canceled. Using
(3.115a), we substitute uy of (3.123) with Vn% + MJ. Then it is straightforward to obtain

e + (ﬁ iV - K>n§> e — 5 (2enic + 67) 67 = MG, (3.124)

where
F(§) := =2V~ + (3V? = K)ng, (3.125a)
MG = M5 <’y€ —2Veng —2Vn% — ;Mi) — KOpe(£%) 4 Oye (%). (3.125b)

Using (3.115¢), we substitute n% of the LHS of (3.124) by ¢% + VM + M5 and then divide

the resulting equation by €. Then we obtain

o5 — [2ny ~(3V2— K — l)ng — %(BVQ - K- 1)%’”] PR = M5, (3.126)
where
M - (3V?-K
My = 2 a4t [P+ BC B pog vagiea)| . e

Applying V = VK + 1 to (3.126), we arrive at (3.116)—(3.117).
The following lemma directly follows from the definitions of nkqy, ng, ug, o3, Fe, and M5

(i =1,2,3), and Proposition 3.3 and Proposition 3.7.
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Lemma 3.8. Let k be any non-negative integer. Then there exist constants €1, C, >0 (inde-

pendent of k), and C, & > 0 such that for all 0 < e < &1,

@)1, [uk®), 165®)] < Cree @, (€2 0), (3.1284)

IME®)| < Cpe2em O (€20, fori=1,2,3), (3.128b)
sup |F.M| <, (3.128¢)

£€[0,00)

F(§) >V, (€2 &) (3.128d)

Here Cy and Cy are uniform in € and &. & is uniform in €.
Now we shall obtain the remainder estimates around £ = 0 using a continuation argument.

Proposition 3.9. For any fized & > 0, there is a constant C¢, > 0 such that for all0 < e < ey,

S (16% ()1 + 167() < Ce.e! (3.129)
holds. Here Cg, is uniform in € but depends on .
Proof. We multiply (3.116) by 2¢%’, and then add (|¢%|%)" = 26%6% to the resulting equation.
Then we have
(107 +167") = 21 + F)dqof + 2M50% (3.130)
Applying Young’s inequality to (3.130), there is a constant C' > 0 such that
(6% + 1651%)" < 1+ Eo| (1651 + |67 1) + IM5° + 67 (3.131)
< C (167" + |oR[) + Ce*

for £ € [0,00), where we have used (3.128b)—(3.128c¢) in the second line. We multiply (3.131)

C

by e~“¢, and then integrate the resultant over [0,£]. Then we get

6% 12(€) + [6217(€) < (16%'17(0) + [¢717(0)) e“C + e (e* — 1)

(3.132)
<20 £ et (et — 1),

where we have used the estimate (3.31) and that ¢%'(0) = 0 thanks to ¢*'(0) = nj(0) = 0.
To finish the proof, for any fixed & > 0 we take the supremum of the LHS of (3.132) over

Now we prove the uniform decay estimates for the remainders in the far-field region.

Proposition 3.10. There exist positive constants €1,&1,C, a such that for all 0 < & < &1,

|7 G @ + 1ooR) e ae < et (3.133)

Here a is independent of € and €.
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Proof. We multiply (3.116) by gb%eag for 0 < o < C, and then integrate the resulting equation

over [£1,400), where & and C, are the constants given in Lemma 3.8. Then one obtain

@I + o) oS = | - — agi{ e
— (K Re(E),

(3.134)

where we have used the fact that {lim qb%’gb%eo‘g = 0 for all € > 0, which is true by (3.128a)
— 00

since 0 < a < C,. By (3.128d),
/ (Vy6% % + 6% |7] e*¢ dé < the LHS of (3.134). (3.135)
1

By applying the Young inequality, and then using Proposition 3.9 and (3.128b), we find that

there is a positive constant Cg, > 0 such that

‘ME‘Q [e73 d§

the RHS of (3.134) < V7+a/ 9% %e L
2 . 2V y

5 [ enpetas + |<¢3;’¢€Rea @)
& (3.136)

Vy+a [ o a [ o
< / |¢%\265d5+/ 6520 de
&1 2 &1

2
+ 6405170(.

Now we choose a so that 0 < o < min{V~,2,C,}. From (3.135)~(3.136), we finish the proof. [

Proof of Theorem 3.2. We first prove that for every non-negative integers k, there is positive

constant C}, such that
| 1e@pesds < ot (3.137)
0

for all ¢ € (0,e1). As the induction hypothesis, we assume that for &k = 0,1,--- ,n, there is
some positive constant C}, satisfying (3.137). We take the n-th derivative of (3.116) in £ and
then multiply the resulting equation by (b%("”)eaé. Then we obtain

/ ‘¢£ (n+2) ’2 af df / s(bR n) +M£(n } ¢a (n+2) oaf df
0

1

- e (n+2)2 af > )12 ok
<2/0 PAGCIE d£+/0 |(Fosiy) )20 de

+ / M5 2eo¢ dg
0
<5 [Pt e Yo g et ag
0 —  Jo
+ Chet

<5 [ IoRTRet g+ 0ot
0
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where we used the Young inequality in the second line, (3.128b)—(3.128¢) in the third line, and
the induction hypothesis in the fourth line. Thus (3.137) is true for kK = n + 2. By Proposition
3.9-3.10, we know that (3.137) holds for £ = 0, 1. This finishes the proof of (3.137).
By the Cauchy-Schwarz inequality and the fundamental theorem of calculus , we find that
(3.137) implies that for every k,
sup 165 M (©)e3 < 20165 1z (19075 Vg + 165V 1sz )
£€[0,00) (3.138)
< Ciet,
where || - ||z = | - 6%£”L2([07OO)). Now the estimates for n; and u% follow from (3.115) by
applying (3.138) and (3.128b). To finish the proof, we recall that (n%,u%,¢%) is symmetric
about £ = 0.
U

3.6 Appendix

Solitary wave solutions to (KdV) We consider the KdV equation
1
ny + Vnn:c + ﬁn:m’x = 07
where V' > 0 is a constant. By letting & = x — «t for a constant v > 0, we have

1
— Vv — =0.
e+ Vining 4 o5 e
We impose n, ng, nge — 0 as & — £oo. By integrating in &, we obtain
Vo, 1
_ i e =0
A Tayne =0
and then we multiply it by n¢ to get

Vo, 1
—ynng + gn ne + angng =0.

Integrating in £, we have

2 2
ng = 2V~n? — %n?’ = 2Vn? (fy — gn) ,

and hence
__dan — \/ﬁ de.
ny/1— %n
Now we let ;{yn = sech?w. Since ;{ydn = —2sech?w tanhw dw and 1 — sech?w = tanh?w,

\/W i — 37“*25(—:-(3h2w tanhw dw 94
= = —2dw.
7 3Vﬂysech2w tanhw

Integrating in &, we get

’wz_TmﬁJrﬁo

for some constant &y. We let & = 0. Since sech? w is symmetric in w,

n = 37786(:}12 < ' 22‘/75) = 3Vrysech2 ( 22‘/7 (x — 7t)> .
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Solutions of the equation (3.23) It is trivial that z = 1 satisfies (3.23). By taking the
logarithm of (3.23), we find that (3.23) is equivalent to that

K
0=Khlnz+InK+In[(z—1)*+K '] - = (2= 1) = f(2).
It is straightforward to obtain that
a, . —K(z—1)? 1+ K 1+ K
9 = o PV R N

1+ K

Since lirll f(z) = —oo and f(1) = 0, there exists a unique (x > > 1 such that there
Z—r+00

holds that f({x) =0 and f(z) > 0 for all z € (1,(x). We note that this result also shows that

(3.24) holds.

Derivation of (3.66)—(3.67) and (3.85)—(3.86) By taking the derivatives of g in n,

g W)= —-0Pn 2+ K +efh, ¢®Pn)=272n73+eTn? +Hh/,
g3 () = =620 + efh3 + 3efhn’ 4 fh”,
g W) = 2472075 + et + 67 h20 + 3e (') + 4efThh" + T h".

From (3.35) and (3.37), we have
H1)=0, h()=J*>-K, KWQ1)=-3J2+K, h'"(1)=12J%-2K, (3.139)
and hence we get ¢(V(1) =0, ¢ (1) = (J2 = K)(J? =1 - K) and
g® (1) =6J% —2K + (J? — K)? 4+ 3(J? = K)(—3J% + K).

Using (3.32), a direct calculation yields (3.67a)—(3.67b). From these results and (3.35), (3.37),
and (3.31)—(3.32), we see that (3.67c) holds. (3.85)—(3.86) follow in a similar fashion.

Derivation of (3.83) Let ¢(n) :=n — ™. It is straightforward to obtain that
V) =1—en, ¢Pm)=(=n*=n)e, ¢ =(=n>—3nn" —n")e.
Using (3.139) and (3.32), we get

1 e 1
(" - M)y = = (14 K — J*)(n - 1)

(P = P =3P+ K) = 12 + @) — 1P| (3140)

= (=2Vy 4 0(e)) N: + (1 + K + O(¢)) N2 + e¢g® (n§)N?

for some 1 < ny < n°. By (3.31), we obtain (3.83).
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Derivation of (3.106) It is straightforward to check that 8]2;721 = OpgR2 = 8%722 =0 and

O*Ry = Eh 21" —2ER3(R')?, 0,5R1 =hh"2,
2Ry = —e L (N2 + 1),
Now, (3.106) follows from (3.35), (3.37) and (3.31),

3.7 Small Mass Limit of the two-fluid Euler-Poisson System

We consider the two-fluid 1D Euler-Poisson system (2.16) with the isothermal pressure for

ions and electrons. In the non-dimensionalized form (by applying the same scaling as (2.20) for

the electron quantities), it

with the far-field condition

is given by

Oni + 0z (nju;) =0,

Oine + Op(neue) = 0,

Opui + u;Opu; + KO0y(Inn;) = —0,0, (3.141)
p (Optie + ueOzie) + Op(Inne) = 020,

2
_ax¢ = N5 — Ne,

Njy Ne —2 17 ui7u€7¢ — 07

where = m./m; is a constant representing the electron-ion mass ratio.

We recall that the Euler-Poisson system for ions derived from the two-fluid Euler-Poisson

system by letting m, = 0. It would be meaningful to justify the solutions of these two system is

close to each other for sufficiently small p > 0. As far as the author knows, there is no rigorous

study on this subject. In t

his section, we present some formal computation, which shows that

solutions to (3.141) converges to the those to (IDEP) as p — 0 in terms of the KdV limit.

By introducing the Gardner-Morikawa transformation (GM), (3.141) becomes

edyn; — VOoyn; + 0x(nsu;) =0,

edine — VOyne + 0y (neue) =0,

O
eOu; — VOru; + u;0zpu; + K call

m = 029, (3.142)
M (5atue — VOyue + Ueazue) + Zne = m¢a

—66§¢ =n; — Ne.

Assuming that the solutions to (3.142) is represented by the formal expansion as (3.5), one

can check that the coefficients of €° is zero, and the coefficients of ¢ satisfy

—V@mngl) + Omuz(-l) =0,
—Vaxngl) + (%ugl) =0,

—Voul + Ko = —0,60), (3.143)
—uV0pult) + 9, = 9,0,
n® = n ).
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In order to have the non-trivial first order profiles, V must satisfy

I+wV?=14+K < V*-K=1-uv2 (3.144)

From (3.143), we have the relation

( u§1) _ Vnz(l),
u((il) = Vngl),
o = vl — kol = (v - k)Y, (3.145)

¢V = —uvull) + 0l = (1 — pV?)nl,
ngl) = ngl).

\

We note that V2 — K = 1 — uV? > 0 for sufficiently small p and that (3.145) is not an
overdetermined system.

At €2 order, we obtain
o — Voun® + 0,0 + 8, (nVuD) = 0,
&gugl) = V@xugm + ugl)axugl) + K@Inl@) - Kngl)axnz(»l) = —0,06?,

9 — Van® + 0,u® + 9,(nMulV) = 0, (3.146)

1 <8tu£1) — V&Eugz) + ugl)&rugl)) + arnf) — ngl)azngl) = 9,0,
9% = nz(?) —n?.

Multiply the first equation by V and then add it to the second equation. Multiply the third
(2)

equation by pV and then add it to the fourth equation, Then u;”’ and ug) terms are canceled

and we have

VoY + (K — v2)on® + 3V? — K)ynMonlY) = —0,0@),

21Vt + (1 — pv?)0,n® + 3uv? — DniMonY = 9,62, (3.147)
~3¢M = 9,0 — 9,02,

where we have used (3.145). Add the first and second equation and then use (3.144) and the

third equation. Then, we have

2V (1 + w)omY + (1 — uV2) 3™ + (3V2 — K + 3uv2 — D)niMo,nl = 0. (3.148)
Equivalently, using (3.144),

8tn(1) + (1~ MVQ)Q

S LAY MY Mg, =
i V(1 + 1) Oyn;’ +Vn; ' 0n, 0. (3.149)

(1)

In the moving frame { = x — ~t, by imposing that n,’ — 0 as |{| — oo, we obtain

Vv

o, =V Vo e
From (3.144) and (3.145),
2
Y A=Y iy, Ve
—a2® tavaa @) tog s @) =0
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The solution to this equation with ¢!, qﬁ(l)/ — 0 as || — o0 is
3(1—pV?)y 29V (1L + p)
(1) 2 P I gech?2 [ M2 A TR

o) = Mo et (L ).

UK 1+ K
PR oy = 2

1+p T+u
converges to (3.3), the rigorous approximation of £~ ¢ of the one-fluid Euler-Poisson system.

1
We note that 1 — MV2 = and 1 — uK > 0. As u — 0, ¢(1)(§)
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4 Linear Stability of Solitary Waves for the Euler-Poisson Sys-

tem

4.1 Notions of Stability for Solitary Waves

That we can observe some phenomena or objects means that they stay ‘stable’ for enough
time we can detect them. The subject of stability in mathematical aspects would be thus
important. It should be pointed out that, however, the terminology ‘stability’ is somewhat
vague; in which sense are solitary waves stable? We need to establsih suitable notions of
stability, and it would depend on the properties of solitary waves and the underlying structures
of partial differential equations.

We have seen in Section 3 that in a certain scaled frame, the small amplitude EP solitary
waves are well approximated by the KdV solitary waves. On the other hand, the stability of
solitary waves for the KdV equation has been extensively studied. In what follows, we investigate

those notions of stability of traveling solitary waves in the context of our problem.

The result of Section 3 states that the 1D Euler-Poisson system

on + 0s((1 +n)u) =0,
dsn

O + ulsu + K = —0s9, (4.1)
1+n
026 = (1+n)— e,
with
n,u, —0 as s — Foo, (4.2)

has a two-parameter (c, ) family of traveling solitary wave solutions

(na u, ¢)(37 t) = (na Uc, ¢C)(S —ct+ ’Y)

for all V1+ K < ¢ < (xkVEK (when K > 0 for instance) and v € R0 We let u := (n,u)”
and u. = (ne,uc)’. ¢ or ¢, is determined by the Poisson equation of (4.1). In the moving
frame x = s — ct, u. is the stationary solitary wave solution. We point out that the speed ¢
is a parameter and the amplitude of the waves depends on the speed parameter. This is the

distinguishing feature of traveling solitary waves.

Orbital Stability For a fixed ¢, u.(- + )| er is a one-parameter family of solitary waves.
One may consider u.(-++) as a curve (or orbit) parametrized by v € R in some function spaces.

In this point of view, orbital stability means that the solution of an evolution equation stays

Let ¢ = V1+ K +¢ and ne(s — ct) := n(e"/*(s — (VI+ K +e)t)) — 1.

0By letting ¢ = —¢’ and v = —u’, we obtain the traveling waves moving to the left direction. This contrasts
with that the KdV equation does not have solitary waves traveling to the left direction. This is one reason people
say that the KdV equation is uni-directional. Other explaination is that the group velocity of the KdV has one
sign. We remark that the KdV equation has the reversibility t — —t', x — —z'.
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close to the orbit u.(-+7)|,er for all time ¢ > 0. More precisely, we say that the one-parameter
family of solitary waves u.(- 4+ )| er is orbitally stable, if for a given € > 0 there is some § > 0
such that

lug —ul| <0 = ;IEI]% |lu(,t) —uc(-+7)|| <e forallt>0.

Since each point of the orbit is some spatial translation of u., the orbital stability implies that
the ‘shape’ of the solitary wave is stable. We remark that the orbital stability of the traveling
solitary wave u.(s — ct) in the original variable is equivalent to the orbital stability of the
stationary solitary wave u.(x) in the moving frame = = s — ct, if one considers translation
invariant norms such as L?-Sobolev norms.

The classical frameworks such as [2] and [3] for the orbital stability of solitary waves in-
voke the special structures of converved quantities and the second variation of a constrained
Hamiltonian. The issue for our case is that whether the Euler-Poisson system has such a ‘good’

structure. Indeed, the 1D Euler-Poisson system (4.1) possesses a Hamiltonian

Hg(n,u) := H(1 4+ n,u)

0.0
2

:/W+K((1+n)m(1+n)—n>

5 +(1+n)p—e®+1dx

and the momentum
Mg(n,u) := M(1+n,u) — /udm = /nuda;.

where H and M are defined in (2.6) and (2.5b) respectively. Hr and Mg are conserved quan-
tities. We let Vi(n,u) := Hg — ¢Mg. Some formal calculations of (2.8) and (2.9) yield that

% 2 %
—E:u—+K1n(1+n)—|—¢—cu, L

o _ 1 _en.
5 5 Su (14+n)u—cn

We see that the solution (n,u.) to the EP system is a critical point of the constrained Hamil-

tonian Vg. The second variation of Vg is given by

2Vy  6%Vg K

on?  ondu| _ |14, YT 4 Ond 0
Vg 9V u—c 1+n 0 0]
dudn  ou?

where 0,¢ denotes a formal variational derivative. Here the first matrix on the RHS a saddle

point at (n,u) = (ne, uc) for sufficiently small e. And what 9,,¢ is?

Asymptotic Stability On the other hand, the notion of orbital stability of solitary waves
does not tell us the asymptotic ‘location’ of the perturbed waves. For the initial data of u(s,t)

sufficiently close to u.(s + ), if there exists a fixed v € R such that
u(s,t) > ue(s —ct+v4) as t— +oo,

then we say that a one-parameter family of waves u.(-+7)| er is asymptotically (orbitally) stable.

While this notion of stability is typical for the viscous shock waves of viscous conservation
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laws, it cannot be expected for solitary waves in general. Roughly speaking, this is because
the speed of traveling solitary waves is a parameter which is also related to the amplitude of
waves. To illustrate, we consider the initial data ug(s) = uy(s) ~ u.(s) for ¢ ~ ¢ so that
we have u(s,t) = uys(s — c't). Since uy(s — 't) and u.(s — ct) travel with different speeds,
u(s,t) = uy (s — c't) cannot approach to any fixed translation of u.(s — ct) as t — +o0o. In fact,
this is a reason that the orbital stability is an appropriate notion of the stability for solitary
waves.

Small perturbations of traveling solitary waves can yield a small change in the speed. Hence,
one should allow the parameter ¢ vary. We expects that if the initial data ug(s) is sufficiently

close to u.(s + ), then there is some fixed (c4,74) sufficiently close to (¢, ) such that

u(s,t) —u. (s —cpt+v4) -0 ast — 4oo. (4.3)

In such a case, we say that the two-parameter family of solitary waves is asymptotically stable,
and this can be understood as follows: as t — +o00, u(s,t) converges to a point of the two-
dimensional manifold {u.(- + ) : ¢ € R and v € R} in some function spaces. We investigate in
which norm the convergence (4.3) can be expected.

Small perturbation of the EP solitary waves is governed by the linearized EP system around
the solitary waves. We assume that in a moving frame z = s — ct, small amplitude waves are
governed by

o — cOyn + Opu = 0,
O — cOzu + KOyn = —0,9, (4.4)
—92p =n— ¢.
This assumption would be plausible if small waves are sufficiently far from the peak of large
solitary waves. If we assume that the solution of (4.4) is a superposition of wave packets

A(k)eik””w(k)t, then each packet propagates with the group velocities

_dw+(k)

dwy (k) - 1+ K(1+k?)? S VItK,
- dk 1 : dwy (k)
ViR T K(1+k?)? gk <7

This implies that small waves travel to the left in the frame z = s — ¢t.!! In this regard, we

see that L?-Sobolev norm might be inappropriate for the asymptotic stability. First of all, L?
norm is invariant in space translation. In fact, L?-Sobolev norm of the solution (n,u, ¢, Dp) to
the linearized EP system (4.4) is conserved.'?:!3

Since large solitary waves travel faster than smaller solitary waves, we expect the convergence

(4.3) in the moving frame with the speed of the largest solitary wave by introducing exponentially

"1n the original space variable s, the wave packets propagate in both directions.

Precisely, when K = 0, |lul[31 + ||¢l|72 + 2/|0:¢|72 + 102932 is conserved, and we have ||n||72 = ||¢]|72 +
210072 + 1020 32. Thus, |jul|71 + 1|32 is also conserved. When K > 0, K ||n||72 4] (u, ¢, 82¢)|| 2 is conserved.

13Question: do the solutions decay in L™ norm? If the data is localized in low frequency, similar behavior to

the Airy equation?
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weighted norm:
1f @) sy = €™ f(@)]|msr), (1> 0).

In the same spirit, this weighted norm was introduced in the context of the asymptotic stability
of the KdV solitary waves [27]. In order to see the meaning of convergence in the weight norm,
we suppose that a function f(z,t) converges to zero in H% (R). For any fixed bounded interval

I C R, f(z,t) is bounded, and there are two possibilities:
1. f(z,t) escapes the interval I to the left, or
2. f(z,t) decreases to zero without leaving I.

In both cases, f(z,t) uniformly converges to zero on the interval I, and hence, convergence
in H% (R) norm implies local uniform convergence. The first mechanism of stability is called
convective stability, and the second one is called absolute stability. As we observed, the stability

mechanism for the solitary waves is convective in the moving frame of the largest solitary wave.

Linear Asymptotic Stability As a first step toward the non-linear stability, we will study
the linear version of the asymptotic stability (4.3) in Section 4. In the moving frame = = s — ct,

we may write (4.1) as (see (4.11))
opa = Fe(ue). (4.5)
Here we note that the nonlinear operator F, involves a parameter ¢ and that the two-parameter

family of solitary waves u.(-+y) is a stationary solution to (4.5). Let u := u —u, and consider

the linearized EP system around u.:
oa = Lu. (4.6)

Due to the translation invariance and the speed parameter, £ has a zero eigenvalue with alge-

braic multiplicity at least two. More precisely, we have
LOoyu, =0, LIu.=—0u..
Indeed, by taking 0 and 0. of 0 = F¢ (uc(- + 7)), we observe that

0=20y[Fe(uc(-+7)] = 0= (VuFe)druc( +7)
= 0= £axuc(' + ’Y)v

0=0c[Fc(uc(-+7)] = 0= (0F)uc(- +7) + (VuFe)deuc(- +7)
=  0=20zuc(-+7)+ LOuc(-+ 7).
Thus,
u(z,t) = dyue + (Ocu, — toyue)

is a non-decaying solution to (4.6). We will study the linear asymptotic stability modulo the

span of these two non-decaying modes, span{d,u., d.u.}.
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The linear asymptotic stability can be interpreted as follows: the solution to the linearized
equation around u.(- + ) asymptotically converges to a point of the tangent plane of the two-
parameter family of solitary waves at u.(- + ). By differentiating u.(s — ¢t ++) in ¢ and v, we

have the formal expansion of u., (- +~v4) around (c,7):

Ue, (5= et +74) R uc(s —ct+7) + (74 =) [Oauie(s — ct +7)] (47)

+ (c+ — ¢) [Ocuc(s — ct +v) — tozuc(s — ct +7)] .

The RHS of (4.7) can be interpreted as the tangent plane of the two-dimensional manifold
uc, (s — eyt +v4) at ue(s — ct + ) with a basis

{838116(' + ’7)7 80“0(' + 7) - taIuC(' + ’Y)}

The position (¢4 — ¢, v+ — ) at which the solution of the linear equation converges as t — +00

is determined by the initial condition of the linear equation.

4.2 Main Results

The previous section concerns the existence of traveling solitary wave solutions to (4.1)—(4.2)
and the asymptotic behavior of the solutions in a certain stretched moving frame as ¢ — 0. We

summarize the result.

Theorem 4.1. LetV =1+ K and c = vV1+ K +¢ for K > 0. Let k be any non-negative
integer. Then the following hold:

1. (a) For all sufficiently small ¢ > 0, (4.1)=(4.2) admits a non-trivial (smooth) traveling

solitary wave solution (nc, uc, ¢c)(x), where x = s — ct.

(b) There exist positive constant g, C, and Cy, such that for all ¢ € [0, 0],
ke ()| + |0 uc(w)] + |05gc(x)] < Cpeh/>HemCe e, (48)

2. Let (N, s, 64)(€) 1= £ (ne, e, @) (z), where & := Y2z, There exist positive constants
o, C and Cy such that for all € € (0,¢ep],

0F (ne — Wi)| + 108 (s — VI K| + |08 (¢ — Wi)| < Cree K, (4.9)

Ug(€) = %sech2 <\/Z§) (4.10)

1
—85\1’]( —|—V\I’K6§\IJK + WOE\IIK = 0.

where

is a solution to

Fore =0, (n«,us, dx) = (Ui, VU, V).
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In the moving frame z = s — ¢t and ¢ = ¢, (4.1) becomes

o — cOyn + 0x((1 +n)u) =0,

O _ 5.6, (4.11)

8tu—68xu+u8xu+K1+n

026 = (1+n)— e

From Theorem 4.1, the solitary wave solutions (1, uc, ¢.)(x) satisfy

— cOyne + 0 ((1 + ne)ue) =0, (4.12a)
OzNe
- x U cUzgUe K = —0UzxPc¢, 4.12
c Ot + ucOpuc + T4 02 (4.12b)
— e = (1+ne) — e (4.12c)

The linearization of the Euler-Poisson system (4.11) around (n, uc, ¢¢) is given by

) (Z) + 118, <Z> YLy (Z) - (_2@) , (4.132)

— 979 =n—e”0, (4.13b)

where Ly = Li(x,¢) and Ly = La(x,¢) are the matrices defined by

—c+u. 14+n, Ozl Oz
Ly := K N , Lo:= Ko.n. P . (4.14)
— —_——_— u
1 + nc C uc (1 + TLC)Z x e

For given n € L*(R), a unique solution ¢ =: (—02 + e%<)~!(n) to the linear Poisson equation
(4.13b) exists in H?(R) since ¢, is small.

The solution of the linearized EP system (4.13) will be represented in terms of the Cp-
semigroup. The spectral information of the generator gives the asymptotic behavior of the
semigroup (see Section 5 for the related spectral and semigroup theory). By substituting the
Ansatz (n,u, ¢) = eM(n,u, ¢)(x) into (4.13), we consider the eigenvalue problem for the Euler-

Poisson system,

A= L)(n,u)T =(0,0)T, (4.15)

n n 0
()= () (o))

Due to the translation invariance and that the speed c is a parameter, A = 0 is an eigenvalue

where we let

of £ in L? with algebraic multiplicity at least two. Indeed, by differentiating (4.12) in = and c,

we obtain that

Ly (ne,ue)t = (0,007, LOe(ne,ue)’ = =0y (ne, ue)t. (4.17)

Since (ne, uc, gf)c)T and Oy (ne, ue, d)c)T exponentially decay to zero as |z| — 400, the essential

spectrum of £ in L? coincides with the imaginary axis of the complex plane. Moreover, we will
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show that there is no eigenvalue of £ with Re A > 0. In other words, the two-parameter family
of solitary waves for the Euler-Poisson system is spectrally stable in L? (Theorem 4.21).

To study the linear asymptotic stability, we define

1 @)z m) = €™ F (@) sy, (0 >0), (4.18)

where H*(R) is the usual L? Sobolev norm. While the norm (4.18) moves the essential spectrum,
it does not change the location of the zero eigenvalue of £. The essential spectrum of £ in L%
space consists of the images of two parametrized curves strictly lying on the open left-half plane
of the complex plane (Proposition 4.6). A = 0 is the only eigenvalue of £ with multiplicity
two on some open set containing the closed right-half plane (Theorem 4.22). The corresponding
eigenvector and the generalized eigenvector are given by 9, (ne, uc)” and 0.(ne, uc)T respectively.
This idea—separating the essential spectrum and the embedded eigenvalue—was first introduced
by [33] in the study of stability of traveling waves of parabolic system, and it is successfully

adopted to the stability of the KdV solitary waves in [27].

In order to prove the linear asymptotic stability, we will show in Section 4.6 that

(i) £ generates a Cp-semigroup,
(ii) A =0 is an isolated eigenvalue of £ with algebraic multiplicity two,

(iii) (A — £)7! is uniformly bounded on Re X > 0, outside any small neighbourhood of the
origin.

Applying the result of Priiss [29] (see Theorem 5.29), we then obtain our main result, Theorem

4.2. For a Hilbert space H, we denote H x H by (H)>.

Theorem 4.2 (Linear convective stability of solitary waves). Consider the operator L : (L?))2 —

2V
(L%)2 with dense domain (H%)2 For 0 < co < 4/ 5 and £ > 0, let n = coe/?. Then there
exist g > 0 such that for all € € (0,eq), the following holds: for given (ng,ug)’ € (L%)Z with

P(no, uo)T = 0, where P is the spectral projection onto the generalized eigenspace of L, we have

1(n(0), ()22 < e[ (mo, wo) | 122 (4.19)

for some £ > 0.

To study the eigenvalue problem, we will apply the Evans function, which is particularly
useful for detecting eigenvalues and their algebraic multiplicity. Calculating the Evans function
is not simple in general. On the other hand, the Evans function for the KdV equation is
explicitly known [27]. Our strategy is to show that in a special scaling, the Evans function for
the EP system converges to that for the KdV equation. The work of [28] concerns a similar
issue for some Boussinesq systems. We refer to Section 5 for the general description on the
linear stability of nonlinear waves and some prerequisites such as spectral theory, semigroup

theory, and the Evans function.
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(a) Spectrum of in unweighted spaces (b) Spectrum in exponentially weighted spaces

Figure 5: The bold curves indicate the essential spectrums of £. The zero eigenvalue of L is

isolated in e™-weighted L? spaces for sufficiently small 1 > 0.

Eigenvalue problem of the Euler-Poisson system and the KdV equation We formally
observe how the eigenvalue problem (4.15) is related to the eigenvalue problem of the KdV
equation. By intoducing the KdV scaling

E=e"%z, X=¢£324, (4.20)
(4.15) becomes
eAn — cOen + Ocu + O¢(enyu + cuyn) = 0, (4.21a)
Au— K ) = —Oe, 421
eAu — cOgu + KO <1 n ETL*> + ¢ (eusu) 1930 (4.21b)
- eagqﬁ =n — P (4.21¢)

By integrating (4.21a)—(4.21b) in £, we formally obtain that (recall that ¢ = V1 + K + ¢)

—V1+Kn+u=0(e), (4.22a)
Kn—+V1+Ku+¢=0(), (4.22Dh)
n—¢=0(¢). (4.22¢)

Taking derivative of (4.21c) in &, and then subtracting the resulting equation from (4.21b),
—0¢¢ term in the RHS of (4.21b) is canceled. Then, by applying the Taylor expansion, we

obtain

ehu— (VI+ K +¢)0cu+ (K + 1)0en — KOe(enan) + O (cusu) + €3¢ — Oe(e¢u) = O(?).
(4.23)
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Multiplying (4.21a) by V = V1 + K and then adding the resulting equation to (4.23), we see
that —v/1 + K Ozu and (1 + K)O¢n terms in (4.23) are canceled, and we have

VAn —Vogn + VOe (nyu + usn)

(4.24)
+ Au — Ogu — KO (nyn) + O¢(usu) + 8g’¢ — O¢(d0) = O(e).
Using the relation (4.22) and Theorem 4.1, we obtain from (4.24) that
1
An — 0en + VO (Ygn) + Wag’n = O(e). (4.25)

4.3 Reformulation of the Eigenvalue Problem

Since the operator £ involves the nonlocal operator (—92 + e?)71(n), it is convenient to
rewrite A — L as the associated linear ordinary differential operator. For notational simplicity,
we let

J=J(x,e):=(c—u)? — K. (4.26)
Since sup |uc(z)| = O(e), J(x,¢) converges to 1 as ¢ — 0 uniformly in = € R.}* Hence the

T€R
matrix L; is invertible, and we have from (4.15) and (4.16) that

(@)-sfmea()-(2)

4.27
1 —C + Ue —(1 + nc) _(uc)zn - (nc)xu —An ( )
== -K K(ne)zn
J 1+nc —C+'LLC m—(uc)xu—Au—¢m
We rewrite the Poisson equation as
bp =10, Uy =e%d—n. (4.28)
By letting y := (n,u, ¢, )7, the eigenvalue problem (4.15) is written as
d T
A()‘)y = df - A(CL‘, )\7 5) y= (07 07 07 0) ) (429)
x
where ) ;
0 O
oo\ | T 0
A=A Ne) =" 7 — . (4.30)
02 I 0 O 0 1
~1 0 | e* 0

"“Indeed, J is always positive as long as the solitary wave exists. This follows from (4.81d) and the analysis

of the function h in the previous work. This fact can be used for the large amplitude solitary wave.
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Here A has the form of A(z, \,¢) := Aj(x,e) + Asa(x,€), where

0
~L'Ly | LY ( >
0
Ar:= (4.31a)
0 0 1
-1 0 0
(uc)alc — UC) . K(ne)s (ne)z(c — uc) + (uc)z(1 4 ne) 0 L+n.
J J(1+n, J J J
K(uc)s  K(c—uc)(ne)s K(ne)sz (¢ — ue)(Ue)s ) C e
= | J(L+ne) J(1+n.)? J(1+ne) J 7 |, (4.31b)
0 0 0 1
—1 0 €¢c 0
. c—u. 1+4+n.
-L |0 K 0
Ay = ! 2| = 1 C— Ue ? . (4.31c)
0, |0 J|_1+4+mn.
02 ‘ 09

Proposition 4.3. Consider the operators A — L : (H')* c (L*)* — (L*)? and A(N\) : (H')*
(LYH* = (L?)*. Then the following hold.

(a) A— L is not Fredholm with index 0 if and only if A(\) is not Fredholm with index 0. In this
case, A € 0ess(L).

(b) X\ — L is Fredholm with index 0 and N'(A — L) = {0} if and only if A(X\) is Fredholm with
index 0 and N'(A(N)) = {0}. In this case, X € p(L).

(¢c) X\ — L is Fredholm with index 0 and N'(A — L) # {0} if and only if A(X\) is Fredholm with
index 0 and N (A(N)) # {0}. In this case, X € op(L).

These statements also hold for the operators X — L : (H%)2 C (L%)2 — (L%)2 and A(X) :
(D) € (L3)* = (L2)*

The proof of Proposition 4.3 is given in Section 4.7. Due to the characterization of the
Fredholm properties of A(\) in terms of exponential dichotomies ([23],[24]) and the roughness
of exponential dichotomies ([7]), there is no A € C such that A()\) (hence A — £) is Fredholm
with non-zero index since xli)r_ir_looA(m;) = xli)r_nooA(m; ). Hence 0ess(L) in L? space consists of
A € C such that A(X) is not Fredholm, and it is characterized by A for which the asymptotic
matrix A%(),¢) = QCEIEOOA(x, A, €) has an eigenvalue p with Repy = 0. In L% space, Tess(L) is
characterized by A for which the matrix A (), e)+nI has an eigenvalue p’ with Re ' = 0 since
studying the spectrum of the operator J, in L?I space is equivalent to studying the spectrum of

the operator d, — 7 in L2 space.

4.4 The Evans Function

Before we define the Evans function for the Euler-Poisson system, we briefly summurize the

definition of the Evans function and its properties following [26]. In order to locate A for which

47



the operator A(\) has a non-trivial kernel, we consider the first-order linear ODE system

dy
T Az, N\ e)y (4.32)

with the matrix A(z, A, ¢) defined in (4.30). We observe that A(x, \, &) converges to the same
asymptotic matrix A*°(\,e) as + — £oo. To define the Evans function for (4.32) on a simply

connected domain Q° C C, we need to verify that for fixed parameter ¢,
H1 A(x, )\ ¢) is continuous in (z,\) € R x QF and is analytic in A for fixed =.

H2 A(x, )\, ) converges to A®(\,e) as |z| — oo, uniformly for A\ on any compact subset of
QO°.

[e.9]

H3 The integral / |A(z, A\, e) — A®(\, e)| dz converges for all A\, uniformly on compact
—0o0

subsets of QF.

H4 For every A € QF, the matrix eigenvalues p1; = 11;(A, €) of A% = A (), ¢) can be labelled
so that
Repi < py :=min{Re p; : j = 2,3,4}.

Under the assumptions H1-H4, (4.32) has a unique solution y™ =y (z, A, €) satisfying

lim e M7yt = vy, (4.33)

T—r+00

where vi = vi(\,¢) is a right eigenvector of A associated with p;. The transposed ODE

system
dz
— = —zA(x, A\ €), 4.34
= —aA(w,\2) (434)
where z is considered as a row vector, has a unique solution z~ =z~ (x, \, €) satisfying
lim e'%z" = wy, (4.35)
T—r—00

where w1 = wi(\, ¢) is the left eigenvector of —A° associated with —u such that wyvy = 1.
Here the solutions y™ and z~ can be constructed so that they are analytic in A € QF for fixed
x € R. The Evans function D(\,¢) for (4.32) is then defined by

D(\e) =z (2, )\ e)y " (z, )\ ¢),
which is analytic in A and independent of z, and it is characterized by

lim e %yt = D(\ e)vy. (4.36)

T——00
The following is a summary of Proposition 5.39.

Proposition 4.4. Suppose H1-HJ hold on QF for each ¢ > 0. Let A € Q° and y ™' (z, \,€) be
the solution of (4.32) satisfying (4.33). Then, the following statements hold true.
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1. The following are equivalent:

(a) D(X\e) =0;
(b) yT(z,\ ) = o(e"'™) as x — —00;

(c) yr(z,\¢e) = O(e(“*_e)x) as x — —oo for any 0 < 6 < pyx — Re .
2. For any solution y(x, \,e) of (4.32), the following are equivalent:

(a) y(x, A\ e) = O(e"?) as x — +00;
(b) y(z,\ ) = ay" (z,\ ) for some constant a € C;
(c) y(z,\e) = o) as & — 400 for any 0 < 6 < p, — Re ;.

We will see that Repu; < 0 < s holds on the natural domain ReA > 0. In this case,
Proposition 4.4 implies that y*(x;) is an L? solution of (4.32) if D(\, &) = 0. Conversely, if
(4.32) has an L? solution for some A, then D(\, ) = 0. In a similar fashion, we have that (4.32)
has a solution in L% if and only if D()\, &) = 0, provided that

Repr +n7 <0 < py + 1. (4.37)

We will see that (4.37) holds on some right-half plane containing the imaginary axis.

Remark 4. If X is an L? eigenvalue, then so are X\ and —\. Indeed, if y(z,\) is a solution to
(4.32), then we have

d - d . ~
%y(:ﬂ, A) = (A1 + N2)y(z, ), Y= (A1 — N2y, (4.38)
where y = (yl(_xu >‘)’ 3/2(_1’7 )‘)7 y3(_x7 )‘)7 _y4(_x7 )‘))Tv using the symmetry (nca Uc, ¢C)(x) =

(ne, e, ¢c)(—x). We remark that on the domain Re A < 0, where Repuy < px < 0 holds, the

zeros of the Evans function is not related to the L? eigenvalues in principle. For Re A = 0, for
instance, we have Re iy < 0 = i, and hence y© (an analytic continuation of y* defined on
the natural domain Re A > 0) may oscillate without decaying as x — —oo. The eigenfunction
y corresponding to the eigenvalue —\ is not an analytic continuation of y*. The zeros of the
Evans function on Re A < 0 correspond to the so-called resonance poles ([26],]28],[35]), and their
locations are related to the possible decay rate of (4.19). We show that on Re A > —k(e) there

is no resonance pole for £ with respect to the L? norm.

4.4.1 The Evans Function for the Euler-Poisson System

We consider the ODE system (4.32) associated with the eigenvalue problem (4.15). By

Theorem 4.1, the coefficient matrix A(z, A, &) converges to the asymptotic matrix

cA A 1
2-—K c2-K 0 2 - K
K\ ) c
Ao =|e—g a—rk " @-K (4.39)
0 0 0 1
-1 0 1 0
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as |z| — oo exponentially fast. The matrix eigenvalues p of A are the zeros of the characteristic

polynomial
d(p) = d(p; A €) == det (ul — A® (X, €))

= (¢ = K)7H ((1* = 1) [(A = en)? = K] + 417) .

For all € > 0 and X € C, d(u) has four zeros u; counted with multiplicities.

(4.40)

The right and left eigenvectors (denoted by v; and w;) of A corresponding to a non-zero

simple eigenvalue p; satisfying the normalization w;v; = 1 are chosen as follows:

T
vii= |1, ] T2 ] ljj 5| (4.41a)
Hj M5 M
j
= 4.41b
W 7TjVj, ( )
where
)
1— 12 1— 12
my = [ [ed = (e — K —2, A= 1, ), (4.42a)
Hj My
1— (N — p2(* - K 14 p?
S (1 —p5)( 2/@( ) - ué (4.42b)
2 2
(1= s - A g1 2 - )|
= ’ ’ : . (4.42¢)
L —pj

For (4.42c), we have used ¢ = V1 + K +¢. We note that m;v; # 0 when p; is semi-simple.

Zeros of Characteristic Polynomial d(x) To define the Evans function for the Euler-
Poisson system, we verify the central assumption H4 by investigating some properties of the
zeros of the characteristic polynomial (4.40).

Since d(£1) # 0 and ¢ — K # 0 for all e > 0 and A\ € C, d(i) = 0 is equivalent to that u
satisfies one of the equations

I
e K) = (4.43a)

d_(u) = d_(u:2) ::u<c—,/_1Mz+K> Y (4.43D)

Plugging A = iw and p = ik for w,k € R into A = d4 (i), we obtain

1
w=wy(k;e) ::ckik\/m—{—lf.

We observe the behavior of wy, which is important for the study on the solutions of (4.43). We

have )

dwi n 1+ K(1+ k?)?

dws _ 7
dk Vo K (14 k2)?

d®w_ k(K (k* —2k% — 3) — 3)

2 .
| O RPEO R ) K

20




d d
% are symmetric about £ = 0. It is clear that % >+V1+Kforall ke R and e > 0. On
the other hand, 1 1
W w_
_— = l‘ —_— = 1 K - K.
a0 =e Jim g =VItE+e-VE
2
Solving the numerator of Ww;’ one can check that gjkf increases on (0, k4 ) and decreases on
(k4 ,00) where'®
T, \/ K+ VAK? + 3K
+ = .
K

Proposition 4.5. The zeros ji; of d(p) can be labelled so that the following splitting properties

hold.
1. Fore >0,
Reu; < 0=Repus = Reus < Re g, when Re A =0, (4.45a)
Rep <0< Rep;, (j=2,3,4), when Re )\ > 0. (4.45Db)
2. Fore =0,
Reu; < 0= Reps = Reus < Re g, when ReX =0 and A # 0, (4.46a)
Repui <0< Repj, (j=2,3,4), when Re )\ > 0. (4.46Db)

Remark 5. When Re A < 0, one may check that Rey; < 0 < Repy, j = 1,2,3, for all e > 0.
For e =0 and A = 0, we have p; =0 for all j =1,2,3,4.

Proof. We first consider the case € > 0. We note that d_(u;) = 0 for

We recall that the functions k € R — —idy(ik) = w1 (k) € R are one-to-one and onto. Moreover,
dwy /dk are strictly positive for ¢ > 0. Hence, for Re A = 0, there are exactly two solutions pg
and p3 with Reus = Repg = 0 satisfying dy (u2) = A and d_(u3) = A. This proves (4.45a).
Since d4 (ik) € iR for all £ € R, any solutions p of dy(p;¢) = A with Re A # 0 cannot lie in
the imaginary axis . This implies that as long as Re A > 0, the number of solutions p of (4.43)
lying on the left half-plane or the right half-plane does not change. Expanding d+ in p around

the origin of C, we have

13

2V1+ K

5The behavior of w is more complicated than the case K = 0. See Figure 6. When K = 0, it seems that the

dy(p;€) = Ouds (05€)p £ +0(i%), (4.47)

convergence of the Evans function can be shown in larger domain as the Boussinesque system following [28]. For

this case, [17] only concerns near A = 0.
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where 9,d+(0;¢) = c+v1+ K > 0 for £ > 0. Here, the higher order terms does not involve e.
Thus, if we slightly move A to the left from the origin along the real axis, then the real parts of
the solutions po and ps become positive. This implies that (4.45b) holds.

Next we consider the case ¢ = 0. We note that 0,d_(0;0) = 0. Hence the solutions of

3
. . 1% .
A=d_ are approximated by three solutions of A = ———— as long as |\| is small. We
(1) are approx y N g as |A

have that for n = 1,2, 3,

p=(2V1+ K\|)/3elEE 75 when A = e=m/2| )|, (4.48a)

p=(2vV1+ K\ GH5") when A = ||, (4.48b)

p=(2V1+ K|\)Y3e 5" when A = —|Al. (4.48¢)
From (4.48) and the previous argument, we easily deduce that (4.46) holds. O

Now we find the domain where the relation (4.37) holds. By setting p = ik — 7, we have

di(u):(ik—n)<c:|:\/l_(ik1_n)2+K>, ke R. (4.49)

Since ¢ = V1 + K + ¢, we see that at k = 0,

-1
1 1
d_(—n)=—n <1+2\/1+K£+52— 2) <c+ 2—|—K>
1—n 1-—n

(- +e@VIF K +e)(1—1?) : -
= — 1— 12 <c+ 1—772+K> )

(4.50)

/2 Then, we have d_(—n) < 0 for all sufficiently small ¢ > 0,'6

3
and hence the domain

12V
For 0 < ¢p </ —, let n = cpe

QF:={A:ReX>d_(—n)}
contains the closed right-half plane {\ : Re A > 0}.

1/2

12V
Proposition 4.6. For 0 < ¢y < £l and € >0, let n = cge™’“. Then there exists eg > 0 such

that for all 0 < e < €, the following hold.
1. The curves {d+(p) : p =ik —n, k € R} lie on C\ Q° = {\: Re X < d_(—n) < 0}.

2. For X\ € QF, the zeros of d(u) can be labeled so that they satisfy
Repr < —n < Repj, (j=2,3,4). (4.51)

Proof. 1t is obvious that d4(—n) < d—_(—n). On the other hand, for u = ik — n, by the Cauchy-

Riemann equation,

J(Redy) J(Redy) O(Imdy) dwy

877 n=0 B(—Re,u) Re p=0 a a(ImM) Re pu=0 ; dk -

1 The exponent 1/2 of € is sharp. Consider n = 6061/4 for instance.
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Now the first assertion easily follows from the previous discussion on the behavior of wy. To
prove (4.51), we let p =y’ — 7. Then, the zeros p; of d(u’ —n) with A = 0 are

2-1-K , 2-1-K

2 0 TNt T [y = py = 1.

=~

/
Hy =1

It is easy to see that pj < 0 < ,u;- (j = 2,3,4) for all sufficiently small € > 0. By the first

assertion, the same argument as the proof of Proposition 4.5 yields that
Repy <0 <Repy; (j=2,3,4)
as long as A € Q°. Now the proof is finished by adding —n. O

From Proposition 4.5-4.6, we see that for each ¢ > 0, H4 holds for A € Q°. When ¢ = 0, since
() is continuous in A, it is clear that there is an open set including o := {A : Re A > 0, \ # 0}
such that H4 holds on the open set. H1-H3 are clear from (4.8), (4.31) and (4.39). Hence, we

have the following proposition.

Proposition 4.7. There exists eg > 0 such that for each € € [0,&), the Evans function D(\,€)

for the system (4.32) associated with the eigenvalue problem (4.15) is defined on the domain
Q°. D(A ) is analytic in X € Q° for each fized € € [0,¢e0).

By Proposition 4.3 and the remark below it, Proposition 4.5-4.6 also lead the following.

Proposition 4.8. 1. For the operator L : (L*)* — (L?)?, 0ess(£) = {\ € C: Re A = 0}.
2V 1/2 2)2 2)2
2. For 0 < ¢y < 5 and € > 0, let = coe™/*. For the operator L : (L;)" — (L),
Oess(L) ={ds(p) : p=1ik —m, k€ R} C{A:ReA <d_(—n) <0}

for all sufficiently small € > 0.

Zeros of the Evans function D(),¢) and non-trivial solutions in unweighted and

weighted L? spaces

Proposition 4.9. For A € C with Re X > 0, the system (4.32) associated with the eigenvalue
problem (4.15) has a nontrivial solution in L* if and only if D(\,e) = 0.17

Proof. If D(\,e) = 0, then y* satisfying (4.33) is an L? solution to (4.32) by (4.45b) and
Proposition 4.4. If y is a non-trivial solution of (4.32) in L?, then y is bounded in z since
y € H'. Again, from (4.45b) and Proposition 4.4, we see that y = acy ™ for some constant a € C.

Since y ™ is bounded, we see that y™ = o(e/'*) as x — —o0, equivalently, D(),¢) = 0. O

"In principle, this statement is not true when Re A = 0 because of the matrix eigenvalues with Re y; = 0. For
gKdV, gBBM, and some Boussinesq equation, this proposition can be extended to Re A > 0 using the symmetry
that if y(z) is a solution, then y(—z) is also a solution, which is valid for Re A = 0. (See [26].) EP also has this

property.
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1/2

12V
Proposition 4.10. For 0 < ¢y < £l and € > 0, let n = cpe Then there exists eg > 0

such that for all 0 < & < gq, the following holds: for A € QF, the system (4.32) associated with

the eigenvalue problem (4.15) has a nontrivial solution in L% if and only if D(\,e) = 0.

Proof. Since e™yt = O(e("ﬂ“)x) as ¢ — 400, €™y exponentially decays to zero as x — 400
by (4.51). Suppose that D(),¢) = 0. By Proposition 4.4, e™y* = O(e"™ (=07 as 1 — —o0.
By (4.51), we see that "y exponentially decays to zero as z — —oo. Hence, y* is a solution
to (4.32) in L;.

Suppose that y is a nontrivial solution to (4.32) such that ™y € L% Since A(x,\,¢) is
uniformly bounded in z, €’ 8,y is also a L? function. Hence, e"y is uniformly bounded in
since e’y € H', and there holds that

y=0(e") as |z|— oc. (4.52)
Multiplying (4.52) by e(=H=24012]) e have

e(—u*x—l—ﬂm)y:O(e(—nm—u*x—i-ektl)) as T — 4oo.

By (4.51), =1 — px + 0 < 0 for sufficiently small § > 0, hence we have y = o(e"*~%7l) as
x — 400. By Proposition 4.4, this implies that y is a constant multiple of y*, and thus from
(4.52) we have

yr=0(") as x— —oo0.

Together with (4.51), this yields that y™ = o(e#'*) as & — —o0, which is equivalent to D(\, &) =
0 by Proposition 4.4 (or (4.36)). O

4.4.2 The Evans Function for the KdV Equation

In the KdV scaing, we formally obtained (by letting ¢ — 0 in (4.25) and n = ps)
Apa — Oep2 + Ve (p2a Vi) + (2V) ' 92ps = 0. (4.53)
By introducing the change of variables
A=Q@V)PA, E= @) BEN) = pa& D), (4.54)
and using (4.10), (4.53) becomes
R — 0¢p + 0:(Wxcp) + =0, where ¥ () =3 sechQ(ég). (4.55)

The eigenvalue problem (4.55) is studied in [27]. We briefly summarize some results of [27],
and then apply those directly to the eigenvalue problem (4.53). The characteristic polynomial
associated with (4.55) is

drav (k) = dgay (R A) == A — & + &3 (4.56)
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It is shown that for A € Qgy := C\ (—o0, — ], the zeros &; of cZKdV(/?;) can be labelled so

2
3v3
that

Reki <Rek; (j=2,3), (4.57)
and in particular, Re&; < 0. It turns out that the Evans function ﬁKdV(A) for the KdV
equation (4.55) is defined on the domain Qxav, and D Kdv([\) is characterized with the property
that

PH(&A) ~ Dray (R)e™S as €= —oc, (4.58)
where §1 is a unique solution to (4.55) satisfying

]5+(§:; /~\) ~ e as €= +oo. (4.59)

Drcayv (M) can be constructed so that Dggy (A) — 1 as [A| = oo. In [27], the Evans function for

(4.55) is explicitly given by

K1 +1>2

Dgav(A) = </~_€1 — (4.60)

From (4.56), one can check that Dy (A) vanishes only at A = 0 and that the multiplicity of
A =0 is two as a zero of Dggy(A) by taking derivatives in A.

Now we apply the above results to construct the Evans function for the KdV equation (4.53).
Since ¥ and J: W decay to zero exponentially fast, the characteristic polynomial associated
with (4.53) is

dgav (k) = drav (k; A) = 2V(A — Kk + (2V) 7'K%). (4.61)

We note that the zeros k; of dxqy (k) are related to &, and we have

ki = (2V)/%5;. (4.62)
2v/2V
Hence, from the relation (4.54) and (4.62), it follows that for A € Qggy = C\ (—o0, —ﬁ],
we can label k; so that
Reri <Rek; (j=2,3), Rer; <O. (4.63)

The Evans function for the equation (4.53) is defined on Qkqy, the following is a simple
corollary of the result in [27]. (See also [28].)

Corollary 4.11. 1. The Evans function Dyqy(A) for the KAV equation (4.53) is defined

2v 2V
on the domain ) =C\ (00, ———].
Kav \ ( 373 ]
2. Dgqv(A) satisfies that
p;(f;A) ~ DKdV(A)e’“é as & — —oo, (4.64)

where K1 is a unique zero of diqy (k) satisfying (4.63), and ps is a unique solution to
(4.53) satisfying
py (& A) ~e™E as € — too. (4.65)
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K1+ V2V
K1 — \/2V

4. DKdV(A) — 1 as |A| — oo with A € QKdV’

2
3. Diay(A) = ( ) , and A = 0 is the only zero of Dgqy (A) with multiplicity two.

Proof. The first two statements can be checked following [26]. To prove the last two assertions,

it is enough to check that Dg gy (A) = Day(A). From the relation (4.54) and (4.62), we have

7€ = k€. (4.66)

From the change of variable (4.54), 5 ((2V)Y/2¢; (2V)~1/2A) is a solution of (4.53) since p* (&; A)
is a solution of (4.55). From (4.59), (4.65) and (4.66), we have

FHV)26 (2V) 71 2A) ~ €8 as € = oo,

Hence, we must have 15+(§~; A) = py (& A), and we conclude that Dy (A) = Dgav (M) from
(4.58), (4.64) and (4.66). O

4.4.3 The Evans Function for the Euler-Poisson System in the KdV Scaling

Motivated by the formal derivation of the linearized KdV equation, we take the transforma-

tion
5251/2$, )\:53/2/\,
(4.67a)
n(z) =p2(§), u(x) =ep1(§) + Vp2(§),
() =p2(§), u(z)=ep1(¢) 122( ) (4.67H)
d(x) = pa(&) +epa(§),  P(x) =" p3($).
Let p:= (pl,pg,pg,m)T. Then, we have Sp =y, where S given by
0 1 0 ~Vve=l et 0 0
e V 0 1 0 0 0
S = , STl= , 4.68
01 0 e 0 0 0 2 (468)
00 Y20 =t 0 o
is a matrix for the transformation (4.67b), and (4.32) becomes
dp
— = A&, A e)p, 4.
= Ade A (1.69)
where
Lo, (€
A€ N e) = —=8STTA( 52 %206 ) S. 4.70
€Ae) = s S e (1.70)

(See (4.68) and (4.135) for the more specific form of A.(§,A,e).) Expanding A.(§, A, e), we

obtain

A (&N €) = AL (E,M,0) + A (€A, €), (4.71)
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where

0 2V Uy — A 1—2VUg 0
0 0 1 0

A (€,A,0) == . (4.72)
0 U 0 1

0 —(2VZ+ 1) —2VA 2V — (2V2 + 1)U 0
Here, there exists ¢g > 0 and a positive function C'(A) of A (independent of € and bounded
on any compact set of C), such that |g*(§,A,€)| < €C(A)e_é|§‘ for all € € [0,g0], £ € R and
A € C. When € = 0, we see that the last three equation of (4.69) implies the KdV equation
(4.53) (recall that n = pa).
For all € > 0, the matrix eigenvalues v of the asymptotic matrix A;°(A,e) of A.(§, A, ¢€) in

£ is the zeros of the characteristic polynomial
1
du(v) = du(vi A, €) 1= det (AT(A,2) = v1) = det (A°°(53/2A, £) — Ve VI)

. -3/2
_d(ve v,; Ae) (4.73)
vdgav(v) —e(A —v)? +ev? [5A2 —2cAv+ (2V + 5)y2]

c2—K ’

where dggv(v) is defined in (4.61).

Zeros of the characteristic polynomial d.(v) To define the Evans function for the Euler-
Poisson system in the KdV scaling, we first verify H4. From the scaling (4.67a) and the second
line of (4.73), we see that for € > 0, the zeros v; of d,(v) are related to the zeros p; of d(p) by

vj = 5_1/2,uj. (4.74)

When € = 0, the zeros of d.(v) are comprised of 0 and the three zeros x; of dggv (k). Together

with (4.51) and (4.63), these observations imply the following proposition.
Proposition 4.12. The zeros vj of d.(v) can be labelled so that they satisfy
Rev) < Rev; (j =2,3,4) (4.75)

for all A such that 32N =\ € OF when e >0 and for all A € Qg gy when e = 0.

/2V
For fixed 0 < ¢ < R we define

Q= {A:ReA > e 32d_(cpe'/?)} = e3¢ fore > 0, (4.76a)
2
QY= {A:ReA > —cg < - 20\0/>} fore = 0. (4.76Db)
2
From (4.50), we see that liH(l) e732d_(cpe'?) = —cp (1 - 20{)/> Hence, the domain QS ap-
e—
0 2V
proaches to 2, as ¢ — 0. On the other hand, for all 0 < ¢y < -

B 2v/2V c2 “0
2V

VY (1m &
33 0

Y



holds, which implies that {A : ReA >0} C Q% € Qxav.
The right eigenvector v;'f of the asymptotic matrix AJ° corresponding to a non-zero v; is

given by

T
V. oe A 1 op 1 1
vi=Slvj=—4+-"-"F1, =L ——
J J (5 £ el ﬁl—,u? 5 5(1—;@)

A Vj VJZ
=|1-— 1 2 2 |
vj 1—51/j 1—51/]-

where we have used (4.67a), (4.74), and the definition of c.

(4.77)

Proposition 4.13. There exists eg > 0 such that for € € [0,e0), the Evans function Dy(A,¢)
for (4.69)—(4.70) is defined on the domain QS so that

lim e " ¢pT (£, A) = D, (A, e)vi, (4.78)
E——o00
where pT (€, A) is a unique solution to (4.69) satisfying

lim e " ¢pT (£, A) = vi. (4.79)

E—+o0
Moreover, D.(A,¢) is analytic in A € Q5.

Proof. H4 is verified from the above discussion and (4.75). H1-H3 clear from Theorem 4.1
and (4.70). 0

4.4.4 Relation Among D(\,¢), D.(A,e), Dgay(A)

Proposition 4.14. There ezists e > 0 such that for € € (0,¢), Di(A,e) = D()\e) for A =
e732X € Q5. When e =0, we have D,(A,0) = Dqy(A) for A € Q0.

Proof. Considering the transform (4.67) and the relation (4.74), we observe that
Spt(Vew, e 732N

is a solution to (4.32), and moreover Spt = O(e!'*) as x — 4oo from (4.79). Hence, by
the second assertion of Proposition 4.4, Sp™ is a constant multiple of y*. In particular, we
have p; = C’yl+ for some constant C'. On the other hand, we note that the first component
of vi and the second component of v are 1. Thus, from (4.33) and (4.79), we conclude that
py (§,A) =y (x,\). Then, it is clear from (4.36) and (4.78) that D(\, &) = D.(A,¢). Similarly,
we obtain Dy (A,0) = Dgqy (A). O

Regarding continuity, the following proposition can be proved by the fixed point argument

following [28], Section 8.

Proposition 4.15. There exists eg > 0 such that D(\,€) and Dy(A,¢e) are jointly continuous
on the sets {(A\,e) : A € Q°, € € [0,¢0]} and {(A,e) : A € Q5 € € [0,50]}, respectively.
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4.4.5 The Order of D(\,¢)

We show that A = 0 is a zero of the Evans function D (A, ) with the order at least two. Once
we know that D(\,e) = 0, the formula for the derivatives of the Evans function (see Theorem

5.45) becomes much simpler. In this case, we have

MWD\ e) =— /OO 2z~ (2)O\A(x, N\, o)yt (z) dz (4.80)

—00

in the sense of an improper integral, where z~ is the solution to the transposed ODE system of
(4.29) satisfying (4.34) and (4.35).

We will use the following identities for solitary waves solutions:

1+nc)(c—u) =c, (4.81a)

¢ —ue)(ne)z = (ue)z(1+ne), (4.81b)
c(ue)y — K(ne)s

1+ n, = (¢C):Ea (481C)

J
((Z)c)r = 1+ n, (nc)m (4.81d)
(nc)mJ = (uc)x - K(nc)m (4.816)

The identity (4.81a) is obtained by integrating the first equation of (4.12) in z. Differentiating
(4.81a) in x, we have (4.81b). (4.81c) follows from the second equation of (4.12) and (4.81a).
(4.81d) follows from (4.81a)—(4.81c). (4.81e) follows from (4.81c)—(4.81d).

Lemma 4.16. When A = 0, for each ¢ € (0,g¢] there exists a constant oy # 0 such that

vy (z,0,e) = aryi(z), where
y1(z) = (Opne, Dptic, Dupe, D2e)T .

Proof. By differentiating (4.12) in z, we see that y satisfies the ODE system (4.29) associated
with the eigenvalue problem (4.15) with A = 0. From Proposition 4.5, we have Re pu; < 0 = p,

when A = 0. Since y; exponentially decays to zero as |z| — oo, we have that for sufficiently

small 6 > 0,
: Ox _
xEI—Pooe yi(z) =0.
By Proposition 4.4, this implies that y© = aqy; for some constant ay # 0. O

The following lemma is obtained by using the solitary wave identities (4.81).

Lemma 4.17. When A\ = 0, for each ¢ € (0,g9] there exists a constant ag # 0 such that

2z (2,0,¢) = aozi(x), where'®

cue — Kne (1+mn.)

_ _ b _ 1 _
1+ n, s c (Cuc Kn, ncJ) , € 1, 81’¢c)

z1(x) == (—

18 14+ n.
Nele =

(cuc — Kne — neJ) using (4.81a).
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We first show that the above two lemmas, together with the derivative formula (4.80), imply

the following proposition.
Proposition 4.18. There exists £g > 0 such that for all € € (0, 0],
D(0,e) = 0,D(0,¢) = 0.

Proof. We denote 9, by ' for simplicity. From Lemma 4.16, we deduce that y™(x) — 0 as
x — —oo. Since Rep; < 0 when A = 0, we have D(0,e) = 0 by Proposition 4.4. From the

formula (4.80), Lemma 4.16 and Lemma 4.17, we obtain
o0
8)\D(O,€) = —041042/ Z1A2y1 dzx

—0o0

since O\ A(z, A, €) = Aa(x, ). Using the solitary wave identities (4.81), we have

10 Kn!
z1Ady) = 7|2 ((c = ue)nl, + ui(1 + ne)) + 22 <1 _{_; +(c— uc)u’c)]
L C
1 Kn!
=5 _2z1u’0(1 +ne) + 22 (1 n ;c +(c— uc)ulcﬂ
1]
J

1
—2(cue — Kne)ul, + ” (cuec — Kne —neJ) (Kn,, + cu’c)]

—~

cue — Kng) Knl, + cu] n
= % <—2u’c + % — ?C(anj + cul.)
(cuc — Kne) n
= % (—cu, + Kn) — ?C(Kn/C + cul,)
- K
= _leue = Kne) n., — &(Knlc + cul.)
c c
= _(ncuc),a

where we used (4.81b) in the second line, (4.81a) in the third line and (4.81e) in the sixth line.
Since nqu. tends to 0 as |x| — oo, we obtain 9yD(0,e) = 0.
O

Proof of Lemma 4.17. We denote 9, by ' for simplicity. Using the identities (4.81a), (4.81b)
and (4.81e), A(x,0,¢) = Ay (x,¢) is simplified as follows:

n., 2ul (1 + ne) 0 1+n
1+n. J J
Knl, + cu, C— Ue
Aua,e) = T 7 (4.82)
0 0 0 1
~1 0 e’ 0
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We show that z1 := (21, 20, 23, 24) satisfies z] = —z1 A4 (x,¢),

!/
r_ "
z1 1+ncZ1+Z4,
2u/ (1 Kn/ !
P ul( +nC)Zl— nc—i—cucz27
J J(1+nc)
Zé:*Z4€¢C,
, 1+ n. C— Ue
2’4:—21 J — Z9 J — Z3

(4.83a)

(4.83b)
(4.83c¢)

(4.83d)

It is trivial that (z3,24) = (e — 1, —¢) satisfies (4.83c). Using (4.81c), we see that (21, 24)

C

satisfies (4.83a) since

—n,, n.(cuc — Kne)

c _ — &
Trn T4 (1+ nc)? P
_ nelcue — Kne) (14 ne)(cue — Kng)
(1+ne)? (1+mne)?

(cuc—Knc>/ ,
== — T :Zl.
14+ n.

Using (4.81a) and the Poisson equation of (4.12), we obtain that

—z (1%:]7%) — 2 (C_“c> _ (cuc — Kne) — (1tn6) (cuc — Kne —neJ) <c_

J J
_ (cue — Kne)  cue — Kne —ned
J J
:nC
=—¢) + e —1
= Z:l + 23.

Thus z; satisfies (4.83d). Lastly, we show that (z1, z2) satisfies (4.83b). We have

~ 2ug(1 +ne) (Kne + cu)

On the other hand,

T YT T It 2

= % [QCU/C(CUC — Kn¢) — (Kn. + cuc)/(cuC — Kn, — nCJ)]

= 5 [(cuc — Kn.) (cue — Kne) + (Kne + cue)'neJ| .
TZC (cue — Kne —ned) + (1+nc) (cu, — Knl, — ni,J —n.J')
L [0 (e~ Kne = ned) + (Lt ne)d (e, — Kl — ] — nel')]
% [(cuc = Kne) (cuc — Kne —ned) + J(1+ne) (=ned"))]
é [(cuc — Kne) (cuc — Kne — ned) + J(1 4 ne)2ne(c — ue)ul
% [(cuc — Kne)' (cuec — Kne — ned) + 2cu,ne |

[

(cue — Kne) (cue — Kne) + (Kne + cuc)’ncJ] ,
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where we used (4.81e) in the third line, (4.81a) in the fifth line.
Since z; exponentially decays to zero as © — —oo and — Re i1 > 0 = — ., we see that there

is a constant ag # 0 such that z~ (x,0,¢) = agz;. O

4.4.6 Absence of Nonzero Eigenvalues

2

For a fixed a > 0 sufficiently small so that —cg <1 — 26{]/) + a < 0, we define the region

2
D:={A:ReA > —¢ (1 - 20{)/> +a}. (4.84)

Since S approaches to QS as € — 0, there exists g9 > 0 such that © C Qf for all € € [0, ).
(See (4.76) and the observation below it.)

Theorem 4.19. On the region © defined in (4.84), we have

sup |D«(A,e) — Dgay(A)] =0 as € = 0.
AeD

Corollary 4.20. There exists eg > 0 such that for e € (0,g9], A = 0 is the only zero of D (A, €)

on the region ©. Moreover, the multiplicity of A = 0 is exactly two.

Proof of Corollary 4.20. For § > 0, let I's be the boundary of the region ® N {A : |A| < 61}
Since Dgqy — 1 as |A| — oo and A = 0 is the only zero of Dggy on Qxqy O D (see Proposition
4.11), we may choose small v > 0 such that

inf |D A :

anf [Drcay (M) >

From Theorem 4.19, there is €9 > 0 such that for all € € (0, g¢],

|Drcav(A)| > v > |Dy(A,e) — Drgv(A)] on Ts. (4.85)

Now the proof is finished by applying Rouché’s theorem together with the facts that the mul-
tiplicity of the only zero A = 0 of Dggy(A) is exactly two and that A = 0 is a zero of D, (A, ¢)
of the multiplicity at least two. O

From Proposition 4.8, Proposition 4.9, Proposition 4.10, the result that A = A = 0 is the
only zero of the Evans function D,(A,¢) (and hence D(\,¢€)) yields the following results.

Theorem 4.21 (Spectrum of £ in L?). Consider the operator L : (L*)? — (L*)* with dense
domain (HY)?. Then, for all sufficiently small € > 0, we have

Oess(L) ={A€C:ReA =0}, op(L)N{AeC:ReX#0} =0.
Theorem 4.22 (Spectrum of £ in L%) Consider the operator L : (L%)2 — (L727)2 with dense

1/2

2V
domain (H%)2 For 0 < cp < 4/ 5 and € > 0, let n = coe /. There exist a constant g > 0

and a real-valued function k(e) such that for all € € (0,¢0),
Oess(L) C{A:ReX < —k(e) <0}, ope(L£) N{A:ReX > —k(e)} = {0}.

In particular, cess(L) is parametrized by two disjoint curves {d+(pn) : p =ik —n, k € R}.
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To prove Theorem 4.19, we divide ® into four regions as follows: for § > 0 will be chosen

later, we set
D :=DN{A:|A] <571},
Dy :=DN{A: 325 <N < =DN{A: 6 <A <7326}
D3:=DN{\:0< |\ <571,
Dy:=DNn{\: <L
Lemma 4.23. For any fized constant § > 0,
sup |Dy(A,e) — Dgqv(A)] — 0, as e—0. (4.87)
Ae®D,

Proof. D.(A,¢) is uniformly continuous on a fixed compact set {(A,e) : € € [0,e0],A € D1}

since it is jointly continuous on the set. Hence, sup |D.(A,e) — Dgqy(A)| is continuous on
AED
[0,e0]. Now (4.87) follows from that D.(A,0) = Dgqay(A). See Prop 4.15 and Prop 4.14. O

Lemma 4.24. There exist constants Cy, 02,9 > 0 such that for all € € [0,e2] and § € (0, 02],

sup |D(\,e) — 1] < Cobt/3, (4.88)
AEDo

Here Cy is independent of € and §.

Lemma 4.25. For any fized constant 6 > 0,

sup |[D(A\,e) —1| =0, as e—0. (4.89)
AED3
Proof. This is true since D(\, €) is jointly continuous and D(\,0) = 1. O

Lemma 4.26. There exist constants Cy, 04,4 > 0 such that for all € € [0,e4] and § € (0, 4],

sup |D(\,e) — 1] < Cye'/?. (4.90)
AED,

Here Cy is independent of € and §.

Proof of Theorem 4.19. Let v > 0 is given. From the property of Dgqy, (4.88), and (4.90),
there exist constants 6., e, > 0 such that for all € € (0,e,) and 6 € (0, 6,], there hold that

y

sup |DKdV(A) — 1‘ < 5, (491)
A|>85

Y Y
sup |[D(\,e) —1| < =, sup |D(\e)—1] < —. (4.92)

AED, AN 2

We fix § = 0, > 0. Then, from (4.89), there is €3 > 0 such that for all ¢ € (0, &3],
Y

sup |[D(\e) — 1] < —. (4.93)

AED3 2
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Since D(A,e) = D4 (A, ¢), it follows from (4.91),(4.92),(4.93) that for j = 2, 3,4,

sup |Dy(A,e) — Drav(A)| < 7. (4.94)
)\G@j

From (4.87), there exists €1 > 0 such that for all € € (0,e1],

sup |D«(A,e) — Dgqay (A)] < 7. (4.95)
AeD,

From (4.94) and (4.95), we conclude that there is €9 := min{e,,e1,e3} such that for all € €

(07 EO];

sup [ D« (A, ) = Dgav (A)] <.
AeD

This finishes the proof. O

Remark 6 (The reason for dividing into D9 and D3). There is no way to extend D(),¢) to a
(uniformly or jointly) continuous function defined on a compact set including (A,e) = (0,0).
If there were such an extension, its value at (0,0) must be 1 since D(),0) = 1 for all A € Q°.

However, we will see that D(0,e) = 0 for € € (0, g].

4.5 Asymptotic Behavior of D()\,¢)
4.5.1 Proof of Lemma 4.24

We first observe the behavior of the roots of the characteristic polynomial d(x) on ®4, which

can be obtained by a perturbation argument. The proof is given in Appendix.

Proposition 4.27. 1. There exists a constant €9 > 0 such that as long as A and € satisfy

32671 < |A| < 6 and 0 < € < g0, where § > 0 is small, there holds that
= (2VT+ KNP B 14 8)) (5=1,2,3),
where ﬁNJ are functions of A and €, and Ej — 0 uniformly in € as § — 0.

2. For |\| < § sufficiently small,

A
MY VITR

where E4 is a function of g and € such that §4 = O()\3) uniformly in 0 <e < 1.

+§4>

To prove Lemma 4.24, we also apply the following proposition ([26],[28], see Proposition 5.48
for the proof). We note that Proposition 4.27 implies in particular that p;(\) are all distinct
for A # 0 with e ™3/2X = A € D,.

64



Proposition 4.28. We assume that for a matriz A(x,\) with Erin Az, ) = Ax(N), the
system (5.39) satisfies the hypotheses H1-HY. We further assume that Ax(\) is diagonalizable
such that for the matrices W and V' defined by

w1

W=1|:1, V:.= [vl,--~,vn},

where w; and v; are the left and right eigenvectors of Ax(\) associated with u;, we have
WAx(NV = diag{u;}, WV =1.

Let R(x, A) := A(z, \)—Aosc(N). Then, there exists 0 < 69 < 1 such that if/ [WR(z, \)V|dzx <
do, then -
DO — 1] < 0/ W R(z, )V da. (4.96)

Proof of Lemma 4.24. Let R(xz, A\, &) = A(z, \,e) — A (A, ¢). It is straightforward to check that

|Rjk(x, M €)| < Cee O "Il By, (4.97)
where
V24 A 24N 0 1
V2 240 01
E— emH[A e RY (4.98)
0 0 0 0
0 0 10
Let
Wi
V= {Vl,V2,V3,V4 , W=
Wy
Let v;; and wj; be the I-th component of v; and wj, respectively. Then,
(WRV )i, = Z wji (Rt + Rigvke + Rigvpa) + wjsRagvgs. (4.99)
1=1,2
Applying (4.41), (4.42), (4.97) and (4.98), one can obtain from (4.99) that
(WRV) | < Cee%"llg, (4.100)
where
11— 43| 1 =2
Gk = 2 = ‘1|ﬁ]‘2|+ | .‘J (‘C/\_Nj(cz_K)‘+‘)")
|5]21G Hi; M (4.101)
% |:(51/2_|_|)\|) (1+ |CMI<:—/\|> + ’/Lk‘|2 :|}
|k | 11— ]
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and

Using Proposition 4.27, it is strightforward to see that as long as e3/2571 < Al <4,
|C~¥]] =1+0(1) uniformlyin ¢ as ¢ —0,

for j = 1,2,3, and |u4|?|Gy4| is bounded from above and below by some positive constant C
uniformly in 6 and e. From this, we obtain that 51/2\ij| < O§Y/3, (j,k =1,2,3,4), for some

positive constant C' independent of § and €. On the other hand, we have
12 [ —cet/2p /
€ / e P dr < C.
—00

This finishes the proof.

4.5.2 Proof of Lemma 4.26

To prove Lemma 4.26, we need the asymptotic behavior of the roots of characteristic poly-

nomial d(u) for large |A|.

Proposition 4.29. The roots of d(11) can be labelled so that they satisfy™®

= —1+0(N™2), pa=1+0(N?),

eA—V—=-2+ K+ KN\ _ eA+V—-c2+ K+ K\2 N
2 = B +OA™), s = P +O(AI?)

as |A\| = oo. Here, the big-O terms are uniform in € € [0, o).

The proof of Proposition 4.29 is given in Appendix, and it is based on a perturbation argu-

ment using Rouché’s theorem in a similar fashion to Lemma 1.20 of [26].

From Proposition 4.29, on ©4, we have® for j = 1,4,

i = (1)) + O(|A|?), 1= 2 =22 (1+0(A™),  (4.102a)
cuj —A=-=-XA(1+0(N™), A —pji(c® = K)=c\ (L+O0(N™)), (4.102Db)

Tn the case K > 0, the order of the error terms for u» and us are different from the case K = 0. See the

proof.
20(4.102b) directly follows using the first equation of (4.102a). To show that 1 — ,u? =22 (1+ O(\/\\_l))7

A —cui)? — K3
we use d(p;) = 0, that is, T L 5 = ( C'uj)2 %5 rather than use p; = +1 4+ O(JA|?) directly. Direct
—H Hj
calculation using (4.103a) leads (4.103b)—(4.103d).
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and for j = 2,3,

;%::c+(_iyvq{(1+wqu-%), (4.103a)
1—p? = _AQ 1+ 0(A™), 4.103b
iy — A= C(+ () )‘G (L+0(A™) ., (4.103c¢)
A — pi(c® — K) = (—1))VEX(1+O0(]A\[ %)) . (4.103d)
Additionally, we have
AEVAE-Kpj=X(1+0(A™) for j = 1,4, (4.104a)
+v/c2 - K _9 .
AtV —Kp;j=\ (1 + m + O(|A| )> for j =2,3. (4.104b)

Using the estimates (4.102), (4.103) and (4.104), we have from (4.42b) that

=)~y (@~ K)) 1+
2 1—pj (4.105a)
=20 (1+0(A™),

fOl“j = 1,4, TV =

— 2 )\2 — 2 02 — 2
forj =23,  mv; =X\ ((1 ) ,ﬂ.)\/;]( = +>\121J_FZ;>
J .105b
_ —AQ 2(_1)J\/E + O(‘)\’il) (4 w )
B (c+ (-1)VK) '

We first observe that on the domain 4, Proposition 4.28 is not directly applied as the
analysis on the domain ©5. Applying (4.102),(4.103),(4.104) and (4.105) to (4.101), we have
for large |A|,

|G]k| SC, (])k:154)7 |G]k,‘| §C|>\|_2) (j: 1)47k:253)7

Gkl < CIAL (ok = 2,3), Gkl < CIAP, (G =2,3k =1,4).
The bound |G| < C|A|l, (j,k = 2,3) is due to |A| term in (¢'/2 + |A]). The bound |Gi| <
CIA? (j = 2,3,k = 1,4) results from the growth rate of |1 — p2|~! and the boundedness

of |u|™! for k = 1,4 as |\| — +oo. Hence, we need a more delicate approach to obtain the

uniform bounds for |Gj;| on the domain Dy.

To accomplish this, we write

Az, A e) — A°(\,e) = ARV (z,¢) + R (z,¢),
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where (see (4.31))

Tr|—0o0
C — Ue 1+ Ne
1 K 0,
7 1 +nc & Ue

0, 0,

Then using (4.8), a direct computation yields that

IR (2)] < Cee™ = *lIER), (4.107)

where (compare (4.108) with (4.98))

(4.108)

™
=
Z
(3]
)
=
~
[\]
_ o O O
S O = =

. . . ; 9,1
We let Vj be the matrix whose j-th column is (¢ + (—1)/VK)[1 — ;12 v; and Wy be the
matrix whose j-th row is (¢ + (—1)VK) 7|1 — ujzr%wj, that is

(c+ (~)WVE) 1 - @3 3w,

W(] = )
4.109
(o4 (CDWE) 1 - 8] hw, (1109
Voi= [+ (~)WVE)L =33 v, . e+ (~DWVE)L - dlva)
We note that pu; are all distinct on ©4 by Proposition 4.29, and it is clear that
WoVo =1, WoA>®Vy = diag(p1, o, i3, pa) (4.110)
and
Wo (A — A®) Vo = AW RV + Wo RV, (4.111)
Estimate of WoR®V, From the definitions of Vy and Wy, (4.109), we have
) e+ (CDWVE L= pfl
(WoR™¥Vy)jk = . 5
c+ (-1)IVK ’1_/‘]"
X Z Wy (Rl(f)vk'l + Rl(22)vk2 + Rl(i)vk4) + wj4R£§)vk3
1=1,2
From (4.41), (4.42), (4.107) and (4.108), we obtain
(WoR® Vo) ju| < Cee™ ¢ 16D, (4.112)
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where (compare Gﬁ) with Gj,)*!

1—pg| 1 gl 11—
a¥ .— | k J J N— (2 — K A
T v Tl T gl (7@ R

y [51/2 (1+ \cuk—/\) N Iuk!2 ]}
|1 11— il

By a direct calculation using (4.102), (4.103), (4.104) and (4.105), we have

G <O forjk=1,234, (4.113)

uniformly in € and |A| > 6! for sufficiently small §. From (4.112) and (4.113), we obtain the
bound

(WoR® (2)Vp| < Cee=C?lal, (4.114)

where the constant C' is uniform in e and X with |A| > 6! for sufficiently small §.

Estimate of )\WOR(l)VO Now we estimate )\WOR(l)Vb part. We have

(AWoRWY) 5 =

c+ (DK |1 - (1) (1)
A g Awip | Ry ver + Ry, vgo
c+ (—1)IVE \| 1= 4] fy? ! [ i 2 }

e+ (-DWEK [lL—42] A 1— 3
et (—1)IVE L= 375 vi \ opy

Cpk — A ik — A
=t - k) (R + 2R ) < (R + 2R ).

Using (4.102),(4.103),(4.104) and (4.105), a direct calculation yields a decomposition

A
AWoRMWV, = 5

\/T(Sl + RO, (4.115)

where S1 = S1(z;¢) is a symmetric matrix defined by

0 0 0 0
0 2VKR{) - KR{) - R{Y KR{) — RY) 0

S1 = 1 5) (1) ), p) (4.116)
0 KR}, — Ry; 2WKRY} + KR\ + Ry, 0
0 0 0 0

1— 2
2'The order of ||1 H’;: is |/\|2 for j = 1,4,k = 2,3 and |)\|72 for j = 2,3,k = 1,4. Moreover, there is no

— 42
/2 4 |A| term, which caused a problem for getting a uniform bound of G for j, k = 2,3. Multiplying v; by
1 -3
2

1- u? does not work since in that case, the factor is of the order A* for j = 1,4,k = 2,3. One might

think that choosing v; by 4/1 — }L?Vj from the beginning of the construction of the Evans function. However,
W1 — /,L? is not analytic on the right half plane for any choice of branch cut. See Ahlfors p.148.
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and R is a matrix whose (j, k) entries are functions of (A, ne, ue, €) such that

[(BD) ] < CoemCeH Mo (4.117)

holds for all £ € [0,&0] and |A| > 67! for sufficiently small 6. (Here, the constant C' is uniform
in 6, ¢ and x.) (Recall that o(1) is indeed O(|A|™!)). The matrix S is positive semi-definite (or

non-negative).*?

Lemma 4.30. There exists eg > 0 and C > 0, independent of € and x, such that for all
e € [0,e0], the symmetric matriz Si(x;e) defined in (4.116) is positive semi-definite(or non-
negative) and there holds that |Si(x;¢)| < Ce.

The proof of Lemma 4.30 is straightforward using the solitary wave identities. Since it is

not short, we verify it in Appendix. Now we are ready to prove Lemma 4.26.
Proof of Lemma 4.26. From (4.114), (4.115), (4.116), (4.117), (4.111), (4.110), we have

Wo(A — i )Vo = Wo(A™ — i 1)Vo + Wo(A — A™)Vo

=B+F,

where

A
B(x, A\, e) := diag(0, uo — 1, 3 — 1, fha — + S 4.118
( ) (0, 12 — pu1, 13 — fi, f1a — f1) N ( )

and
1/2|:E|

|F(z,\¢)| < CeeC*
We note that for all € € (0, &),
oo ~
/ |F(z, )\ €)| de < Ce/?, (4.119)
—o0
where the constant C' is uniform in ¢ and |A| > § 1.
We let
T
& = ((c= VE) 11— 1372,0,0,0) & = (e~ VE)IL - 4i]?,0,0,0).
Changing variables y(z) = e "'*Wyy(z) — €1, we have
dy ~, - = -~
Ty = B@)y + Fz;)(e1 +3). (4.120)
With a particular choice of y*, we know that y*(z) := e "*Wyy ™ (z) — € is a solution of
(4.120) satisfying hl}_] y 1 (z) = 0 from the definition of Wy and (4.33).
T—r+00

Let ®(x;s) be the fundamental matrix of the simpler system

d ~
ﬁ = B(z;)a (4.121)

2This is why we multiplied the eigenvector v; by c + (—l)j\/K. Indeed, symmetricity is not necessary, but

it gives an easy way to verify that the matrix is non-negative.
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satisfying ®(s;s) = I. In Lemma 4.31, we will show that |®(z;s)| <1 for x < s. Using this fact
and (4.119), one may apply an iteration argument to show that there is a solution y; of (4.120)
satisfying xEIEOO ?;(az) = 0 as a fixed point of the bounded linear operator T on Cj([0,00))
defined by

o ~

(T5) () = - / Bz 5) [F(s) (@1 + §(s))] ds.

x
Since i; and y* tends to 0 as & — 400, we have §; =y by the one-to-one correspondence
between bounded solutions of (4.121) and (4.120).%* Hence, from the definition of T, we obtain

sup [74()] < CeV2.
z€[0,00)

In a similar fashion, one can obtain that

sup [a(2)] < CeV2,
z€(—00,0]

where z™ () := z~ (2)e/""Vy — €}. Since D(\,e) =z y' = (z~ +¢&})(y" +¢e1), we arrive at
ID(\e) — 1] < Cel/2,
O

Lemma 4.31. For B(x;) given by (4.118) with Sy is defined in (4.116), let ®(x;x0) € C™>** be
the fundamental matriz of

d ~
= = B(x:)a

satisfying ®(xo;x9) = I. Then, if € > 0 and 0 > 0 are sufficiently small, we have that for all
A E Dy,

|®(z;20)q| < |q| for allz < zy and q € C*. (4.122)
Proof. Let a = (al,aQ,a37a4)T(:1:) and q := (ql,q2,Q3,q4)T. From the structure of E, we
d d
observe that % =0 and % = (g — p1)ag(z). Since a1(z) = q; and ay(z) = ela—r)E=mo)g,
x x

we have

la1|(z) < |@| and  ag|(z) < [q| forz < o,

where we have used that pg — 1 = 2+ O(|A|72) (see (4.102)).

Let @ := (ag,a3)’ (z). Then, a satisfies

da — 0 A~
a <N2 M1 ) n 3.,

e\ 0 m-m) 2VE
where
/ 1 1 1 1 1
KR — RV 2WKRY + kR + IV 7

28ee Coppel, [6]. Or, one may directly use Proposition 4.4 by considering the asymptotic behavior of y; and
yT as ¢ — +oo, where y;r, defined by ?EL = ef”leOy;r — €1, is a solution of the ODE (4.32). Indeed, we have

ef‘”zyg(x) — Vpé1 = vi and e “ Py T () — vi as © — 4o0.
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and we have

where (,) denotes the standard inner product on C?. From (4.102) and (4.103),

Re A
© K+1+O(|)\|‘1) if ReA >0,

; L — ct+V

min Re (1j — ) = Rex

+1+O0(N™h if ReA <0,

Thus, since Sy is non-negative, we have

Ld o 0 if Rel >0,

-—(a,a)>< 1 _ _

2dx §<a,a) if e3/2¢5 <ReA < 0
2

where ¢ 1= —c¢p <1 — 2{}) + a < 0. Integrating over [z, zo], we obtain

(a2, a3)|*(x) < |(az, a3)]*(z0) = |(g2, 3)|?

for x < xg, which finishes the proof. O

4.6 Linear Convective Stability

The linearized system (4.13) can be rewritten as

du = Lu (4.124)

where £ is the operator defined in (4.16) and u = (n,u)”. We consider the abstract Cauchy
problem (4.124) in (L%)Q. We recall that under the change of variable u” := e*u, studying
the spectrum and resolvent operator of £ in L?? space is equivalent to studying those of £, :=

e Le” ™ in L? space. Specifically,

0
LM .= —(L1(0y —n) + Lo)u — ((ax ) ((6s — 7])2 N €¢C)1(u717)> . (4.125)

L generates Cy-semigroup in (L%) It is enough to check that — 19, generates Cp-semigroup
in (L*)? space since the remaining terms are bounded operators (see Proposition 5.27). If we
denote the Cy-semigroup with generator £ by e~"t, then e := e 7™ e~ e is a Cy-semigroup
generated by L in (L727)2 spaces.

We note that L; is symmetrizable. We let

_VE
Lé/Q = | vV1+n.
0 vV1+ne

and

-1/2 <C+Uc —\/[?

So = L[l]/Q(—Ll)LO —\/E o u ) ) Z = 500 — L(1)/2L1 (8xLal/2)'
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If Sy0, generates a Cp-semigroup on (LZ)Q, then L also generates a Cg-semigroup, e, as a

bounded perturbation of Syd,. Then,

e L1t . — L81/26LtL(1)/2

is a Cp-semigroup with generator —L19,. Indeed, we have for all u” € (H')?,
LgYPLLlPun = Lg? (Lé/z(—Ll)Lgl/an _ Lé/QLl(amLé/Q)) LY/ un
= —L Ly ?0,(LY ") — Ly (0,Ly /) L a0
= 7Llax <L61/2L(1]/2un> = 7Llaxun-

To show that Sy0, generates a Cy-semigroup, we first consider the shifted operator Sy0, —I.
Since Sy is a real-valued symmetric matrix, and the derivative of u, is small, integration by parts
yields that

Re((Sp0, — IHu",u") = —%Re((@xSo)ﬁ",ﬁﬂ — ||1~17’||%2 <0,

that is, Spd, — I is dissipative by (5.16). By the Lumer-Phillips Generation Theorem (Theorem
5.25), Spd; — I generates a Cp-contraction semigroup, and hence Sy0, also generates a Cp-

semigroup as a bounded perturbation of Sy0, — I.

The algebraic multiplicity of A = 0 as an eigenvalue of L in (L,QI) is two. Since
0= D(0,e) = 9xD(0,¢) # 93D(0,¢), we have from (5.46) and Proposition 5.46 that

O(e7H%) asz — too, forj=0,1,2,--,

4.126
O(et*79%) asx — —oco0, forj=0,1. ( )

HiyJ’(:c, 0,e) = {

Let us omit the e-dependence. Differentiating (4.32) in \, we see that y ™ (z, \) satisfies (recall
the form of A(z, \))

d | | .
(dm - Aﬂx)) (& yD)amo = (7 + 1 As(2)(Hy )r=o (4.127)
for j = 0,1,---. From (4.51) and (4.126), e”x(‘)g\yﬂ)\:o exponentially decay as |x| — oo for

7 =0,1. We show the following two statements:
1. every non-trivial L727 solution of (4.32) with A = 0 is a constant multiple of y ™ (z,0);

2. there is no L% function y satisfying

(25 - 1)) 5 = 24200 oo (1125)

Recalling the reduction of the eigenvalue problem (4.15), it is straightforward to see that these

statements imply that the algebraic multiplicity of the zero eigenvalue of £ in L% is two. The

first statement has been already proved in Proposition 4.10.
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To show the second statement, we suppose that there is a function y € L% satisfying (4.128).
Since Oy |a=0 € L%, we then have that 9,y € L% from (4.128), and thus ™Yy is bounded.
Let y? := ¥ — 83y |x=0. Then, we see from (4.127) and (4.128) that y° satisfies
dy®

or = Ay (x)y°. (4.129)

Since €y is bounded, and 793y ™ decays to 0 as x — +o0, we have y? = O(e™"") as x — +o0.
Hence, from (4.51), y* = o(e®~9%) as 2 — 400 for sufficiently small > 0, and this implies
that there is some constant ag # 0 such that y" = aoy ™t (z,0) by Proposition 4.4.

Now we obtain that
Ry =0 =y — apy " (2,0) = O(e™™) asz — —oc0.

This is a contradiction since Rep; < —n but the order of d3y ™ is exactly /1% as x — —oo.
(See Proposition 5.46 and Remark 32.)

Remark 7. The similar argument shows that 0.(ne, u.)? is the generalized eigenvector of £ in
L% space. Let yo 1= (0, O, O, De0pd) T and y1 := (Oyne, Optic, Opde, 02¢¢)T. From (4.17)
and Lemma 4.16, we have that

d _
(d - A1> y2 = —Agy1 = —a; ' Aoy T a0,
X

equivalently,

d — T
(s~ A1) (€32) = oy Aa(e™y o)

Since the operator % —n — Aj is Fredholm with index zero, by the result of [24], the ODE
system (% —n — A;)y = 0 has exponential dichotomies on Ry and R_ (but not on R since
D(0) = 0, or equivalently, the kernel of % —n — Ay in L? is non-trivial). Since e"™y™(z,0) is

in L?, we have that ¢y, € H' by the generalized Young’s inequality. Hence,
yo=0(e ™) asx — +oo.

Using (4.127), we have
(45 — A1) (y2 + o7 'oay T a=0) = 0.

We observe that ya = o(e® %) and 9,y |x—0 = o(e® %) as z — 400 since —px — 1 < 0
and g1 — px < 0. Therefore, we conclude that ys + al_l(%\yﬂ A=0 is a constant multiple of

y+(.’1/’,0) = 01Y1-

Uniform Resolvent Estimate We aim to obtain the uniform bound for the resolvent oper-
ator:

sup  ||[(A— L’")*lH(Lg)Q < M.
AED4,Re A>0
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Then ()\—ﬁ’)_l is uniformly bounded on Re A > 0 in L? norm, outside any small neighbourhood

of the origin since the resolvent is analytic on the resolvent set.

For each A\ € Dy, the ODE system (% —n—A(x, A\ e))y =0 has an exponential dichotomy

on R. Indeed,

P\ = Dz/\)y+(0, Nz~ (0,0) and - P(\) = (y (zty~)'z*) (0, )

are the projection matrices onto the space of initial conditions at = 0 of solutions to (4.32)

satisfying
y(z) = 0(e"®) asz — +oo and y(x) = O™ 9%) asz — —o0,

respectively for sufficiently small § > 0. Let ®(x) = ®(x; \,¢) be the fundamental solution of
(4.32) satisfying ®(0; \,e) = I. Then G"(z,2') = G"(z,2"; \,€) defined by

=)@ (2) PP (z') ! x>,

)= { —e1P(2)(I - P)B() ! o' >z,

satisfies
(0 —n)G" = A(z, N\, e)G" forz#2', G2 +0,2') - G2’ —0,2") =1,

and G"(z,2") — 0 exponentially fast as |x| — oo since n + Rep; < 0 < 1+ Re s on Dy.
In particular, the projection of an exponential dichotomy on R is unique. By applying the
generalized Young’s inequality, we see that for given e"(fy, f2) € (L*)? the L? solution y” =

€™ (n,u, ¢,¥)T to the inhomogeneous ODE system
(aﬁﬂ - 77)}’77 = A(.%', )\7 E)yn + f777 £ .= enx(fla f27 Oa 0)T7

is given by -
y" :/ G"(x,2")f"(2') d’.

We show that there is a constant C' > 0, independent of A € Dy with Re A > 0, such that

sup/ |(G7’)jk(m,x')| dz’ + sup/ ](G”)jk(x,x'ﬂ dr < C,

z€R J—c0 z’€R J —c0

for j,k = 1,2, then we would obtain the uniform bound
[(n, w2 = (€™ (n,u)ll L2 < Clle"™ (f1, f2)ll2 = Cll(f1, f2)llL2-
Step 0: Diagonalization By letting y, := V(flemy, we obtain from (4.32) that

Oeyn = nWoVoyn + WoA™Voy, + Wo(A — A%)Voyy
= [diag(n + pi) + Wo(A — A™) Vol yy-

(4.130)
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The matrix @(m,m') = C??(w, '\ g) = WoG"(z, 2")Vy satisfies
8,G" = [diag(ps + 1) + Wo(A — A®)WWo] Gn - for & # 2,
{ G(a' +0,2") — Gz’ —0,a") = I.
One may check that by term by term computation using (4.102), (4.103), (4.104), (4.105),
(Vo) il [(Wo)mi| < C for j,k=1,2and [,m =1,2,3,4

uniformly in A € ®4. Hence, for j,k =1, 2,

(GM)jk] = |(VoG"Wo)ju] < 64C >~ (G-
1,m=1,2,3,4
Here we note that
677(.%, z') = WoG"(z, 2"V
| @) P1(@) () x>
—@"(x)(I - P)(@N) () 2’ >,
where 5”(96) = Wye™®(xz)Vp is the fundamental solution of (4.130) with ®"7(0) = I and

P" := WyPVy = (P")? is a projection. In the next step, we show that there exists constants
€0, Co, ap > 0, independent of A, such that for all (g,\) € (0,&¢] X D4, there holds that

|07(2) P1(®M) 1 (2)| < Coe 0= > o (4.131a)
|87 (z)(I — P")(®") " (2')| < Coe~ @' =2) o/ > g (4.131b)

Step 1: Roughness of Exponential Dichotomy of Simpler Equation We recall that
from (4.111) and (4.115),

by ~
Wo(A — AWy = ——581 + RY + WyRPV,
o Wo 2\/X1 0 0

and from (4.114) and (4.117),
IRW + WoR®Vy| < Cee=C=I2

uniformly in A € Dy. We consider the simpler equation

A
0,y = diag{u; + 0}y + ——291v, 4.132
y g{pwi +n}ty Wil ( )

and show that (4.132) has an exponential dichotomy on R with uniform constants. Then, by
the roughness of exponential dichotomies (Theorem 5.32), we conclude that the system (4.130)
has an exponential dichotomy (4.131) on R with uniform constants.

Consider the fundamental solution W(z) of (4.132) which satisfies

9,0 (x) = diag{; + n}¥(z) + $10(z), W(0)=1I.

A
WK
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From the form of S; (see (4.116)), we see that
\Tl(x) = diag(e(Reul-ﬁ‘ﬂ)ﬂf’ {I}c(x)’ e(Reu4+n)ac)7

where

Uao(z) Was(z)

Let P := eje]. Then, the Green function of (4.132) is

U (z) := (Ejm(z) \%23(@) .

Gilw.a!) = U(z)PU1(2) for x> 2/,
T —W(z)(I — P)U ') for ' >z,

provided that (4.132) has an exponential dichotomy. It is easy to see that

~ { diag(e®ermtm@=2) G (2 2/),0) for z >/,

diag(O,éc(x,x'),e(Re””")(x_”/)) for ' >z,

where

~ ' 0 for x> a2/,
U (2)U N (a!) for 2’ > z.

Here G.(z,2') satisfies for z < 2/,

~ ~ A
0,Ge(z;) = di +n,u3 +n)Ge(z; ) +
(w5) = diag(pz + 1, ps + 1) Gel;) + Vi

where §1, defined in (4.123), is the nonzero 2 x 2 submatrix of S;. By taking the Frobenius

S1Go(z:), Ge(x' —0,2/)=1,  (4.133)

inner product?*, we have that

Red ~ ~ =~
A 5.C, G
2\/E< ! ¥

Since Rep; >0 (j = 2,3,4) when Re A > 0, and S, is nonnegative, we obtain

1 ~ ~ ~ o~
§a$<GC7 CT1c>F > mg}g{Re e + 77}<G67 Gc)F +
j: b

02(Ge, Geyr > 20(Ge, Go) . (4.134)
Multiplying (4.134) by e~ ?"® and then integrating the resultant in = argument over [z, '], the
jump condition in (4.133) yields that for 2’ > x,

(Ge, G p(m,a’) < e2n(@—a’),

Since Repg > 0 on Re A > 0 and Re p1 +1n < —1/2 for all sufficiently large |A| and small ¢, the

system (4.132) possesses an exponential dichotomy on R with constants uniform in .

A, B), = tr(BTA) = Zlgi,jgnEAij for A,B € C"™". 1t is easy to check that 2Re (9.4, A), =
0 (A, A) . since (A, B), = (B, A) .

7



4.7 Appendix
4.7.1 Specific form of A.({, A, ¢)

Using the simplified form of A;(z,¢) (see (4.82)),

el2n! 251/2u;(1 + ny) 0 1+ n.
1+ n, 1/2 J J
! !
£ 3 B 0 et/ 2(Knl + cul) 0 U
A(\/g’g Ae)= J(1+ny) J
0 0 0 1
-1 0 e 0
c—ux 1+mn, 0 0
K
32 A c—u, 0 0
+ 14 n.
J 0 0 00
0 0 0 0
Let a;; be the entry of A <£ 3/2 7\ > Th
ij y 0 ,E ., |. Then,
VE
asgs —Vais as + Vaze —Vaig —V3ai2  azs — Vaiy 0
Ve g3/2 €
a1l + Vaie
Ve ars —_— a4 0
A (€, Ae) = Ve (4.135)
e’ —1 é
0 E 0 er*
—a12 a1 +Vaip 1—ayy 0
NG g3/2 €

4.7.2 Proof of Proposition 4.3

Proof of Proposition 4.3. 1t is enough to prove that for k € Z, AI — L is Fredholm with index
k if and only if A()\) is Fredholm with index k. For a closed subspace R(\ — £) of a Hilbert

space H, we have
H=RA-L)DRA-L)=RA-L)dN (X - L)
and a similar decomposition holds for a closed subspace R(A(A)). Hence we claim that
Cl. R(A— L) is closed if and only if R(A(N)) is closed;
C2. N (X — L) is isomorphic to N (A(N)) ;
3. N(\ — L) is isomorphic to N (A*(N)). ( * := Hermitian adjoint)

We see that C1-C3 imply not only (a), but (b) and (c). To check C1-C3, we recall from (4.27)
and (4.28) that the first two rows of A(\) = 8, — A(\) is nothing but (L;) "1\ — £).

We only prove the right direction of C1 since the converse is easier to check. We suppose
that R(\ — £) is closed and consider a sequence f; = (fi, f2, f2, fHT € R(A(N)) such that
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£; — £ =(f1 12 3, T € (L?)* as i — oo. Let y; be a solution of A(\)y; = f; for each i. We
may decompose the last two components of A(\)y; = f; (corresponding to the Poisson equation

(4.28)) into two parts:

foaf 3 o = (0 — ) =
{ami v = £}, {833(@ ¢1) = Wi =) =0, (4.136)

0] — ol = 1, | 0n(i — 0]) — (6 — &) +mi =0,
where n; € H' is the first component of y;. Indeed, since sup|¢.] — 0 as e — 0, by the

z€R
roughness of exponential dichotomy of the linear ODE systems (Theorem 5.32) and Remark

18, the solution (qSZf,z/Jif) € (H")? to the LHS of (4.136) exists for all (f, ) € (L?)?. For the
same reason, the solution (¢/,97) € (H)? to the LHS of (4.136) exists for (f3, f*) e (L?)%. By
using the generalized Young’s inequality, we have that (d){ , wz-f ) — ((Z)f ! ) in (L?)%. By letting

Vi = (ni, wi, ¢; — ¢>Zf, )i — ?Z)zf)T7

1+nc

we have AN)y; = := (f + —— f2 z/zf 0, 0)T, equivalently,

l—l—nC

(A= L) (i, u)" = Li(f} + ol fE+ wf>

Since R(A — £) is closed, there is (n,u) € (H')? such that

1—|—nc

(A= L))" = Li(f' + =l 24+ =),

equivalently,
1
—Lleyd, pr 4 Sty 0, o),

ANY = (f' +
where y = (n, u, 5, J)T and
gx:{pva @Zx:ed)cg_n
By adding
0! — 0! = f,
Outp! — ol = [*,

we have
Ou(¥) +9T) — e (P + ¢f) +n = f*,

Hence, we have A(\)y = f, where y := (n, u, q~5—i— o', 1;—1— )T, and conclude that R(A(N)) is

closed.

{ 0u(+ ") — (W +f) = f5,

Since (¢,1) is determined by n through the linear Poisson equation, it is clear that the
projection mapping
(n,u,d,¢) = (n,u)

is an isomorphism between N (9, — A) and N'(A — £), which proves C2.%°

*We note that (n,u, ¢, )" € (H")? x H® x H® as long as (n,u,$,v)” € N(d, — A) C (H")* due to the

Poisson equation.
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To prove C2, we observe that the adjoint operator of (Al — £) in the standard L? inner
product is given by

QI—Q%R@T:@éan+HXﬁmT+«4ﬁ+¢ﬂ4h@Mﬁyj

Thus,
(LY = L) (n,a)" = (A= £)* (LY (7, )]
= ALY =0, + L3 (L YT (0, 0)"

(02 + )71 =0,) (= [+ noi + (e~ uo))
0

_ . -1
*)\IQ*LQ _1
o 0 0 (LHT 0,
0 0 0 e 02 Iy
0 —1 1 0
- . 3
XLHT + Ly (LhH”" -
= -0, +
1 0 0 0 —e
J 1+n. c—ue -1 0

If (7, @, $,9)" € Ker(d, — A)*, then
~ ~ ~ 1
—0pp—ePeh =0, —y) — j((l +ne)n+ (e —ue)a) — ¢ = 0.
Taking 9, to the second equation and using the first equation, we have
2 | _be\ 1 ~ ~
(=05 + e ) =0, j((l +ne)n+ (¢ —ue)u) | .

Thus,
(@, 6,9)" = (L) (A, 0", (R@)" = (L))" (R a)"), 6,4)"

gives an isomorphism between Ker(9, — A)* and Ker(AI — £)*.

4.7.3 Proof of Lemma 4.30

Proof of Lemma 4.30. Since the matrix S; defined in (4.116) is symmetric, it is enough to show
that the eigenvalues of Sy,

QQ2¢ERﬁ%tv6K%RgUI+ﬂR§P,
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(1)

are non-negative. Here Rll1 is positive since u.(z) > 0 for all x € R and

1 1
Rgl) = U, <02 —Ue + O(|uc|))

for sufficiently small ¢ > 0. We check that 2\/ER§11) - \/2K2(R§12))2 + 2(R§11))2 is positive.
Since Rgll) > 0, it is enough to show that
1 1 1
AR (RY)? = 2K (R)? — 2(Ry))?

- 2;5 2 (¢ — ue)(@ — K) —ed)? (14 10 —K (¢ — K)(1 +n¢) — )2 (1 +np)?

=:1 =:1s

—K (=K —(1+n.)J)°],

~
=:I3

is positive, where J; := J?(¢? — K)?(1 +n,.)? > 0. Using the solitary wave identity (4.81a) and
the definition of J (4.26), we have

L=2((c—u)(*—K)—c((c—u)® - K))2 (1+ne)?
— 2 (c(® — K) — c(c(c — ue) — K(1+n,)))°
= 2¢%(cue + Kn,)?,

L=-K((=K)(1+n) - ((c—u)? - K) )2(1 + 1)

(
=k (€~ K1 10 — (ele— u) — K(1 +10))’
(

— —K (ne( — K)(2+n.) + (cue + Kn,))?
= —K (cue + Kne)> — Kn?(c? — K)2(2 4 ne)? — 2Kn.(¢? — K)(2 + ne) (cue + Kn,)
= —K (cue + Kne)® — 4Kn2(? — K)? — 4Kne(? — K) (cue + Kn,)

+ O(]nC]:3 + ]nc|2\uc\),

Hence,
I 4 I+ I3 = 2(c — K)(cue + Kne)? —4Kn2(c? — K)? — 4Kn.(c? — K) (cue + Kn,)
+ O(’”C|3 + |n0|2|u0|)
= 2(c? — K)(cue + Kne) (cue — Kng) — 4Kn?(¢® — K)?
+ O(’”C|3 + |nc|2|uc|)
=2(c* — K)(*u? + K?n2 — 2Kc*n2) + O(|ne|? + |ne|*|uel).
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N

Since = u, from (4.81a), we obtain that
1+ n.
Aul + K*n? — 2Kc*n? = (¢ — K)*nZ(1+ O(|n.|)).
Therefore, we conclude that I; + Io + I3 > 0 for all sufficiently small £ > 0. (]

4.7.4 Proof of Proposition 4.29

Proof of Proposition 4.29. We set P(j; \) = (u? —1)(A—cp)? — Kp? +1) and L(p) = 1. Then,
(2 — K)d(p) = P(p) + L(). For all A with sufficiently large |A|, P(x) has four simple zeros

AN—V-R+K+EKXN _ A+ V-2+K+ KN\

M1 ) H4 ) M2 C2*K ) H3 szK

In particular, it is clear that for each pair of s, there is a positive lower bound, uniform in

large |A|, for the distance between them. Since the derivative of P() in p is
P'(1) = 2u((A — ep)® = Kpi® + 1) + 2(p% = 1)(=cA + (¢ = K)p),

we obtain

Pfin) = 2+~ K +1), P(fia) =2((A— ) — K +1),

Pl(fia) = —2(i3 — V=2 + K+ KX2, P'(fis) =23 — )V -2 + K + K\2.

Thus, we may take some constant py > 1, independent of € and A, and positive functions p;(\)

such that as |\| = oo,

pi(N) = O(AI™) forj = 1,4, py(A) = O(AI®) for j = 2,3, (4.137)

and for all A with sufficiently large ||,
() > L frj=1,2314 (4.138)
p] PO = orj)=1,4,9,4. .
[P’ (125)]
Moreover, p; can be taken so that (4.137) and (4.138) hold uniformly in € € [0,e0] for some

sufficiently small ¢ since ¢ = V1 + K + ¢. From (4.137)—(4.138) and the Taylor theorem, we
have that on the circle |u — g = pj,

|P(w)| = [P (1)1 — 5|1 + O(lu — ;)]
= p; [P (i) |11 + O(|u — iz
> pol1+O(|p — fl)|

> 1= |E(u)|

for all A\ with sufficiently large |A|. Now Rouché’s theorem implies that there is exactly one

simple root j; of d(p) such that |pu; — 1] < p;j. The proof is finished from (4.137). O
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4.7.5 Proof of Proposition 4.27

Proof of Proposition 4.27. By expanding d_(u) near pu = 0, (4.43b) is equivalent to

13

2V1+ K
where R(u) is analytic near p = 0 and R(p) = O(1) as |u| tends to 0. The RHS of (4.139) is
presumably negligible for small € and p. We let f1; = (—=2v1 + K)\)l/ge%ij/?’ for j =1,2,3, and
then plug the Ansatz p; = f1;(1 — Bj)l/?’ into (4.139). Then we obtain

+A=(c—VI+ EK)u+p’R(p) = ep+ p*R(p), (4.139)

e 2 (1 — B;)%/3
b= o gy y BB (1 - )
A A
~ 2(1 — B)5/3
Since 6% = O(e|A|7%/?) and M
exists and 8; = O(e|\|[~%? + IA[2/3) = 0(1) as § — 0.

We prove the second assertion. we note that at A = 0, d4(u) = A has a (unique) solution

= O(|)\|2/3), employing the fixed point argument, 3;

ps = 0. Hence, for small |A|, |pa]| is small, thus, from the form of di(p), we have us = O(N).
By expanding d,

3
1% 5
A=(c+VI+ K)p+ —+ u’R
(c I VIt K 1R (f)

if and only if
A pw

1
_c—l—\/1+Kc+\/1+K<2\/1+K

+PR().)
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(a) for K =0 (b) for K =2
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2
1
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El
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(c) for K =0 (d) for K =2

Figure 6: The images of curves dy (ik — p) for cg = 0.5, e = 0.2, p = coe'/? in different scales.
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5 Linear Stability and Instability of Nonlinear Waves

This section concerns linear (in)stability of nonlinear waves.

Notation: We denote the kernel of a linear (bounded or unbounded) operator £ by N (L),
and the range of £ by R(L).

5.1 Linear Systems of ODEs with Constant Matrices
We consider the linear systems of ordinary differential equations

dy

— =A 5.1

o =AY (5.1)
where A € C™*" is a constant matrix. We review some basic results of linear algebra on
finite-dimensional vector spaces and asymptotic behaviors of solutions of the system (5.1).

For a constant matrix A € C"*", we define

et = i (At)”7 reR (5.2)

|
e
The summation (5.2) is absolutly convergent on R, and it has the following properties.

Lemma 5.1. For all constant matrices A,B € C"*", and t,s € R, the following statements
hold.

1. %eAt = Ae?,

2 (eAt)fl _ efAt.

3. 6A(t+s) _ eAteAs _ eAseAt‘

4. eATBIt — At Bt — (Bt At i AR — BA.

5. ¢BABT't — peAip-1 for an invertible matriz B.

6. e is a matriz-valued solution of (5.1) satisfying eAt\t:O =1I,.
The spectral information of A gives the asymptotic behaviors of e“?.

Definition 5.1. Let A € C"*" be a constant matrix. p is called an eigenvalue of A if det(A —
wuly) = 0. The set of all eigenvalues of A is called the spectrum of A, denoted by o(A). Any non-
zero vector of N'(A — uly,) is called an eigenvector of A corresponding to p. The order of p as a
zero of the characteristic polynomial is called the algebraic multiplicity of p, denoted by mg(u).
The dimension of N'(A — ul,,) is called the geometric multiplicity of p, denoted by mg(u). We
say that p € o(A) is simple if mq,(p) = mgy(p) = 1, and semi-simple if mg(p) = mg(p).

In general, we have mq(p) > mg(p). When mg(pn) > mgy(p) = 1, for an eigenvector v; of A,
there is vo € N(A — pl,)? \ N (A — ul,,) such that (A — pul,)ve = vi.
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Definition 5.2. For i € 0(A) and vi € N(A—pul,), a set of vectors {v; }2?:1 is called the Jordan
chain (of full length k) generated by vy, if we can choose v; satisfying (A — pl,)v; = vj_1
for j = 2,--- ,k, but there is no vector v satisfying (A — ul,)v = vi. For {vi}I_,, a basis of
N(A — ul,), let {Vé}lgjgk,,lglgr be the set of all elements of the Jordan chains (of full length
k;) generated by vfcl. The subspace

— ; !
E,, := the linear span of {v;}1<j<k, 1<1<r

is called the generalized eigenspace of A corresponding to p. The vectors v € E, \ N (A — uly)

are called the generalized eigenvectors of A corresponding to p.

The set {Vé'}lgjgkl,lglgr is a linearly independent set of vectors. Moreover, the dimension
of E,, >/_ ki, coincides with mg(p).
Definition 5.3. For a matrix A € C™*", we decompose the spectrum o(A) as follows:
0°(A) :={p € o(A) : Rep <0},
0°(A) 1= { € o(4) : Rep = 0},
c"“(A):={p€o(A):Reu > 0}.

We call 0°(A) the stable spectrum, c°(A) the center spectrum, and o (A) the unstable spectrum.

Let s s
E® := &{E,; : puj € 0°(A)},
E = ®{E,; : uj € 0°(A)},
E* := ®{E,; : uj € 0"(A)}.

We call E° the stable eigenspace, E the center eigenspace, and E* the unstable eigenspace.

)
)

We define the operator

1
PSi=— [ (N[ — A)"td\ 5.3

where C is a simple closed curve lies in the open left half-plane and contains the stable spectrum
0®(A) in its interior. P? satisfies P® = P®P?® and the range of P° is E°. The operator P? is
called the spectral projection onto the stable eigenspace E°. The spectral projections P¢ and

P onto the center eigenspace E° and the unstable eigenspace E" are defined in a similar way.

Theorem 5.2. For a matriz A € C"*", the following properties hold.
1. C"=E° @ E°@E".

2. dimE°® = Z ma(p), dimE® = Z mq(p), dimE* = Z Mg (fL).
peas(A) peoc(A) peot(A)

3. AP*%Y = P%%Y A respectively. In other words, A commutes with the spectral projections.

4. eMESOU ¢ BV, respectively. In other words, E°, E®, and E" are invariant subspaces

under the multiplication by e.
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Since any vector yo € C™ can be decomposed as
yo = P°yo + Pyo + P"yo,
the solution of (5.1) with the initial value y( has the form
Alyy = A Poyy 4 A Py 4 A Py

The asymptotic behavior of the solution is obtained from the following proposition. We let
oy i=max{Rep: pe€c’(A)}, oy =max{Rep:pe€c"(A)},
oy, - =min{Rep : p € o’(A)}, op c=min{Rep: p € o"(A)}.

Proposition 5.3. For a matriz A € C"*", the following hold.

1. For all sufficiently small € > 0, there exist constants M (g), m(e) > 0 such that

men!|PPyo| < | PPyo| < Mel il Poyg|, ¢ >0,
mei!| Pyq| < | Poy,| < MelTm! el | poy |t <0,
mem! | Plyq| < |e Plyo| < Mel“it =l puy,| ¢ > 0,
meirt | Plyg| < e Plyo| < MelontHelD| pry,l ¢ <0,

for all yg € C™.

2. There exists some integer k with 0 < k <n — 1 such that for all yo € C"
m|Pyol| < [ Pyo| < M(1+ [t|*)|P°yo|, teR.

u

Remark 8. If the eigenvalue p with Re p = o3, (or o,,, oiyy, 0,y,) is semi-simple, then € = 0 can
be chosen for the upper bound estimate. If all u € 0°(A) are semi-simple, then & = 0 can be

chosen.

We say that a matrix A is hyperbolic if 0°(A) = (). From the above discussion, every
solution of the system (5.1) with a hyperbolic coefficient matrix is decomposed into two linearly
independent solutions: one exponentially decays as t — +o00, and the other exponentially grows
ast — oo (decays as t — —o0). In such a case, we say that the system possesses an exponential
dichotomy. This concept will be discussed further in a following section.

If 0¢(A) # 0 and o%(A) = @, then the asymptotic behavior of the solution e’yq to the
AtPc

system (5.1) for a large time ¢ > 0 is described by the dynamics of e yo in the sense that

etyo — eM'Plyq — 0 ast — 4o0.

In the next two sections, we study the asymptotic behavior of the solution to the infinite-

dimensional version of (5.1).
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5.2 Spectral Theory of Linear Operators

Notation: Throughout this section, X (or )') denotes a Banach space.

We consider linear operators £ : D(£) C X — Y defined on a subspace D(L), the domain
of L. If D(L) is dense in X, we say that L is densely defined. We say that L is closed if for any
sequence {x;} C D(L) such that

zj—x inX and Lz; =y in), (5.4)

then we have v € D(£) and Lz = y = lim Lx;. L is closed if and only if the graph of L,
j—00
{(z,Lx) e X xY:x € D(L)}, is closed in X x ).

Let £: D(L) C X — Y be a closed linear operator. The kernel of £ is a closed subspace of
X. For a bounded linear operator B : X — ), the operator B + L is closed with the domain
DB+ L)=D(L). If B: Z — X is bounded with R(B) C D(L), then LB is also closed. If
B:)Y — Z has the inverse, then BL is a closed operator. If £ is invertible, then £7! is also a

closed operator.

Theorem 5.4 (Closed graph theorem?®). Let £ : D(L) = X — Y be a linear operator. Then L

is continuous if and only if L is closed.

We require densely defined operators to define the adjoint operator.?” In terms of semigroup
theory, we will see that generators of strongly continuous semigroups are necessarily closed and

densely defined operators.

5.2.1 Projection Operators

A bounded linear operator P : X — X with P? = P is called a projection. For a projection

P, I — P is also a projection. We introduce elementary properties of projection operators.
Lemma 5.5. For a projection operator P on X, the following hold.

(a) Px =z for all x € R(P).

(b) X = N(P) @ R(P).

(c) R(I — P)=N(P) and N(I — P) =R(P).

(d) R(P) and R(I — P) are closed subspaces of X.

(¢) If P,P: X — X are projections such that N(P) = N (P) and R(P) = R(P), then P = P.

26The proof invokes the axiom of choice.
*"See [20], Chapter 3.

88



Proof. (a) is trivial. To prove (b), we first check that N (P)NR(P) = {0}. If z € N(P)NR(P),
then Px = 0 and x = Py for some y € X. Hence we have

0= Pz =P =Py=u.
Now (b) follows from that for any = € X,
Pr e R(P), z—PxeN(P), and z=Px+ (z— Px).

To prove (c), it suffices to show the first equality since I — P is also a projection. For z € N(P),
(b) implies that = x1 + x5 for some 21 € N(I — P) and 2 € R(I — P). On the other hand,

r=I—-P)z=(I—-P)lxz1+ (I —Plxzg =22 € R(I - P).

Conversely, for z € R(I — P), we have x = (I — P)x = x — Pz. Thus, Pz = 0. Now (d) follows

from (c) since the kernel of a bounded operator is closed. To prove (e), for all x € X we let

x = 21 + x2, where 21 € N(P) = N(P) and 22 € R(P) = R(P). Then we have

Pm—ﬁx:Pa@Q—ﬁm:xQ—xQ:O.

Remark 9. For a projection P on a Hilbert space H, let P* : H — H be the adjoint operator of
P. Then, P* is also a projection since P* = (PP)* = P*P*. We remark that the direct sum in

Lemma 5.5 is orthogonal if and only if the projection P is self-adjoint. Also, we have
N(P*) =R(P)", N(P)=R(P")".

5.2.2 Spectrum of Linear Operators

For £: D(L) C X — ) a densely defined closed linear operator, A\I —L: D(L) C X — Y is
also a densely defined closed linear operator for any A € C. We are interested in the invertibility
of A\ — L.

We say that A € C is in the resolvent set, p(L), if A\I — L is has the bounded inverse operator
(M —£)7': Y = D(L) c X.25% The inverse operator (\I — £)~! is called the resolvent. We
say that A € C\ p(£) is an eigenvalue of L if N(AI — L) is a non-trivial subspace of the domain
D(L). Unlike the finite dimensional case, however, C \ p(L£) is not the set of all eigenvalues of
L in general. We call o(L) := C\ p(L) the spectrum of L, and decompose it in terms of the
Fredholm properties of the operator Al — L.

BN —L)"' Y = D(L) C X exists and there is a constant C' > 0 such that |[(A — £) ™" f]|x < C||f||y for

all fe).
Zglndeed, invertibility implies bounded invertibility. This follows from the closed graph theorem and that the

inverse of a closed operator is also closed.
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Definition 5.4 (Fredholm operator). Let £ : X — Y be a closed and densely defined operator.
We say that L is Fredholm if

1. the range of £, R(L), is closed®’,
2. the dimension of N'(£) is finite,
3. the codimension of R(£)! is finite.

For a Fredholm operator £, we define the Fredholm index

ind(£) = dim N (£) — codim R(L).

The Fredholm index of an operator tells us how far an operator is from being invertible. If
ind(£) = 0, the operator L is injective if and only if it is surjective. If ind(L) # 0, the operator

L cannot be bijective.

We decompose (L) as follows:

1. we say that A € (L) is in the point spectrum, opt (L), if A\l — L is Fredholm with ind(A —
L) = 0, but it is not invertible;

2. we call 0es(L) 1= 0 (L) \ opt(L) the essential spectrum of L.

By the above classification, the essential spectrum of £ is the set of all A € C such that
1. AI — L is not Fredholm, or
2. M — L is Fredholm with ind(AI — £) # 0.

We note that AI — £ is Fredholm with ind(Al — £) = 0 for all A € p(L) since RN - L) =)
and N(A — L) = 0; R(AI — L) is closed in Y, dim N (AI — £) = 0, and codim R(A — L) = 0.

Remark 10. For each k € Z, the set of A € C for which (A — £) is Fredholm with index k is
open since small bounded perturbations of a Fredholm operator do not change the Fredholm
index.* The set of A € C for which A\J — £ is Fredholm is called the Fredholm domain for
L. The complement set of the Fredholm domain for £ is called the Fredholm border for L.
The Fredholm domain is open and the Fredholm border is closed. In general the Fredholm
domain is the union of countable open connected components. In many applications, however,
the Freholm domain is the union of a finite number of open connected components, and the

Fredholm border is the union of some parametrized curves.

30Invoking the axiom of choice, this condition is implied by the other two conditions.
*'The dimension of Y/R(L).
#2Gee [20], Chapter 4, Section 5.3

90



Remark 11. In some literatures®, the essential spectrum of an operator is defined by the set of
A € C for which Al — £ is not Fredholm. Our definition of the essential spectrum is larger, and
it takes an advantage in that the point spectrum consists of isolated eigenvalues of £ with finite
algebraic multiplicities. This can be explained from properties of the Evans function. The set
of A for which A\I — £ has the Fredholm index zero is open. On an open connected subset €2 of
this set, either the zeros of the Evans function, which is analytic, must be a discrete set, or the
Evans function is identically zero. However, the Evans function typically tends to a non-zero
value as Re A tends to +o0o. The relative complement set of the zero set of the Evans function

with respect to {2 lies in the resolvent set.

5.2.3 Resolvent Operators

Notation: We denote the resolvent operator (A — £)™' by R(\, £) or R()).*},

Proposition 5.6 (Resolvent identities). For A\, u € p(L) with X\ # p, the following hold:
(a) R(A) = R(p) = (1 = AR R(p).-
(b) ROAR(p) = R(p)R(A).

Proof. (a) is obtained by subtracting two equations

Since LR(A) = AR(X) — I is a bounded operator, (a) holds for all X. (b) follows from (a). O
Proposition 5.7. For a closed operator L on X, the following hold.

(a) The resolvent set p(L) is open in C, and the resolvent R(N\) is (piecewise® ) analytic in
A € p(L). In particular, for fized N\g € p(L), we have

[e.9]

RO =Y (Ao = N)"R(X0)" (55)

n=0
for all X € C with |\ — Xo| < 1/||R(Xo)]|-

1

(c) For a sequence A\, € p(L) such that ILm An = Ao, we have that \g € o(L) if and only if

Tim [|R(O)| = oo,

#Gee [20], Chapter 4, Section 5.6, for instance
*In some literatures such as [20], the notation R(A) = (£ — X\)~" is used.

35The resolvent set is not connected in general.
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Proof. For fixed \g € p(L), we have that
A=L=[I—=(X=NRA)] (Ao = L) = (Ao = L) [T = (Ao — A)R(Xo)]

for all A € C and € D(L). Since \g — L is invertible, A — £ is boundedly invertible if
I — (Ao — A)R(Xo) has the bounded inverse, which is true for all A with |\ — \o| < 1/||R(No)].

Hence, p(L£) is open and we have

1= (Ao —NRMX)] =D (A= N)"R(X)"™
n=0
In particular, [I — (Ao — N)R(Xo)] " : X = D(L) since L is closed. Indeed, for z € X, R(\)"x €
D(L) for all n € N, and thus Y 7 (Ao — A\)"R(X\o)"z € D(L). Therefore, we obtain

R(A) = R(Xo) [T — (ho = MR ™" = [I = (Ao — A)R(No)] " R(No)

= (Ao — A" R(Xg)" .
n=0

To prove (b), we fix A\g € p(L£). We showed in the proof of (a) that if |\ — Ao| < 1/||R(No)]|,
then X € p(L£). Hence, for all A € o(L) = C\ p(L), we have |A — Xg| > 1/||R(Xo)||. Taking the
infimum in A € o(£), we obtain (b). To prove (c), we assume that A € p(£). Then, since the
set {A\, : n > 0} is compact and R()) is continuous, R(\,) must be uniformly bounded for all

n > 0. The converse follows from (b). O

Remark 12. As a direct consequence of Proposition 5.7, o(L) is closed. In general, the spectrum

of an unbounded operator is not bounded. However, for a bounded operator £, (L) is bounded

1 VAN

n=

(hence compact) since

for all |A| > ||£]|. Also, by the Liouville’s theorem, we see that o(£) # () since

1 £\t -
HR(A)!SM< ‘”w”) — (A= L) =0 as [A] - oo,

Moreover, R(\) is analytic at the infinity.

This remark introduces the following definition for bounded operators.

Definition 5.5. For a bounded operator £ on X', we define the spectral radius of L by
r(L) :=sup{|A| : A € o(L)}.

Corollary 5.8. For a bounded operator L on X, we have r(L) < ||L]|.
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5.2.4 Commutativity and Spectral Decomposition

Definition 5.6. Let £ be an operator on X'. We say that £ commutes with A (or A commutes
with £) if for all x € D(L), we have that Az € D(L) and

LAz = ALx.

From Lemma 5.5, we know that a projection P decomposes a Banach space X in such a

way that
X = M| & My, (56)

where M := R(P) and My := R(I — P).

Definition 5.7. Let £ be an operator on X and P be a projection such that the decomposition
(5.6) holds. We say that £ is decomposed according to X = M; & My if

PD(L)C D(L), LM, C My, LMy C Ms. (5.7)

We observe that (5.7) is equivalent to that £ commutes with P. Indeed, from (5.7), we have
Px € D(L), LPx € My and L(I — P)x € Ms for all z € D(L). Thus (I — P)LPx = 0 and
PL(I — P)x =0 from Lemma 5.5, and this implies LPx = PLx. The converse is easy.

Definition 5.8. Let £ be an operator on X and M be a subspace of X. The part L]y of L in
M is defined by L|yz := Lz with the domain D(L|y) :=={x € D(L)NM : Lz € M}.

If £ is a closed operator and M is a closed subspace, then L], is also closed since the graph
of L] is the intersection of the graph of £ and the closed set M x M.

LR(N) = AR(X) — I is a bounded operator. Since AR(A) — I = R(A\)L, £ commutes with
the resolvent R(\).

Proposition 5.9. Assume that p(L) # ¢. If L commutes with a bounded operator A, then we
have
RN L)A = AR\ L)

for all X € p(L). Conversely, if R(Ag) commutes with A for some \g € p(L), then L commutes
with A.

Proof. We first claim that if an invertible operator 7' : D(T) C X — X commutes with a
bounded operator A, then 7! also commutes with A. Since A is bounded, Az € D(T™!) = X
for all x € X. Since

TAT 'z = ATT 'z = Az

for all z € X, we prove the claim by taking 77'. If £ commutes with A, then (A — £), which
is invertible for all A € p(L), commutes with A for all A € p(£). The result follows from the

claim. The converse also follows from the claim. O

93



Theorem 5.10 (Spectral Decomposition). Let L be a closed operator on X. Suppose that the
spectrum of L is decomposed as o(L) = o.(L) U oy(L) in such a way that o.(L) is enclosed by
a simple closed curve C and o,(L) lies in the exterior of C. Then we have a decomposition of

L according to a decomposition X = M. ® M, such that the following hold:
(a) PL=LP and (I — P)L=L(I — P).

(b) M. and M, are closed.

(c) The parts L]y, and L|pyr, are closed, and L|yr, is bounded.

(d) o(Lln.) = 0c(£) and o(L|ar,) = ou(L).

Proof. Let
1

P=o /C R(\) d).

One may check that P is a bounded operator with P? = P. Let M, := PX and M, := (I-P)X.
Since the resolvents commutes, PR(A) = R(\)P for all A € p(£). Thus, from Proposition 5.9,
P commutes with £. This implies that (see below (5.7)) the parts £|ys, and L]y, are defined.

It is easy to see that R(A)|y, and R(M)|y, are the inverses of A — Ly, and A — L]y,
respectively, for all A € p(L£). Hence, p(L|p,) and p(L|as,) contain p(L). We show that
p(Lla.) D ou(L). To see this, we note that R(\)|ar,x = R(A)z = R(\)Px for all x € M, and
A € p(L). For any X € p(£) \ C, we have

1 1 ax
NP =— MRN)dN = — A) — RN
ROVP = 5 [ ROROD AN = 5 [ (RO) = ROY) 3725
by the resolvent identity. If A lies outside of C', we have
1 ax
RMNP=—— [ RN .
) 2mi Jo ( )X -

Since the RHS is analytic in A outside of C',¢ R(\)P, and hence R())|ys. also, has an analytic
extension outside C'. This analytic extension is the resolvent of £|s,. Similarly, one may check
that p(L|a,) D 0c(L). Therefore, we conclude that o(L|nr.) C 0.(L) and o(L]|ar,) C ou(L).

If A€ oo(L)\ o(L]a.), then X € p(L|rr,) and X € p(L]ar,)- But, this implies that

RN P + R(A)|n, (I — P)

is the inverse of A — £. This shows that o(L|yr,) = 0.(£) and in a similar fashion, o(L|y,) =
ou(L).
Lastly, by using that LR(A\) = AR(A) — I is bounded, L is closed, and the summation
representaion of R(\), we obtain that
1 1
LR(N)d\ = AR(XN) dA,

LP = =
21 C

_27TZ C

where the last one is a bounded on X. Thus, L], is a bounded on M.. O

*Since R()) is continuous on C, it is also analytic inside of C.
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5.3 Semigroups and Application to Linear Stability of Nonlinear Waves
5.3.1 Strongly Continuous Semigroups

Definition 5.9. A family of bounded linear operators (7'(t));5, : & — & is called a (one-
parameter) semigroup if it satisfies the functional equation

T(t+s)=T{t)T(s) forallt,s>0, T(0)=1I. (5.8)

A semigroup T'(t) is called a strongly continuous (one-paramter) semigroup (or Co-semigroup),

if the orbit map
Er:t€[0,00) = &(t):=Tt)r e X (5.9)

is continuous for every z € X.

In fact, combined with (5.8), (5.9) is equivalent to a weaker condition. To see this, we first

observe that a Cy-semigroup T'(t) is uniformly bounded on any compact set [0, tg], that is,

sup [|T(t)| < oc. (5.10)
te[0,to0]

Since the orbit map T'(¢)z is continuous for each z € X, the image of a compact set [0, o] under

T(t)x is also compact, and hence sup ||T(t)z| < oo for each x € X. Now (5.10) follows from
te[0,to]
the uniform boundedness principle.

Proposition 5.11. For a semigroup T(t) on X, the following are equivalent.

(a) t — T(t)x is continuous on [0,00) for all z € X.

(b) lgﬁ)lT(h)a: =z forallz e X.

Proof. 1t is enough to show that (b) implies (a). For ¢ > 0 and h > 0,
IT(t+h)x =T@)z| <[ T@OT(h)z —z]| =0 ash {0

for all z € X. On the other hands, for ¢t > 0 and h < 0,

[T+ h)x —=T@)z| = |T(E+h) (I =T(—=t—h)T(t))z|
<T@+ h)lle — T (=h)z]]
—0 asht10

using (5.10). O

The fact that a Cp-semigroup 7'(¢) is uniformly bounded on any compact set [0, to] implies

that the uniform norm of T'(¢) is controlled by some exponential function on [0, c0).
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Proposition 5.12. For all Cy-semigroup T(t), there exist some constants w € R and M > 1
such that
T @) < Me** (5.11)

for allt > 0.

Proof. We can choose M > 1 such that ||T'(s)|| < M for all s € [0,1]. We writet > 0ast = s+k
for some k € N and s € [0, 1]. Let w :=log M > 0. Then, we have

IO < ITNTO" < M = MeF1osM = M) < M,

Definition 5.10. For a Cy-semigroup T'(t), its growth bound wy is defined by

wp := inf{w € R : there exists M,, > 1 such that ||T(t)| < M,e""* for all t > 0}
= inf{w € R : lim e"“*||T(¢)| = 0}.
t—o0
T(t) is called bounded if w = 0, and contractive if w =0 and M = 1 can be chosen in (5.11).

Proposition 5.13. 37 Let T(t) be a Cy-semigroup with the growth bound wy. Then the spectral
radius of T(t) is given by
r(T(t)) = e for allt > 0.

5.3.2 Generators of Semigroups

The differentiability of a Cy-semigroup is equivalent to a weaker condition.

Lemma 5.14. Let T(t) be a Cy-semigroup on X and x be an element of X. For the orbit map
& it T(t)x, the following are equivalent.

(a) &x(t) is differentiable on [0, 00).
(b) &x(t) is right differentiable att = 0.

Proof. Tt is enought to show that (b) implies (a). For ¢ > 0 and h > 0, we have

&t +h) —&(h) _ o TRz -z
h h

and the RHS converges to T'(t)€.(0) as h | 0. For —t < h < 0, we have

@@+2—&@_T@g@ZTa+m(”fﬁ”m—g@)+@@+m—ﬂm;w»

= T(t)

Since || T'(t + h)|| is uniformly bounded in A for all small A < 0,

T(-h)x—z

o (T2

5;(0)) H —0 ashto.

37For the proof, we refer to [10], Proposition 2.2, Chapter 4
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Since T'(t) is strongly continuous,
|(T(t+ h) = T(t)) €,.(0)|| = 0 as h10.

Therefore, we conclude that &,(t) is differentiable for all ¢ > 0 and we have

& (t) = T(£)&,(0). (5.12)

Definition 5.11. For a Cyp-semigroup (7'(t)),>, on &, let

L T 1 . .
D(L):={zeX: hlinio + (T(h)r — z) exists}.

The generator L: D(L) C X — X of (T'(t)),>, is the linear operator

and D(L) is called its domain.

Proposition 5.15. For the generator L of a Co-semigroup (T'(t)),»q on X, the following prop-
erties hold.
(a) For x € D(L), we have T(t)x € D(L) and

%T(t)x =T(t)Lx = LT (t)x for allt > 0.

(b) Fort>0 and x € X, we have
t
/T(s)xdseD(ﬁ).
0

(¢) Fort >0, we have
t
Tt)x—x=L | T(s)xds forxelX
0
t

:/ T(s)Lxds forz € D(L).
0

Proof. By the definition of D(A), x € D(A) means £,(0) exists. From Lemma 5.14, £ (¢) exists

for all ¢t € [0, 00) and in particular, from (5.12), we have

7(0) 4 = & (1) = hm OO g,
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which proves (a). To prove (c), we see that for z € X', t > 0 and h > 0,

Lam -1 /OtT(s)ac ds =1 </OtT(h+ S)ads - /OtT(s)ac ds)
_ % < /h s - /0 () ds'>
= % </th+tT(s’)x ds' — /Oh T(s)x ds’)

—T({t)z+z ashlO.

Thus, the LHS converges as h | 0, which implies the first equality of (c) as well as (b). For
x € D(L),
t 1

(T(h) — 1) /0 T(s)ads = lim | T(s) (T = 1) ds

li 1
1im —
hi0 h

t 1
:/0 T(s)lﬁ%ﬁ(T(h)—I)xds

t
= / T(s)Lxds,
0

(T'(h) — I) z uniformly converses to T'(s)Lx on

=

where the second line is from that s — T'(s)
[0,t]. (Recall (5.10).) O

Remark 13 (Rescaled Semigroups). For a Cp-semigroup 7'(t) with the generator £, S(s) :=
e T (s) is also a Cp-semigroup with the generator £ — A and domain D(£ — \) := D(L). This

scaling will be used frequently.

Theorem 5.16. The generator of a Cy-semigroup is a closed and densely defined linear operator

that determines the semigroup uniquely.

Theorem 5.17. Let L be the generator of a Co- semigroup (T'(t)),~o on X such that |T(t)[| <
Me™ for allt >0 (see (5.11)). Then the following statements hold.

~ t
(a) If there is A\ € C such that R(\)x := lim [ e T(s)xds exists for all z € X, then

t—o00 0

A€ p(L) and R(\, L) = R(\).
(b) If Re X > w, then A € p(L) and the resolvent R(\, L) is given by R()).
(c) IR L) < gt for all Re X > w.

Proof. We first prove (b) and (c) using (a). If Re A > w, then

t t t
|/ e_AST(S):L‘dSH < M/ e~ Redstws g0 ar ;e(—Re)\—l-w)s
0 0 w — Re A 0

Since —Re A +w < 0, the RHS converges to WM—w as t — oco. Thus, (b) and (c) follows from

(a). To prove (a), we assume that A = 0 without loss of generality (see Remark 13). For z € X
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and h > 0, we have

ME(O)QU = T(h})l_l /Ooo T(s)xds

1 [ 1 [
:/ T(h+s)xds—/ T(s)xds
h Jo h Jo

1 [ 1 [
h/h (s)xds h/o (s)xds
1 h
= _h/o T(s)xds

— —x as hlO0.

Hence, R(0)z € D(L) and LR(0) = —I for all z € X. For = € D(L),
¢ t _

lim £ [ T(s)xds= lim [ T(s)Lxds= R(0)Lx,

t—o00 0 t—o00 0

where we have used Proposition 5.15 (¢). On the other hand, we have

_ t t
LRO0)=L1lm [ T(s)xds= tlim L[ T(s)xds,

t—o0 0 —00 0

where one can justify the interchange of limit from that £ is closed and Proposition 5.15 (b).
Since —z = LR(0)x = R(0)Lz, we conclude that R(0) = R(0, £). O

Definition 5.12. For a linear operator L, its spectral bound is defined by
s(L) :=sup{ReA: A€ o(L)}.
As a direct consequence of Theorem 5.17, we have the following.

Corollary 5.18. For a Cy-semigroup with the generator L, we have
—00 < 8(L) < wy < +oo.

Remark 14. Theorem 5.16 and Theorem 5.17 imply some necessary properties for the generator
of a Cy-semigroup : it is closed and densely defined, and its spectrum lies in some left half-plane.

Moreover, the resolvent of the generator can be represented by the Laplace transform of T'(¢).

5.3.3 Inversion Formulas

Theorem 5.19. Let (T'(t)),5q be a bounded Co-semigroup on X generated by L. Then for all
60>0andz e X,

t 1 d+in e)\t
/ T(s)xdr = lim / TR()\,,C)l’ dA.
0 )

n—+o00 278 J5_in

Here the convergence is uniform in t on compact intervals.
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Corollary 5.20. Let (T(t));>q be a Co-semigroup on X generated by L. Then for all z € D(L)

and w > wy,

1 w—+in
T(t)xr = lim / eMR(N, L)z d.

n—+00 270 Jop_in

Here the convergence is uniform in t on compact intervals of (0,00).
If we require more regularity on x € X', then the inversion formula absolutely converges.

Corollary 5.21. Let (T'(t));>q be a Co-semigroup on X generated by L. Then for all z € D(L?),
w>wy, kEN, t>0,

E—1)! 1 w+tin
T(t)x = ( ) lim / MR, L)*x d.

k-1 ;
t 21 n=+o0 Jo_in

For k > 2, the integral converges absolutely and uniformly for t > 0.

5.3.4 Generation Theorems

The following theorem is due to Hille and Yosida. We recall that the generator of a Cy-

semigroup is necessarily closed and densely defined.

Theorem 5.22. For a densely defined closed linear operator L on X, the following are equiv-

alent:
(a) L generates a Cy-contraction semigroup.

(b) for every A > 0 we have X € p(L) and
A= L) < 1. (5.13)
(c) for all A € C such that Re A > 0 we have

10 =271 < o (5.14)

Remark 13 on the rescaled semigroup leads the following corollary.

Corollary 5.23. Forw € R and a a densely defined closed linear operator L on X, the following

are equivalent.
1. L generates a Cy-semigroup T'(t) satisfying
IT(t)| <e“  for allt > 0.
2. for every X > w, we have A € p(L) and

A= w) A= L)Y < 1.
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3. for every X € C such that Re A > w, we have X\ € p(L) and

A e [ —
I0=07 < g

Definition 5.13. A linear operator £ on X is called dissipative if

Allzll < I(A = L) || (5.15)
for all A > 0 and z € D(L).
Proposition 5.24. For a dissipative operator L, we have the following:
(a) X\ — L is injective for all A > 0 and
IMNA = L) el < 2]
forallze RIA—L) :=(N—L)D(L).

(b) X — L is surjective for some X\ > 0 if and only if it is surjective for all X > 0. In this case,
we have (0,00) C p(L).

Proof. From (5.15), we see that the kernel of A — £ is trivial for all A > 0. We substitute
r=(\—L)"'2 € D(L) ito (5.15). Suppose that \g — L is surjective for some \g > 0. From
(a), Ao € p(£) and ||(Ao — £)7'|| < 1/Xo. From (5.5), we have (0,2)g) C p(£) since all A
satisfying |\ — Ao| < Ao < [[(Ao — £) 7! are included in p(L£). In this way, one can check that
(0,00) C p(L). O

The following theorem is practically useful since it does not require the resolvent bounds.

Theorem 5.25 (Lumer-Phillips). For a densely defined closed linear operator L on X, the

following are equivalent:
(a) L generates a Cy-contraction semigroup.
(b) L is dissipative and R(Ag — L) = X for some Ao > 0.

Proof. (a) implies (b) by Theorem 5.22. Suppose that (b) holds. Then, from Proposition 5.24,
(0,00) C p(£). From (5.15), we have |[A(A — £)7!|| < 1 for all A > 0. Hence, (a) follows from
Theorem 5.22. 0

We introduce a practically useful characterization of dissipative operators.

Proposition 5.26. Let H be a Hilbert space. An operator L on H is dissipative if and only if

Re (Lz,z) <0 for all x € D(L). (5.16)
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Proof. We only prove the ‘if’ statement.>® Suppose that (5.16) holds. Then, for all A > 0 and
x € D(L) with x # 0,
Az = Lz|[[z]| = | Az — L, z) |
> Re (\x — Lz, z)
= \||z||? — Re (Az, z)
> Al

O]

Theorem 5.27 (Bounded Perturbation of Generators). Let L be the generator of a Cp- semi-
group T(t) on X satisfying
|T@#)| < Me* for all t >0

and some w € R, M > 1. If B is a linear bounded operator on X, then L = L+ B with
D(L) := D(L) generates a Cy-semigroup S(t) satisfying

1S@®)|| < MeHMIBIDE - for ail ¢ > 0.

Proof. We only prove the contraction case (w = 0 and M = 1).3% In this case, we have

(0,00) C p(L) from Theorem 5.22, and A — £ can be written as

A—L=(I-BRM\L)AN-L)

for all A > 0. From Theorem 5.22, we see that [|[BR(X, L)|| < [|B||/ for all A > 0, and hence
I — BR(\, L) is boundedly invertible for all A > || B||. This implies that A — £ is invertible, and
we have

R\ L) = R\, L)(I — BR(A, L)

for all A > ||B||. Moreover, for all A > || B,

~ 1 1 1
IR L) < < = :
AL—|[Bll/A  A—|B]
From Corollary 5.23, we finish the proof for the case that w =0 and M = 1. O

5.3.5 Asymptotic Behavior of Semigroups

We introduce some notions of stability for Cy-semigroups.
Definition 5.14. We say that a Cy-semigroup (7'(t)),~, on X is

1. uniformly exponentially stable if for some € > 0

lim e ||T(t)|| =0, (5.17)

t—+o0

*For the converse direction, we refer to [10], Chapter 2.
*For the general case, we refer to [10], Chapter 3.
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2. uniformly stable if
Jim (IT@)] = 0. (5.18)
The uniform exponential stability is equivalent to weaker conditions.
Proposition 5.28. For a Cy-semigroup T(t), the following are equivalent:
(a) T(t) is uniformly exponentially stable,
(b) T(t) is uniformly stable,

(c) there exists € > 0 such that . ligl T (t)z|| =0 for all z € X.
— 400

Proof. Tt is obvious that (a) implies (b) and (c). From Proposition 5.13 and Corollary 5.8. we
have e“°! = r(T(t)) < [|T(t)|. Since (b) implies that e“°* decreases as t — 0, we must have

wp < 0, which means (a). Suppose that (c) holds. Then, sup |[e*T(t)z|| < oo for each z.

te[0,00)
By the uniform boundedness principle, we obtain sup ||e“'T(t)|| < oo, which implies that
te[0,00)
lim /|| T(¢t)| = 0. O
t—00

The following theorem is very useful in that it only requires the uniform boundedness of the

resolvent.

Theorem 5.29 (Gearhart-Priiss-Greiner). Let £ be a generator of a Co-semigroup (T'(t));>
on a Hilbert space H. Then, T(t) is uniformly exponentially stable if and only if

M := sup ||\ =L)< oc. (5.19)
Re >0

Remark 15. Theorem 5.29 does not hold without the uniform bound (5.19). Also the theorem

is not true for arbitrary Banach spaces. See ([10], Chapter 5) for some related examples.

Proof. If T(t) is uniformly exponentially stable, then we have wy < 0, and the uniform bound
(5.19) follows from Theorem 5.17. We note that the uniform bound (5.19) and Proposition 5.7
imply that the imaginary axis is also included in p(L£). Thus, (5.19) also holds for Re A > 0
from continuity of R(),L). We consider the rescaled semigroup T, (t) := e “*T'(t) for some

w > |wp| + 1. By Theorem 5.17, we have
R(w+is,L)x = / e~ WHIT () dt = / e () dt = R(is, L — w)x
0 0

for all z € H and s € R. We extend T_,,(t) to R by letting T, (t) := 0 for ¢t < 0. Since T, (t)
is exponentially stable, we have T_,,(-)z € L*(R,H). Hence we can represent the above integral

in terms of the Fourier transform F : L*(R,H) — L*(R,H), and we obtain

R(w+is,L)x = F (T_y(-)x) (s).
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By using the Plancherel theorem® and the fact that T, (t) is exponentially stable, we get

+oo +oo
/ |R(w + is, £)x|* ds = / | F(T_w()2) ||* ds

—00 755

— [ IrualP

0

< Ozl
for all x € H and some constant C' > 0. From the resolvent identity (Proposition 5.6 (a)), we
have

R(is, L) = R(w +is, L) + wR(is, L)R(w + is, L),
and thus the estimate
|R(is, L)z|| < (1 4+ wM)||R(w + is, L)z||

holds for all x € H and s € R. From these estimates, we have for all x € H,

+00 +oo
[ iRt 2yalas < s wnny? [ RG s £l ds < (14 wht

—00 — 00

Let T*(t) be the adjoint Cp-semigroup of T'(t) with generator £*.4! Since T'(t) is bounded on a
Hilbert space, we have ||T'(¢)|| = ||77(¢)||. Thus, by symmetry, we have for all y € H,

—+o00
/ |R(is, £9)a|| ds < (1 + w2z

By the inversion formula of T'(¢) for k = 2, we have
1 [ ;
AT (t)z,y) = 27r/ elwtis)t (R(w +1s, L)%z, y) ds
1 o0

et (R(is, L)z, R(—is, L*)y) ds

g % .
for all x € D(£2) and y € H, where we used the Cauchy integral theorem in the second line.
This shifting of contour is possible since, from the definition of R(\, £) and that R(\, L) is

uniformly bounded by M on Re A > 0, we have for all x € D(£) and A # 0 with Re A > 0,

1 1
W!\R(A7ﬁ)ﬁx +af| < o (M| Lz]| + []])
which implies that ||[R(w + is,L)z|| — 0 as |s|] — oo. By the Cauchy-Schwarz inequity, we

obtain for all 2,y € D(AQ),

e 1< g (it eysran) " ([ s i)

1R, L)z <

7T —00 —o0
(1+ Mw)2L?
< —F .
< C O )
By the density of D(£?) in #,*? we obtain
(1+ Mw)?L?
2Ol = sup{| (T (1)) | . € DIE), ol = ol = 1} < EEEED
Since ||T'(t)|| — 0 as t — oo, T'(t) is uniformly exponentially stable by Proposition 5.28. O

“9This theorem holds only for Hilbert space valued functions.
“!See [25] Chapter 1, Section 10.
42See [10], Chapter 2, Section 1
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5.3.6 Abstract Cauchy Problem

We consider the abstract®® Cauchy problem

{ Oult) = Lu(t) (t=>0), (5.20)

u(0) = ug
where L is a linear operator on X'.

(a) A function u : [0,00) — X is called a (classical) solution of (5.20) if u € C*([0,00); X),
u(t) € D(L) for all t > 0, and (5.20) holds.

t
(b) A function u : [0, 00) — X is called a mild solution of (5.20) if u € C([0,00); X), / u(s)ds €
0
D(L) for all ¢t > 0, and
t
u(t) —up = ﬁ/ u(s)ds.
0

From Proposition 5.15, we see that the Cp-semigroup with generator £ yields solutions of
(5.20).

Proposition 5.30. Let L be the generator of a Cy-semigroup T(t). Then, the following state-

ments hold.
(a) For every ug € D(L), u(t) := T (t)ug is the unique (classical) solution of (5.20).

(b) For every ug € X, u(t) := T(t)ug is the unique mild solution of (5.20).

5.3.7 Application: Linear Stability of Nonlinear Waves

Typically, a family of nonlinear traveling waves are realized as a stationary point of the
nonlinear PDEs in the moving frame with the speed of the family of traveling waves. Let £ be
the linearized operator around a fixed point of a nonlinear operator F. We consider the initial
value problem (5.20) with £ on a Hilbert space #H. For simplicity, we assume that op (L) = {0}.
Such a case is typical when the PDE under consideration has the translation invariance. We

further assume that
(i) £:D(L) C H — H generates a Cp-semigroup.
(ii) A =0 is an isolated eigenvalue of £ with algebraic multiplicity k& > 1.

(iii) (A — £)7! is uniformly bounded on Re X > 0, outside any small neighbourhood of the

origin.

“3u(t) is considered as a Banach space valued function.
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From the assumption (ii), we can choose a sufficiently small disk Uy containing A = 0 so
that Uy \ {0} C p(L). We define the spectral projection

1
P:=— ¢ (M —L)td), (5.21)
271 Co

where Cj is a positively oriented simple closed curve enclosing the interior of Uy. The range of
P is the k-dimensional generalized eigenspace of £ associated with A = 0.
From the spectral decomposition theorem (Theorem 5.10), P and its complementary pro-

jection @ := I — P satisfy the following properties:

(a) Pt H—R(P), PP=PonH, PL=LPonD(L),

(b) @:H—=R(Q), QQ=QonH, QL=LQon D(L);

(¢) Llgrpy =L =LP on R(P)ND(L), Llg) =L=LQonR(Q)ND(L);

(d) o (L‘R(P)) ={0} = Upt([')a U(£|R(Q)) =0(L£) \ {0} = 0ess(L);

Moreover, the operator P satisfying these properties is unique since N(P) and R(P) are
uniquely determined.
From the assumption (i), u(t) := e“ug is the solution to (5.20) in a suitable sense depending

the regularity of the initial data ug. Since P+ QQ = I, we have
O (Pu+ Qu) = L(Pu+ Qu), u(0) = Pugp + Quyp.
Applying P and @, and then using the commutativity of £ with P and @, we get

0¢Pu = PL(Pu+ Qu) = LPu, Pu(0)= Puy,
01Qu = QL(Pu+ Qu) = £Qu, Qu(0) = Quo,

since PQ = QP = 0, P? = P, and Q* = Q. Since R(P) = and R(Q) are invariant subspaces

under £, we obtain two decoupled system for " := Pu and u~ := Qu,
Ot = Ligpyu®, ut(0) =uf := Pug € R(P), (5.22a)
o~ = Llg@gyu, v (0) =uy = Qug € R(Q). (5.22b)

The equation (5.22a) describes the dynamics on the k-dimensional invariant subspace R(P),
and the equation (5.22b) represents the dynamics on the complementary infinite-dimensional
invariant subspace R(Q).

The Cy-semigroup e*! is also decomposed as follows:

eft = eLlryt 4 eLlr@?

where efIR®)t and e£IR@¢ are the Co-semigroups generated by the parts [,|R(p) and £|R(Q),
respectively, and thus, the solution operators of (5.22a) and (5.22b), respectively, in a suitable

sense.
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The resolvent of the part L|g(q) is given as follows: on R(Q),
A=L) YT -P)=\—-L)"" for A€ p(L),
A~ Llr@) " =

analytic extension of (A — £)'(I — P) inside the curve Cj
for A € {the inside region of Cy}.

Since the resolvent is analytic, the assumption (iii) implies that (A — L]R(Q))_l :R(Q) = R(Q)
satisfies the uniform boundedness condition (5.19), and hence we conclude that there exists
C > 0 such that for u, € R(Q),

HeuR(Q)tugHH < e*CtHuaHH for all ¢ > 0. (5.23)

To illustrate the finite-dimensional dynamics, we suppose for instance that A = 0 is an

isolated eigenvalue with algebraic multiplicity two, and that
Lur =0, Lus=uq.
Then, the behavior of two-dimensional dynamics u™ (¢) is characterized by
ut(t) = crur + caug + tuq).
where ¢ and ¢y is determined by solving ciu; + cous = u*(0) = Puy.

Definition 5.15. Let £ be the linearized operator around a fixed point of a nonlinear operator
F. We say that the fixed point of F is spectrally stable if o(L) C {\ € C: ReX < 0}. We
say that the fixed point of F is linearly asymptotically stable modulo R(P) if the Cy-semigroup
generated by L|r o) satisfies (5.23).

Remark 16. If opi (L) = { Ao}, then the point spectrum of the adjoint operator £* is opt (L") =
{Xo}. The generalized eigenspace E of £ corresponding to Ao is the range of the spectral
projection operator P. The adjoint operator of P, denoted by P*, is the spectral projection
onto the generalized eigenspace E* of £*, and we have dimE = dimE* (see [20]). Moreover,

since
R(Q) = R(I — P) = N(P) = R(P*)* = E*,
we have a decomposition

H=R(P)&R(Q)=EaEL

5.4 Reformulation of Eigenvalue Problem

It is often useful to study the eigenvalue problem of an operator £ by reformulating it to

the associated system of linear first-order ODEs (5.24). We consider the operator
AN =424 —A(z,\) : D(A) C X = X,
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where 2 € R, A € C, and A € C"™" is a matrix. Here either X = L*(R,C") with D(A) =
HY(R,C") or X = Cy(R,C") with D(A) = C}(R,C") can be taken. In many applications, the
similar statements as Proposition 4.3, which relates the Fredholm properties of A — £ and those
of A()), hold true. Typically, A(\) has the form of

AN) = £ — 4y (2) — Ma(z).

For simplicity, we suppose that A()) is Fredholm with index zero and dim N (A(\)) = 1. We
further assume that there is a set of functions {y; };‘7:1 C D(A) such that

(%—Al_)\AQ)yJ:Agyj,1 fOI‘j:27---’k;,
but there is no function y € D(A) satisfying
d —
(45 — A1 = M) y = Aoyy.

Then the algebraic multiplicity of an eigenvalue of £ typically coincides with the length of the
longest possible chain {y1, - ,yx}-

Now our interest is to study the invertibility of the operator A(\). The Fredholm properties

of A(X) will be characterized in terms of exponential dichotomy.

5.4.1 Exponential Dichotomies

We consider the linear systems of ODEs
dy
— = Az, \ .24
where z € [ = (a,b) CR, A € C, A e C"".

Theorem 5.31 (Initial value problem). Suppose that for fixred A, A(xz, \) is continuous in x € I.
Then for each xg € I, and yg € C", there exists a unique solution to the initial value problem
of (5.24) with the initial value y(zo,A) = yo. If A(z,\) and yo(\) are analytic in X for each

x, then the solution y(x,\) is also analytic in X for each x.

We refer to ([18], Chapter 5) for more details on the initial value problem of the system of
ODEs such as dependence on parameters and initial conditions. Throughout Section 5.4.1, we
will suppress the A dependence whenever it is not important.

Let {vi, -+ ,vp} beabasis of C" and {y1(z), - ,yn(z)} be a set of solutions of (5.24) with
yvi(zo) = v;. By the uniqueness, this set of solutions is a basis of C" for each x. The matrix
defined by

O(x) := (y1(z), - ,yn(2))

is a matrix-valued solution to (5.24), and it is called a fundamental matriz. We note that
®(z;10) := () (z0)
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is also a matrix-valued solution to (5.24) satisfying ®(xo;xo) = . If ®(z) is a fundamental

matrix of (5.24) satisfying ®(xo) = I, then for any vector yo,

y(z) == ®(x;70)y0

is the unique solution to the initial value problem (5.24) with y(z0) = yo.

Definition 5.16. Let ®(x) be a fundamental matrix of (5.24). We say that the system (5.24)
has an ezponential dichotomy on I, if there is a projection P : C* — C" and some constants

K,a > 0 such that
|®(2)PD(y) 7} < Ke V) 1>y, (5.25a)
|B(x)(I = P)®(y) | < Ke *W9), y>u, (5.25b)
for all z,y € I.

Roughly speaking, the existence of an exponential dichotomy implies that the solution space
of the system is decomposed into two subspaces: a subspace of solutions exponentially decays
to zero as x — 400 and a subspace of solutions exponentially grows as x — 4o00. In Section 5.1,
we have observed that when the coefficient matrix A is independent of x, the system (5.24) has
an exponential dichotomy on I if and only if A is hyperbolic. In this case, ®(z) = e¢* and the
projection P can be taken as the spectral projection P® onto the stable eigenspace E° defined
in (5.3).

To see the meaning of an exponential dichotomy more precisely, we observe that (5.25)
implies that (apply ®(y)Py and ®(y)(I — P)y)

|®(x)Py| < Ke @ 9|®(y)Py| for >y, (5.26a)
|(x)(I = P)y| < Ke *W™|@(y)(I - P)y| for y>u, (5.26b)

where y € C" is an arbitrary constant vector.**

Suppose that I = R} and P has rank k. Then, the first condition (5.26a) says that there
is a k-dimensional subspace of solutions exponentially decays to zero as x — +o0o. The second
condition (5.26b) says that there is a complementary (n — k)-dimensional subspace of solutions
exponentially grows to infinity as  — +00.%

We suppose that the system (5.24) has exponential dichotomies on R} and R_ with pro-
jections, denoted by P, and P-_, respectively, and the fundamental matrix ®(x) satisfying
®(0) = I. On Ry, the set of initial conditions yq such that y(z) = ®(z)yo decays exponentially
as © — +oo is given by R(P;). The set of initial conditions yo such that y(z) = ®(x)yo
exponentially grows as x — +o0 is given by N (Py). On R_, the set of initial conditions yq

such that y(x) = ®(x)yo decays exponentially as © — —oo is given by R(I — P_) = N(P-).

“Indeed, (5.26) is a part of the conditions equivalent to (5.25). See Coppel [7], Chapter 2.
451
Fix z and let y — +o0.
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The set of initial conditions yo such that y(x) = ®(z)yo exponentially grows as x — —o0 is
given by N(I — P_) = R(P-).

The dimension of the kernel of the projection is reffered to as the Morse indexr of the
exponential dichotomy. If the system (5.24) has exponential dichotomies on R} and R_, we
denote the Morse indices by m4 () := dim N (Py) and m_(A) := dim N'(P_), respectively.

Remark 17. If the ODE system has an exponential dichotomy on I = [z(,c0), where zy > 0,
with a projection P, then it has an exponential dichotomy on I = R, with the same projection
P. (See [7], Chapter 2, p.13.) If P is another projection with R(P) = R(P), then the ODE
system also has an exponential dichotomy with the projection P. (See [7], Chapter 2, p.15.)
The projection P of an exponential dichotomy is not unique in general. While R(P) is
uniquely determined as the subspace of initial conditions of bounded solutions, there is no
unique choice for N'(P) since the direct sum decomposition of a vector space is not unique.
However, if the ODE system has an exponential dichotomy on I = R, then the projection P
is uniquely determined. This is because R(P) must be the subspace of initial conditions of
bounded solutions on Ry and N(P) must be the subspace of initial conditions of bounded
solutions on R_. In other word, every projection satisfying (5.25) has the same kernel and the

same range. Lemma 5.5 completes the claim.

Remark 18. We suppose that the system (5.24) has exponential dichotomies on Ry and R_.
It is clear that N'(P-) N R(P;) # {0} is equivalent to that the system (5.24) has a non-trivial
solution decaying exponentially as |z| — +o0. On the other hand, if N (P_)NR(P;) = {0} and
dim N'(P-) + dim R(Py) = n, then we have P = P_ = P; due to Lemma 5.5. Hence, (5.24)
possesses an exponential dichotomy on R with the (unique) projection P. The converse is also

true. In this case,

Gx,y) = 2(z)P2(y). L=y (5.27)
~®(z)(I-P)o '(y), y>u=

is the Green’s function of the system (5.24) on I = R with the boundary condition G(x,-) — 0
as |z| = 4o00. Indeed, G(z,y) satisfies

d
T-G(2,y) = A(2)G(2,y), = #v, (5.28)

Gly"y) -Gy .y =1
Moreover, we have

sw/mmmwsasw/wmmwsc

yER zeR

for some constant C' > 0. By the generalized Young’s inequality for integral operator, for any
given f € L?(R) (or Cy(R)),

yww=[§cu»ﬂww=/“@mﬂ@w*ﬂww—/mmwu—Pmm”ﬂJ@

—00
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satisfies

[yl < CliEllze (or flyllze < Clfl|zee),

and

Z—Z — A(x)y =f. (5.29)

Hence, y is a unique solution to the problem (5.29), and y € H'(R) (or C}(R)).

The following theorem says that the exponential dichotomy is stable under small perturba-
tions of the system (5.24). In particular, the Morse indicies i1 (\) are preserved under small

perturbations.

Theorem 5.32 (Roughness of exponential dichotomies, [7], Chapter 4). Suppose that the system
(5.24) has an exponential dichotomy (5.25) on Ry with the fundamental matriz ®(x) such that
o(0) = 1. If

§ = sup |B(z)| < a/4K?,

z€R}
then the perturbed system
Y~ (A@) + B@)y
also has an exponential dichotomy on R, :
() PD(y) | < (5/2)K e (2O sy >0,
[@(2)(I = P)D(y) | < (5/2)Ke” 72Oy >z >0,

where ® is the fundamental matriz for the perturbed system with i)(()) =1, and P is a projection

such that N'(P) = N'(P). Moreover, for all z > 0,

|®(2)PO(z) ! — ®(z)PP(x) | < 4o 1K3.

Remark 19. Similar statements to Theorem 5.32 also holds on the intervals I = R_, [z, +00),
(—o0, o], R. We refer to [23] for the roughness of the exponential dichotomy (Theorem 5.32)
under the perturbation B(z) with lim B(z) — 0.

T—+00

5.4.2 Exponential Dichotomies and the Fredholm Properties
Theorem 5.33 (Palmer,[23],[24]). Consider the operator
AN) = £ — A(z,A\) : H(R,C") C L*(R,C") — L*(R,C"),

where X\ € C. Then A(X) is Fredholm if and only if the system (5.24) possesses exponential
dichotomies on Ry. Moreover, the Fredholm index of A(\) is given by

ind (A(N)) = dim R (P+(N)) + dim N (P_(A\)) — n.
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Remark 20. The following proof is a modification of the Palmer’s original result, where the
space X = Cy(R,R") with D(A) = C} (R, R") is considered. We apply the generalized Young’s
inequality with different exponents and consider the complex adjoint system. The similar state-
ment for the case X = Cy(R,C") with D(A) = CL(R,C") also holds.

Proof. We only prove the ‘if’ statement. We refer to [24] for the other direction. We omit A
dependence for simplicity.

Suppose that the system (5.24) possesses exponential dichotomies (5.25) on Ry with the
fundamental matrix ®(z) satisfying ®(0) = I and the associated projection operators Py,

respectively. Then, we have
dim N (A) = dim (M (P-) N R(Py)) < o0 (5.31)

since all bounded solutions of the linear ODE system (5.24) (or equivalently, all elements of
the kernel of A) with linearly independent initial values must be linearly independent by the
uniqueness. To prove that R(A) is closed and that codimR(A) is finite, we first claim that
f € R(A) if and only if

(o]
/ Y fdr=0 (5.32)
—00
for all bounded (hence exponentially decaying) solution ¢ (z) of the (complex) adjoint system
d
£ = —A*(2)z, (5.33)

where A* = AT,

By taking the derivative of ®(z)® '(x) = I, one can check that (®')*(z) is the funda-
mental matrix of (5.33). Moreover, by taking the adjoint of (5.25), we see that (5.33) possesses
exponential dichotomies (5.25) on Ry with projections I — (Ps)*.6 Thus, the subspace of initial

values of bounded solutions to the adjoint system (5.33) is

N(I —P*)NR(I — Pf) =R(Py)- NN(P_)F, (5.34)
where the equality comes from
N(I—P*)=R(P*)=N(P-)* and R(I - P})=N(Pi)=R(P:)"
If f € R(A) € L?, then there is y € H' (hence bounded on R) such that

Y Ay = ).

For all bounded (hence exponentially decaying) solutions 1 (x) of (5.33) we have
[ wtde= [ woy-vayds

:/ U Oy + Opy dx = 0.

YR P, (stable), R(I — Py )(unstable) <+ RP} (unstable), R(I — P} )(stable)
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Conversely, we suppose that f € L?. Since (5.24) has exponential dichotomies, for any given

initial value yy,

y+(@) == ®(x)Pyyo + /0 ()P () () dy / T a1 - )@ () () dy,
0

y (z) = @(x)(I — P-)yo +/ ®(z)P-27 () f(") dy —/ ®(z)(I — P)®'()f() dy,

—o0 T

T

are the solutions of (5.24) in C*(Ry) N H'(Ry) and C'(R_) N H'(R_) respectively. (See
Remark 18.) Our goal is now to find yq such that y~(0) = y*(0) holds. Equivalently, we find
yo satisfying

00 0
(Py—(I—P.))yo= /0 (I-P)2 ' fdy +/ P_o fdyeC. (5.36)

Such yq exists when the RHS of (5.36) is in [N (P} — (I — Pf))}L.
For all q with (P — (I — P-))q = 0, we define

—1\* _ p* T
(@~1)*(z)Pa, z < 0.

Then, 1 (z) is a exponentially decaying solution of (5.33) (see (5.34)). From the assumption
(5.32), it follows that

0= /Zl/}*fdx:q* [/OOO(I—P+)<I>1fd:c+/ioP_<I>1fdx]

for all q € N (P4 — (I — P-)). This proves the claim.
To finish the proof, we take a basis {1);} of the finite dimensional subspace N (d/dx+ A*(x)),

which is isomorphic to (5.34), and define a linear bounded mapping
T:fel?— </ U1 fde, - / ¢jfd:c> e Cm.

From what we just have proved, the kernel of T is exactly R(A). Since T is continuous, the
kernel of T is closed, and hence R(A) is closed. Since R(A)* = N(A*), we have!”

codimR(A) = dimR(A)* = dim N (A*) = dim[N(P_)* N R(Py)*] < o,
where the last equality is from (5.34). Since

codimR(A) = dim[N(P_)* N R(Py)*]
= dim [N (P-) + R(P})]~
=n—dim [N(P-) + R(P;)]
=n— (dmN(P-) + dimR(Py) — dim [N (P-) N R(P4)]),

(5.38)

4TSee [20], Chapter 3, Lemma 1.40, for the first equality.
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we finally obtain using (5.31) that

dim N (A) — codimR(A) = dim N (P_) + dim R(P;) — n.

We note that the Fredholm index and the Morse indicies are related as follows:
ind (A(\)) = dim N(P-) — dim N (Py) = m_(A\) — my(A).
From Theorem 5.33, we have the following statements for the system (5.24):

1. A()) is not Fredholm <= (5.24) does not have an exponential dichotomy on Ry or

3. ind (A(N\)) = 0 and N(A(N)) = {0} <= (5.24) has exponential dichotomies on R
with my(A) = m_(A\) and R(Py(\)) NN (P-(\)) = {0};

N
A(N) # {0}
~(A) and R(P1(A)) NN (P- (X)) # {0}.

(5.24) has exponential dichotomies on R

Different asymptotic matrices: front type waves Suppose that A(x, \) has different

asymptotic matrices as * — £oo. This is typical when one consider the stability of front-type

traveling waves such as viscous shock waves. Let AZ ()\) := lirf A(z,\). By the roughness of
T—>1T 00

exponential dichotomies (Theorem 5.32), we have the following statements:
1. A()\) is not Fredholm <= one of AZ ()) is not hyperbolic;
2. ind (A\)) =k #0 <= A ()) are both hyperbolic with m_(\) — m4()\) = k # 0;
3. ind (A(\)) = 0 and N(A(N)) = {0} <=  AZ()\) are both hyperbolic with m()\) =
m—(A) and R(P(A)) NN (P-(N)) = {0};
4. ind (A(N)) = 0 and N (A(N)) # {0} <=  AZ()) are both hyperbolic with m ()\) =
m_(A) and R(P1(A)) NN (P-(})) # {0}.

Same asymptotic matrix: pulse type waves When one consider the stability of pulse-type
traveling waves such as solitary waves, A(x, \) has the same asymptotic matrix as * — +oo.

Let Ax(A) = ’ ‘hm A(z, ). In this case, we always have m(\) = m_(\), and hence, we

have the following:

1. A()) is not Fredholm <= A, () is not hyperbolic;
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2. ind (A(N\)) = 0 and N(A(N)) = {0} <=  A()) is hyperbolic and R(P(\)) N
N(P-(N)) ={0};

3. ind (A(N)) = 0 and N (A(N)) # {0} <= A, () is hyperbolic and R(P+(A)) N
N(P-(N)) # {0}.

Remark 21. If one of AL ()) is not hyperbolic, one may show that R(d, — AZ (\)) is not closed
using an oscillating solution. (See [35], Chapter 3)

115



5.5 The Evans Function

The Evans function was first introduced by Evans ([11]-[14]) for the study of stability of
some class of traveling waves. The Evans function is an analytic function in the parameter A,
which is particularly useful for detecting eigenvalues and their algebraic multiplicities. Its zeros
are related to the values of A such that the subspace of solutions exponentially decays to zero as
x — +o00o and the subspace of solutions exponentially decays as x — —oo intersect non-trivially,
that is, R(P+(\)) NN (P-())) # {0}. We introduce the Evans function and its properties sum-
marizing the formulation given in [26]. As an application, we discuss the instability of solitary

waves for the generalized KdV equation in the last section.

We consider a linear ODE system

dy
— = Az, A 5.39
o, = Al Ny (5.39)
and its associated transposed system
d
£ = —zA(z,\), (5.40)

Here, A € C is a parameter, A(x,\) is a n X n matrix, y(z, \) is a column vector, and z(z, \)
is a row vector.

We assume that on a simply connected domain 2 C C, H1-H4 hold.
H1. A(xz, ) is jointly continuous in (z,\) € R x Q and is analytic in A for each fixed x.

H2. lirin A(z,\) = AZ ()\) exist, and the limit is uniform in A on any compact subset of Q.
T—r00

o
H3. / |R(x,\)|dx converges for all A, uniformly on any compact subsets of (2, where

—00

A(z,\) — A (N) for z <0,

R(z,\) =
Az, \) — AL(\) for x>0.

H4. For every A € Q, A ()\) has a unique eigenvalue of smallest real part, which is simple.

Equivalently, the eigenvalues u;—L()\) of AL (\) can be labelled so that
Repi < pif = min{l:{e,u;E t1=2,---,n}. (5.41)

Proposition 5.34. For any solution'y of (5.39) and z of (5.40),zy is independent of x .

Indeed, we have
d(zy)
dx

= —zAy +zAy = 0.
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This is one of the advantages of considering the transposed system.

Notation: A (\) and AL ()\) are different in general. For notational simplicity, we suppress
+ signs as long as there is no confusion. We use the notation f(xz) ~ g(x) as © — +oo for
f(z)

A )

5.5.1 Analytic Eigenvectors

By Morera’s theorem, H2 implies that A, () is analytic on €. It is easy to see that uq(A)
is analytic on Q since p simple from H4.%8
We show that we can make an analytic choice of the normalized left and right eigenvectors

of AL (\) corresponding to the simple eigenvalue ui(\) so that for all A € €,

AL V) =0, wEO)[AS — 1] =0, wEOWVEN =L (5.42)

We need the following lemma’:

Lemma 5.35 ([20]). Let P(\) be a projection on a finite-dimensional vector space X, analytic
on a simply connected domain Q@ C C. Then, for A\g € §, there exists an operator-valued
function U(X) such that

1. U(N) is analytic in X € Q, and its inverse U (\) exists for all X € Q and is also analytic
m e,

2. UNP(No) = PNU(N) for all X € Q.

From H4, for any fixed )y € 2, we may choose the left and right eigenvectors, wy = w(\g)
and vo = v(Ag), of Ax(Ag) corresponding to the simple eigenvalue p1(\g) so that wovy = 1.%0

We define the operator
P(\) := / (Aso(N) —vI) ! dy,
r

where I is a positively oriented circle around pq(\) excluding the other eigenvalues inside the
circle. P(\) is analytic®® in X\ and is a projection onto the eigenspace of the simple eigenvalue

p1(A) with dimImP(A) = 1. From Lemma 5.35, we see that
v\ :=UN)ve, w(\) :=woU (N

are the desired eigenvectors satisfying (5.42).

“For any fixed Ao € Q and 1 = p1(Ao), we have det (Ao (N) — ul) = (0 — p1)d(p, \), where d(p1, \o) # 0.
det (Acc(N) — ) =

Hence, p1(\) is analytic from the implicit function theorem since lim =d(u1, o) #0.

H—p M M1
O The proof of Lemma 5.35 does not require the assumptions H1-H4.

*0This is possible whenever the eigenvalue is semi-simple. Consider the Jordan normal form.
®! Analyticity of P(\) has nothing to do with the multiplicity of the eigenvalue p1()). See [20], p.68.
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d
Proof of Lemma 5.35. Let us denote N by ’. Since P? = P, we have

P'P+ PP =P. (5.43)

Multiplying (5.43) by P , we obtain PP’ = PP'P + PP'. Hence, we get PP'P = 0. Let
Q()\) :== P'P — PP'. We note that PQ = —PP’ and QP = P'P. From (5.43), we obtain

P = QP — PQ. (5.44)
Now we consider the operator-valued ODE
X' =QNX, X(X\)= Xo. (5.45)

Since @ is analytic on a simply connected domain D and the problem is linear, from the usual
iteration argument and the analytic continuation, one may show that this problem has a unique
analytic solution X (\) on D.

Let U(A) be the solution of the operator-valued ODE U’ = Q(A\)U with U()\g) = I, and let
V(X) be the solution of V! = —VQ(X) with V(X\g) = I. We note that (VU) = -VQU +VQU =
0. Hence, V(MU (X) = V(A)U(Ng) = I.

To prove the second statement, using (5.44), we see that
(PU) = P'U + PQU = (P' + PQ)U = QPU.

Thus, P(A\)U () is a solution to the ODE (5.45) with Xo = P(Ao)U(X\g) = P(Ag)I = P(\g). On
the other hand, U(X)P()\o) is also a solution to (5.45) with Xo = U(X\o)P(Xo) = P(M\o). The
proof is done by the uniqueness of the ODE. O

Remark 22. Lemma 5.35 imples that if {v;} is a basis of P(A\g)&, then {U(A)v;} forms an
analytic basis of P(\)X.°% Suppose that j;()\) is not simple. In this case, for an eigenvector
vp of Ax(A) and a projection P(\) onto the eigenspace corresponding to pi(\), we cannot

guarantee that U(\)vy is an eigenvector of A (A).

Remark 23. P(\)vy is analytic, and it lies in the space spanned by the eigenvector of p1(\). But,

it may vanish at some A € Q. Thus, even if y is simple, P(\)vp may not be the eigenvector.

AN = (2 g) ,

where A € C. The eigenvalue of A is 0 with multiplicity two. When A = 0, there are two linearly
independent eigenvectors (1,0)7 and (0,1)”. When A # 0, the only eigenvector is (0,1)7. Even

Remark 24. Consider the matrix

if A(\) and its eigenvalues are all analytic, the eigenvector may not be analytic in general. As

this example shows, eigenvectors may degenerate at some point.

2If P(\) is continuous on a connected domain ©, then P(A)X is isomorphic to P(\o)X. In particular,
dimP(A\)X = dimP (X)X for all A € Q. See [20] for more details.
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5.5.2 Asymptotic Behavior of Solutions

Proposition 5.36. There exist unique solutions y* of (5.39) and z~ of (5.40) satisfying the

following properties:

(a) yt(z,\) ~ e“l+(A)$v+()\) as  — 400 and 2z~ (2, \) ~ e M1 MNTwT(A) as & — —o0, and the

limits are uniform in A on any compact sets of ;
(b) y*(x,\) and z~ (x,\) are analytic in X for each x.

Moreover, any solution of (5.39) ((5.40)) satisfying y = O(e“irx) as © — 400 (z = O(e M%)

as x — —o0) is a constant multiple of y* (2~ respectively. ).

Remark 25. One may expect that dyy™ ~ aAufaze“rxv+ as r — —+o0o. This is true and is
justified as follows. Let pu = uj (\) for simplicity. Since the limit e **y ™ (z,A) — v (}) is
uniform in A (on any compact sets of  from Proposition 5.36), we have that (e *y ™)\ — v

as ¢ — +oo uniformly in A\. On the other hand, we have

—pur,+Y. _ T + _—ux +
0= lim (7Y =) — lim [ 2A° —y+,u>\67’“5—v—/\ .
x—+00 x T—r+00 x z
Since
er
lim <y+m6_’” + *) = v,
r—-+00 X
we get,

Oy (x, ) ~ ﬂrze”1+9”6>\,ufv'F as r — +00.

A similar procedure yields that for each k € N,

8§'\y+(x, A) = O(e(“rﬂs)m) as T — +o00 (5.46)
for all sufficiently small § > 0.

Proof of Proposition 5.36. Let y(x) := e_“;%y(:n). Then, (5.39) becomes

dy -

Y~ BO) + BN, (5.47)
wehre B(\) := AL (A) — pf I and R(z,\) := A(z,\) — AL (\). From H4, one of the eigenvalues
of B(\) is 0 and the real part of the other eigenvalues are strictlfy positive. Hence, for all z < 0,
we have [|eBM®|| < C()), where C()) is bounded on any compact subsets of €.

We let
o0
(Fy)(z) = — / ePNE=) R(s, \)F(s) ds.

For any fixed zp € R and X\ € Q, F is a bounded linear operator on Cy([zg,00)). Indeed,
[(Fy)(@)] < / CVIR(s, M)y (s)] ds

. (5.48)
< sup [§(a)| €O [ |R(s V] ds.

r>x0
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We fix a compact domain 21 C 2. From H3, we can choose sufficiently large x¢ > 0 so that
o0
0 := sup C()\)/ |R(s,\)|ds < 1.
A€M 0

Hence, F is a contraction on Cp([xp,00)). For any given bounded function yq, we define a

sequence
Yit1:=Yyo+ Fyi, (i>1) (5.49)

Using that F is a contraction, one may show that the sequence (5.49) is Cauchy in Cy([z, 00)),

and thus there exists a unique® y(x, \) € Cy([z0, 00)) satisfying

¥ = Yo+Fy (5.50)

Here, we note that if yq is differentiable in x, then y is also differentiable in x since Fy is
differentiable in x.
Taking the derivative (formally) of (5.50), we see that
dy -y ~ _
V=30 _ pia () + BOYEFS) (@)

= R(z, A)y(z) + BA(Y = Yo)-

Thus, if yq is a bounded solution of % = B(\)yo, then y, uniquely determined by (5.50), is a
bounded solution of (5.47L Conversely, if y is a bounded solution of (5.47), then yp :=y — Fy
is a bounded solution of % = B(\)yo. Any bounded solution of % = B(\)yo on Cy([z0,0))
is a constant multiple of v ()\). We choose yo(z, ) := v ().

To finish the proof, we note that since the sequence (5.49) converges uniformly in A on €y,
y(x,\) is also analytic in A on ;. From (5.48) and H3,

y-vi=y-yo=(Fy)(z) 20 asx — +oo

uniformly in A € Q. y(x,\) is uniquely and analytically (in A) extended on the half line
(—o0, o] by solving the initial value problem. From the implicit function theorem, i (A) is
analytic since p] is simple. Hence, y™ := e”1+x§ is the desired solution.

We extend this local (in \) result to 2. We note that this extension is possible since
is simply connected. For any two region Q1,29 C Q with Q1 N Qs # (), there exist unique
Y1 =Yo+Fy1on [z,00)xQ; and yo = yo+ Fy2 on [z2,00) X 2a. By the uniqueness, y; = y2
on [z3,00) X (1 NQy), where x5 = max{x1,z2}. By solving the initial value problem, y; = y»
on (—oo,00) x (21 N Q).

O

In the following proposition, we characterize the asymptotic behavior of any solution of
(5.39) in terms of the solution z~ of the transposed equation (5.40). We note that any solution

y of (5.39) satisfies y = O(e/1 %) as 2 — —oo0 since y; is the smallest simple eigenvalue.

53Uniqueness follows from that F is a constraction.
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Proposition 5.37. Suppose that y is a solution (5.39) and z is a solution of (5.40). Then,
there holds that
y(@, ) ~ (27 y)N)etrt Vv () as 2z — —oo, (5.51a)
z(x,\) ~ (z y+)()\)6_“ir(>‘)xw+()\) as T — 400. (5.51b)
Moreover, if y and z are analytic in X € Q for each x, the limits are uniform in X on any

compact subsets of §2.

Proof. We fix \. Let y(z) := e #1 “y(z). From (5.39), we obtain the equation (5.47), but now

B(X\) == A (X) —py I and R(x,\) := Az, \) — A (A). The eigenvalues of B are composed of

0 and n — 1 values of strictly positive real parts. We define the linear bounded operator F on
Co((—00, z0]) by i

(FF)(@) = - / " BOVE=5) PR(s, N)F(s) ds

z (5.52)

+ / eBNE=9) (1 — PYR(s, \)y(s) ds,

where P is a projection operator onto the unstable subspace.”® Since [|eB@=9) P|| < Cef*(#=9)

for z — s < 0, where i, > 0, and [|e®@=*)(I — P)|| < C for & — s > 0, we have

(F9)(@)| < C sup [§(z >|(/x0| sV lds+ [ |R<s,A>|ds)

r<xo —00

< C sup |y(x |/ R(s,\)|ds.

x<xqo

Thus, for x¢ < 0 with sufficiently large modulus, F is a contraction. As before, there is a one-to-
dy ~
one correspondence between bounded solutions of (5.47) and bounded solutions of % = Byy.
x

Moreover, [y — yo| — 0 as x — —oo. Indeed, for given € > 0, we choose z1(g) < x so that

C sup |y(z \/ R(s,\)|ds < e/2.

<z

Then,

o

[(Fy)(@)] < PNEIPR(s, \)y (s) ds

xr1
+ / eBNE=)PR(s, Ny (s) ds

+ ‘ / eBNE=) (1 — PYR(s, \)¥(s) ds

<

+¢e/2.

Zo
/ BNE=)PR(s, \y(s)ds
1

We let £+ — —o0o so that

BN p| <e/2.

)
/ e B R(s, Ny (s) ds

1

d ~
Any bounded solution (indeed, any solution) of % = By on (—o0, 2] satisfies lim yo =
X T——00

cv™ () for some constant ¢ since it is a linear combination of v~ (\) and the other n —1 linearly

*Direct sum of the generalized eigenspaces corresponding to the eigenvalues with positive real parts.
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d ~ . .
independent solutions of % = By, which tend to zero as x — —0c0.”®> From the previous
x

proposition, we have
zy=eM%z7y sew v =¢ as x — —00,

which implies that z"y = c.
Suppose that y is analytic in A\. Then, z™ (2, \)y(z,\) = ¢(A) is analytic in A, and thus

yo = ¢(A) v (}) is also analytic. Fix a domain €. From the one-to-one correspondence,

¥ (2, )| < sup [yo(A)| + [(F¥) (2, A)]

AEM
< sup |yo(N)| 4+ C(N) sup |yx)\| R(s,\)|ds
AEM x<zo

1 ~
< sup |[yo(N)[+5  sup [y(z,A)]
)\EQl x<r0,>\691

xo 1
for ¢y < 0 sufficiently large |z¢| so that sup <C’()\)/ |R(s, )] ds) <3 holds. Thus,
A€ —00

sup  |y(x,\)| < 2 sup |yo(N)].
r<x0, \EN AEM

Using this, we can show that [y — yo| — 0 as  — —oo uniformly in A € Q;. O

Proposition 5.38. There exist n—1 linearly independent solutionsy; (x,\) of (5.39), andn—1
linearly independent solutions z; (z,\) of (5.40) such that the following hold. Fori=2,--- n,

(a) y; (z,)) and z} (x,\) are analytic in X € Q for each x;

(b) y; (x,\) = O(e"= 21?1y a5z — —o0 for any 6 € (0, —Re i), and z; (z, \) = O(ef“jxe‘s‘x')
as x — +oo for any § € (0, u, —Repy);

(¢) Any solution of (5.39) ((5.40)) with y(z) = O(e"* *’1*l) as 2z — —oc0 (z(z) = O(e*“jxe‘s'x‘)

as © — +00) is a linear combination of y; (z,A) (z; (x,\) respectively).

Proof. For any fixed A € , it is classical (see [6]) that that there exist linearly independent
solutions y; (z) of (5.39) with y; (z) = O(e’l®let* ) as # — —oo for i = 2,--- ,n. Here we
construct such solutions which are analytic in A € €.

Recall that for any solution of (5.39), f(y) := z"y is independent of x. Indeed, f is a
linear mapping from the n-dimensional solution space of (5.39) to a complex number. Thus,
dim N(f) = n— 1. From Proposition 5.37, we see that f(y; (z)) = 0. Thus, {y; (z)} is a basis
of N'(f), and every element y € N'(f) satisfies y = O(e’/"let ?) as 2 — —o0.

We fix xg. Suppose that there exists an analytic n x (n — 1) matrix V' (\) with rank n — 1
such that z~ (zg, \)V(A) = 0. We solve the initial value problem of a matrix valued ODE

dy”

= ANy, y (w0, 0) =V,

(bfa)Z) azx

P We recall that if a < b, ¢** dominates e’ as 2 — —oo in the sense that e*” (1 + e ~ e as x — —oo0.
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Then, the n — 1 columns of y ™ (z, ) is the desired y; (x, A) since we have

0 =2z (20, \)y; (w0, \) =2 (Ny; (V),

which implies that y; (x,\) € N(f).”

Let us construct V(X). We define P(\) := I — ztzzt’ where z = z~ (zg,\). P()\) is a
projection onto the space orthogonal to z™ (xg,A). Since z~ (xp, A) is analytic, P()) is also
analytic. We fix Ag. Let Vo = (y5,- -+, ¥, )(z0, Xo). Note that z™ (xq, Ao)y; (20, Ao) = 0. Thus,
P(Xo)y; (0, 0) =y; (0, Ao). From Lemma 5.35, there exists an analytic n x n matrix U(\)

such that U(A\)P(Ag) = P(MU(X) for all A € Q. Let V() := U(A)Vy. Then,
V(A) =UNVo =UN)P(Ao)Vo = P(NUN)Vo = POV (A).

Therefore, z~ (xg, A\)V (X)) = 0. Recall that U()) is invertible, and the columns of Vj are linearly
independent. Thus, the columns of V() are linearly independent. ]

Proposition 5.39 (Characterizations of the asymptotic behaviors of solutions of (5.39)). Ify
is a solution of (5.39), then (a)—(d) are equivalent.

1. (a) y(x) =o(e"M*) as x — —o0;

(b) z"y =0;
(c) y= Zciy;(aj, A) for some ¢; € C;
i=2

(d) y= O(e”*xe‘;‘x') as x — —oo for any 6 € (0, ux — Repq).

2. (a) y(x) = O(e''?) as © — +o0;
(b) z7y =0 for all i with 2 <i < n;
(¢c) y =cyt(z,)\) for some ceC;

(d) y(x) = o(e™®e 17l a5 2 — +00.

Proof. We first prove the first assertion. (a) and (b) are equivalent from Proposition 5.37. (b)
and (c) are equivalent since {y; } is a basis of kerf, where f(y) = z"y is defined in the proof
of Proposition 5.38. (c) are (d) are equivalent from Proposition 5.38.

We prove the second assertion. (a) and (c) are equivalent from Proposition 5.37. Since

z;yt = O(e(‘s_“jﬂ“)m) as x — 4oo for all i and § — pu + Repf < 0, zFy™ = 0. Thus, (c)
+

implies (b). Since z;" are linearly independent, the dimension of the solution space of zjy =0

(i =2,---,n)is 1. Since z}y" = 0, (b) implies (c). (a) implies (d) since eOmH)Ty (1) =

O(e(‘s_“jﬂ“)x) as  — 400 and 0 — pu +Repf < 0. (d) implies (b) since zy = O(e¥e M)y

as r — +oo. O

56By uniqueness, solutions of the linear ODE system with linearly independent initial data are linearly inde-

pendent. Or one may consider the transposed equation and solve the matrix valued ODE.
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Let

2
vy = [ys, o ,yn] €CTD and gt = | 1| e cimXn,
z,
The proof of Proposition 5.39 implies that for all A € €,
(zFyH)(A\) = (0,---,00 eC™! and (z7y )(\) =(0,---,0) e C" L. (5.53)

Remark 26 (Regarding Prop 5.39). When p < i, we recall that e"** dominates e** as x — 400
whereas e"” dominates e"** as x — —oo. Hence, the statements that the big O part implies the
small o part is trivial from (5.41). The idea of the converse part is as follows. For simplicity, we
suppose that AT = A € C*3 and Rep; < 0 < Repg < Reps. We forget about analyticity
of solutions. For each A\ € €2, we can construct a solution y* of (5.39) satisfying y™ ~ 1% as

x — +00. Similarly, we can construct linearly independent solutions of (5.39) satisfying

y, ~ ey, ~ ety ~ et as o — —oo.

3

Hence y' = Z cny; for some functions ¢, (), and we have
i=1

yT ~ci(N)et®  as x — —oo.

Now it is clear that c1(\) = 0 for some \ if and only if y* is a linear combination of y; and y3,
which decays to zero as * — —oo. The important part is that by introducing the transposed
system, one can show that z~y ™ ()\) = c¢1(A\). Moreover, z~y™*()\) can be chosen to be analytic
in A

The proof invokes the relation of the ODE system and its transpose system. The crucial

properties are the following;:
1. the dot product of the solutions of each system is independent of z;

2. construction of the analytic basis of the kernel of z"y (and z'y) with the behavior

O(el =)%Y a5 1 — —oc0 (and O(e™®) as 2 — +00).
The property that small o implies big O means that there are some dichotomies:
1. as x — 400, either'y = O(e!*™) or |y| > Cet** for some constant C' > 0;
2. as x — —oo, either y = O(eW9%) or |y| > Ce™? for some constant C > 0.

In particular, this indicates the possible asymptotic behaviors of y* (as 2 — —o0) and y; (as

x — 400).
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5.5.3 Definition of the Evans Function

Definition 5.17. For A € (2, we define the Fvans function
D) =2~ (, Ay (w, V).

Theorem 5.40. D(\) is analytic in X € Q. D(X) = 0 if and only if there exists a non-trivial
solution 'y of (5.39) satisfying

y(z) =o0(e®) as x— —oco0 and y(x)= O(e“ir“”) as x — +00. (5.54)
Proof. Sincez~ andy™ are analytic in A € Q, D()) is analytic. By the construction (Proposition

5.36), we have yT (x,\) = O(e“f“”) as © — +oo. From Proposition 5.37, we have

lim e "%yt (z,\)=(z"y" ) v = D\)v . (5.55)

T—r—00

Hence D(A) = 0 implies (5.54). Conversely, if y(x) = O(e“ﬁ) as * — 400, then y is a constant
multiple of y by Proposition 5.36. Hence, we have y ™ (z) = o(e/1 *) as 2 — —oo, which implies
that D(A\) = 0 by (5.55). O

Proposition 5.41. For A € Q, the following statements are equivalent.

(@) DO = (z7y ") (@A) = 0. (b) det [y*y~](z,\) = 0.

() det(z"y )(w,A) = 0. (d) det [;] (2, 2) = 0.

Proof. From Proposition 5.39, (a) if and only if y© = Y"1 , ¢;y; . Without loss of generality,
we let y, =yt + Y " sciy; . Since zTy"T =0 from (5.53),

zTy = [z*y;, . ,z*y;]
= [Z+(.‘>’Jr + s ay; ) 2tyy, ,z+y;]-
= [f(Z?:a CiYi )2 Yy, ,z+y;}
Now it easily follows that (a),(b) and (c) are equivalent. We omit the proof for (d). O

Indeed, the following stronger result is true. We refer to [26], p.64, for the proof.

Proposition 5.42. Fiz xg € R. There exist analytic functions f1, fo, f3 of X € Q, having no

zeros in §2, such that

D(N) = fi detlz"y () = fodetly Ty ](N) = fydet H ()

Z

Remark 27. On any open connected set of €2, the zeros of D(\) are isolated points unless D(\)

is identically zero.
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Remark 28. If Repup < 0 < py, then (5.54) is equivalent to that y(z) is bounded on R. From
Proposition 5.39, (5.54) is equivalent to that

y(z) =o0(eM®) as x— —oo and y(z)=o(e™ ) as z— +oo.
Thus, if y is bounded, then (5.54) holds. On the other hand, (5.54) is equivalent to that
y(x) = 0% as = —oco and y(z) = O(e?) as x — 4oo.
Thus, (5.54) implies that y is bounded. In particular, this shows that (5.54) is equivalent to

that y(x) exponentially decreases as |z| — oo.

Remark 29. From Proposition 5.39, (5.54) is equivalent to that
z y=0 and zjy:() fori=2,--- ,n.

These can be interpreted as asymptotic conditions of (5.39) on R: one condition z~y = 0 for

xr — —o0, and n — 1 conditions zjy =0 for z — 4o0.

Remark 30. Suppose that AL (\) = A ()\). For a solution y*(z,\) ~ e/'*v as  — +o0, we
have y*(z,\) ~ D(\)ef' v as © — —oo. If A(xz,\) = A()), we see that D(\) cannot be zero

for all A € 2 since any solution y satisfying y(z, \) ~ e/*v as x — +00 must be e/**v.

5.5.4 Properties of the Evans Function

Proposition 5.43. Suppose that A(x, \) is real for all x whenever A € Q is real. Then whenever

M € Q, we have A(z,)\) = A(z,)), yT(z,A) = yH(x,\), y (2,)) = y(2,)), z (z,)\) =

z=(x,\), 27 (2, ) =zt (2, \), and D(\) = D(N).

Proof. A(x,\) = A(x,\) follows from the Schwarz reflection principle. Since we already know

that y* is analytic in A, it is enough to show that y*(z, \) is real when ) is real. First, we

observe that since A¥()\) is real when X is real, uf()\) is also an eigenvalue of A*(\). Hence,
pi(\) must be real due to H4.

We claim that v()) is real when X is real. To do this, we recall the construction of v=(\).
Recall that we chose v(A) := U(A)vg(Ao), where U(A) is the solution of

U'(\) = (P'P — PP)Y(\U(N)

with U(Ag) = I. It is enough to show that P(\) is pure imaginary valued when A is real. Then,
P’()\) is also pure imaginary valued by the definition of analytic function. Then, we choose
real-valued vo(\g) for a fixed real \g, which is possible since A(\) is real.

We observe that if v is not an eigenvalue of Ax(\), then

(Asc(N) — D)L = (Ase(\) —TI) L,
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Choose a contour T'(0) := 1 (\) + ee for sufficiently small & > 0. Then, for \ real,

POV = /F (A () — vI)~1dv
_ /0 (Ao (N) = (1 () + e 1) (—eie ) do
_ /0 ALY — (0 (V) + 26 )1 (e ) def
— _P(\).

Now, since y*(z, \) satisfies (5.39) and has the same asympotic behavior as y*(z, \) from

Proposition 5.36, we see that y ' (z,\) = y*(z, \) for A real. For y; (@A) =y; (z, ), we choose
Vo to be real for real A\g (See the construction of y; in the proof of Proposition 5.38.). O

Proposition 5.44 (Resolvent formula). For A\ € Q with D(X) # 0, let

1, _
—_— x, Nz (s, \), T > 8,
G(z, 8 N) = D()‘)y (@ Nz (4)
—y (@ Ny )T Nzt (5,0, x <
Then G satisfies
9G 6N = A, NG5 N, (2 4 9)
dx ) ) 9 ) ) ) ) (556)
lim G(z,s) — lim G(z,s) = 1.
z—st T—s~

Proof. We note that for any xzg € R,

Since D(A) # 0, we have

and thus,
+y— D™ 0 zZ
I:[YY} 0 (zty )Y |zt
= y+(xo,g)(z>\;(xo,)\) + y*(a:o,k)(ery*) 1()\)Z+(:L’O’ N
Let
P(\) = Y (20, )z~ (w0, \)

D(X)
and ®(z, A) be the fundamental matrix such that

%@(m,)\) = Az, \)®(z,N), P(x0,A) =1
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Then we get

1
D(N)

DL)@@:; Wy (s )2 (00: )2 (s1)

= O(z;)P(N)2 ' (s;)

y+(x, )‘)Z_ (87 >‘) =

and
—y (2, )z y )TNz (s, 0) = =@(2;) (I = P(V)@ ' (s;).

One may check that

satisfies (5.56). O

Theorem 5.45 (Derivatives of D())). Let

—o0 (5.57)
+D(N) [W;(/\) v (A) +Fwh(A) - v;\r()\)] ,

in the sense of an improper integral. Also for k > 2, 8§D s given by taking the derivatives of
(5.57).

Proof. D'(A\) =z, y" +2z y}. On the other hand, we have (see remark below)

dzy _ _ dyt
CT;? = -z A\ -z, 4, dT? = Ayt + Ay (5.58)
Hence, from (5.39) and (5.40),
d B _ dzy _dy™T
DY) =Y Ry
=z Ay" (5.59)
d  _
= *%(Z yj)
For R, S > 0, we have
0
z,y (0,\) —zyy" (—R,\) = /R —z Ayt dz (5.60)
S
z y, (5, A) —z yi(0,)) = / z  Ayy " dx (5.61)
0
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Thus,
D) = 7y (0.0 + 23] (0.3)
s (5.62)
= /R —z- Ay de+z,y (—R,\) + 2y, (S, N).
Lety = e "y andz = e""z". Since y) = —pze "yt +e *y| and z) = pyze’z +ezy
we have

S
D'(\) :/ —z  Ayy " dx + (Zae Myt — unrzTy ) (=R, N)
—R

+ (27" YA + maazTy (S, N)

< (5.63)
= / 2~ (Ay — i)y " da + (2,¥)(—R, \)
-R
+ (2yA) (5, ),
where we have used that (z~y ™), = 0 in the second line. Since
y—vh (2= +4x), y—=DNv (r— —o0), (5.64a)
z—w  (r——00), zZ—DANw" (z— +o0) (5.64b)

uniformly in A, we have y\ — v;f as © — 400 and zy — w, as x — —o0. Letting R, S — 400,

we obtain (5.57). The higher order derivatives are obtained by taking derivatives of (5.63) and
(5.64) in A. O

Remark 31 (Interchanging the order of derivative (5.58)). We have

0 dy™

dy™
o _q A
o\ dz

dr - (a:,)\)y+, :A)\er""ij\_‘

y+(z,)) is analytic in A for each fixed x from the ODE. Thus, from the Cauchy integral

formula, we have
0 dy™ 1 +
g (x,\) = / Yo (15 2) (z,2) dz.
o\ dx 2mi Jr (2 — N)?

Since y ™ (x, \) is analytic in ), by the Cauchy integral formula, we have

9 4 1 [y (z,2)

- ) = — dz.

Yy BN =55 /F CESN A
Since A(z,\) and y ' (z, \) are jointly continuous®, y (z, \) is also jointly continuous from the
ODE.

Thus, by the bounded convergence theorem, (or by other useful theorem) 9,0\y " (z, \) exists

and ot 5 N
Y dy
RS WL Sy
g~ on dr @Y

®7Since we know that y™ (z0,A) is continuous in A and A(zx, \) is jointly continuous, the proof can be done by

the standard iteration argument on any compact set of R x Q. For instance, fixed point of y(z, A) = y(xo, \) +

/I A(s, Ny(s, \) ds.
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If the parameter is real, we cannot use this argument. In this case, we show that y, exists
and it a solution of inhomogeneous linear ODE 0,y = Ay + A,y. Due to this fact, it turns out
that 0,05y = 0\0;y . See [18], Chapter 5.

The following proposition relates the order of zeros of D(\) and the decay rates of 8§;y+.
This is useful when one calculate the algebraic multiplicity of the eigenvalues, equivalently, the

longest possible length of the Jordan chain.
Proposition 5.46. Suppose that A € Q) is a zero of the Evans function D of order k > 1, that

is, 0 = DY(X) £ DW(X) for 0 < j < k—1. Then, for 0 < j < k—1 and any sufficiently small
6 >0,

8§;y+(ﬂv, A =0(e" el as z— —o0, (5.65)
DHF () = lim_z*(z, Noky™(z, ). (5.66)

Remark 32. Proposition 5.46 says that the order of 8§y+ as © — —oo is exactly e®1 %, Let
pu~ = pi . Suppose that we have 0 = D(0) # D’'(0). We recall that the limit
lim e “yt = D(A\)v()\)
T——00
is uniform in A. By taking the derivative in A\, we obtain

lim (e"fg”yj\r - u;:ve_“ixy'F) = D'(0)v(0) + D(0)v(0).

T—r—00

at A = 0. Since D(0) = 0, we have y* = o(e# ) as x — —o0, equivalently, y+ = O(e!* ®e’l*l)
as ¢ — —oo from Proposition 5.39. Hence from u~ < u, , we have
lim ze # *yt =0.
T—r—00

Therefore, we obtain
lim e * "y} = D'(0)v(0) # 0.

T——00
Indeed, Proposition 5.46 can be proved by induction based on this observation. We refer to
[26].

The next two propositions are useful for studying the asymptotic behavior of the Evans
function for large |A\|. In many cases, the asymptotic matrix is diagonalizable with distinct ma-
trix eigenvalues for large |A|. One may apply some perturbation arguments such as Proposition

5.47 to investigate the asymptotic behavior of the matrix eigenvalues.

Proposition 5.47. Suppose that 15(,u; A) and L(p; N\) are analytic functions in p, where X is a
parameter. Suppose that P has a simple zero &= [(N\) as |\| = 0 and that there is a positive

|[L(f))|
B [P’ ()]
| — fi| = p. Then, P := P+ L has exactly one zero py = po(A) satisfying |po — il < p.

function p(X) and a constant pg > 1 such that p(A) — 0 as |A\| = oo, and p > po
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Proof. By Taylor’s theorem, P(p) = P'(1)(u— 1) (1+Op(|u—fil)) and L(u) = L(1)(1+OL(|p—
al). On |u— i = p,
|P()| = [P ()] |1 — il + Ol — al)l = plP' (W11 + Op(|p — Al)l
> pol L()|1 + Op(|u — )|
> |L(A)|[1 + Op (| — fil)| = |L(1)]-

The proof is finished by applying Rouché’s theorem. O

Proposition 5.48. We assume that for a matriz A(z,\) with ll)gl Az, A\) = Ax(N), the
system (5.39) satisfies the hypotheses H1-HY. We further assume that As () is diagonalizable
such that for the matrices W and V' defined by

W =1|:1], V:i= [vl,---yvn},

where w; and v; are the left and right eigenvectors of As(\) associated with p;, we have
WA(NV = diag{u;}, WV =1.

Let R(z, \) := A(x,\)—Ax (). Then, there exists 0 < 09 < 1 such that Zf/ [WR(z, \)V|dx <
do, then -
DO — 1] < c/ W R(x, )V dz. (5.67)

Proof. By the construction of y* (see Proposition 5.36), we have lil}rrl e MWyt (2) = eq.
T—r+00

We define v (z) := e " "Wyt (z) — e;. Then v (z) = 0 as  — +oo, and

dvt

= BV (@) + Fla)(er +v* (2)), (5.68)

where BO) = W(Asx(N) — NIV = dingl; — 1},
Fa) = WAz, A) — Au(\)V.

B

We multiply by e” 7% and integrate it on [z, z1], then we have

e BriyT(2)) — e Bovt(z) = /951 e BF(s)(e1 +vT(s))ds. (5.70)

Multiplying by e??, we have

T

BEmyt(z)) —vt(z) = / 1 P F(s)(e1 + v*(s)) ds. (5.71)

T

Since B is diagonal and the smallest value of real part of the eigenvalues is 0, we have ||e??|| < 1

for x < 0, and thus the first term tends to 0 as x1 — +00. Moreover,

+o0
/ eBE=P(s)(e) + v (s))ds < co.
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Hence, we have

v(z) = — / " B9 p(s) (o1 + vH(s)) ds.

Vi@l < [ IFldsi+ s V). (5.72)
0

s€[0,00)

[e.9]
Thus, if/ |F(s)]ds < dg < 1, then
0

sup |[vi(z)| < C’/ s)|ds. (5.73)

z€[0,00)

In a similar fashion, let w™(z) := z~ (z)e"**V — e}. Then

dw

g = ~w (z)B — (e} + w (2))F (). (5.74)

Since et¥z” () — wi as * — —oo, we have w™ (z) — 0 as * — —oo. Multiplying (5.74) by

¢B” and then integrating the resultant over [x1,z], we get

w(z) = w (21)eP@172) — /x(etl +w(s))F(s)eBE) ds. (5.75)

1

The first term tends to zero as 1 — —oo. Thus,

w(z) = — / ’ (ef +w(s))F(s)ePE) ds. (5.76)

—00

Thus, we have if/ |F'(s)|ds < 6o, then
0

sup |w ()| < C/ s)| ds. (5.77)

€ (—00,0]

Since D(\,¢) =z y" = (w~ +e!) (v +e;) (recall that WV = I), we arrive at

DO\ & _1|<0/ 5)| ds. (5.78)

5.5.5 Application: Linear Instability of Nonlinear Waves

We consider the generalized KdV equation
Opu + Osf(u) + 02u =0

where f(u) = uP*'/(p +1) and p > 1. Considering the change of variable z = s — ct, one can
show via a phase plane analysis that the gKdV equation has a solitary wave solution u.(s — ct)

traveling with the speed ¢ > 0, and it satisfies
—cOptte + O f (ue) + Ou, = 0. (5.79)
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Indeed, following the calculation given in Appendix, one can obtain the explicit form of u.,

ue(x) = <;c(p +1)(p+ 2)) v sech?/? <p\[2cm> , (e>0). (5.80)

We consider the linearized gKdV equation around wu.:
0w = Oz Lev,

where L. := —9% + ¢ — f'(u.). We consider the operator 9, L. : H*(R) c L*(R) — L*(R) and

the eigenvalue problem
A = 0y Lev. (5.81)

We study the eigenvalue problem (5.81). By applying the Evans function, we show that
there is an unstable eigenvalue of the operator d;L.. This result is due to [26]. We recall that

the Evans function can be constructed such that D(A) € R for A € R.
Reformulation of the eigenvalue problem We let
y = (v, 00, 0%v)T.

Then we obtain from (5.81) that

g 0 1 0
% = A(z,\)y = 0 0 1]y (5.82)

_)‘_ax(f/(UC)) c— f/(UC) 0
We consider the transpose equation dz/dx = —zA(z, A). Each component of z, say z;, satisfies
7= —z3(-A = 0u(f(w)), 25 =—z—z(c— f'(uc)), 23=—z. (5.83)

In particular, z3 satisfies the transpose equation of the eigenvalue problem (5.81)58:

)\23 = —Lcax,z;g. (5.84)
The asymptotic matrix of A(z, \) is
0 10
AN =10 0 1],
-2 ¢ 0
and the characteristic polynomial is
d(p; \) = p3 — cp + M. (5.85)

8 A similar observation also holds for the general n-th order differential operators.
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The right and left eigenvectors, v; and w;, of A corresponding the matrix eigenvalue f; are

given by
1

— 2 .
= W(Nj — ¢, 1, 1)

Vi = (LNjaN?)ty W

so that w;v; = 1 holds. We note that 3,u§ — ¢ = 0ud(pj) # 0 if p; is simple. By a simple
calculation, one can check that there is a simply connected domain ) containing the closed

right-half plane such that for A € Q,
Rep1 < Repg, Re ps,

which implies that the assumption H4 holds on €. H1-H3 also hold on € since u.(x) expo-
nentially decreases to zero as |x| — +o00. Hence the Evans function D()) is defined on €. In

particular, for A € Q with Re A > 0,
Rep1 <0 < Repg,Re s

holds. Therefore, the zeros of D(A) lies on the open left-half corresponds to the isolated eigen-
values of 9, L. in L*(R).

Asymptotic behavior of eigenvalues as |A\| - co Let P =4+ Xand L(p) = —cp. P has

three simple roots fi; = (—\)/3

LG _ o
PG| BT

for A # 0. For p sufficiently close to f,

L(u) = —cii(1+ O(jp = i), P'(p) = 33°(1 + O|n — fal))-

We let p(A) = for any pg > 1. Applying Proposition 5.47, we conclude that the

_c
P0 3’)\’1/3
characteristic polynomial d(u; A) in (5.85) has three simple zeros p; satisfying |u; — fi;| < p.

Asymptotic behavior of D()\) as |A\| = co Let us define 3 x 3 matrices

w1
W= |wy| and V.= [vl v V?J .
w3
By a direct computation, we obtain
(W(A = AZ)V)
0 0 0
=W 0 0 0
—0u(f'(ue)) = f'ue)m =0u(f'(we) = f'(uc)pa —=0u(f'(ue)) = f(ucus] )
() + Fuu
3,u? —c ’

where 7 = 1, 2,3 is the row index and k = 1,2,3 is the column index. Using the above result

for asymptotic behavior of the matrix eigenvalues, we obtain
[e.e]
/ W(A—-A®)Vdr—0 as |\ — oo.
—00

Applying Proposition 5.48, we conclude that D(\) — 1 as |A\| = co.
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Derivatives of D(\) at A\ =0 At A =0, we have —/c = 3 < 2 = 0 < pu3z = /c. We let
yt =9y, 27 = 25, and p = py for simplicity. At A = 0, the following hold:

yt ~ e (z— +00),

yT ~ D\)e"  (z— —o0),
2T~ e (20)7 (2= —o0),
0=0,Ly", 0= —L.0,2 .

Recall that the solitary wave solution u.(x) satisfies

—0%ue + cue — f(ue) = 0. (5.87)

Differentiating (5.87) in x, we see that

0= L.0zu., 0= 0,L:0zuec, (5.88)

that is, ye := (Optic, 02ue, d2ue)? is a solution of (5.82) with A = 0, and z,. defined by the relation
(5.83) with z3 = wu, is a solution of the transpose ODE. Since y. and z. decays exponentially,
ye = 0(e™%) as x — +00 and z, = o(eT%%) as © — —oo for sufficiently small § > 0. Thus, by

Proposition 5.39, there exist non-zero constants 31 and 3] satisfying
y+ = Blaa:uw z = Biuc

Since yT decays exponentially (or bounded) as x — —oo, we conclude that D(\) = 0. Since we
know that D(0) = 0, the formula (5.57) is simplified, and we have®

D'(0) = / 2yt dr = ,Blﬁi/ UcOguc dr = 0. (5.89)

Since D(0) = D’(0) = 0, we have

D" (0) = / 2yt + 2y da (5.90)

—00

Here we need to determine exact values of 81 and (]. From (5.80), we see that there is a

constant 8 > 0 such that®
(e, Opuc)e ™ — B(l,u) as x — +oo.

Thus, we have
y* = (Bp) Ouue, 2T = (2¢8) e (5.91)

Differentiating (5.81) and (5.84) in A\, we see that at A =0,

y+ = 83:Lcy;\‘_a z = _Lcax2;7

*Observe that / u? dz is constant of motion of the gKdV which is conserved.

%1t is also possible to derive this from the equation (5.87). See [6] p.104.
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where y;\r and z, decays to zero exponentially. By differentiating (5.87) in c,

x
L.Ocue = —ue, OpLOctie = —0pUe, Lcax/ Oplle AT = —Up. (5.92)
Since
OpLeyy =y = (Bu) "' Opue = —(Bp) ' 0p Ledeuie, (5.93)
we have
Oz Le(yy + (Bp) ' deuc) = 0. (5.94)

Similarly, we have
L.Opzy, = -2~ = —(ZCﬁ)_luc = (2CB)_1L0836/ Ocue dr,

and thus, .,
L0y (2, — (20,6’)1/ Ocucdx) = 0.

Therefore, there exist constants 2,35 # 0 such that Boy™ = y}\L + (ﬁu)*lacuc and B4z~ =

zy — (206)_1/ Ot dz.
From (5.91),

y;\i_ = 62(5,“)_181“0 - (5#)_180%2 (5.95&)
2y = B5(2¢8) tuc + (2¢8)7! /Z Octc d. (5.95b)

From (5.90), (5.91), and (5.95), we have
o0 x
D"(0) = (ZCﬁZ,u)_l/ Bxuc/ Octie AT — Ot dx
= _(052#)_1/ ueOpte dix
_Oooo u2
= —(cBQ,u)_lac/ ?C dz.

Cc

o) u2 1 S
Since u < 0, we have sgn D”(0) = sgn 60/ ?C dzx. We let Qu.) := 2/ u? dx.
—o0 —o0

1 Vp pyVe
Sign of 9.Q[u.] Let a= (2 p+1)(p+ 2)) and v = —~ Then, we have

a? a?
Qluc] = - /sech4/p('yx) dzx = > /sech4/p(x) dzx.
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Thus,
Qluc) ' 9:Qluc] = 0. 1n Qluc]
=0, <2lna + ln/sech4/p(:1:) dr —In2 — ln”y)
=0.(2lna—1Invy)

=0, <]291n <g(p+ L)(p+ 2)) — lnp\ﬁ+ln2>

21
pe 2c
_4-p
2
Thus, we conclude that
0Qluc) >0 ifp<4 (5.96a)
0cQluc) <0 ifp>4. (5.96Db)
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