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Abstract

We study solitary waves of the Euler-Poisson (EP) system. More precisely, we study the

asymptotic behavior and linear stability of small amplitude solitary wave solutions to the

EP system.

The first main result states that in a stretched moving frame, small amplitude solitary

waves of the EP system converge to the KdV solitary waves. The proper choice for the speed

of moving frame and the associated KdV equation is crucially used in the derivation of the

remainder equation. To overcome a difficulty, arising from indefinite signs of the remainder

equation, we divide the interval and conduct the analysis separately. We obtain the uniform

estimates for the remainder near the peak using the Gronwall-type inequality. For the far-

field region, we obtain the uniform decay estimates of the remainder by estimating uniform

lower bound of the speed of trajectory curves.

The second main result states that solitary waves of the EP system linearly asymptot-

ically stable modulo two non-decaying modes. The solution of the linearized EP system

will be represented by the semigroup generated by the linearized operator around the soli-

tary wave solutions to the EP system. Introducing eηx-weighted L2 norm, we perturb the

operator in such a way that the essential spectrum of the perturbed operator lies on the

open left-half plane of the complex plane. The zero eigenvalue of the operator, resulting

from the translation invariance and the speed parameter, is then isolated with algebraic

multiplicity two. We study the eigenvalue problem applying the Evans function, which is

particularly useful for detecting eigenvalues and their algebraic multiplicity. While calculat-

ing the Evans function is not simple in general, the Evans function for the KdV equation

is explicitly known. Considering a special scaling, we show that the Evans function for the

EP system converges to that for the KdV equation.
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1 Overview

The study of ‘solitary waves’ is an important subject not only in mathematics but also

in many other scientific scenes. We concern the mathematical study of solitary waves of the

Euler-Poisson (EP) system. More precisely, we study the asymptotic behavior and the linear

stability of small amplitude solitary wave solutions to the EP system.

The EP system is a fluid model which describes the dynamics of ions in electrostatic plasmas.

In Section 2, we briefly introduce the EP system and its physical meaning. Also some basic

properties of the EP system as well as its derivation will be presented.

In Section 3, we study the asymptotic behavior of small amplitude solitary wave solutions to

the EP system. In particular, in a stretched moving frame, they converge to the KdV solitary

waves (Bae and Kwon [1]).

The KdV equation is one of the most celebrated partial differential equations. Historically,

the KdV equation was first derived from the inviscid Euler equation by Boussinesq (1871,

[4]) and Korteweg and de Vries (1895, [21]), to describe Russell’s observation (1844, [30]) of

traveling solitary waves along a narrow channel. The KdV equation was not much studied

until it was discovered in the early 1960s that it is also derived from the other fields such as

the study of hydromagnetic waves (Gardner and Morikawa [15]). Among others, the formal

connection between the EP system and the KdV equation were found by plasma physicists

(Sagdeev [31], Washimi and Taniuti [34]). Later on, the formation and propagation of solitary

waves in electrostatic plasma were experimentally observed (Ikezi et al [19]).

We study the asymptotic similarity of the EP solitary waves to the KdV solitary waves in a

rigorous manner. The proper choice for the speed of moving frame (the ion sound speed) and

the associated KdV equation is crucially used in the derivation of the remainder equation. A

difficulty in the analysis of the remainder system stems from indefinite signs of the remainder

equation near the peak and near the far-field. Hence we divide the interval and conduct the

analysis separately. We obtain the uniform estimates of the remainder near the peak using the

Gronwall-type inequality. For the uniform estimates of the remainder near the far-field region,

we obtain the uniform decay estimates of the remainder by estimating uniform lower bound of

the speed of trajectory curves.

In Section 4, we study the linear stability of solitary wave solutions to the EP system. The

terminology ‘stability’ is somewhat vague; in which sense are solitary waves stable? We need to

establsih suitable notions of stability, and it would depend on the properties of the waves and

the underlying structures of PDEs. On the other hand, the stability of the KdV solitary waves

has been extensively studied (Benjamin [2], Bona [3], Pego and Weinstein [26], [27]). We will

investigate those notions of stability in the context of our problem. Then we study the linear

stability of solitary waves as the first step toward the nonlinear asymptotic stability (Bae and

Kwon, unpublished). We remark that the global existence for the initial value problem of the

one-dimensional EP system is not known yet.
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The solution of the linearized EP system will be represented by the semigroup generated by

the linearized operator around the solitary wave solutions to the EP system. The spectral in-

formation of the generator gives the asymptotic behavior of the associated semigroup. The zero

eigenvalue of the operator, resulting from the translation invariance and the speed parameter,

is embedded in the essential spectrum in L2 space. However, by introducing eηx-weighted L2

norm, one can perturb the operator in such a way that the essential spectrum of the perturbed

operator lies on the open left-half plane of the complex plane, and the zero eigenvalue of the

operator is then isolated with algebraic multiplicity two. We show that small amplitude soli-

tary waves of the EP system linearly asymptotically stable modulo two non-decaying modes,

the generalized eigenvectors corresponding to the zero eigenvalue. We study the eigenvalue

problem applying the Evans function, which is particularly useful for detecting eigenvalues and

their algebraic multiplicity. While calculating the Evans function is not simple in general, the

Evans function for the KdV equation is explicitly known. The approach here is to show that in

a special scaling, the Evans function for the EP system converges to that for the KdV equation.

The Evans function was first introduced by Evans ([11], [12], [13], [14]) in the study of

stability of some class of traveling waves. It is a complex analytic function in the spectral

paramter, and its zeros are related to the eigenvalues of the linearized operator around the

nonlinear wave under consideration. In Section 5, we introduce the construction and properties

of the Evans function as well as its application to the instability of solitary waves for the

generalized KdV equation given in [26]. Also, the general description on the linear asymptotic

stability of nonlinear waves and some prerequisites such as the spectral and semigroup theory

will be covered referring to textbooks of Coppel ([6], [7]) for the asymptotic behavior of ODEs,

Engel and Nagel [10], Kato [20], Pazy [25] for the spectral and semigroup theory, Pego and

Weinstein [26], Sandstede [32], Kapitula and Promislow [35] for the Evans function and its

applications.
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2 Fluid Description of Electrostatic Plasma

2.1 The Euler-Poisson System

The ion dynamics in an electrostatic plasma is described by the Euler-Poisson system for

ions: in the nondimensionalized form


∂tn+∇ · (nu) = 0,

n (∂tu+ (u · ∇)u) +K∇n = −n∇φ,

−∆φ = n− eφ,

(2.1a)

(2.1b)

(2.1c)

where n, φ : (t, x) ∈ R × R3 → R are unknown functions for the ion number density and the

electric potential, u = (u1, u2, u3)T : (t, x) ∈ R × R3 → R3 is the velocity vector field of the

ions, and K = Ti/Te ≥ 0 is a constant representing the ratio of the ion temperature Ti and the

electron temperature Te. Here, u ·∇ :=
∑3

k=1 uk∂xk . The system (2.1) is called the pressureless

if K = 0, and the isothermal if K > 0.1 In the model (2.1), the electron density is determined

by φ via the Boltzmann relation (2.18). The system (2.1) is a common fluid model for ions in

a plasma, and it well describes a variety of phenomena arising in plasma physics such as the

formation of double layers and plasma sheaths. For more physicality of (2.1), we refer readers

to [5, 9].

The system (2.1) is derived from the two-fluid Euler-Maxwell for ions and electrons under

the following major assumptions2:

• electrostatic – there is no magnetic field;

• isothermal pressures – the temperatures for the ions and the electrons are constant;

• massless electron – the mass of the electrons is zero.

The derivation will be presented in Section 2.2. We remark that for the adiabatic ions, the

isothermal pressure term Kn of (2.1) is replaced by the adiabatic pressure law

p(n) = Anγ ,

where A > 0 and γ > 1 are constants.

Unlike the compressible Euler system for neutral gases, the Euler-Poisson system has a

dispersive character due to the presence of the electric potential, and this aspect makes the

system contain rich and interesting phenomena.

1As an ideal case for a plasma with Ti � Te, the pressureless model is frequently used in plasma physics.
2The assumptions of the isothermal electron pressure and the massless electron are based on the physical fact

that for every plasma environment, the mass of the electron is very small and negligible compared to the mass

of the ion. The mass of the hydrogen ion is 1836×me, where me ≈ 9.1× 10−31kg is the mass of the electron.
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Dispersion Relation We consider the linearized system for (2.1) around the uniform state

solution (n, u, φ) = (1, 0, 0). Substituting the small perturbations (εn1, εu1, εφ1) = (n− 1, u, φ)

into (2.1), and then neglecting ε2 order terms, we obtain the linearized system for (2.1):
∂tn1 +∇ · u1 = 0,

∂tu1 +K∇n1 = −∇φ1,

−∆φ1 = n1 − φ1.

(2.2)

In what follows, we do not consider the adiabatic ion pressure since the analysis is similar to

the case K > 0, in which K is replaced by Aγ > 0. Taking the Fourier transform of (2.2) in t

and x (or simply plugging an Ansatz (n1, u1, φ1) = (n̂1, û1, φ̂1)ei(k·x−wt) into (2.2)), we obtain

the dispersion relation for (2.1):

ω2(k) = |k|2
(
K +

1

1 + |k|2

)
, (k ∈ R3). (2.3)

We note that (1 + |k|2)−1 term comes from the Poisson equation. In low and high frequency

regimes, the behavior of ω is given as follows: ω(k) ∼ ±
√
K|k| as |k| → +∞ and ω(k) ∼

±
√

1 +K|k| as |k| → 0. We note that while the asymptotic behavior of ω for K > 0 are similar

to that of the compressible Euler system for neutral gases, ω2
n(k) = |k|2, the behavior of ω for

K = 0 is completely different on those regimes (see Figure 1). In plasma physics, the constant
√

1 +K is called the ion sound speed, and it will frequently appear throughout this thesis.

Now we consider the plane wave solutions to (2.2) and consider the long-wavelength limit.3

We choose a smooth branch of (2.3) satisfying ω(k) > 0 for k > 0. Expanding it at k = 0, we

obtain

ω(k) = k

√
K +

1

1 + k2
=
√

1 +Kk − k3

2
√

1 +K
+O(k5). (2.4)

Up to the third order, (2.4) is the dispersion relation of the linear KdV equation

∂tv +
√

1 +K∂xv + (2
√

1 +K)−1∂3
xv = 0.

We shall investigate some similarities in the asymptotic behaviors of the one-dimensional EP

system and the KdV equation in a certain scale.

Conserved Quantities For the smooth solutions to (2.1) such that as |x| → ∞, (n, u, φ)→
(1, 0, 0) and their derivatives converge to 0, we have the following invariants:

N(t) :=

∫
R3

(n− 1)(t, x) dx = N(0),

M(t) :=

∫
R3

(nu)(t, x) dx = M(0),

H(t) :=

∫
R3

(
n|u|2

2
+ P (n) +

|∇φ|2

2
+ (φ− 1)eφ + 1

)
(t, x) dx = H(0),

(2.5a)

(2.5b)

(2.5c)

3Long waves compared to the Debye length λD =
√
KBTe/4πne0e2. See the non-dimensionalization (2.20).
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(a) (b)

Figure 1: (a) The graphs of ω2(k) = k2(0.2 + 1
1+k2

) (solid) and ω2(k) = k2

1+k2
(dashed).

(b) The graphs of ω(k) = k√
1+k2

(solid), ω(k) = k (dashed) and ω(k) = k − k3

2 (dotted).

where

P (n) =

 K(n lnn− n+ 1) for p(n) = Kn, K ≥ 0,
Anγ

γ − 1
− A

γ − 1
for p(n) = Anγ , A > 0, γ > 1.

Using the Poisson equation (2.1c), we note that H can be written in another form

H(t) =

∫
R3

(
n|u|2

2
+ P (n)− |∇φ|

2

2
+ nφ− eφ + 1

)
(t, x) dx. (2.6)

These two forms of H have their own advantages. The form (2.5c) clearly shows that H(t) ≥ 0

for n > 0. On the other hand, one can easily derive the Euler-Poisson (2.1) from the form of

H in (2.6). Indeed, it is a Hamiltonian of the EP system (2.1). For simplicity, we consider

the 1-dimensional case. Let Hφ(t) :=

∫
−|∂xφ|

2

2
+ nφ − eφ + 1 dx. By taking the variational

derivatives4 of (2.6), we have
∂tn = −∂x

δH

δu
= −∂x(nu),

∂tu = −∂x
δH

δn
= −∂x

(
u2

2
+K lnn+

δHφ

δn

)
.

We recall that φ = φ(n) is determined by n through the Poisson equation (2.1c). By a formal

chain rule, we obain

δHφ

δn
=
δHφ

δn
+
δHφ

δφ
∂nφ(n) = φ+

δHφ

δφ
∂nφ(n) (2.8)

where ∂nφ(n) is a formal derivative of the operator n 7→ φ in n. On the other hand, we see that

δHφ

δφ
=

∫
∂2
xφ+ n− eφ dx = 0. (2.9)

4 lim
ε→0

H(u+ εh)−H(u)

ε
=

∫
δH(u)

δu
h dx for each function h.
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Hence, the 1D Euler-Poisson system can be written as

∂t

(
n

u

)
= J

(
δH/δn

δH/δu

)
=

(
0 −∂x
−∂x 0

)(
δH/δn

δH/δu

)
,

where J is a skew-symmetric operator in L2×L2 space, for instance. Now it is easy to see that

the Hamiltonian H in (2.6) is conserved:

∂tH(n, u) =

∫
δH

δn
∂tn+

δH

δu
∂tu dx = −

∫
δH

δn
∂x
δH

δu
+
δH

δu
∂x
δH

δn
dx = 0.

In what follows, we derive (2.5) in another way. It is easy to see that (2.5a) follows integrating

(2.1a) in x over R3 and then applying the divergence theorem. From (2.1a) and (2.1b), we obtain

∂t(nu) = −∇ · ((nu)⊗ u)−∇p− n∇φ, (2.10)

where

∇ · ((nu)⊗ u) = (∇ · (nu1u),∇ · (nu2u),∇ · (nu3u))T .

Using (2.1c) and integrating by parts, one has that

−n∇φ = (∆φ− eφ)∇φ

= −φ∇∆φ+∇(φ∆φ)−∇eφ

= ∇
(
|∇φ|2

2

)
−


∇ · (φ∇∂x1φ)

∇ · (φ∇∂x2φ)

∇ · (φ∇∂x3φ)

+∇(φ∆φ)−∇eφ.

(2.11)

Now (2.5b) follows from (2.11) into (2.10) by applying the divergence theorem.

Taking the dot product of (2.1b) with u, and then using (2.1a), it is straightforward to see

that for p(n) = Kn,

∂t

(
n|u|2

2
+K (n lnn− (n− 1))

)
+∇ ·

(
n|u|2

2
u+Knu lnn

)
= −nu · ∇φ, (2.12)

and for p(n) = Anγ ,

∂t

(
n|u|2

2
+

p

γ − 1

)
+∇ ·

(
n|u|2

2
u+

γ

γ − 1
pu

)
= −nu · ∇φ. (2.13)

Using (2.1a) and (2.1c), we obtain

−nu · ∇φ = ∇ · (nu)φ−∇ · (nuφ)

= −∂tnφ−∇ · (nuφ)

= ∆∂tφφ− eφ∂tφφ−∇ · (nuφ)

= −∇∂tφ · ∇φ+∇ · (∇φtφ)− ∂t
(

(φ− 1)eφ
)
−∇ · (nuφ)

= −∂t
(
|∇φ|2

2

)
− ∂t

(
(φ− 1)eφ

)
+∇ · (∇φtφ)−∇ · (nuφ)

(2.14)

From (2.12)–(2.14), we get (2.5c).
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2.2 Model Derivations

We start from the following fundamental model of plasmas:

The two-fluid Euler-Maxwell system

∂Tni +∇ · (niui) = 0,

∂Tne +∇ · (neue) = 0,

mini(∂Tui + (ui · ∇)ui) = −∇pi + nie

(
E +

ui ×B
c

)
,

mene(∂Tue + (ue · ∇)ue) = −∇pe − nee
(
E +

ue ×B
c

)
,

∇×B =
4πe

c
(niui − neue) +

1

c
∂TE,

∇× E = −1

c
∂TB,

∇ · E = 4πe(ni − ne),

∇ ·B = 0,

(2.15a)

(2.15b)

(2.15c)

(2.15d)

(2.15e)

(2.15f)

(2.15g)

(2.15h)

where ni, ne : (T,X) ∈ R × R3 → R are the density functions for the ion and the electron,

ui, ue : (T,X) ∈ R × R3 → R3 are the velocity fields of the ion and electron, E,B : (T,X) ∈
R× R3 → R3 are the electric field and the magnetic field, and c and ±e are physical constants

representing the speed of light and the charge of an ion and an electron. Here, pi and pe are

the pressure of the ion and electron, respectively.

Before we proceed, we briefly discuss some underlying assumptions in (2.15) and the meaning

of equations of (2.15). First of all, the model (2.15) assumes that the plasma is fully ionized

(there is no neutral particle) and that it is composed of electrons and singly charged ions (the

charge of an ion particle is e). A neutral gas may interact with the components of a plasma

through collisions.

The equations (2.15a)–(2.15b), called the mass conservation law for ions and electrons,

say that there is no net creation (or loss) of ions and electrons. If the recombination rate

of a plasma is not negligible, one needs to consider the relevant source (or sink) terms. The

equations (2.15c)–(2.15d), called the momentum balance equations for ions and electrons, are

simply the fluid version of Newton’s second law. It is assumed that the net force applied to

the infinitesimal volume elements of the ions (or the electrons) following the flow is the sum of

the electromagnetic force and the pressure gradient force. The ions and the electrons interact

with each other through the electromagnetic forces generated by Maxwell’s equations (2.15e)–

(2.15h). For the adiabatic flow, the pressure is given by p(n) = Anγ , where A > 0 and γ > 1

are constants. For the isothermal flow, p(n) = kBTn, where kB is the Boltzmann constant and

T is a constant temperature. The choice of the pressure law depends on the physical situations.

We remark that the system (2.15) has 14 unknown functions and 16 equations. By taking

divergence of (2.15e) and (2.15f), however, we see that (2.15a)–(2.15b) implies (2.15g)–(2.15h).
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The two-fluid Euler-Poisson system If we assume that a plasma is electrostatic5, we have

∇ × E = 0 from (2.15f). Hence, there exists the electrostatic potential function Φ : (T,X) ∈
R × R3 → R satisfying E = −∇Φ, and (2.15) becomes the two-fluid Euler-Poisson system for

ions and electrons: 

∂Tni +∇ · (niui) = 0,

∂Tne +∇ · (neue) = 0,

mini(∂Tui + (ui · ∇)ui) +∇pi = −nie∇Φ,

mene(∂Tue + (ue · ∇)ue) +∇pe = nee∇Φ,

−∆Φ = 4πe(ni − ne).

(2.16a)

(2.16b)

(2.16c)

(2.16d)

(2.16e)

Here, (ni, ui, ne, ue,Φ) = (ni0, 0, ne0, 0, 0) with a positive constant ni0 = ne0 > 0 is a uniform

state solution of (2.16). We remark that by taking divergence of (2.15e) and using (2.15a)–

(2.15b), we obtain ∂T (4πe(ni − ne) + ∆Φ) = 0, which is equivalent to (2.16e).

The Euler-Poisson system for ions We assume that the electron mass me is zero and that

the electron pressure is isothermal, pe(ne) = kBTene. Then, (2.16d) becomes

kBTe∇ne = nee∇Φ. (2.17)

Dividing (2.17) by ne, integrating the resulting equation, and then imposing that Φ → 0 and

ne → ne0 as |X| → ∞, we derive the Boltzmann relation for electrons:

ne = ne0 exp

(
eΦ

kBTe

)
. (2.18)

The physical meaning of the Boltzmann relation is that due to their small inertia, electrons

almost instantaneously react to the plasma fluctuation so that the pressure gradient and elec-

trostatic forces acting on them are balanced (see (2.17)).

Assuming that the isothermal pressure for the ion, pi(ni) = kBTeni, we have the one-fluid

Euler-Poisson system for ions
∂Tni +∇ · (niui) = 0,

mini(∂Tui + (ui · ∇)ui) + kBTi∇ni = −nie∇Φ,

−∆Φ = 4πe

[
ni − ne0 exp

(
eΦ

kBTe

)]
.

(2.19)

Now, (2.1) is obtained upon an appropriate non-dimensionalization

x =
X√

kBTe/4πne0e2
, t = T

√
4πne0e2

mi
, n =

ni
ne0

, u =
ui√

kBTe/mi

, φ =
eΦ

kBTe
. (2.20)

For the adiabatic pressure, (2.20) leads p(n) :=
pi(ne0n)

ne0kBTe
=
Ai(ne0n)γ

ne0kBTe
=: Anγ .

5Indeed, electrostatic assumption only requires that ∂TB is zero or negligible. On the other hand, if the

motion of a plasma is one-dimensional (plane wave), then the magnetic force terms in the momentum equations

become zero.
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3 Small Amplitude Limit of Solitary Waves for the Euler-Poisson

System

3.1 Introduction

We consider the one-dimensional EP system
∂tn+ ∂s(nu) = 0,

∂tu+ u∂su+K
∂sn

n
= −∂sφ,

∂2
sφ = eφ − n,

(1DEP)

where K ≥ 0 is a constant, with the far-field conditions

n→ 1, u→ 0, φ→ 0 as |s| → ∞, (FC)

We aim to show that for V =
√

1 +K, the ion sound speed, there holds

sup
ξ∈R

[
(|n− 1− εnKdV|+ |u− εV nKdV|+ |φ− εnKdV|) eα|ξ|/2

]
≤ Cε2 (3.1)

for all small ε > 0, where

ξ := ε1/2 (s− (V + γε)t) , (3.2)

and

nKdV(ξ) :=
3γ

V
sech2

(√
V γ

2
ξ

)
. (3.3)

is the solitary wave solution to the KdV equation

∂t̄v + V v∂x̄v +
1

2V
∂3
x̄v = 0 (KdV)

traveling with a speed γ > 0, that is, ξ = x̄− γt̄.

In what follows, we illustrate how (1DEP) is related to (KdV), and then critically discuss

some related results. We introduce two approaches: the reductive perturbation method [34]

and the Sagdeev potential method [31].

Reductive perturbation6 We present a formal derivation of (KdV) from (1DEP). This

result was first found in [34] for the pressureless case.

By introducing a specific scaling, called the Gardner-Morikawa transformation,7

x̄ = ε1/2(s− V t), t̄ = ε3/2t, (GM)

6As its name indicates, this method can be applied to reduce a complicated system into a simple scalar

equation.
7For more details on the Gardner-Morikawa transformation, we refer to [15].
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we obtain from (1DEP) that
ε∂t̄n− V ∂x̄n+ ∂x̄(nu) = 0,

ε∂t̄u− V ∂x̄u+ u∂x̄u+K
∂x̄n

n
= −∂x̄φ,

ε∂2
x̄φ = eφ − n.

(3.4)

We suppose that the solutions to (3.4) is given by

n = 1 +

∞∑
k=1

εknk, u =

∞∑
k=1

εkuk, φ =

∞∑
k=1

εkφk. (3.5)

Then we substitute (3.5) into (3.4) and set the coefficients of εn zero.

The coefficients of ε0: We do not have ε0 order terms.

The coefficients of ε1: At the order of ε, we have
−V 1 0

K −V 1

1 0 −1



∂x̄n1

∂x̄u1

∂x̄φ1

 =


0

0

0

 . (3.6)

Hence, in order to have a non-trivial first order profiles, V must satisfy V 2 = 1 +K. We choose

V =
√

1 +K. From (3.6), we have the relation8

u1 = V n1, φ1 = n1. (3.7)

The coefficients of ε2: At the order of ε2, we get


∂t̄n1 − V ∂x̄n2 + ∂x̄u2 + n1∂x̄u1 + ∂x̄n1u1 = 0,

∂t̄u1 − V ∂x̄u2 + u1∂x̄u1 +K(∂x̄n2 − n1∂x̄n1 = −∂x̄φ2,

∂2
x̄φ1 = φ2 +

1

2
(φ1)2 − n2.

(3.8a)

(3.8b)

(3.8c)

We multiply (3.8a) by V , differentiate (3.8c) in x, and then add each equation of (3.8)

together. Then the second order profiles (n2, u2, φ2) are canceled since V =
√

1 +K. Using the

relation (3.7), it is straightforward to see that n1 satisfies the KdV equation (KdV).

A mathematical validity of the formal expansion (3.5) has been studied in [16], where it

is shown that on any fixed time interval, the solutions to (3.4) with some well-prepared initial

data converge to the solutions to (KdV) as ε tends to zero.

Sagdeev potential We present a formal approximation of the EP solitary wave solutions

to in terms of the KdV solitary wave solutions. This result was first introduced in [31]. We also

8V =
√

1 +K and (3.7) imply that (3.6) is not overdetermined.

10



refer to [5] and [9].

We assume that (n, u, φ)(ξ̄), where ξ̄ = s − Mt for a constant M > 0, is a solution to

(1DEP). By imposing n− 1, u, φ→ 0 as ξ̄ → −∞, we have
(M − u)n = M,

(M − u)2 + 2K lnn = M2 − 2φ,

∂2
ξ̄φ = eφ − n.

(3.9a)

(3.9b)

(3.9c)

If n > 0, then M − u > 0 since M > 0. Hence, n is explicitly expressed in terms of φ, and we

obtain from (3.9) that

∂2
ξ̄φ = eφ − M√

M2 − 2φ
=:

∂

∂φ
U(φ), (3.10)

where −U(φ) is called the Sagdeev potential. Multiplying (3.10) by ∂ξ̄φ and imposing ∂ξ̄φ→ 0

as ξ̄ → −∞, we have

1

2
(∂ξ̄φ)2 = eφ +M

√
M2 − 2φ− (1 +M2) = U(φ). (3.11)

From (3.11), we see that U(φ) must be positive at least for small 0 < φ <
M2

2
. By expanding

U(φ) around φ = 0, we find

U(φ) =

(
1

2
− 1

2M2

)
φ2 +O(φ3),

and thus, we must have M2 > 1. Since we assumed that φ is a solitary wave, there is some

ξ∗ ∈ R such that ∂ξ̄φ(ξ∗) = 0. Hence, we must have U(φ) = 0 for some 0 < φ <
M2

2
, and this

happens only if

exp

(
M2

2

)
− (1 +M2) = U

(
M2

2

)
< 0.

Thus 1 < M < ζ0, where ζ0 is a unique positive root of (3.25), is a necessary condition for the

existence of solitary wave solutions to (3.10). In fact, via a phase plane analysis, it is shown

in [22] that 1 < M < ζ0 is a sufficient condition for the existence of solitary wave solutions to

(3.10).

Now we let M = 1 + γε for sufficiently small γε > 0 and assume that φ is small. By

expanding the RHS of (3.10) for, one can obtain

∂2
ξ̄φ− 2γεφ+ φ2 = O

(
|φ|(|γε|2 + |φ|2)

)
.

By neglecting the RHS terms, we formally obtains

φ ≈ 3γε sech2
(√

2−1γε ξ̄
)

= 3γε sech2
(√

2−1γε [s− (1 + γε)t]
)
. (3.12)

Here we can rewrite the argument of (3.12) as

(
√

2)−1
[
(γε)1/2(s− t)− (γε)3/2t

]
, (3.13)
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and this suggests that (GM) is a suitable transformation for (1DEP) to detect solitary waves

with the amplitude of order O(γε). By introducing the scaling (3.2), we see that the RHS of

(3.12) is nothing but εnKdV for K = 0.

Discussion While the result of [16] well describes the asymptotic behavior of small am-

plitude solutions to (1DEP) up to the order of t = O(ε−3/2), this setting does not give a fully

satisfactory answer to the KdV limit of the solitary waves for the EP system. Also, the formal

result of [31] for (3.12) has not yet been completely justified in a rigorous manner.

The main results of this section assert that the formal expansion (3.5) is valid in the presence

of solitary waves, and also justify the formal approximation (3.12). Moreover our results covers

the isothermal case.

Remark 1. In the previous section, we observed that up to third order, the dispersion relation

(2.4) of the EP system is that of a linear KdV equation

∂tv +
√

1 +K∂sv + (2
√

1 +K)−1∂3
xv = 0,

or equivalently,

∂t̃v +
1

2
√

1 +K
∂3
x̃v = 0 (3.14)

with the change of variable

x̃ = s−
√

1 +Kt, t̃ = t. (3.15)

This suggests that (3.15) is a suitable moving frame to obtain (KdV) from (1DEP). Now we

consider the nonlinear term v∂x̃v and (3.14) together to find an appropriate time and length

scale for a small amplitude v = O(ε). By setting

t̃ = εαt̄, x̃ = εβx̄ (3.16)

for x̄, t̄ = O(1), we get

∂t̃v → ε1−α, v∂x̃v → ε2−β, ∂3
x̃v → ε1−3β.

In light of that the existence of solitary wave solutions to the KdV equation is due to the exact

balance between nonlinear transport and dispersion effect, we first set β = −1/2 and, accrdingly,

set α = −3/2. This choice of α and β, together with (3.15)–(3.16), lead the transformation

(GM) with V =
√

1 +K.

3.2 Main Results

We plug (n, u, φ)(ξ) into (1DEP)–(FC), where ξ is given by (3.2). Then we obtains
− (V + γε)n′ + (nu)′ = 0,

− (V + γε)u′ + uu′ +K
n′

n
= −φ′,

εφ′′ = eφ − n,

(3.17a)

(3.17b)

(3.17c)
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with the far-field condition

n→ 1, u→ 0, φ→ 0 as |ξ| → ∞, (3.18)

where ′ denotes the derivative in ξ. We note that (3.17) has the translation invariance.

Definition. The solution (n, u, φ) to (3.17)–(3.18) is called solitary wave if the following hold:

(i) (symmetry)

n(ξ) = n(−ξ), u(ξ) = u(−ξ), φ(ξ) = φ(−ξ) for ξ ∈ R, (3.19)

(ii) (monotonicity)

n′(ξ), u′(ξ), φ′(ξ) < 0 for ξ ∈ (0,∞). (3.20)

We observe that (n, u, φ) satisfying (3.18)–(3.20) have their unique maximum values (n∗, u∗, φ∗)

at ξ = 0, that is,

(n, u, φ)(0) = (n∗, u∗, φ∗), (3.21)

and there hold

n(ξ) > 1, u(ξ) > 0, φ(ξ) > 0 for ξ ∈ R. (3.22)

To present the existence theorem, we define some parameters. When K > 0, let ζK be a

unique root of

zK
[
K(z − 1)2 + 1

]
= exp

(
K

2

(
z2 − 1

))
(3.23)

satisfying ζK >

√
1 +K

K
> 1. We have that

zK
[
K(z − 1)2 + 1

]
> exp

(
K

2

(
z2 − 1

))
for z ∈ (1, ζK). (3.24)

For the case K = 0, let ζ0 be the unique positive root of

z2 + 1 = exp(z2/2). (3.25)

It is east to check that ζ0 > 1 and

z2 + 1 > exp(z2/2) for z ∈ (0, ζ0). (3.26)

We refer to Appendix for (3.23)–(3.24).

Let (V, γ, ε) be the positive numbers satisfying
√

1 +K

K
<
V + γε√

K
< ζK when K > 0,

1 < V + γε < ζ0 when K = 0.

(3.27a)

(3.27b)
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Theorem 3.1. Suppose that (V, γ, ε) satisfies (3.27). Then the equation (3.17)–(3.18) admits a

unique (up to a shift) non-trivial smooth solution (n, u, φ). Moreover, it satisfies (3.19)–(3.22)

upon a suitable shift of phase.

Remark 2. By inspection, one can check that (3.27) is necessary for the existence of non-trivial

smooth solutions to (3.17)–(3.18).

Theorem 3.1 holds true as long as (3.27) is satisfied. However, for Theorem 3.2, we restrict

our analysis to the case V =
√
K + 1 and consider only ε > 0 as a parameter for fixed V and γ.

For the solitary wave solution (nε, uε, φε) to (3.17)–(3.18) satisfying (3.19)–(3.22), we define

the remainders as

nεR := nε − 1− εnKdV, uεR := uε − εV nKdV, φεR := φε − εnKdV. (3.28)

We denote the k-th derivative of f in z by f (k). We present the main theorem on the asymptotic

behavior of the EP solitary waves.

Theorem 3.2 (Bae and Kwon, [1]). Let V =
√

1 +K, K ≥ 0 and γ > 0 be fixed. Let k be any

non-negative integer. Then there exist positive constants ε1, α, and Ck > 0 such that for all

0 < ε < ε1,

sup
ξ∈R

∣∣∣eα|ξ|/2(nεR
(k), uεR

(k), φεR
(k))(ξ)

∣∣∣ ≤ Ckε2 (3.29)

holds. Here α and Ck are independent of ε, and α is independent of k.

Theorem 3.1–3.2 assert that the EP system admits solitary wave solutions traveling slightly

faster than the ion sound speed V =
√

1 +K, and that they are well approximated by solitary

wave solutions to the KdV equation.

For the proof of Theorem 3.1, we derive a system of first-order ODEs, equivalent to (3.17)-

(3.18). Then we employ a phase plane analysis in a similar fashion as [8]. To prove Theorem

3.2, we derive the remainder equation for φεR: φεR
′′ − FεφεR =Mε

3,

Fε(ξ) = 2V γ − 2V 2nKdV − V 2φ
ε
R

ε
,

(3.30)

where Mε
3 is a function of nKdV, n

ε
R, u

ε
R and φεR. In the derivation of (3.30), the choice of the

ion sound speed V =
√

1 +K and the fact that nKdV satisfies the associated KdV equation are

crucially used. One of the main difficulties in the analysis of (3.30) stems from the indefinite

sign of Fε(ξ). Indeed, from a careful observation of the phase plane analysis, we obtain a sharp

estimate for the peak values of the solitary wave solution. We set (nε∗, u
ε
∗, φ

ε
∗) := (nε, uε, φε)(0).

Proposition 3.3. Let V =
√

1 +K, K ≥ 0 and γ > 0 be fixed. Then for all 0 < ε < ε0,∣∣nε∗ − 1− 3γV −1ε
∣∣+ |uε∗ − 3γε|+

∣∣φε∗ − 3γV −1ε
∣∣ ≤ ε2C, (3.31)

Moreover, V =
√

1 +K is necessary for lim
ε→0

nε∗ = 1.
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From (3.31) and (3.18), we observe that lim
ε→0

Fε(0) = −4V γ < 0 while lim
ξ→∞

Fε(ξ) = 2V γ

for all ε. Hence we need to divide the interval [0,∞) into two parts and conduct the analysis

separately.

We observe that the coefficient 3γ/V of ε in (3.31) is exactly the peak value of nKdV(ξ)

in (3.3). This implies that at least at ξ = 0, (nεR, u
ε
R, φ

ε
R) is O(ε2) as ε → 0. This fact

together with Gronwall’s inequality, we get the local uniform estimate for ε−2φεR around ξ = 0

in Proposition 3.9.

To obtain the local uniform decay estimate for ε−2φεR around ξ = ∞, we need a careful

analysis. It is not clear if we may choose a uniform ξ1 > 0 in such a way that Fε(ξ) has a

positive sign on [ξ1,∞) for all ε. In other words, as ε→ 0, the time ξε > 0 at which Fε(ξε) = 0

is realized can tend to ∞. Verifying existence of such a uniform time ξ1 is a important step in

obtaining the uniform estimate for the remainders in the far-field region. To this end, we obtain

the uniform lower bounds for the speed of trajectory curves ε−1(nε, Eε)(ξ) in Lemma 3.5–3.6,

where the estimate (3.31) plays a crucial role again. Then we obtain the uniform decay estimate

for ε−1(nε − 1, uε, φε)(ξ) (Proposition 3.7), which yields the local uniform decay estimate for

ε−2φεR around ξ =∞ (Proposition 3.10). Using that φεR is symmetric about ξ = 0 together with

Proposition 3.9–3.10, we obtain the uniform decay estimate for ε−2φεR on R. The estimates for

ε−2nεR and ε−2uεR immediately follow from (3.115).

Some numerical tests for the convergence of ε−1(nε − 1) to nKdV are presented in Figure

2. We employ RK4 to solve the ODE system (3.39) with the suitably chosen initial values by

using the first integral (3.43)–(3.44).

Remark 3. Unlike the pressureless case, the isothermal system can not be reduced to the explicit

second-order ODE. Instead we consider the explicit system of ODEs (3.39).

Notation: In this section, we set

J = J(ε) :=
√

1 +K + γε = V + γε. (3.32)

3.3 Existence of Solitary Waves

We reduce (3.17) to a system of first-order ODEs and prove the existence theorem via a

phase plane analysis.

3.3.1 Reduction to the System of First-order ODEs

We assume (n, u, φ) is a solution of (3.17)–(3.18). Integrating (3.17a)–(3.17b) in ξ, we get


− (V + γε)n+ nu = −(V + γε),

− (V + γε)u+
1

2
u2 +K lnn = −φ.

(3.33a)

(3.33b)
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Figure 2: Numerical tests for comparison of nKdV (dashed) with ε−1(nε−1) (solid) in the frame

ξ = ε1/2(x− (
√

1 +K + εt)).

We note that (3.33a) is solvable for u in terms of n. Hence (3.33) is written asu = (V + γε)

(
1− 1

n

)
,

φ = H(n),

(3.34a)

(3.34b)

where

H(n) :=
(V + γε)2

2

(
1− 1

n2

)
−K lnn. (3.35)

We differentiate (3.34b) in ξ to obtain

φ′ = h(n)n′, (3.36)

where

h(n) :=
dH(n)

dn
=

(V + γε)2

n3
− K

n
. (3.37)

We define

E(ξ) := −φ′(ξ). (3.38)
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From (3.36) and (3.17c), we then obtain an ODE system for (n,E):

{
− h(n)n′ = E,

εE′ = n− eH(n).

(3.39a)

(3.39b)

Multiplying (3.39b) by E, we have from (3.39a) and (3.37) that

ε

2

(
E2
)′

= −nh(n)n′ + eH(n)h(n)n′

=

(
(V + γε)2

n
+Kn+ eH(n)

)′
.

(3.40)

We integrate (3.40) in ξ to obtain

ε

2
E2 =

(V + γε)2

n
+Kn+ eH(n) + c (3.41)

for some constant c. From (3.41) and (3.18), n and E must satisfy the far-field condition

n(ξ)→ 1, E(ξ)→ 0, as |ξ| → ∞. (3.42)

Conversely, we assume that (n,E) satisfies (3.39) and (3.42). Then (n, u, φ), where u and

φ are defined by (3.34), satisfies (3.17a)-(3.17b) and (3.18). Moreover, we have E = −φ′ from

(3.36) and (3.39a). Hence, by (3.39b), (n, u, φ) also satisfies (3.17c). We remark that (3.41)

yields a first integral of (3.39) with (3.42):

ε

2
E2 − g(n) + g(1) = 0, (3.43)

where

g(n) :=
(V + γε)2

n
+Kn+ eH(n). (3.44)

3.3.2 Stationary Points

Next we find the stationary points of (3.39). From (3.37), we observe that when K > 0,

h(n)


= 0, (n = ns),

< 0, (n > ns),

> 0, (0 < n < ns,

(3.45)

where

ns :=
V + γε√

K
, (3.46)

and when K = 0,

h(n) > 0, (n > 0). (3.47)

We henceforth assume that

(A1) n < ns when K > 0.

17



It will be shown later that the assumption (A1) is valid. Then we have that h > 0 for K ≥ 0,

and the points at which
E

h(n)
= 0, n = eH(n) (3.48)

hold are the stationary points of (3.39). Thus the stationary points must lie on n axis. We note

that

n = eH(n) iff l(n) := lnn−H(n) = 0 (3.49)

for n > 0. It is easy to check that l(n) strictly decreases on the interval (0, nc) and strictly

increases on the interval (nc,∞), where

nc :=
V + γε√

1 +K
. (3.50)

The condition (3.27) implies that 1 < nc for K ≥ 0. Moreover, since lim
n→∞

l(n) = ∞ and

l(1) = 0, we find that the function l has only two zeros n = 1 and n = nce such that

1 < nc < nce. (3.51)

Therefore, (3.39) has only two stationary points (nce, 0) and (1, 0). We observe that for K ≥ 0,{
n < eH(n) for n ∈ (1, nce),

n > eH(n) for n ∈ (nce,∞).
(3.52)

3.3.3 Local Behavior

The Jacobian matrix of (3.39) is given by E

h2

dh(n)

dn

−1

h
1

ε

(
(1− heH

)
0

 . (3.53)

At stationary points (1, 0) and (nce, 0), the trace of (3.53) is zero. Since n = 1 satisfies the

equation (3.49), we obtain from (3.45)–(3.47) and (3.27) that

1− h(1)eH(1)

εh(1)
=

1 +K − (V + γε)2

εh(1)
< 0.

Thus, the stationary point (1, 0) is saddle for K ≥ 0. Since n = nce also satisfies (3.49), we see

from (3.50)–(3.51) that

1− h(nce)e
H(nce) = 1 +K − (V + γε)2

(nce)2

= (1 +K)

(
1− (nc)

2

(nce)2

)
> 0.

(3.54)

When K = 0, the stationary point (nce, 0) is center by (3.47) and (3.54). On the other hand,

when K > 0, (nce, 0) can be center or saddle depending on the location of nce with respect to

ns (see (3.45)). We will see later that (3.27a) implies that

(A2) nce < ns when K > 0.

We observe that (nce, 0) is a center under (A2).
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3.3.4 Direction of Vector Fields

From (3.52) and (3.39b), we see that E′ < 0 in the region where 1 < n < nce, and E′ > 0

in the region where n > nce. Since h(n) > 0 by (A1), (3.45) and (3.47), we find from (3.39a)

that n′ > 0 in the region where E < 0, and n′ < 0 in the region where E > 0 (see Figure 3).

Figure 3: Trajectory curve

3.3.5 First Integral

We see from (3.43)–(3.44) that the trajectory starting from the point (1, 0) with E < 0

satisfies E(n) = −
√

2(g(n)− g(1))√
ε

. Taking the derivative in n,

dE

dn
(n) = −dg

dn
(n)

1√
2ε(g(n)− g(1))

, (3.55)

where
dg

dn
(n) = −(V + γε)2

n2
+K + h(n)eH(n)

= −h(n)
(
n− eH(n)

)
.

(3.56)

We recall that n = 1 and n = nce satisfy (3.49) and that they are only such points. Hence,

in the case K > 0, (3.56) vanishes only at 1, nce and ns. From (A2), (3.45) and (3.52), we see

that g(n) strictly increases on (1, nce) and strictly decreases on (nce, ns). This yields that if

g(1) > g(ns), (3.57)

there is a unique n∗ such that (see Figure 4)

1 < nce < n∗ < ns, g(n∗) = g(1). (3.58)
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We shall show that (3.27a) implies (3.57) in Lemma 3.4.

When K = 0, g(n) is strictly increasing on (nce,∞) since h(n) > 0 for n > 0. By (3.26) and

(3.27b), one has

lim
n→∞

g(n) = e(V+γε)2/2 < (V + γε)2 + 1 = g(1).

Hence there is a unique n∗ satisfying

1 < nce < n∗, g(n∗) = g(1). (3.59)

(a) K > 0 (b) K = 0

Figure 4: Graphs of g(n)− g(1)

Now we show that the condition (3.27a) implies g(1) > g(ns).

Lemma 3.4. (3.27a) implies (3.57).

Proof of Lemma 3.4. From (3.44), it is enough to show that

(V + γε)2 +K + 1 >
(V + γε)2

ns
+Kns + eH(ns). (3.60)

By the definition (3.46) of ns, (3.60) can be written as

K(ns)
2 +K + 1 > 2Kns + eH(ns). (3.61)

On the other hand, from (3.35) and (3.46), we have

H(ns) =
(V + γε)2

2

(
1− 1

(ns)2

)
−K lnns

=
K

2

(
(ns)

2 − 1
)
−K lnns.

Therefore, (3.61) is equivalent to

K(ns)
2 +K + 1 > 2Kns + (ns)

−K exp

(
K

2

(
(ns)

2 − 1
))

,

and equivalently, we have

(ns)
K
[
K(ns − 1)2 + 1

]
> exp

(
K

2

(
(ns)

2 − 1
))

. (3.62)

From the definition of ns, (3.24), and (3.62), we find that (3.27a) implies (3.57).
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Proof of Theorem 3.1. We show that Lemma 3.4 verifies the assumption (A2). If nce ≥ ns,

then by (3.45) and (3.52), we see from (3.56) that g(n) is strictly increasing on (1, ns). This

implies that g(1) < g(ns), which contradicts (3.57).

By the stable manifold theorem, a smooth solution (n,E) exponentially decaying to the

saddle point (1, 0) as ξ → −∞ exists. This solution can be extended until it reaches a neigh-

bourhood of (n∗, 0). By expanding n(E) near E = 0, we find that there exists some integer

m > 1 such that

n(E)− n(0) = Em
(
dmn

dEm
(0) +O(E)

)
for E < 0 since from (3.55)-(3.56) and (3.58)–(3.59), we have

lim
n→n−∗

dE

dn
(n) = +∞ for K ≥ 0.

Hence we have E ∼ −(n∗ − n)1/m for sufficiently small E. Using (3.39a), we have

ξ − ξ0 =

∫ ξ

ξ0

−h(n(ξ))

E(ξ)

dn

dξ
dξ =

∫ nξ

nξ0

− h(n)

E(n)
dn .

∫ nξ

nξ0

h(n)

(n∗ − n)1/m
dn.

The integral on the RHS converges as nξ → n∗ since m > 1. Hence, the trajectory reaches

at the point (n∗, 0) in finite time. On the other hand, from (3.43), we observe that the phase

portrait is symmetric about n-axis. The symmetric phase portrait together with the direction

of vector fields yields that the trajectory follows a homoclinic orbit. Now the assumption (A1)

is justified since n∗ < ns from (3.58). Thus there exists a non-trivial smooth solution (n,E) of

(3.39) satisfying (3.42), and equivalently, a non-trivial smooth solution (n, u, φ) of (3.17)–(3.18)

exists. From (3.34), it is easy to check that (n, u, φ) satisfies (3.19)–(3.22) up to a shift so that

(3.21) holds.

3.4 Peak of Solitary Waves

The proof of Proposition 3.3 consists of four steps. We first prove that

lim
ε→0

nε∗ = 1 (3.63)

and that V =
√

1 +K is a necessary choice for (3.63). We derive a rough estimate of nε∗ − 1 in

Step 2. In Step 3, this estimate will be used to obtain the sharp estimate of nε∗. In Step 4, we

derive the sharp estimates of uε∗ and φε∗.

Proof of Proposition 3.3. Step 1 : By (3.51) and (3.58) (or (3.59) for K = 0), we have 1 < nεc <

nε∗. Together with (3.50), this implies that V =
√

1 +K is necessary for (3.63).

When K > 0, we observe from (3.58)–(3.59) that nε∗ is defined as a unique root such that

1 < nε∗ < nεs and g(nε∗) = g(1) hold. We examine the behavior of the function g(n) as ε tends to

0 considering the limiting case ε = 0. From (3.44), it is clear that for any L > 1, g(n) uniformly

converges to

g0(n) :=
1 +K

n
+Kn+ exp

(
1 +K

2
− 1 +K

2n2
−K lnn

)
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as ε tends to 0 on the interval [1, L]. On the other hands, we have

dg0

dn
= −

(
1 +K

n3
− K

n

)[
n− exp

(
1 +K

2
− 1 +K

2n2
−K lnn

)]
︸ ︷︷ ︸

=:g0(n)

. (3.64)

It is easy to see that g0(n) has a unique zero n = 1 and that

g0(n) > 0 for n ∈ (1,∞). (3.65)

Hence, when K > 0,
dg0

dn
(n) vanishes only at 1 and n0

s :=

√
1 +K

K
, and it follows from (3.64)–

(3.65) that g0 is strictly increasing on the interval (1, n0
s). This implies g0(n) < g0(1) on (1, n0

s).

Thus by the uniform convergence of g to g0 and the construction of nε∗, (3.63) holds. Similarly,

we can verify that (3.63) holds for K = 0.

Step 2 : By expanding g(1) = g(nε∗) about n = 1, we have

g(2)(1)

2
(nε∗ − 1)2 +

g(3)(1)

3!
(nε∗ − 1)3 +

g(4)(nεb)

4!
(nε∗ − 1)4 = 0 (3.66)

for some 1 < nεb < nε∗. Using that lim
ε→0

nε∗ = 1, a direct calculation yields that there are constants

ε0, C > 0 and some functions g2, g3 of ε such that for all ε ∈ (0, ε0),
g(2)(1) = 2V γε+ ε2g2(ε),

g(3)(1) = −2(1 +K) + εg3(ε),

|g(4)(nεb)|
4!

+ |g2(ε)|+ |g3(ε)| < C

(3.67a)

(3.67b)

(3.67c)

(see Appendix for (3.66) and (3.67)). Dividing (3.66) by (nε∗ − 1)2 and using (3.67a), we have

(nε∗ − 1)

(
−g

(3)(1)

3!
−
g(4)(nεb)

4!
(nε∗ − 1)

)
= V γε+

ε2

2
g2. (3.68)

From (3.63) and (3.67b)–(3.67c), there is sufficiently small ε0 > 0 such that for all ε ∈ (0, ε0),

−g
(3)(1)

3!
−
g(4)(nεb)

4!
(nε∗ − 1) > −g

(3)(1)

3!
− 1

8
>

1 +K

4
− 1

8
≥ 1

8
. (3.69)

Dividing (3.68) by the LHS of (3.69), we get

0 < nε∗ − 1 < 8V γε+ 4ε2g2. (3.70)

Step 3 : We divide (3.68) by −g
(3)(1)

3!
to get

nε∗ − 1 +
6V γ

g(3)(1)
ε = − 3g2

g(3)(1)
ε2 −

g(4)(nεb)

4g(3)(1)
(nε∗ − 1)2 =: g4. (3.71)

By (3.67b)–(3.67c) and (3.70), there is a positive constant C such that

|g4| ≤ ε2C (3.72)
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for all ε ∈ (0, ε0). Subtracting 3γV −1ε from (3.71), one has

nε∗ − 1− 3γV −1ε =
−6V 2 − 3g(3)(1)

V g(3)(1)
γε+ g4. (3.73)

Using (3.67b)–(3.67c) and V =
√
K + 1, we find that there exists a positive constant C such

that

1

V

∣∣∣∣∣6V 2 + 3g(3)(1)

g(3)(1)

∣∣∣∣∣ < C|6V 2 + 3g(3)(1)| = 3Cε|g3| < εC. (3.74)

Now (3.72)–(3.74) imply that there exists some positive constant C such that

∣∣nε∗ − 1− 3γV −1ε
∣∣ ≤ ε2C (3.75)

for all ε ∈ (0, ε0).

Step 4 : By expanding (3.34a), we get

uε∗ = (V + γε)

[
(nε∗ − 1)− 2

(nεb)
3
(nε∗ − 1)2

]
(3.76)

for some 1 < nεb < nε∗. Subtracting 3γε from (3.76) and then applying (3.75), one has

|uε∗ − 3γε| =
∣∣V (nε∗ − 1− 3γV −1ε

)
− 2V

(nεb)
3
(nε∗ − 1)2 + γε(nε∗ − 1)

(
1− 2

(nεb)
3
(nε∗ − 1)

)∣∣∣∣
≤ ε2C.

(3.77)

In a similar fashion, we obtain from (3.34b) that

φε∗ = (1 + 2V γε+ γ2ε2)(nε∗ − 1) +
dh

dn
(nεb)(n

ε
∗ − 1)2 (3.78)

for some 1 < nεb < nε∗. Subtracting 3γV −1ε from (3.78) and using (3.75), we obtain∣∣φε∗ − 3γV −1ε
∣∣ =

∣∣(nε∗ − 1− 3γV −1ε
)

+γε(nε∗ − 1)(2V + γε) +
dh

dn
(nεb)(n

ε
∗ − 1)2

∣∣∣∣
≤ ε2C.

(3.79)

Now (3.31) follows from (3.75), (3.77) and (3.79).

3.5 Asymptotic Behavior of Solitary Waves

In order to prove Theorem 3.2, it is enough to show that (3.29) holds on the half-interval

[0,+∞) due to (3.19).
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3.5.1 Uniform Decay Estimate

For notational simplicity, we let

Ñε(ξ) :=
nε(ξ)− 1

ε
and Ẽε(ξ) :=

Eε(ξ)

ε
=
−φε′(ξ)

ε
(3.80)

throughout this subsection. From Theorem 3.1, we know that Ñε > 0 for ξ ∈ R and Ẽε ≥ 0 for

ξ ∈ [0,+∞). We first prove some lemmas. In Lemma 3.6, it is enough to control only Ñε since

the RHS of (3.39) is linear in Eε.

Lemma 3.5. There exist positive constants ε0, C, and δ0 such that the following statements

hold.

1. For all ε ∈ (0, ε0),

Ñε(0) > 2γV −1,

4γ2 > Ẽ′ε(0) > 2γ2,

1/2 < sup
ξ∈R

h(nε) < 3/2,

sup
ξ∈R

(
|Ñ ′ε(ξ)|+ |Ẽε(ξ)|+ |Ẽ′′ε (ξ)|

)
≤ C.

(3.81a)

(3.81b)

(3.81c)

(3.81d)

2. If 0 < δ < δ0 and Ñε ≤ δ for all ε ∈ (0, ε0), then there holds

|Ẽε| >
√
γ Ñε (3.82)

for all 0 < ε < ε0.

Here δ, δ0 and C are independent of ξ and ε.

Proof. It is trivial that (3.81a) holds for all small ε by (3.31). Using (3.31), we see from (3.39b)

that there exists some function g̃(ε, nε∗) such that

Ẽ′ε(0) =
1

ε2

(
nε(0)− eH(nε(0))

)
=

1

ε2

(
−2V γε(nε∗ − 1) + (1 +K)(nε∗ − 1)2

)
+ εg̃(ε, nε∗),

(3.83)

where g̃(ε, nε∗) is bounded by some positive constant C uniformly in ε ∈ (0, ε0), and thus

lim
ε→0

Ẽ′ε(0) = 3γ2

(see Appendix for (3.83)). Hence, (3.81b) holds for small ε.

Since 1 < nε(ξ) ≤ nε∗ for ξ ∈ R, there is a positive constant C such that for all 0 < ε < ε0,

sup
ξ∈R
|h(nε)− 1| ≤ sup

ξ∈R

∣∣(V + γε)2 −K(nε)2 − (nε)3
∣∣

≤ (V + γε)2 − (K + 1) + sup
ξ∈R

∣∣K (1− (nε)2
)

+
(
1− (nε)3

)∣∣
≤ εC,

(3.84)
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where we used V =
√
K + 1 and (3.31) in the third inequality. It is obvious that (3.84) implies

(3.81c) for all small ε. Now we choose ε0 > 0 so small that (3.81a)– (3.81c) hold.

To obtain (3.81d), we apply the Taylor expansion to the RHS of (3.43) about n = 1 and

divide the resulting equation by 2−1ε3. Then we obtain

(Ẽε)
2 =

g(2)(1)

ε
(Ñε)

2 +
g(3)(nεb)

3
(Ñε)

3 (3.85)

for some nεb ∈ (1, nε), where

g(2)(1) = γε(2V + γε)(1 + 2V γε+ γ2ε2) (3.86)

(see Appendix for the explicit forms of g(2) and g(3)). From (3.31) and that 1 < nε(ξ) ≤ nε∗ for

ξ ∈ R, we see that the RHS of (3.85) is uniformly bounded by some positive constant C for all

ε ∈ (0, ε0) and ξ ∈ R as long as 1 < nεb < nε. Hence, we have

sup
ξ∈R
|Ẽε(ξ)| ≤ C. (3.87)

Dividing (3.39a) by εh, we have from (3.87) and (3.81c) that

sup
ξ∈R
|Ñ ′ε| = sup

ξ∈R

|Ẽε|
|h(nε)|

≤ C. (3.88)

Taking the derivative of (3.39b) in ξ, the mean value theorem yields that

sup
ξ∈R
|Ẽ′′ε | = sup

ξ∈R

1

ε
|Ñ ′ε||1− eH(nε)h(nε)|

≤ sup
ξ∈R

1

ε
|Ñ ′ε|

(
C|nε − 1|+ |1 +K − (V + γε)2|

)
≤ C,

(3.89)

where we used nε > 1 in the second line, and (3.88), (3.31) and V =
√

1 +K in the last line.

From (3.87)–(3.89), we obtain (3.81d).

From (3.85)–(3.86), we get

|Ẽε| =
√
g(2)(1)

ε
Ñε

√
1 +

εg(3)(nεb)

3g(2)(1)
Ñε ≥

√
2γÑε

√
1 +

εg(3)(nεb)

3g(2)(1)
Ñε (3.90)

since Ñε > 0 for ξ ∈ R and V ≥ 1. We choose δ0 > 0 so that

δ0 sup
ξ∈R

sup
0<ε<ε0

∣∣∣∣∣εg(3)(nεb)

3g(2)(1)

∣∣∣∣∣ < 1

2
. (3.91)

Then (3.82) follows from (3.90). In (3.91), the supremum exists by (3.86) and (3.31).

Lemma 3.6. There exist constants ε0, δ1 > 0 such that the following statement holds: for each

0 < δ < δ1, there exists ξδ > 0 such that for all ξ ≥ ξδ and 0 < ε < ε0,

0 < Ñε(ξ) ≤ δ

Here δ1, δ, and ξδ are independent of ξ and ε.
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Proof. From Theorem 3.1, we see that for each ε, lim
ξ→∞

Ñε(ξ) = 0 and Ñε(ξ) is strictly increasing

on [0,∞). This observation and (3.81a), together with the intermediate value theorem, yields

that for each 0 < δ < γV −1 and 0 < ε < ε0, there is a unique ξε,δ > 0 such that

Ñε(ξε,δ) = δ. (3.92)

By (3.82) and (3.92), we see that for all 0 < ε < ε0 and 0 < δ < min{δ0, γV
−1},

Ẽε(ξε,δ) >
√
γδ (3.93)

since Ẽε(ξ) ≥ 0 on [0,∞). Here the mean value theorem yields that

Ẽ′ε(ξ) = Ẽ′ε(0)− Ẽ′′ε (ξεb )ξ

for some ξεb ∈ (0, ξ). Thus, using (3.81b) and (3.81d), we have that there is a small ξ0 > 0,

independent of ε, such that

Ẽ′ε(ξ) > γ2 (3.94)

holds for all ε ∈ (0, ε0) and ξ ∈ (0, ξ0). Integrating (3.94) over [0, ξ] for ξ ∈ (0, ξ0), we have

Ẽε(ξ) > γ2ξ (3.95)

since Ẽε(0) = 0. Thus for all δ > 0 with γ−
3
2 δ < ξ0, we have

Ẽε(γ
− 3

2 δ) >
√
γδ. (3.96)

For a moment, we assume that there exists a number δ1 ≤ min{δ0, γV
−1, γ

3
2 ξ0} such that

for all 0 < δ < δ1 and 0 < ε < ε0,

γ−
3
2 δ < ξε,δ (3.97)

holds. Then (3.93) and (3.96)–(3.97) imply that

Ẽε(ξ) >
√
γδ (3.98)

for all ξ ∈ [γ−
3
2 δ, ξε,δ] and 0 < ε < ε0 (see Figure 3). Applying (3.81c) and (3.98) to the ODE

(3.39a), we have

−Ñ ′ε(ξ) =
Ẽε(ξ)

h(nε)
≥ 2

3

√
γδ (3.99)

for ξ ∈ [γ−
3
2 δ, ξε,δ] and 0 < ε < ε0. Integrating (3.99) from γ−

3
2 δ to ξε,δ, we obtain

0 < Ñε(ξε,δ) ≤ −
2

3

√
γδ(ξε,δ − γ−

3
2 δ) + sup

0<ε<ε0

Ñε(γ
− 3

2 δ). (3.100)

Now it is clear that ξδ := sup
0<ε<ε0

ξε,δ <∞ for each 0 < δ < δ1. If not, then there is a sequence

{εk} such that the RHS of (3.100) diverges to −∞ as k →∞, which is a contradiction. Hence,

we have that for each 0 < δ < δ1,

δ = Ñε(ξε,δ) ≥ Ñε(ξδ) ≥ Ñε(ξ)
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for all 0 < ε < ε0 and ξ ≥ ξδ.
To complete the proof, we verify (3.97). It is sufficient to show that there exists δ1 ≤

min{δ0, γV
−1, γ

3
2 ξ0} such that

γ−
3
2 δ < inf

0<ε<ε0
ξε,δ (3.101)

for all 0 < δ < δ1. Here we note that the infimum in (3.101) exists and finite since 0 < ξε,δ <∞.

To verify (3.97), we suppose inf
0<ε<ε0

ξε,δ = 0 for some 0 < δ ≤ γV −1. Then for some sequence

{εk}, we have ξεk,δ → 0 as k →∞. By the mean value theorem, (3.81a) and (3.92) imply that

−Ñ ′εk(ξ̄εk,δ) =
Ñεk(0)− Ñεk(ξεk,δ)

ξεk,δ
≥

2γ
V − δ
ξεk,δ

> 0 (3.102)

for some 0 < ξ̄εk,δ < ξεk,δ. This is a contradiction since the RHS of (3.102) tends to +∞ as

k →∞ while the LHS of (3.102) stays bounded by (3.81d). Thus we obtain inf
0<ε<ε0

ξε,δ > 0 for

all 0 < δ ≤ γV −1. By the definition, ξε,δ decreases in δ for each fixed ε. This implies that

inf
0<ε<ε0

ξε,δ ≥ inf
0<ε<ε0

ξε, γ
V
> 0 (3.103)

for all 0 < δ ≤ γV −1. We let δ1 := min{δ0, γV
−1, γ

3
2 ξ0, γ

3
2 inf

0<ε<ε0
ξε, γ

V
}. Then (3.103) implies

that (3.101) holds for all 0 < δ < δ1.

Now using Lemma 3.5 and Lemma 3.6, we show the uniform exponential decay estimates

for the solutions. This will play an important role in remainder analysis.

Proposition 3.7. Let k be any non-negative interger. Then there exist constants C∗, ε1 > 0,

and Ck > 0 such that 
|Ñ (k)

ε (ξ)|+ |Ẽ(k)
ε (ξ)| ≤ Cke−C∗ξ,

|uε(k)(ξ)|
ε

+
|φε(k)(ξ)|

ε
≤ Cke−C∗ξ

(3.104a)

(3.104b)

for all ε ∈ (0, ε1) and ξ ≥ 0. Here C∗ and Ck are uniform in ξ and ε. C∗ is independent of k.

Proof. Applying Taylor’s expansion, (3.39) is written as(
nε − 1

Eε

)′
= A

(
nε − 1

Eε

)
+

(
R1

R2

)
, (3.105)

where

A :=

(
0 (K − J2)−1

ε−1(1 +K − J2) 0

)
is the Jacobian matrix of (3.39) at (nε, Eε) = (1, 0) (see (3.53)). Here, R1 and R2 are functions

of (nε, Eε), and there is a constant C > 0 such that

{
|R1| ≤ C

(
(nε − 1)2 + (nε − 1)Eε

)
,

|R2| ≤ ε−1C(nε − 1)2

(3.106a)

(3.106b)
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for all ε ∈ (0, ε0) by (3.31) (see Appendix). The eigenvalues of A are

± 1√
ε

√
J2 − 1−K
J2 −K

= ±

√
2V γ + γ2ε

1 + 2V γε+ (γε)2
, (3.107)

where we have used (3.32). Let λ = λ(ε) be the positive eigenvalue of A. By (3.107), we can

choose sufficiently small ε∗ = ε∗(K, γ) > 0 such that

dλ

dε
(ε) =

1

2λ(ε)

γ2(1− 4V 2) +O(ε)

(1 + 2V γε+ γ2ε2)2
< 0

for all ε ∈ (0, ε∗) since V =
√

1 +K. Hence λ(ε) decreases in ε on (0, ε∗). Now we fix such ε∗.

One may easily check using (3.107) that (J2(ε)−K)λ(ε) decreases in ε. Hence we obtain that

for all ε ∈ (0, ε∗), {
− λ < −λ(ε∗),√

2V γ < (J2 −K)λ < (J2(ε∗)−K)λ(ε∗).

(3.108a)

(3.108b)

Considering diagonalization of the matrix A, (3.105) can be written as

P

(
nε − 1

Eε

)′
=

(
λ 0

0 −λ

)
P

(
nε − 1

Eε

)
+ P

(
R1

R2

)
, (3.109)

where

P :=
1

2

(
1 −[(J2 −K)λ]−1

1 [(J2 −K)λ]−1

)
.

We multiply the second component of (3.109) by 2ε−1 and then use (3.106) to obtain

Ñ ′ε + [(J2 −K)λ]−1Ẽ′ε ≤ −λ
(
Ñε + [(J2 −K)λ]−1Ẽε

)
︸ ︷︷ ︸

=:I1

+ εCÑ2
ε + εCÑεẼε + C[(J2 −K)λ]−1Ñ2

ε .

(3.110)

Since Ñε ≥ 0 and Ẽε ≥ 0 for ξ ∈ [0,∞), we have from (3.108) that

−λ I1 ≤ −λ(ε∗)I1

≤ −λ(ε∗)

2
I1−

λ(ε∗)

2

(
Ñε +

[
(J2(ε∗)−K)λ(ε∗)

]−1
Ẽε

)
︸ ︷︷ ︸

=:I2

(3.111)

By Lemma 3.6 and (3.108b), we can choose a sufficiently small δ ∈ (0, δ1) such that

I2 + εCÑ2
ε + εCÑεẼε + C[(J2 −K)λ]−1Ñ2

ε <
1

2
I2 < 0 (3.112)

holds for all ε ∈ (0, ε0) and ξ ≥ ξδ. Let ε1 := min{ε∗, ε0}. Combining (3.110)–(3.112), we get

Ñ ′ε + [(J2 −K)λ]−1Ẽ′ε < −
λ(ε∗)

2

(
Ñε + [(J2 −K)λ]−1Ẽε

)
. (3.113)
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We multiply (3.113) by e2−1λ(ε∗)ξ and integrate the resultant over [ξδ, ξ] to get

Ñε(ξ) +
Ẽε(ξ)

(J2 −K)λ
≤

[
Ñε(ξδ) +

Ẽε(ξδ)

(J2 −K)λ

]
e−

λ(ε∗)
2

(ξ−ξδ). (3.114)

Let C∗ := 2−1λ(ε∗). Then (3.104a) for the case k = 0 easily follows from (3.114) by using

the bounds (3.81d), (3.108b), and the estimate (3.31). (3.104b) is obtained from (3.104a) and

(3.34). This finishes the proof for the case k = 0. By the induction argument, one can prove

the cases k ≥ 1 by using the system (3.39) (see (3.140)).

3.5.2 Proof of Theorem 3.2–Derivation of the Remainder Equations

In what follows, we derive the equations for the remainders (nεR, u
ε
R, φ

ε
R):


uεR − V nεR =Mε

1,

φεR − V uεR +KnεR =Mε
2,

φεR − nεR = VMε
1 +Mε

2,

(3.115a)

(3.115b)

(3.115c)

and

φεR
′′ − FεφεR =Mε

3, (3.116)

where

Fε(ξ) := 2V γ − 2V 2nKdV − V 2φ
ε
R

ε
(3.117)

andMε
i (i = 1, 2, 3), defined in (3.119)–(3.120) and (3.127), are some functions of nKdV, n

ε
R, u

ε
R,

and φεR. For notational simplicity, we let nKdV = nK . Since nK(ξ) = nK(x − γt) satisfies

(KdV), it also satisfies

−γn′K + V nKn
′
K + (2V )−1n′′′K = 0. (3.118)

Putting (3.28) into (3.33a), a direct calculation yields (3.115a), where

Mε
1 := (γε− εV nK)nεR − (εnK + nεR)uεR + ε2(γnK − V n2

K)

+ ε (V nK − V nK)︸ ︷︷ ︸
=0

. (3.119)

Similarly, we obtain (3.115b) from (3.28) and (3.33b), where

Mε
2 := (γε− εV nK)uεR −

|uεR|2

2
+
K

2

(
2εnKn

ε
R + |nεR|2

)
−KOnε(ε3)

+ ε2

(
γV nK −

V 2n2
K

2
+
Kn2

K

2

)
− ε (nK − V 2nK +KnK)︸ ︷︷ ︸

=0

(3.120)

and Onε(ε
3) := lnnε− (nε−1)+

1

2
(nε−1)2. On the other hand, (3.115c) follows from (3.115a)–

(3.115b) since V =
√

1 +K.
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Now we derive (3.116)-(3.117). Plugging (3.28) into (3.17c), we obtain

nεR − φεR = −ε2n′′K − εφεR
′′ +

1

2
(εnK + φεR)2 +Oφε(ε

3), (3.121)

where Oφε(ε
3) := eφ

ε − 1 − φε − 1

2
(φε)2. By adding (3.115b) and (3.121), the term φεR in the

LHS of (3.121) is canceled, and one obtains

−V uεR + (1 +K)nεR = ε2

(
−n′′K +

n2
K

2

)
− εφεR

′′ +
1

2

(
2εnKφ

ε
R + |φεR|2

)
+Oφε(ε

3) +Mε
2.

(3.122)

Multiplying (3.115a) by V , and then adding the resultant to (3.122), the LHS of (3.122) is

canceled from V =
√

1 +K. Thus we have

0 = VMε
1 + {the RHS of (3.122)}

= V [(γε− εV nK)nεR − (εnK + nεR)uεR]− εφεR
′′ +

1

2

(
2εnKφ

ε
R + |φεR|2

)
+ (γε− εV nK)uεR −

|uεR|2

2
+
K

2

(
2εnKn

ε
R + |nεR|2

)
−KOnε(ε3)

+Oφε(ε
3) + ε2

(
2V γnK − V 2n2

K −
V 2n2

K

2
+

1 +K

2
n2
K − n′′K

)
.

(3.123)

Since V =
√

1 +K and nK satisfies (3.118), the underlined terms of (3.123) are canceled. Using

(3.115a), we substitute uεR of (3.123) with V nεR +Mε
1. Then it is straightforward to obtain

εφεR
′′ +

(
εF̃ +

1

2
(3V 2 −K)nεR

)
nεR −

1

2
(2εnK + φεR)φεR = M̃ε

3, (3.124)

where 
F̃ (ξ) := −2V γ + (3V 2 −K)nK ,

M̃ε
3 :=Mε

1

(
γε− 2V εnK − 2V nεR −

1

2
Mε

1

)
−KOnε(ε3) +Oφε(ε

3).

(3.125a)

(3.125b)

Using (3.115c), we substitute nεR of the LHS of (3.124) by φεR + VMε
1 +Mε

2 and then divide

the resulting equation by ε. Then we obtain

φεR
′′ −

[
2V γ − (3V 2 −K − 1)nK −

1

2
(3V 2 −K − 1)

φεR
ε

]
φεR =Mε

3, (3.126)

where

Mε
3 :=

M̃ε
3

ε
− (VMε

1 +Mε
2)

[
F̃ +

(3V 2 −K)

2ε
[2φεR + (VMε

1 +Mε
2)]

]
. (3.127)

Applying V =
√
K + 1 to (3.126), we arrive at (3.116)–(3.117).

The following lemma directly follows from the definitions of nKdV, n
ε
R, u

ε
R, φ

ε
R, Fε, and Mε

i

(i = 1, 2, 3), and Proposition 3.3 and Proposition 3.7.
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Lemma 3.8. Let k be any non-negative integer. Then there exist constants ε1, C̃∗ > 0 (inde-

pendent of k), and Ck, ξ1 > 0 such that for all 0 < ε < ε1,

|nεR
(k)|, |uεR

(k)|, |φεR
(k)| ≤ Ckεe−C̃∗ξ, (ξ ≥ 0),

|M ε
i

(k)| ≤ Ckε2e−C̃∗ξ, (ξ ≥ 0, for i = 1, 2, 3),

sup
ξ∈[0,∞)

|Fε(k)| ≤ Ck,

Fε(ξ) > V γ, (ξ ≥ ξ1).

(3.128a)

(3.128b)

(3.128c)

(3.128d)

Here C̃∗ and Ck are uniform in ε and ξ. ξ1 is uniform in ε.

Now we shall obtain the remainder estimates around ξ = 0 using a continuation argument.

Proposition 3.9. For any fixed ξ∗ > 0, there is a constant Cξ∗ > 0 such that for all 0 < ε < ε1,

sup
ξ∈[0,ξ∗]

(
|φεR
′(ξ)|2 + |φεR(ξ)|2

)
≤ Cξ∗ε4

(3.129)

holds. Here Cξ∗ is uniform in ε but depends on ξ∗.

Proof. We multiply (3.116) by 2φεR
′, and then add (|φεR|2)′ = 2φεRφ

ε
R
′ to the resulting equation.

Then we have (
|φεR
′|2 + |φεR|2

)′
= 2(1 + Fε)φ

ε
Rφ

ε
R
′ + 2Mε

3φ
ε
R
′. (3.130)

Applying Young’s inequality to (3.130), there is a constant C > 0 such that(
|φεR
′|2 + |φεR|2

)′ ≤ |1 + Fε|
(
|φεR|2 + |φεR

′|2
)

+ |Mε
3|2 + |φεR

′|2

≤ C
(
|φεR
′|2 + |φεR|2

)
+ Cε4

(3.131)

for ξ ∈ [0,∞), where we have used (3.128b)–(3.128c) in the second line. We multiply (3.131)

by e−Cξ, and then integrate the resultant over [0, ξ]. Then we get

|φεR
′|2(ξ) + |φεR|2(ξ) ≤

(
|φεR
′|2(0) + |φεR|2(0)

)
eCξ + ε4(eCξ − 1)

≤ ε4C2eCξ + ε4(eCξ − 1),
(3.132)

where we have used the estimate (3.31) and that φεR
′(0) = 0 thanks to φε′(0) = n′K(0) = 0.

To finish the proof, for any fixed ξ∗ > 0 we take the supremum of the LHS of (3.132) over

[0, ξ∗].

Now we prove the uniform decay estimates for the remainders in the far-field region.

Proposition 3.10. There exist positive constants ε1, ξ1, C, α such that for all 0 < ε < ε1,∫ ∞
ξ1

(
|φεR
′(ξ)|2 + |φεR(ξ)|2

)
eαξ dξ ≤ Cε4 (3.133)

Here α is independent of ξ and ε.
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Proof. We multiply (3.116) by φεRe
αξ for 0 < α < C̃∗ and then integrate the resulting equation

over [ξ1,+∞), where ξ1 and C̃∗ are the constants given in Lemma 3.8. Then one obtain∫ ∞
ξ1

[
Fε(ξ)|φεR|2 + |φεR

′|2
]
eαξ dξ =

∫ ∞
ξ1

−Mε
3φ

ε
Re

αξ − αφεR
′φεRe

αξ dξ

− (φεR
′φεRe

αξ)(ξ1),

(3.134)

where we have used the fact that lim
ξ→∞

φεR
′φεRe

αξ = 0 for all ε > 0, which is true by (3.128a)

since 0 < α < C̃∗. By (3.128d),∫ ∞
ξ1

[
V γ|φεR|2 + |φεR

′|2
]
eαξ dξ < the LHS of (3.134). (3.135)

By applying the Young inequality, and then using Proposition 3.9 and (3.128b), we find that

there is a positive constant Cξ1 > 0 such that

the RHS of (3.134) ≤ V γ + α

2

∫ ∞
ξ1

|φεR|2eαξ dξ +
1

2V γ

∫ ∞
ξ1

|Mε
3|2eαξ dξ

+
α

2

∫ ∞
ξ1

|φεR
′|2eαξ dξ + |(φεR

′φεRe
αξ)|(ξ1)

≤ V γ + α

2

∫ ∞
ξ1

|φεR|2eαξ dξ +
α

2

∫ ∞
ξ1

|φεR
′|2eαξ dξ

+ ε4Cξ1,α.

(3.136)

Now we choose α so that 0 < α < min{V γ, 2, C̃∗}. From (3.135)–(3.136), we finish the proof.

Proof of Theorem 3.2. We first prove that for every non-negative integers k, there is positive

constant Ck such that ∫ ∞
0
|φεR

(k)(ξ)|2eαξ dξ ≤ Ckε4 (3.137)

for all ε ∈ (0, ε1). As the induction hypothesis, we assume that for k = 0, 1, · · · , n, there is

some positive constant Ck satisfying (3.137). We take the n-th derivative of (3.116) in ξ and

then multiply the resulting equation by φεR
(n+2)eαξ. Then we obtain∫ ∞

0
|φεR

(n+2)|2eαξ dξ =

∫ ∞
0

[
(Fεφ

ε
R)(n) +Mε

3
(n)
]
φεR

(n+2)eαξ dξ

≤ 1

2

∫ ∞
0
|φεR

(n+2)|2eαξ dξ +

∫ ∞
0
|(FεφεR)(n)|2eαξ dξ

+

∫ ∞
0
|Mε

3
(n)|2eαξ dξ

≤ 1

2

∫ ∞
0
|φεR

(n+2)|2eαξ dξ +

n∑
i=0

Ci

∫ ∞
0
|φεR

(i)|2eαξ dξ

+ Cnε
4

≤ 1

2

∫ ∞
0
|φεR

(n+2)|2eαξ dξ + Cnε
4,
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where we used the Young inequality in the second line, (3.128b)–(3.128c) in the third line, and

the induction hypothesis in the fourth line. Thus (3.137) is true for k = n+ 2. By Proposition

3.9–3.10, we know that (3.137) holds for k = 0, 1. This finishes the proof of (3.137).

By the Cauchy-Schwarz inequality and the fundamental theorem of calculus , we find that

(3.137) implies that for every k,

sup
ξ∈[0,∞)

|φεR
(k)(ξ)e

α
2
ξ|2 ≤ 2‖φεR

(k)‖L2
α

(
‖φεR

(k+1)‖L2
α

+
α

2
‖φεR

(k)‖L2
α

)
≤ Ckε4,

(3.138)

where ‖ · ‖L2
α

:= ‖ · e
α
2
ξ‖L2([0,∞)). Now the estimates for nεR and uεR follow from (3.115) by

applying (3.138) and (3.128b). To finish the proof, we recall that (nεR, u
ε
R, φ

ε
R) is symmetric

about ξ = 0.

3.6 Appendix

Solitary wave solutions to (KdV) We consider the KdV equation

nt + V nnx +
1

2V
nxxx = 0,

where V > 0 is a constant. By letting ξ = x− γt for a constant γ > 0, we have

−γnξ + V nnξ +
1

2V
nξξξ = 0.

We impose n, nξ, nξξ → 0 as ξ → ±∞. By integrating in ξ, we obtain

−γn+
V

2
n2 +

1

2V
nξξ = 0,

and then we multiply it by nξ to get

−γnnξ +
V

2
n2nξ +

1

2V
nξξnξ = 0.

Integrating in ξ, we have

n2
ξ = 2V γn2 − 2V 2

3
n3 = 2V n2

(
γ − V

3
n

)
,

and hence
dn

n
√

1− V
3γn

=
√

2V γ dξ.

Now we let
V

3γ
n = sech2w. Since

V

3γ
dn = −2sech2w tanhw dw and 1− sech2w = tanh2w,

√
2V γ dξ =

−3γ
V 2sech2w tanhw dw

3γ
V sech2w tanhw

= −2 dw.

Integrating in ξ, we get

w =
−
√

2V γ

2
ξ + ξ0

for some constant ξ0. We let ξ0 = 0. Since sech2w is symmetric in w,

n =
3γ

V
sech2

(√
2V γ

2
ξ

)
=

3γ

V
sech2

(√
2V γ

2
(x− γt)

)
.
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Solutions of the equation (3.23) It is trivial that z = 1 satisfies (3.23). By taking the

logarithm of (3.23), we find that (3.23) is equivalent to that

0 = K ln z + lnK + ln
[
(z − 1)2 +K−1

]
− K

2

(
z2 − 1

)
=: f(z).

It is straightforward to obtain that

df

dz
(z) =

−K(z − 1)2

z [(z − 1)2 +K−1]

(
z −

√
1 +K

K

)(
z +

√
1 +K

K

)
.

Since lim
z→+∞

f(z) = −∞ and f(1) = 0, there exists a unique ζK >

√
1 +K

K
> 1 such that there

holds that f(ζK) = 0 and f(z) > 0 for all z ∈ (1, ζK). We note that this result also shows that

(3.24) holds.

Derivation of (3.66)–(3.67) and (3.85)–(3.86) By taking the derivatives of g in n,
g(1)(n) = −J2n−2 +K + eHh, g(2)(n) = 2J2n−3 + eHh2 + eHh′,

g(3)(n) = −6J2n−4 + eHh3 + 3eHhh′ + eHh′′,

g(4)(n) = 24J2n−5 + eHh4 + 6eHh2h′ + 3eH(h′)2 + 4eHhh′′ + eHh′′′.

From (3.35) and (3.37), we have

H(1) = 0, h(1) = J2 −K, h′(1) = −3J2 +K, h′′(1) = 12J2 − 2K, (3.139)

and hence we get g(1)(1) = 0, g(2)(1) = (J2 −K)(J2 − 1−K) and

g(3)(1) = 6J2 − 2K + (J2 −K)3 + 3(J2 −K)(−3J2 +K).

Using (3.32), a direct calculation yields (3.67a)–(3.67b). From these results and (3.35), (3.37),

and (3.31)–(3.32), we see that (3.67c) holds. (3.85)–(3.86) follow in a similar fashion.

Derivation of (3.83) Let q(n) := n− eH(n). It is straightforward to obtain that

q(1)(n) = 1− eHh, q(2)(n) = (−h2 − h′)eH , q(3) = (−h3 − 3hh′ − h′′)eH .

Using (3.139) and (3.32), we get

1

ε2
(nε − eH(nε)) =

1

ε2

[
(1 +K − J2)(nε − 1)

−1

2
((J2 −K)2 − 3J2 +K)(nε − 1)2 + g(3)(nεb)(n

ε − 1)3

]
= (−2V γ +O(ε)) Ñε + (1 +K +O(ε)) Ñ2

ε + εg(3)(nεb)Ñ
3
ε

(3.140)

for some 1 < nεb < nε. By (3.31), we obtain (3.83).
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Derivation of (3.106) It is straightforward to check that ∂2
ER1 = ∂nER2 = ∂2

ER2 = 0 and{
∂2
nR1 = Eh−2h′′ − 2Eh−3(h′)2, ∂nER1 = h′h−2,

∂2
nR2 = −ε−1eH(h2 + h′),

Now, (3.106) follows from (3.35), (3.37) and (3.31),

3.7 Small Mass Limit of the two-fluid Euler-Poisson System

We consider the two-fluid 1D Euler-Poisson system (2.16) with the isothermal pressure for

ions and electrons. In the non-dimensionalized form (by applying the same scaling as (2.20) for

the electron quantities), it is given by

∂tni + ∂x(niui) = 0,

∂tne + ∂x(neue) = 0,

∂tui + ui∂xui +K∂x(lnni) = −∂xφ,
µ (∂tue + ue∂xue) + ∂x(lnne) = ∂xφ,

−∂2
xφ = ni − ne,

(3.141)

with the far-field condition

ni, ne → 1, ui, ue, φ→ 0,

where µ = me/mi is a constant representing the electron-ion mass ratio.

We recall that the Euler-Poisson system for ions derived from the two-fluid Euler-Poisson

system by letting me = 0. It would be meaningful to justify the solutions of these two system is

close to each other for sufficiently small µ > 0. As far as the author knows, there is no rigorous

study on this subject. In this section, we present some formal computation, which shows that

solutions to (3.141) converges to the those to (1DEP) as µ→ 0 in terms of the KdV limit.

By introducing the Gardner-Morikawa transformation (GM), (3.141) becomes

ε∂tni − V ∂xni + ∂x(niui) = 0,

ε∂tne − V ∂xne + ∂x(neue) = 0,

ε∂tui − V ∂xui + ui∂xui +K
∂xni
ni

= −∂xφ,

µ (ε∂tue − V ∂xue + ue∂xue) +
∂xne
ne

= ∂xφ,

−ε∂2
xφ = ni − ne.

(3.142)

Assuming that the solutions to (3.142) is represented by the formal expansion as (3.5), one

can check that the coefficients of ε0 is zero, and the coefficients of ε satisfy

−V ∂xn(1)
i + ∂xu

(1)
i = 0,

−V ∂xn(1)
e + ∂xu

(1)
e = 0,

−V ∂xu(1)
i +K∂xn

(1)
i = −∂xφ(1),

−µV ∂xu(1)
e + ∂xn

(1)
e = ∂xφ

(1),

n
(1)
i = n(1)

e .

(3.143)

35



In order to have the non-trivial first order profiles, V must satisfy

(1 + µ)V 2 = 1 +K ⇔ V 2 −K = 1− µV 2. (3.144)

From (3.143), we have the relation

u
(1)
i = V n

(1)
i ,

u(1)
e = V n(1)

e ,

φ(1) = V u
(1)
i −Kn

(1)
i = (V 2 −K)n

(1)
i ,

φ(1) = −µV u(1)
e + n(1)

e = (1− µV 2)n(1)
e ,

n
(1)
i = n(1)

e .

(3.145)

We note that V 2 − K = 1 − µV 2 > 0 for sufficiently small µ and that (3.145) is not an

overdetermined system.

At ε2 order, we obtain

∂tn
(1)
i − V ∂xn

(2)
i + ∂xu

(2)
i + ∂x(n

(1)
i u

(1)
i ) = 0,

∂tu
(1)
i − V ∂xu

(2)
i + u

(1)
i ∂xu

(1)
i +K∂xn

(2)
i −Kn

(1)
i ∂xn

(1)
i = −∂xφ(2),

∂tn
(1)
e − V ∂xn(2)

e + ∂xu
(2)
e + ∂x(n(1)

e u(1)
e ) = 0,

µ
(
∂tu

(1)
e − V ∂xu(2)

e + u(1)
e ∂xu

(1)
e

)
+ ∂xn

(2)
e − n(1)

e ∂xn
(1)
e = ∂xφ

(2),

−∂2
xφ

(1) = n
(2)
i − n

(2)
e .

(3.146)

Multiply the first equation by V and then add it to the second equation. Multiply the third

equation by µV and then add it to the fourth equation, Then u
(2)
i and u(2)

e terms are canceled

and we have 
2V ∂tn

(1)
i + (K − V 2)∂xn

(2)
i + (3V 2 −K)n

(1)
i ∂xn

(1)
i = −∂xφ(2),

2µV ∂tn
(1)
i + (1− µV 2)∂xn

(2)
e + (3µV 2 − 1)n

(1)
i ∂xn

(1)
i = ∂xφ

(2),

−∂3
xφ

(1) = ∂xn
(2)
i − ∂xn

(2)
e ,

(3.147)

where we have used (3.145). Add the first and second equation and then use (3.144) and the

third equation. Then, we have

2V (1 + µ)∂tn
(1)
i + (1− µV 2)∂3

xφ
(1) + (3V 2 −K + 3µV 2 − 1)n

(1)
i ∂xn

(1)
i = 0. (3.148)

Equivalently, using (3.144),

∂tn
(1)
i +

(1− µV 2)2

2V (1 + µ)
∂3
xn

(1)
i + V n

(1)
i ∂xn

(1)
i = 0. (3.149)

In the moving frame ξ = x− γt, by imposing that n
(1)
i → 0 as |ξ| → ∞, we obtain

−γn(1)
i +

(1− µV 2)2

2V (1 + µ)
(n

(1)
i )′′ +

V

2
(n

(1)
i )2 = 0.

From (3.144) and (3.145),

− γ

1− µV 2
φ(1) +

1− µV 2

2V (1 + µ)
(φ(1))′′ +

V

2(1− µV 2)2
(φ(1))2 = 0.
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The solution to this equation with φ(1), φ(1)′ → 0 as |ξ| → ∞ is

φ(1)(ξ) =
3(1− µV 2)γ

V
sech2

(√
2γV (1 + µ)

2(1− µV 2)
ξ

)
.

We note that 1 − µV 2 =
1− µK
1 + µ

> 0 if V =

√
1 +K

1 + µ
and 1 − µK > 0. As µ → 0, φ(1)(ξ)

converges to (3.3), the rigorous approximation of ε−1φ of the one-fluid Euler-Poisson system.
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4 Linear Stability of Solitary Waves for the Euler-Poisson Sys-

tem

4.1 Notions of Stability for Solitary Waves

That we can observe some phenomena or objects means that they stay ‘stable’ for enough

time we can detect them. The subject of stability in mathematical aspects would be thus

important. It should be pointed out that, however, the terminology ‘stability’ is somewhat

vague; in which sense are solitary waves stable? We need to establsih suitable notions of

stability, and it would depend on the properties of solitary waves and the underlying structures

of partial differential equations.

We have seen in Section 3 that in a certain scaled frame, the small amplitude EP solitary

waves are well approximated by the KdV solitary waves. On the other hand, the stability of

solitary waves for the KdV equation has been extensively studied. In what follows, we investigate

those notions of stability of traveling solitary waves in the context of our problem.

The result of Section 3 states that the 1D Euler-Poisson system
∂tn+ ∂s((1 + n)u) = 0,

∂tu+ u∂su+K
∂sn

1 + n
= −∂sφ,

−∂2
sφ = (1 + n)− eφ,

(4.1)

with

n, u, φ→ 0 as s→ ±∞, (4.2)

has a two-parameter (c, γ) family of traveling solitary wave solutions

(n, u, φ)(s, t) = (nc, uc, φc)(s− ct+ γ)

for all
√

1 +K < c < ζK
√
K (when K > 0 for instance) and γ ∈ R.9,10 We let u := (n, u)T

and uc := (nc, uc)
T . φ or φc is determined by the Poisson equation of (4.1). In the moving

frame x = s − ct, uc is the stationary solitary wave solution. We point out that the speed c

is a parameter and the amplitude of the waves depends on the speed parameter. This is the

distinguishing feature of traveling solitary waves.

Orbital Stability For a fixed c, uc(· + γ)|γ∈R is a one-parameter family of solitary waves.

One may consider uc(·+γ) as a curve (or orbit) parametrized by γ ∈ R in some function spaces.

In this point of view, orbital stability means that the solution of an evolution equation stays

9Let c =
√

1 +K + ε and nc(s− ct) := n(ε1/2(s− (
√

1 +K + ε)t))− 1.
10By letting c = −c′ and u = −u′, we obtain the traveling waves moving to the left direction. This contrasts

with that the KdV equation does not have solitary waves traveling to the left direction. This is one reason people

say that the KdV equation is uni-directional. Other explaination is that the group velocity of the KdV has one

sign. We remark that the KdV equation has the reversibility t→ −t′, x→ −x′.
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close to the orbit uc(·+γ)|γ∈R for all time t > 0. More precisely, we say that the one-parameter

family of solitary waves uc(·+ γ)|γ∈R is orbitally stable, if for a given ε > 0 there is some δ > 0

such that

‖u0 − uc‖ ≤ δ ⇒ inf
γ∈R
‖u(·, t)− uc(·+ γ)‖ ≤ ε for all t > 0.

Since each point of the orbit is some spatial translation of uc, the orbital stability implies that

the ‘shape’ of the solitary wave is stable. We remark that the orbital stability of the traveling

solitary wave uc(s − ct) in the original variable is equivalent to the orbital stability of the

stationary solitary wave uc(x) in the moving frame x = s − ct, if one considers translation

invariant norms such as L2-Sobolev norms.

The classical frameworks such as [2] and [3] for the orbital stability of solitary waves in-

voke the special structures of converved quantities and the second variation of a constrained

Hamiltonian. The issue for our case is that whether the Euler-Poisson system has such a ‘good’

structure. Indeed, the 1D Euler-Poisson system (4.1) possesses a Hamiltonian

HE(n, u) := H(1 + n, u)

=

∫
(1 + n)u2

2
+K((1 + n) ln(1 + n)− n)− |∂xφ|

2

2
+ (1 + n)φ− eφ + 1 dx

and the momentum

ME(n, u) := M(1 + n, u)−
∫
u dx =

∫
nu dx.

where H and M are defined in (2.6) and (2.5b) respectively. HE and ME are conserved quan-

tities. We let VE(n, u) := HE − cME. Some formal calculations of (2.8) and (2.9) yield that

δVE
δn

=
u2

2
+K ln(1 + n) + φ− cu, δVE

δu
= (1 + n)u− cn.

We see that the solution (nc, uc) to the EP system is a critical point of the constrained Hamil-

tonian VE . The second variation of VE is given by
δ2VE
δn2

δ2VE
δnδu

δ2VE
δuδn

δ2VE
δu2

 =

 K

1 + n
u− c

u− c 1 + n

+

[
∂nφ 0

0 0

]
,

where ∂nφ denotes a formal variational derivative. Here the first matrix on the RHS a saddle

point at (n, u) = (nc, uc) for sufficiently small ε. And what ∂nφ is?

Asymptotic Stability On the other hand, the notion of orbital stability of solitary waves

does not tell us the asymptotic ‘location’ of the perturbed waves. For the initial data of u(s, t)

sufficiently close to uc(s+ γ), if there exists a fixed γ+ ∈ R such that

u(s, t)→ uc(s− ct+ γ+) as t→ +∞,

then we say that a one-parameter family of waves uc(·+γ)|γ∈R is asymptotically (orbitally) stable.

While this notion of stability is typical for the viscous shock waves of viscous conservation
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laws, it cannot be expected for solitary waves in general. Roughly speaking, this is because

the speed of traveling solitary waves is a parameter which is also related to the amplitude of

waves. To illustrate, we consider the initial data u0(s) = uc′(s) ≈ uc(s) for c′ ≈ c so that

we have u(s, t) = uc′(s − c′t). Since uc′(s − c′t) and uc(s − ct) travel with different speeds,

u(s, t) = uc′(s− c′t) cannot approach to any fixed translation of uc(s− ct) as t→ +∞. In fact,

this is a reason that the orbital stability is an appropriate notion of the stability for solitary

waves.

Small perturbations of traveling solitary waves can yield a small change in the speed. Hence,

one should allow the parameter c vary. We expects that if the initial data u0(s) is sufficiently

close to uc(s+ γ), then there is some fixed (c+, γ+) sufficiently close to (c, γ) such that

u(s, t)− uc+(s− c+t+ γ+)→ 0 as t→ +∞. (4.3)

In such a case, we say that the two-parameter family of solitary waves is asymptotically stable,

and this can be understood as follows: as t → +∞, u(s, t) converges to a point of the two-

dimensional manifold {uc(·+ γ) : c ∈ R and γ ∈ R} in some function spaces. We investigate in

which norm the convergence (4.3) can be expected.

Small perturbation of the EP solitary waves is governed by the linearized EP system around

the solitary waves. We assume that in a moving frame x = s − ct, small amplitude waves are

governed by 
∂tn− c∂xn+ ∂xu = 0,

∂tu− c∂xu+K∂xn = −∂xφ,
−∂2

xφ = n− φ.
(4.4)

This assumption would be plausible if small waves are sufficiently far from the peak of large

solitary waves. If we assume that the solution of (4.4) is a superposition of wave packets

A(k)eikx+iw(k)t, then each packet propagates with the group velocities

−dω±(k)

dk
= −c∓ 1 +K(1 + k2)2√

1
1+k2

+K(1 + k2)2
,


−dω+(k)

dk
< −
√

1 +K,

−dω+(k)

dk
< −ε.

This implies that small waves travel to the left in the frame x = s − ct.11 In this regard, we

see that L2-Sobolev norm might be inappropriate for the asymptotic stability. First of all, L2

norm is invariant in space translation. In fact, L2-Sobolev norm of the solution (n, u, φ, ∂xφ) to

the linearized EP system (4.4) is conserved.12,13

Since large solitary waves travel faster than smaller solitary waves, we expect the convergence

(4.3) in the moving frame with the speed of the largest solitary wave by introducing exponentially

11In the original space variable s, the wave packets propagate in both directions.
12Precisely, when K = 0, ‖u‖2H1 + ‖φ‖2L2 + 2‖∂xφ‖2L2 + ‖∂2

xφ‖2L2 is conserved, and we have ‖n‖2L2 = ‖φ‖2L2 +

2‖∂xφ‖2L2 +‖∂2
xφ‖2L2 . Thus, ‖u‖2H1 +‖n‖2L2 is also conserved. When K > 0, K‖n‖2L2 +‖(u, φ, ∂xφ)‖2L2 is conserved.

13Question: do the solutions decay in L∞ norm? If the data is localized in low frequency, similar behavior to

the Airy equation?
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weighted norm:

‖f(x)‖Hs
η(R) := ‖eηxf(x)‖Hs(R), (η > 0).

In the same spirit, this weighted norm was introduced in the context of the asymptotic stability

of the KdV solitary waves [27]. In order to see the meaning of convergence in the weight norm,

we suppose that a function f(x, t) converges to zero in H1
η (R). For any fixed bounded interval

I ⊂ R, f(x, t) is bounded, and there are two possibilities:

1. f(x, t) escapes the interval I to the left, or

2. f(x, t) decreases to zero without leaving I.

In both cases, f(x, t) uniformly converges to zero on the interval I, and hence, convergence

in H1
η (R) norm implies local uniform convergence. The first mechanism of stability is called

convective stability, and the second one is called absolute stability. As we observed, the stability

mechanism for the solitary waves is convective in the moving frame of the largest solitary wave.

Linear Asymptotic Stability As a first step toward the non-linear stability, we will study

the linear version of the asymptotic stability (4.3) in Section 4. In the moving frame x = s− ct,
we may write (4.1) as (see (4.11))

∂tu = Fc(uc). (4.5)

Here we note that the nonlinear operator Fc involves a parameter c and that the two-parameter

family of solitary waves uc(·+ γ) is a stationary solution to (4.5). Let ũ := u−uc and consider

the linearized EP system around uc:

∂tũ = Lũ. (4.6)

Due to the translation invariance and the speed parameter, L has a zero eigenvalue with alge-

braic multiplicity at least two. More precisely, we have

L∂xuc = 0, L∂cuc = −∂xuc.

Indeed, by taking ∂γ and ∂c of 0 = Fc (uc(·+ γ)), we observe that

0 = ∂γ [Fc (uc(·+ γ))] ⇒ 0 = (∇uFc)∂xuc(·+ γ)

⇒ 0 = L∂xuc(·+ γ),

0 = ∂c [Fc (uc(·+ γ))] ⇒ 0 = (∂cFc)uc(·+ γ) + (∇uFc)∂cuc(·+ γ)

⇒ 0 = ∂xuc(·+ γ) + L∂cuc(·+ γ).

Thus,

ũ(x, t) = ∂xuc + (∂cuc − t∂xuc)

is a non-decaying solution to (4.6). We will study the linear asymptotic stability modulo the

span of these two non-decaying modes, span{∂xuc, ∂cuc}.
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The linear asymptotic stability can be interpreted as follows: the solution to the linearized

equation around uc(·+ γ) asymptotically converges to a point of the tangent plane of the two-

parameter family of solitary waves at uc(·+ γ). By differentiating uc(s− ct+ γ) in c and γ, we

have the formal expansion of uc+(·+ γ+) around (c, γ):

uc+(s− c+t+ γ+) ≈ uc(s− ct+ γ) + (γ+ − γ) [∂xuc(s− ct+ γ)]

+ (c+ − c) [∂cuc(s− ct+ γ)− t∂xuc(s− ct+ γ)] .
(4.7)

The RHS of (4.7) can be interpreted as the tangent plane of the two-dimensional manifold

uc+(s− c+t+ γ+) at uc(s− ct+ γ) with a basis

{∂xuc(·+ γ), ∂cuc(·+ γ)− t∂xuc(·+ γ)}.

The position (c+− c, γ+− γ) at which the solution of the linear equation converges as t→ +∞
is determined by the initial condition of the linear equation.

4.2 Main Results

The previous section concerns the existence of traveling solitary wave solutions to (4.1)–(4.2)

and the asymptotic behavior of the solutions in a certain stretched moving frame as ε→ 0. We

summarize the result.

Theorem 4.1. Let V =
√

1 +K and c =
√

1 +K + ε for K ≥ 0. Let k be any non-negative

integer. Then the following hold:

1. (a) For all sufficiently small ε > 0, (4.1)–(4.2) admits a non-trivial (smooth) traveling

solitary wave solution (nc, uc, φc)(x), where x = s− ct.

(b) There exist positive constant ε0, C, and Ck such that for all ε ∈ [0, ε0],

|∂kxnc(x)|+ |∂kxuc(x)|+ |∂kxφc(x)| ≤ Ckεk/2+1e−Cε
1/2|x|. (4.8)

2. Let (n∗, u∗, φ∗)(ξ) := ε−1(nc, uc, φc)(x), where ξ := ε1/2x. There exist positive constants

ε0, C and Ck such that for all ε ∈ (0, ε0],

|∂kξ (n∗ −ΨK)|+ |∂kξ (u∗ − VΨK)|+ |∂kξ (φ∗ −ΨK)| ≤ Ckεe−C|ξ|, (4.9)

where

ΨK(ξ) :=
3

V
sech2

(√
V

2
ξ

)
(4.10)

is a solution to

−∂ξΨK + VΨK∂ξΨK +
1

2V
∂2
ξΨK = 0.

For ε = 0, (n∗, u∗, φ∗) = (ΨK ,VΨK ,ΨK).
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In the moving frame x = s− ct and t = t, (4.1) becomes
∂tn− c ∂xn+ ∂x((1 + n)u) = 0,

∂tu− c ∂xu+ u∂xu+K
∂xn

1 + n
= −∂xφ,

−∂2
xφ = (1 + n)− eφ.

(4.11)

From Theorem 4.1, the solitary wave solutions (nc, uc, φc)(x) satisfy


− c ∂xnc + ∂x((1 + nc)uc) = 0,

− c ∂xuc + uc∂xuc +K
∂xnc

1 + nc
= −∂xφc,

− ∂2
xφc = (1 + nc)− eφc .

(4.12a)

(4.12b)

(4.12c)

The linearization of the Euler-Poisson system (4.11) around (nc, uc, φc) is given by
∂t

(
n

u

)
+ L1∂x

(
n

u

)
+ L2

(
n

u

)
=

(
0

−∂xφ

)
,

− ∂2
xφ = n− eφcφ,

(4.13a)

(4.13b)

where L1 = L1(x, ε) and L2 = L2(x, ε) are the matrices defined by

L1 :=

−c+ uc 1 + nc
K

1 + nc
−c+ uc

 , L2 :=

 ∂xuc ∂xnc

− K∂xnc
(1 + nc)2

∂xuc

 . (4.14)

For given n ∈ L2(R), a unique solution φ =: (−∂2
x + eφc)−1(n) to the linear Poisson equation

(4.13b) exists in H2(R) since φc is small.

The solution of the linearized EP system (4.13) will be represented in terms of the C0-

semigroup. The spectral information of the generator gives the asymptotic behavior of the

semigroup (see Section 5 for the related spectral and semigroup theory). By substituting the

Ansatz (n, u, φ) = eλt(n, u, φ)(x) into (4.13), we consider the eigenvalue problem for the Euler-

Poisson system,

(λ− L)(n, u)T = (0, 0)T , (4.15)

where we let

L

(
n

u

)
:= −

[
(L1∂x + L2)

(
n

u

)
+

(
0

∂x(−∂2
x + eφc)−1(n)

)]
. (4.16)

Due to the translation invariance and that the speed c is a parameter, λ = 0 is an eigenvalue

of L in L2 with algebraic multiplicity at least two. Indeed, by differentiating (4.12) in x and c,

we obtain that

L∂x(nc, uc)
T = (0, 0)T , L∂c(nc, uc)T = −∂x(nc, uc)

T . (4.17)

Since (nc, uc, φc)
T and ∂x(nc, uc, φc)

T exponentially decay to zero as |x| → +∞, the essential

spectrum of L in L2 coincides with the imaginary axis of the complex plane. Moreover, we will
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show that there is no eigenvalue of L with Reλ > 0. In other words, the two-parameter family

of solitary waves for the Euler-Poisson system is spectrally stable in L2 (Theorem 4.21).

To study the linear asymptotic stability, we define

‖f(x)‖Hs
η(R) := ‖eηxf(x)‖Hs(R), (η > 0), (4.18)

where Hs(R) is the usual L2 Sobolev norm. While the norm (4.18) moves the essential spectrum,

it does not change the location of the zero eigenvalue of L. The essential spectrum of L in L2
η

space consists of the images of two parametrized curves strictly lying on the open left-half plane

of the complex plane (Proposition 4.6). λ = 0 is the only eigenvalue of L with multiplicity

two on some open set containing the closed right-half plane (Theorem 4.22). The corresponding

eigenvector and the generalized eigenvector are given by ∂x(nc, uc)
T and ∂c(nc, uc)

T respectively.

This idea−separating the essential spectrum and the embedded eigenvalue−was first introduced

by [33] in the study of stability of traveling waves of parabolic system, and it is successfully

adopted to the stability of the KdV solitary waves in [27].

In order to prove the linear asymptotic stability, we will show in Section 4.6 that

(i) L generates a C0-semigroup,

(ii) λ = 0 is an isolated eigenvalue of L with algebraic multiplicity two,

(iii) (λ − L)−1 is uniformly bounded on Reλ > 0, outside any small neighbourhood of the

origin.

Applying the result of Prüss [29] (see Theorem 5.29), we then obtain our main result, Theorem

4.2. For a Hilbert space H, we denote H×H by (H)2.

Theorem 4.2 (Linear convective stability of solitary waves). Consider the operator L : (L2
η)

2 →

(L2
η)

2 with dense domain (H1
η )2. For 0 < c0 <

√
2V

3
and ε > 0, let η = c0ε

1/2. Then there

exist ε0 > 0 such that for all ε ∈ (0, ε0), the following holds: for given (n0, u0)T ∈ (L2
η)

2 with

P (n0, u0)T = 0, where P is the spectral projection onto the generalized eigenspace of L, we have

‖(n(t), u(t))‖(L2
η)2 ≤ Ce−ε

′t‖(n0, u0)‖(L2
η)2 (4.19)

for some ε′ > 0.

To study the eigenvalue problem, we will apply the Evans function, which is particularly

useful for detecting eigenvalues and their algebraic multiplicity. Calculating the Evans function

is not simple in general. On the other hand, the Evans function for the KdV equation is

explicitly known [27]. Our strategy is to show that in a special scaling, the Evans function for

the EP system converges to that for the KdV equation. The work of [28] concerns a similar

issue for some Boussinesq systems. We refer to Section 5 for the general description on the

linear stability of nonlinear waves and some prerequisites such as spectral theory, semigroup

theory, and the Evans function.
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(a) Spectrum of in unweighted spaces (b) Spectrum in exponentially weighted spaces

Figure 5: The bold curves indicate the essential spectrums of L. The zero eigenvalue of L is

isolated in eηx-weighted L2 spaces for sufficiently small η > 0.

Eigenvalue problem of the Euler-Poisson system and the KdV equation We formally

observe how the eigenvalue problem (4.15) is related to the eigenvalue problem of the KdV

equation. By intoducing the KdV scaling

ξ = ε1/2x, λ = ε3/2Λ, (4.20)

(4.15) becomes 
εΛn− c∂ξn+ ∂ξu+ ∂ξ(εn∗u+ εu∗n) = 0,

εΛu− c∂ξu+K∂ξ

(
n

1 + εn∗

)
+ ∂ξ(εu∗u) = −∂ξφ,

− ε∂2
ξφ = n− eεφ∗φ.

(4.21a)

(4.21b)

(4.21c)

By integrating (4.21a)–(4.21b) in ξ, we formally obtain that (recall that c =
√

1 +K + ε)
−
√

1 +K n+ u = O(ε),

Kn−
√

1 +K u+ φ = O(ε),

n− φ = O(ε).

(4.22a)

(4.22b)

(4.22c)

Taking derivative of (4.21c) in ξ, and then subtracting the resulting equation from (4.21b),

−∂ξφ term in the RHS of (4.21b) is canceled. Then, by applying the Taylor expansion, we

obtain

εΛu− (
√

1 +K + ε)∂ξu+ (K + 1)∂ξn−K∂ξ(εn∗n) + ∂ξ(εu∗u) + ε∂3
ξφ− ∂ξ(εφ∗φ) = O(ε2).

(4.23)
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Multiplying (4.21a) by V =
√

1 +K and then adding the resulting equation to (4.23), we see

that −
√

1 +K ∂ξu and (1 +K)∂ξn terms in (4.23) are canceled, and we have

VΛn− V∂ξn+ V∂ξ(n∗u+ u∗n)

+ Λu− ∂ξu−K∂ξ(n∗n) + ∂ξ(u∗u) + ∂3
ξφ− ∂ξ(φ∗φ) = O(ε).

(4.24)

Using the relation (4.22) and Theorem 4.1, we obtain from (4.24) that

Λn− ∂ξn+ V∂ξ(ΨKn) +
1

2V
∂3
ξn = O(ε). (4.25)

4.3 Reformulation of the Eigenvalue Problem

Since the operator L involves the nonlocal operator (−∂2
x + eφc)−1(n), it is convenient to

rewrite λ− L as the associated linear ordinary differential operator. For notational simplicity,

we let

J = J(x, ε) := (c− uc)2 −K. (4.26)

Since sup
x∈R
|uc(x)| = O(ε), J(x, ε) converges to 1 as ε → 0 uniformly in x ∈ R.14 Hence the

matrix L1 is invertible, and we have from (4.15) and (4.16) that(
nx

ux

)
= L−1

1

[
− (λI2 + L2)

(
n

u

)
+

(
0

−φx

)]

=
1

J

−c+ uc −(1 + nc)
−K

1 + nc
−c+ uc

 −(uc)xn− (nc)xu− λn
K(nc)xn

(1 + nc)2
− (uc)xu− λu− φx

 .

(4.27)

We rewrite the Poisson equation as

φx =: ψ, ψx = eφcφ− n. (4.28)

By letting y := (n, u, φ, ψ)T , the eigenvalue problem (4.15) is written as

A(λ)y :=

(
d

dx
−A(x, λ, ε)

)
y = (0, 0, 0, 0)T , (4.29)

where

A = A(x, λ, ε) :=

(
L−1

1 02

02 I2

)
−λI2 − L2

0 0

0 −1

0 0

−1 0

0 1

eφc 0

 . (4.30)

14Indeed, J is always positive as long as the solitary wave exists. This follows from (4.81d) and the analysis

of the function h in the previous work. This fact can be used for the large amplitude solitary wave.
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Here A has the form of A(x, λ, ε) := A1(x, ε) + λA2(x, ε), where

A1 :=


−L−1

1 L2 L−1
1

(
0 0

0 −1

)
0 0

−1 0

0 1

eφc 0



=



(uc)x(c− uc)
J

− K(nc)x
J(1 + nc)

(nc)x(c− uc)
J

+
(uc)x(1 + nc)

J
0

1 + nc
J

K(uc)x
J(1 + nc)

− K(c− uc)(nc)x
J(1 + nc)2

K(nc)x
J(1 + nc)

+
(c− uc)(uc)x

J
0

c− uc
J

0 0 0 1

−1 0 eφc 0


,

A2 :=

[
−L−1

1 02

02 02

]
=

1

J


c− uc 1 + nc
K

1 + nc
c− uc

02

02 02

 .

(4.31a)

(4.31b)

(4.31c)

Proposition 4.3. Consider the operators λ− L : (H1)2 ⊂ (L2)2 → (L2)2 and A(λ) : (H1)4 ⊂
(L2)4 → (L2)4. Then the following hold.

(a) λ−L is not Fredholm with index 0 if and only if A(λ) is not Fredholm with index 0. In this

case, λ ∈ σess(L).

(b) λ − L is Fredholm with index 0 and N (λ − L) = {0} if and only if A(λ) is Fredholm with

index 0 and N (A(λ)) = {0}. In this case, λ ∈ ρ(L).

(c) λ − L is Fredholm with index 0 and N (λ − L) 6= {0} if and only if A(λ) is Fredholm with

index 0 and N (A(λ)) 6= {0}. In this case, λ ∈ σpt(L).

These statements also hold for the operators λ − L : (H1
η )2 ⊂ (L2

η)
2 → (L2

η)
2 and A(λ) :

(H1
η )4 ⊂ (L2

η)
4 → (L2

η)
4.

The proof of Proposition 4.3 is given in Section 4.7. Due to the characterization of the

Fredholm properties of A(λ) in terms of exponential dichotomies ([23],[24]) and the roughness

of exponential dichotomies ([7]), there is no λ ∈ C such that A(λ) (hence λ − L) is Fredholm

with non-zero index since lim
x→+∞

A(x; ) = lim
x→−∞

A(x; ). Hence σess(L) in L2 space consists of

λ ∈ C such that A(λ) is not Fredholm, and it is characterized by λ for which the asymptotic

matrix A∞(λ, ε) := lim
x→±∞

A(x, λ, ε) has an eigenvalue µ with Reµ = 0. In L2
η space, σess(L) is

characterized by λ for which the matrix A∞(λ, ε) +ηI has an eigenvalue µ′ with Reµ′ = 0 since

studying the spectrum of the operator ∂x in L2
η space is equivalent to studying the spectrum of

the operator ∂x − η in L2 space.

4.4 The Evans Function

Before we define the Evans function for the Euler-Poisson system, we briefly summurize the

definition of the Evans function and its properties following [26]. In order to locate λ for which
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the operator A(λ) has a non-trivial kernel, we consider the first-order linear ODE system

dy

dx
= A(x, λ, ε)y (4.32)

with the matrix A(x, λ, ε) defined in (4.30). We observe that A(x, λ, ε) converges to the same

asymptotic matrix A∞(λ, ε) as x → ±∞. To define the Evans function for (4.32) on a simply

connected domain Ωε ⊂ C, we need to verify that for fixed parameter ε,

H1 A(x, λ, ε) is continuous in (x, λ) ∈ R× Ωε and is analytic in λ for fixed x.

H2 A(x, λ, ε) converges to A∞(λ, ε) as |x| → ∞, uniformly for λ on any compact subset of

Ωε.

H3 The integral

∫ ∞
−∞
|A(x, λ, ε) − A∞(λ, ε)| dx converges for all λ, uniformly on compact

subsets of Ωε.

H4 For every λ ∈ Ωε, the matrix eigenvalues µj = µj(λ, ε) of A∞ = A∞(λ, ε) can be labelled

so that

Reµ1 < µ∗ := min{Reµj : j = 2, 3, 4}.

Under the assumptions H1–H4, (4.32) has a unique solution y+ = y+(x, λ, ε) satisfying

lim
x→+∞

e−µ1xy+ = v1, (4.33)

where v1 = v1(λ, ε) is a right eigenvector of A∞ associated with µ1. The transposed ODE

system
dz

dx
= −zA(x, λ, ε), (4.34)

where z is considered as a row vector, has a unique solution z− = z−(x, λ, ε) satisfying

lim
x→−∞

eµ1xz− = w1, (4.35)

where w1 = w1(λ, ε) is the left eigenvector of −A∞ associated with −µ1 such that w1v1 = 1.

Here the solutions y+ and z− can be constructed so that they are analytic in λ ∈ Ωε for fixed

x ∈ R. The Evans function D(λ, ε) for (4.32) is then defined by

D(λ, ε) := z−(x, λ, ε)y+(x, λ, ε),

which is analytic in λ and independent of x, and it is characterized by

lim
x→−∞

e−µ1xy+ = D(λ, ε)v1. (4.36)

The following is a summary of Proposition 5.39.

Proposition 4.4. Suppose H1–H4 hold on Ωε for each ε > 0. Let λ ∈ Ωε and y+(x, λ, ε) be

the solution of (4.32) satisfying (4.33). Then, the following statements hold true.
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1. The following are equivalent:

(a) D(λ, ε) = 0;

(b) y+(x, λ, ε) = o(eµ1x) as x→ −∞;

(c) y+(x, λ, ε) = O(e(µ∗−θ)x) as x→ −∞ for any 0 < θ < µ∗ − Reµ1.

2. For any solution y(x, λ, ε) of (4.32), the following are equivalent:

(a) y(x, λ, ε) = O(eµ1x) as x→ +∞;

(b) y(x, λ, ε) = αy+(x, λ, ε) for some constant α ∈ C;

(c) y(x, λ, ε) = o(e(µ∗−θ)x) as x→ +∞ for any 0 < θ < µ∗ − Reµ1.

We will see that Reµ1 < 0 < µ∗ holds on the natural domain Reλ > 0. In this case,

Proposition 4.4 implies that y+(x; ) is an L2 solution of (4.32) if D(λ, ε) = 0. Conversely, if

(4.32) has an L2 solution for some λ, then D(λ, ε) = 0. In a similar fashion, we have that (4.32)

has a solution in L2
η if and only if D(λ, ε) = 0, provided that

Reµ1 + η < 0 < µ∗ + η. (4.37)

We will see that (4.37) holds on some right-half plane containing the imaginary axis.

Remark 4. If λ is an L2 eigenvalue, then so are λ and −λ. Indeed, if y(x, λ) is a solution to

(4.32), then we have

d

dx
y(x, λ) = (A1 + λA2)y(x, λ),

d

dx
ỹ = (A1 − λA2)ỹ, (4.38)

where ỹ := (y1(−x, λ), y2(−x, λ), y3(−x, λ),−y4(−x, λ))T , using the symmetry (nc, uc, φc)(x) =

(nc, uc, φc)(−x). We remark that on the domain Reλ ≤ 0, where Reµ1 < µ∗ ≤ 0 holds, the

zeros of the Evans function is not related to the L2 eigenvalues in principle. For Reλ = 0, for

instance, we have Reµ1 < 0 = µ∗, and hence y+ (an analytic continuation of y+ defined on

the natural domain Reλ > 0) may oscillate without decaying as x → −∞. The eigenfunction

ỹ corresponding to the eigenvalue −λ is not an analytic continuation of y+. The zeros of the

Evans function on Reλ ≤ 0 correspond to the so-called resonance poles ([26],[28],[35]), and their

locations are related to the possible decay rate of (4.19). We show that on Reλ > −κ(ε) there

is no resonance pole for L with respect to the L2 norm.

4.4.1 The Evans Function for the Euler-Poisson System

We consider the ODE system (4.32) associated with the eigenvalue problem (4.15). By

Theorem 4.1, the coefficient matrix A(x, λ, ε) converges to the asymptotic matrix

A∞(λ, ε) :=



cλ

c2 −K
λ

c2 −K
0

1

c2 −K
Kλ

c2 −K
cλ

c2 −K
0

c

c2 −K
0 0 0 1

−1 0 1 0

 (4.39)

49



as |x| → ∞ exponentially fast. The matrix eigenvalues µ of A∞ are the zeros of the characteristic

polynomial

d(µ) = d(µ;λ, ε) := det (µI −A∞(λ, ε))

= (c2 −K)−1
(
(µ2 − 1)

[
(λ− cµ)2 −Kµ2

]
+ µ2

)
.

(4.40)

For all ε ≥ 0 and λ ∈ C, d(µ) has four zeros µj counted with multiplicities.

The right and left eigenvectors (denoted by vj and wj) of A∞ corresponding to a non-zero

simple eigenvalue µj satisfying the normalization wjvj = 1 are chosen as follows:
vj :=

(
1,

cµj − λ
µj

,
1

1− µ2
j

,
µj

1− µ2
j

)T
,

wj :=
πj
πjvj

,

(4.41a)

(4.41b)

where 

πj :=

(
[cλ− µj(c2 −K)]

1− µ2
j

µj
, −λ

1− µ2
j

µj
, 1, µj

)
,

πjvj =
(1− µ2

j )(λ
2 − µ2

j (c
2 −K))

µ2
j

+
1 + µ2

j

1− µ2
j

=

µ2
j

[
(1− µ2

j )
2 λ2

µ4j
− 2ε

√
1+K
µ2j

− ε2

µ2j
+ 1 + (2− µ2

j )(c
2 −K)

]
1− µ2

j

.

(4.42a)

(4.42b)

(4.42c)

For (4.42c), we have used c =
√

1 +K + ε. We note that πjvj 6= 0 when µj is semi-simple.

Zeros of Characteristic Polynomial d(µ) To define the Evans function for the Euler-

Poisson system, we verify the central assumption H4 by investigating some properties of the

zeros of the characteristic polynomial (4.40).

Since d(±1) 6= 0 and c2 −K 6= 0 for all ε ≥ 0 and λ ∈ C, d(µ) = 0 is equivalent to that µ

satisfies one of the equations
d+(µ) = d+(µ; ε) := µ

(
c+

√
1

1− µ2
+K

)
= λ,

d−(µ) = d−(µ; ε) := µ

(
c−

√
1

1− µ2
+K

)
= λ.

(4.43a)

(4.43b)

Plugging λ = iω and µ = ik for ω, k ∈ R into λ = d±(µ), we obtain

ω = ω±(k; ε) := ck ± k
√

1

1 + k2
+K.

We observe the behavior of ω±, which is important for the study on the solutions of (4.43). We

have 

dω±
dk

= c± 1 +K(1 + k2)2√
1

1+k2
+K (1 + k2)2

,

d2ω−
dk2

= − k(K(k4 − 2k2 − 3)− 3)

(1 + k2)3(K(1 + k2) + 1)
√
K + 1

1+k2

.

50



dω±
dk

are symmetric about k = 0. It is clear that
dω+

dk
≥
√

1 +K for all k ∈ R and ε ≥ 0. On

the other hand,
dω−
dk

(0) = ε, lim
k→±∞

dω−
dk

=
√

1 +K + ε−
√
K.

Solving the numerator of
d2ω−
dk2

, one can check that
dω−
dk

increases on (0, k+) and decreases on

(k+,∞) where15

k+ :=

√
K +

√
4K2 + 3K

K
.

Proposition 4.5. The zeros µj of d(µ) can be labelled so that the following splitting properties

hold.

1. For ε > 0,

Reµ1 < 0 = Reµ2 = Reµ3 < Reµ4, when Reλ = 0,

Reµ1 < 0 < Reµj , (j = 2, 3, 4), when Reλ > 0.

(4.45a)

(4.45b)

2. For ε = 0,

Reµ1 < 0 = Reµ2 = Reµ3 < Reµ4, when Reλ = 0 and λ 6= 0,

Reµ1 < 0 < Reµj , (j = 2, 3, 4), when Reλ > 0.

(4.46a)

(4.46b)

Remark 5. When Reλ < 0, one may check that Reµj < 0 < Reµ4, j = 1, 2, 3, for all ε ≥ 0.

For ε = 0 and λ = 0, we have µj = 0 for all j = 1, 2, 3, 4.

Proof. We first consider the case ε > 0. We note that d−(µj) = 0 for

µ1 = −
√

1− 1

c2 −K
, µ4 =

√
1− 1

c2 −K
.

We recall that the functions k ∈ R 7→ −id±(ik) = ω±(k) ∈ R are one-to-one and onto. Moreover,

dω±/dk are strictly positive for ε > 0. Hence, for Reλ = 0, there are exactly two solutions µ2

and µ3 with Reµ2 = Reµ3 = 0 satisfying d+(µ2) = λ and d−(µ3) = λ. This proves (4.45a).

Since d±(ik) ∈ iR for all k ∈ R, any solutions µ of d±(µ; ε) = λ with Reλ 6= 0 cannot lie in

the imaginary axis . This implies that as long as Reλ > 0, the number of solutions µ of (4.43)

lying on the left half-plane or the right half-plane does not change. Expanding d± in µ around

the origin of C, we have

d±(µ; ε) = ∂µd±(0; ε)µ± µ3

2
√

1 +K
+O(µ5), (4.47)

15The behavior of ω is more complicated than the case K = 0. See Figure 6. When K = 0, it seems that the

convergence of the Evans function can be shown in larger domain as the Boussinesque system following [28]. For

this case, [17] only concerns near λ = 0.
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where ∂µd±(0; ε) = c±
√

1 +K > 0 for ε > 0. Here, the higher order terms does not involve ε.

Thus, if we slightly move λ to the left from the origin along the real axis, then the real parts of

the solutions µ2 and µ3 become positive. This implies that (4.45b) holds.

Next we consider the case ε = 0. We note that ∂µd−(0; 0) = 0. Hence the solutions of

λ = d−(µ) are approximated by three solutions of λ = − µ3

2
√

1 +K
as long as |λ| is small. We

have that for n = 1, 2, 3,

µ = (2
√

1 +K|λ|)1/3ei(±
π
2

+ 2πn
3

) when λ = e±iπ/2|λ|,

µ = (2
√

1 +K|λ|)1/3ei(
π
3

+ 2πn
3

) when λ = |λ|,

µ = (2
√

1 +K|λ|)1/3ei
2πn
3 when λ = −|λ|.

(4.48a)

(4.48b)

(4.48c)

From (4.48) and the previous argument, we easily deduce that (4.46) holds.

Now we find the domain where the relation (4.37) holds. By setting µ = ik − η, we have

d±(µ) = (ik − η)

(
c±

√
1

1− (ik − η)2
+K

)
, k ∈ R. (4.49)

Since c =
√

1 +K + ε, we see that at k = 0,

d−(−η) = −η
(

1 + 2
√

1 +Kε+ ε2 − 1

1− η2

)(
c+

√
1

1− η2
+K

)−1

= −
η
(
−η2 + ε(2

√
1 +K + ε)(1− η2)

)
1− η2

(
c+

√
1

1− η2
+K

)−1

.

(4.50)

For 0 < c0 <

√
2V

3
, let η = c0ε

1/2. Then, we have d−(−η) < 0 for all sufficiently small ε > 0,16

and hence the domain

Ωε := {λ : Reλ > d−(−η)}

contains the closed right-half plane {λ : Reλ ≥ 0}.

Proposition 4.6. For 0 < c0 <

√
2V

3
and ε > 0, let η = c0ε

1/2. Then there exists ε0 > 0 such

that for all 0 < ε < ε0, the following hold.

1. The curves {d±(µ) : µ = ik − η, k ∈ R} lie on C \ Ωε = {λ : Reλ ≤ d−(−η) < 0}.

2. For λ ∈ Ωε, the zeros of d(µ) can be labeled so that they satisfy

Reµ1 < −η < Reµj , (j = 2, 3, 4). (4.51)

Proof. It is obvious that d+(−η) < d−(−η). On the other hand, for µ = ik− η, by the Cauchy-

Riemann equation,

∂(Re d±)

∂η

∣∣∣∣
η=0

=
∂(Re d±)

∂(−Reµ)

∣∣∣∣
Reµ=0

= − ∂(Im d±)

∂(Imµ)

∣∣∣∣
Reµ=0

= −dω±
dk

.

16The exponent 1/2 of ε is sharp. Consider η = c0ε
1/4 for instance.
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Now the first assertion easily follows from the previous discussion on the behavior of ω±. To

prove (4.51), we let µ = µ′ − η. Then, the zeros µ′j of d(µ′ − η) with λ = 0 are

µ′1 = η −
√
c2 − 1−K
c2 −K

, µ′2 = η +

√
c2 − 1−K
c2 −K

, µ′3 = µ′4 = η.

It is easy to see that µ′1 < 0 < µ′j (j = 2, 3, 4) for all sufficiently small ε > 0. By the first

assertion, the same argument as the proof of Proposition 4.5 yields that

Reµ′1 < 0 < Reµ′j (j = 2, 3, 4)

as long as λ ∈ Ωε. Now the proof is finished by adding −η.

From Proposition 4.5–4.6, we see that for each ε > 0, H4 holds for λ ∈ Ωε. When ε = 0, since

µ(λ) is continuous in λ, it is clear that there is an open set including Ω0 := {λ : Reλ ≥ 0, λ 6= 0}
such that H4 holds on the open set. H1–H3 are clear from (4.8), (4.31) and (4.39). Hence, we

have the following proposition.

Proposition 4.7. There exists ε0 > 0 such that for each ε ∈ [0, ε0), the Evans function D(λ, ε)

for the system (4.32) associated with the eigenvalue problem (4.15) is defined on the domain

Ωε. D(λ, ε) is analytic in λ ∈ Ωε for each fixed ε ∈ [0, ε0).

By Proposition 4.3 and the remark below it, Proposition 4.5–4.6 also lead the following.

Proposition 4.8. 1. For the operator L : (L2)2 → (L2)2, σess(L) = {λ ∈ C : Reλ = 0}.

2. For 0 < c0 <

√
2V

3
and ε > 0, let η = c0ε

1/2. For the operator L : (L2
η)

2 → (L2
η)

2,

σess(L) = {d±(µ) : µ = ik − η, k ∈ R} ⊆ {λ : Reλ ≤ d−(−η) < 0}

for all sufficiently small ε > 0.

Zeros of the Evans function D(λ, ε) and non-trivial solutions in unweighted and

weighted L2 spaces

Proposition 4.9. For λ ∈ C with Reλ > 0, the system (4.32) associated with the eigenvalue

problem (4.15) has a nontrivial solution in L2 if and only if D(λ, ε) = 0.17

Proof. If D(λ, ε) = 0, then y+ satisfying (4.33) is an L2 solution to (4.32) by (4.45b) and

Proposition 4.4. If y is a non-trivial solution of (4.32) in L2, then y is bounded in x since

y ∈ H1. Again, from (4.45b) and Proposition 4.4, we see that y = αy+ for some constant α ∈ C.

Since y+ is bounded, we see that y+ = o(eµ1x) as x→ −∞, equivalently, D(λ, ε) = 0.

17In principle, this statement is not true when Reλ = 0 because of the matrix eigenvalues with Reµi = 0. For

gKdV, gBBM, and some Boussinesq equation, this proposition can be extended to Reλ ≥ 0 using the symmetry

that if y(x) is a solution, then y(−x) is also a solution, which is valid for Reλ = 0. (See [26].) EP also has this

property.
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Proposition 4.10. For 0 < c0 <

√
2V

3
and ε > 0, let η = c0ε

1/2. Then there exists ε0 > 0

such that for all 0 < ε < ε0, the following holds: for λ ∈ Ωε, the system (4.32) associated with

the eigenvalue problem (4.15) has a nontrivial solution in L2
η if and only if D(λ, ε) = 0.

Proof. Since eηxy+ = O(e(η+µ1)x) as x→ +∞, eηxy+ exponentially decays to zero as x→ +∞
by (4.51). Suppose that D(λ, ε) = 0. By Proposition 4.4, eηxy+ = O(eηxe(µ∗−θ)x) as x→ −∞.

By (4.51), we see that eηxy+ exponentially decays to zero as x→ −∞. Hence, y+ is a solution

to (4.32) in L2
η.

Suppose that y is a nontrivial solution to (4.32) such that eηxy ∈ L2. Since A(x, λ, ε) is

uniformly bounded in x, eηx∂xy is also a L2 function. Hence, eηxy is uniformly bounded in x

since eηxy ∈ H1, and there holds that

y = O(e−ηx) as |x| → ∞. (4.52)

Multiplying (4.52) by e(−µ∗x+θ|x|), we have

e(−µ∗x+θ|x|)y = O(e(−ηx−µ∗x+θ|x|)) as x→ +∞.

By (4.51), −η − µ∗ + θ < 0 for sufficiently small θ > 0, hence we have y = o(eµ∗x−θ|x|) as

x → +∞. By Proposition 4.4, this implies that y is a constant multiple of y+, and thus from

(4.52) we have

y+ = O(e−ηx) as x→ −∞.

Together with (4.51), this yields that y+ = o(eµ1x) as x→ −∞, which is equivalent to D(λ, ε) =

0 by Proposition 4.4 (or (4.36)).

4.4.2 The Evans Function for the KdV Equation

In the KdV scaing, we formally obtained (by letting ε→ 0 in (4.25) and n = p2)

Λp2 − ∂ξp2 + V∂ξ(p2ΨK) + (2V)−1∂3
ξp2 = 0. (4.53)

By introducing the change of variables

Λ = (2V)1/2Λ̃, ξ̃ = (2V)1/2ξ, p̃(ξ̃; Λ̃) = p2(ξ; Λ), (4.54)

and using (4.10), (4.53) becomes

Λ̃p̃− ∂ξ̃p̃+ ∂ξ̃(Ψ̃K p̃) + ∂3
ξ̃
p̃ = 0, where Ψ̃K(ξ̃) = 3 sech2(

1

2
ξ̃). (4.55)

The eigenvalue problem (4.55) is studied in [27]. We briefly summarize some results of [27],

and then apply those directly to the eigenvalue problem (4.53). The characteristic polynomial

associated with (4.55) is

d̃KdV (κ̃) = d̃KdV (κ̃; Λ̃) := Λ̃− κ̃+ κ̃3. (4.56)
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It is shown that for Λ̃ ∈ Ω̃KdV := C \ (−∞,− 2

3
√

3
], the zeros κ̃j of d̃KdV (κ̃) can be labelled so

that

Re κ̃1 < Re κ̃j (j = 2, 3), (4.57)

and in particular, Re κ̃1 < 0. It turns out that the Evans function D̃KdV (Λ̃) for the KdV

equation (4.55) is defined on the domain Ω̃KdV , and D̃KdV (Λ̃) is characterized with the property

that

p̃+(ξ̃; Λ̃) ∼ D̃KdV (Λ̃)eκ̃1ξ̃ as ξ̃ → −∞, (4.58)

where p̃+ is a unique solution to (4.55) satisfying

p̃+(ξ̃; Λ̃) ∼ eκ̃1ξ̃ as ξ̃ → +∞. (4.59)

D̃KdV (Λ̃) can be constructed so that D̃KdV (Λ̃)→ 1 as |Λ̃| → ∞. In [27], the Evans function for

(4.55) is explicitly given by

D̃KdV (Λ̃) =

(
κ̃1 + 1

κ̃1 − 1

)2

. (4.60)

From (4.56), one can check that D̃KdV (Λ̃) vanishes only at Λ̃ = 0 and that the multiplicity of

Λ̃ = 0 is two as a zero of D̃KdV (Λ̃) by taking derivatives in Λ̃.

Now we apply the above results to construct the Evans function for the KdV equation (4.53).

Since ΨK and ∂ξΨK decay to zero exponentially fast, the characteristic polynomial associated

with (4.53) is

dKdV (κ) = dKdV (κ; Λ) := 2V(Λ− κ+ (2V)−1κ3). (4.61)

We note that the zeros κj of dKdV (κ) are related to κ̃j , and we have

κj = (2V)1/2κ̃j . (4.62)

Hence, from the relation (4.54) and (4.62), it follows that for Λ ∈ ΩKdV := C \ (−∞,−2
√

2V

3
√

3
],

we can label κj so that

Reκ1 < Reκj (j = 2, 3), Reκ1 < 0. (4.63)

The Evans function for the equation (4.53) is defined on ΩKdV , the following is a simple

corollary of the result in [27]. (See also [28].)

Corollary 4.11. 1. The Evans function DKdV (Λ) for the KdV equation (4.53) is defined

on the domain ΩKdV := C \ (−∞,−2
√

2V

3
√

3
].

2. DKdV (Λ) satisfies that

p+
2 (ξ; Λ) ∼ DKdV (Λ)eκ1ξ as ξ → −∞, (4.64)

where κ1 is a unique zero of dKdV (κ) satisfying (4.63), and p2 is a unique solution to

(4.53) satisfying

p+
2 (ξ; Λ) ∼ eκ1ξ as ξ → +∞. (4.65)
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3. DKdV (Λ) =

(
κ1 +

√
2V

κ1 −
√

2V

)2

, and Λ = 0 is the only zero of DKdV (Λ) with multiplicity two.

4. DKdV (Λ)→ 1 as |Λ| → ∞ with Λ ∈ ΩKdV .

Proof. The first two statements can be checked following [26]. To prove the last two assertions,

it is enough to check that DKdV (Λ) = D̃KdV (Λ̃). From the relation (4.54) and (4.62), we have

κ̃1ξ̃ = κ1ξ. (4.66)

From the change of variable (4.54), p̃+((2V)1/2ξ; (2V)−1/2Λ) is a solution of (4.53) since p̃+(ξ̃; Λ̃)

is a solution of (4.55). From (4.59), (4.65) and (4.66), we have

p̃+((2V)1/2ξ; (2V)−1/2Λ) ∼ eκ1ξ as ξ → +∞.

Hence, we must have p̃+(ξ̃; Λ̃) = p+
2 (ξ; Λ), and we conclude that DKdV (Λ) = D̃KdV (Λ̃) from

(4.58), (4.64) and (4.66).

4.4.3 The Evans Function for the Euler-Poisson System in the KdV Scaling

Motivated by the formal derivation of the linearized KdV equation, we take the transforma-

tion
ξ = ε1/2 x, λ = ε3/2Λ,
n(x) = p2(ξ), u(x) = εp1(ξ) + Vp2(ξ),

φ(x) = p2(ξ) + εp4(ξ), ψ(x) = ε1/2 p3(ξ).

(4.67a)

(4.67b)

Let p := (p1, p2, p3, p4)T . Then, we have Sp = y, where S given by

S :=


0 1 0 0

ε V 0 0

0 1 0 ε

0 0 ε1/2 0

 , S−1 =


−Vε−1 ε−1 0 0

1 0 0 0

0 0 0 ε−1/2

−ε−1 0 ε−1 0

 , (4.68)

is a matrix for the transformation (4.67b), and (4.32) becomes

dp

dξ
= A∗(ξ,Λ, ε)p, (4.69)

where

A∗(ξ,Λ, ε) :=
1√
ε
S−1A

(
ξ√
ε
, ε3/2Λ, ε

)
S. (4.70)

(See (4.68) and (4.135) for the more specific form of A∗(ξ,Λ, ε).) Expanding A∗(ξ,Λ, ε), we

obtain

A∗(ξ,Λ, ε) = A∗(ξ,Λ, 0) + Ã∗(ξ,Λ, ε), (4.71)
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where

A∗(ξ,Λ, 0) :=


0 −2V∂ξΨK − Λ 1− 2VΨK 0

0 0 1 0

0 ΨK 0 1

0 −(2V2 + 1)∂ξΨK − 2VΛ 2V − (2V2 + 1)ΨK 0

 . (4.72)

Here, there exists ε0 > 0 and a positive function C(Λ) of Λ (independent of ε and bounded

on any compact set of C), such that |Ã∗(ξ,Λ, ε)| ≤ εC(Λ)e−C̃|ξ| for all ε ∈ [0, ε0], ξ ∈ R and

Λ ∈ C. When ε = 0, we see that the last three equation of (4.69) implies the KdV equation

(4.53) (recall that n = p2).

For all ε ≥ 0, the matrix eigenvalues ν of the asymptotic matrix A∞∗ (Λ, ε) of A∗(ξ,Λ, ε) in

ξ is the zeros of the characteristic polynomial

d∗(ν) = d∗(ν; Λ, ε) := det (A∞∗ (Λ, ε)− νI) =
1

ε2
det
(
A∞(ε3/2Λ, ε)−

√
ε νI

)
=
d(
√
ε ν; ε3/2Λ, ε)

ε2

=
ν dKdV(ν)− ε(Λ− ν)2 + εν2

[
εΛ2 − 2cΛν + (2V + ε)ν2

]
c2 −K

,

(4.73)

where dKdV(ν) is defined in (4.61).

Zeros of the characteristic polynomial d∗(ν) To define the Evans function for the Euler-

Poisson system in the KdV scaling, we first verify H4. From the scaling (4.67a) and the second

line of (4.73), we see that for ε > 0, the zeros νj of d∗(ν) are related to the zeros µj of d(µ) by

νj = ε−1/2µj . (4.74)

When ε = 0, the zeros of d∗(ν) are comprised of 0 and the three zeros κj of dKdV (κ). Together

with (4.51) and (4.63), these observations imply the following proposition.

Proposition 4.12. The zeros νj of d∗(ν) can be labelled so that they satisfy

Re ν1 < Re νj (j = 2, 3, 4) (4.75)

for all Λ such that ε3/2Λ = λ ∈ Ωε when ε > 0 and for all Λ ∈ ΩKdV when ε = 0.

For fixed 0 < c0 <

√
2V

3
, we define

Ωε
∗ := {Λ : Re Λ > ε−3/2d−(c0ε

1/2)} = ε−3/2Ωε for ε > 0,

Ω0
∗ := {Λ : Re Λ > −c0

(
1− c2

0

2V

)
} for ε = 0.

(4.76a)

(4.76b)

From (4.50), we see that lim
ε→0

ε−3/2d−(c0ε
1/2) = −c0

(
1− c2

0

2V

)
. Hence, the domain Ωε

∗ ap-

proaches to Ω0
∗ as ε→ 0. On the other hand, for all 0 < c0 <

√
2V

3

−2
√

2V

3
√

3
< −c0

(
1− c2

0

2V

)
< 0
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holds, which implies that {Λ : Re Λ ≥ 0} ⊂ Ω0
∗ ⊂ ΩKdV .

The right eigenvector v∗j of the asymptotic matrix A∞∗ corresponding to a non-zero νj is

given by

v∗j := S−1vj =

(
−V

ε
+
c

ε
− λ

εµj
, 1,

1√
ε

µj
1− µ2

j

,−1

ε
+

1

ε(1− µ2
j )

)T

=

(
1− Λ

νj
, 1,

νj
1− εν2

j

,
ν2
j

1− εν2
j

)
,

(4.77)

where we have used (4.67a), (4.74), and the definition of c.

Proposition 4.13. There exists ε0 > 0 such that for ε ∈ [0, ε0), the Evans function D∗(Λ, ε)

for (4.69)–(4.70) is defined on the domain Ωε
∗ so that

lim
ξ→−∞

e−ν1ξp+(ξ,Λ) = D∗(Λ, ε)v
∗
1, (4.78)

where p+(ξ,Λ) is a unique solution to (4.69) satisfying

lim
ξ→+∞

e−ν1ξp+(ξ,Λ) = v∗1. (4.79)

Moreover, D∗(Λ, ε) is analytic in Λ ∈ Ωε
∗.

Proof. H4 is verified from the above discussion and (4.75). H1–H3 clear from Theorem 4.1

and (4.70).

4.4.4 Relation Among D(λ, ε), D∗(Λ, ε), DKdV (Λ)

Proposition 4.14. There exists ε0 > 0 such that for ε ∈ (0, ε), D∗(Λ, ε) = D(λ, ε) for Λ =

ε−3/2λ ∈ Ωε
∗. When ε = 0, we have D∗(Λ, 0) = DKdV (Λ) for Λ ∈ Ω0

∗.

Proof. Considering the transform (4.67) and the relation (4.74), we observe that

Sp+(
√
εx, ε−3/2λ)

is a solution to (4.32), and moreover Sp+ = O(eµ1x) as x → +∞ from (4.79). Hence, by

the second assertion of Proposition 4.4, Sp+ is a constant multiple of y+. In particular, we

have p+
2 = Cy+

1 for some constant C. On the other hand, we note that the first component

of v1 and the second component of v∗1 are 1. Thus, from (4.33) and (4.79), we conclude that

p+
2 (ξ,Λ) = y+

1 (x, λ). Then, it is clear from (4.36) and (4.78) that D(λ, ε) = D∗(Λ, ε). Similarly,

we obtain D∗(Λ, 0) = DKdV (Λ).

Regarding continuity, the following proposition can be proved by the fixed point argument

following [28], Section 8.

Proposition 4.15. There exists ε0 > 0 such that D(λ, ε) and D∗(Λ, ε) are jointly continuous

on the sets {(λ, ε) : λ ∈ Ωε, ε ∈ [0, ε0]} and {(Λ, ε) : Λ ∈ Ωε
∗ ε ∈ [0, ε0]}, respectively.
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4.4.5 The Order of D(λ, ε)

We show that λ = 0 is a zero of the Evans function D(λ, ε) with the order at least two. Once

we know that D(λ, ε) = 0, the formula for the derivatives of the Evans function (see Theorem

5.45) becomes much simpler. In this case, we have

∂λD(λ, ε) = −
∫ ∞
−∞

z−(x)∂λA(x, λ, ε)y+(x) dx (4.80)

in the sense of an improper integral, where z− is the solution to the transposed ODE system of

(4.29) satisfying (4.34) and (4.35).

We will use the following identities for solitary waves solutions:

(1 + nc)(c− uc) = c,

(c− uc)(nc)x = (uc)x(1 + nc),

c(uc)x −K(nc)x
1 + nc

= (φc)x,

(φc)x =
J

1 + nc
(nc)x,

(nc)xJ = c(uc)x −K(nc)x.

(4.81a)

(4.81b)

(4.81c)

(4.81d)

(4.81e)

The identity (4.81a) is obtained by integrating the first equation of (4.12) in x. Differentiating

(4.81a) in x, we have (4.81b). (4.81c) follows from the second equation of (4.12) and (4.81a).

(4.81d) follows from (4.81a)–(4.81c). (4.81e) follows from (4.81c)–(4.81d).

Lemma 4.16. When λ = 0, for each ε ∈ (0, ε0] there exists a constant α1 6= 0 such that

y+(x, 0, ε) = α1y1(x), where

y1(x) := (∂xnc, ∂xuc, ∂xφc, ∂
2
xφc)

T .

Proof. By differentiating (4.12) in x, we see that y1 satisfies the ODE system (4.29) associated

with the eigenvalue problem (4.15) with λ = 0. From Proposition 4.5, we have Reµ1 < 0 = µ∗

when λ = 0. Since y1 exponentially decays to zero as |x| → ∞, we have that for sufficiently

small θ > 0,

lim
x→+∞

eθxy1(x) = 0.

By Proposition 4.4, this implies that y+ = α1y1 for some constant α1 6= 0.

The following lemma is obtained by using the solitary wave identities (4.81).

Lemma 4.17. When λ = 0, for each ε ∈ (0, ε0] there exists a constant α2 6= 0 such that

z−(x, 0, ε) = α2z1(x), where18

z1(x) := (−cuc −Knc
1 + nc

,
(1 + nc)

c
(cuc −Knc − ncJ) , eφc − 1,−∂xφc).

18ncuc =
1 + nc
c

(cuc −Knc − ncJ) using (4.81a).
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We first show that the above two lemmas, together with the derivative formula (4.80), imply

the following proposition.

Proposition 4.18. There exists ε0 > 0 such that for all ε ∈ (0, ε0],

D(0, ε) = ∂λD(0, ε) = 0.

Proof. We denote ∂x by ′ for simplicity. From Lemma 4.16, we deduce that y+(x) → 0 as

x → −∞. Since Reµ1 < 0 when λ = 0, we have D(0, ε) = 0 by Proposition 4.4. From the

formula (4.80), Lemma 4.16 and Lemma 4.17, we obtain

∂λD(0, ε) = −α1α2

∫ ∞
−∞

z1A2y1 dx

since ∂λA(x, λ, ε) = A2(x, ε). Using the solitary wave identities (4.81), we have

z1A2y1 =
1

J

[
z1

(
(c− uc)n′c + u′c(1 + nc)

)
+ z2

(
Kn′c

1 + nc
+ (c− uc)u′c

)]
=

1

J

[
2z1u

′
c(1 + nc) + z2

(
Kn′c

1 + nc
+ (c− uc)u′c

)]
=

1

J

[
−2(cuc −Knc)u′c +

1

c
(cuc −Knc − ncJ)

(
Kn′c + cu′c

)]
=

(cuc −Knc)
J

(
−2u′c +

Kn′c + cu′c
c

)
− nc

c
(Kn′c + cu′c)

=
(cuc −Knc)

cJ

(
−cu′c +Kn′c

)
− nc

c
(Kn′c + cu′c)

= −(cuc −Knc)
c

n′c −
nc
c

(Kn′c + cu′c)

= −(ncuc)
′,

where we used (4.81b) in the second line, (4.81a) in the third line and (4.81e) in the sixth line.

Since ncuc tends to 0 as |x| → ∞, we obtain ∂λD(0, ε) = 0.

Proof of Lemma 4.17. We denote ∂x by ′ for simplicity. Using the identities (4.81a), (4.81b)

and (4.81e), A(x, 0, ε) = A1(x, ε) is simplified as follows:

A1(x, ε) =



n′c
1 + nc

2u′c(1 + nc)

J
0

1 + nc
J

0
Kn′c + cu′c
J(1 + nc)

0
c− uc
J

0 0 0 1

−1 0 eφc 0


. (4.82)
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We show that z1 := (z1, z2, z3, z4) satisfies z′1 = −z1A1(x, ε),

z′1 =
−n′c

1 + nc
z1 + z4,

z′2 = −2u′c(1 + nc)

J
z1 −

Kn′c + cu′c
J(1 + nc)

z2,

z′3 = −z4e
φc ,

z′4 = −z1

(
1 + nc
J

)
− z2

(
c− uc
J

)
− z3.

(4.83a)

(4.83b)

(4.83c)

(4.83d)

It is trivial that (z3, z4) = (eφc − 1,−φ′c) satisfies (4.83c). Using (4.81c), we see that (z1, z4)

satisfies (4.83a) since

−n′c
1 + nc

z1 + z4 =
n′c(cuc −Knc)

(1 + nc)2
− φ′c

=
n′c(cuc −Knc)

(1 + nc)2
− (1 + nc)(cu

′
c −Kn′c)

(1 + nc)2

= −
(
cuc −Knc

1 + nc

)′
= z′1.

Using (4.81a) and the Poisson equation of (4.12), we obtain that

−z1

(
1 + nc
J

)
− z2

(
c− uc
J

)
=

(cuc −Knc)
J

− (1 + nc)

c
(cuc −Knc − ncJ)

(
c− uc
J

)
=

(cuc −Knc)
J

− cuc −Knc − ncJ
J

= nc

= −φ′′c + eφc − 1

= z′4 + z3.

Thus z1 satisfies (4.83d). Lastly, we show that (z1, z2) satisfies (4.83b). We have

− 2u′c(1 + nc)

J
z1 −

(Knc + cuc)
′

J(1 + nc)
z2

=
1

cJ

[
2cu′c(cuc −Knc)− (Knc + cuc)

′(cuc −Knc − ncJ)
]

=
1

cJ

[
(cuc −Knc)′(cuc −Knc) + (Knc + cuc)

′ncJ
]
.

On the other hand,

z′2 =
n′c
c

(cuc −Knc − ncJ) +
(1 + nc)

c

(
cu′c −Kn′c − n′cJ − ncJ ′

)
=

1

cJ

[
Jn′c (cuc −Knc − ncJ) + (1 + nc)J

(
cu′c −Kn′c − n′cJ − ncJ ′

)]
=

1

cJ

[
(cuc −Knc)′ (cuc −Knc − ncJ) + J(1 + nc)

(
−ncJ ′)

)]
=

1

cJ

[
(cuc −Knc)′ (cuc −Knc − ncJ) + J(1 + nc)2nc(c− uc)u′c

]
=

1

cJ

[
(cuc −Knc)′ (cuc −Knc − ncJ) + 2cu′cncJ

]
=

1

cJ

[
(cuc −Knc)′ (cuc −Knc) + (Knc + cuc)

′ncJ
]
,
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where we used (4.81e) in the third line, (4.81a) in the fifth line.

Since z1 exponentially decays to zero as x→ −∞ and −Reµ1 > 0 = −µ∗, we see that there

is a constant α2 6= 0 such that z−(x, 0, ε) = α2z1.

4.4.6 Absence of Nonzero Eigenvalues

For a fixed a > 0 sufficiently small so that −c0

(
1− c2

0

2V

)
+ a < 0, we define the region

D := {Λ : Re Λ ≥ −c0

(
1− c2

0

2V

)
+ a}. (4.84)

Since Ωε
∗ approaches to Ω0

∗ as ε → 0, there exists ε0 > 0 such that D ⊂ Ωε
∗ for all ε ∈ [0, ε0].

(See (4.76) and the observation below it.)

Theorem 4.19. On the region D defined in (4.84), we have

sup
Λ∈D
|D∗(Λ, ε)−DKdV (Λ)| → 0 as ε→ 0.

Corollary 4.20. There exists ε0 > 0 such that for ε ∈ (0, ε0], Λ = 0 is the only zero of D∗(Λ, ε)

on the region D. Moreover, the multiplicity of Λ = 0 is exactly two.

Proof of Corollary 4.20. For δ > 0, let Γδ be the boundary of the region D ∩ {Λ : |Λ| ≤ δ−1}.
Since DKdV → 1 as |Λ| → ∞ and Λ = 0 is the only zero of DKdV on ΩKdV ⊃ D (see Proposition

4.11), we may choose small γ > 0 such that

inf
Λ∈Γδ

|DKdV (Λ)| > γ.

From Theorem 4.19, there is ε0 > 0 such that for all ε ∈ (0, ε0],

|DKdV (Λ)| > γ > |D∗(Λ, ε)−DKdV (Λ)| on Γδ. (4.85)

Now the proof is finished by applying Rouché’s theorem together with the facts that the mul-

tiplicity of the only zero Λ = 0 of DKdV (Λ) is exactly two and that Λ = 0 is a zero of D∗(Λ, ε)

of the multiplicity at least two.

From Proposition 4.8, Proposition 4.9, Proposition 4.10, the result that Λ = λ = 0 is the

only zero of the Evans function D∗(Λ, ε) (and hence D(λ, ε)) yields the following results.

Theorem 4.21 (Spectrum of L in L2). Consider the operator L : (L2)2 → (L2)2 with dense

domain (H1)2. Then, for all sufficiently small ε > 0, we have

σess(L) = {λ ∈ C : Reλ = 0}, σpt(L) ∩ {λ ∈ C : Reλ 6= 0} = ∅.

Theorem 4.22 (Spectrum of L in L2
η). Consider the operator L : (L2

η)
2 → (L2

η)
2 with dense

domain (H1
η )2. For 0 < c0 <

√
2V

3
and ε > 0, let η = c0ε

1/2. There exist a constant ε0 > 0

and a real-valued function κ(ε) such that for all ε ∈ (0, ε0),

σess(L) ⊂ {λ : Reλ ≤ −κ(ε) < 0}, σpt(L) ∩ {λ : Reλ > −κ(ε)} = {0}.

In particular, σess(L) is parametrized by two disjoint curves {d±(µ) : µ = ik − η, k ∈ R}.
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To prove Theorem 4.19, we divide D into four regions as follows: for δ > 0 will be chosen

later, we set

D1 := D ∩ {Λ : |Λ| ≤ δ−1},

D2 := D ∩ {λ : ε3/2δ−1 ≤ |λ| ≤ δ} = D ∩ {Λ : δ−1 ≤ |Λ| ≤ ε−3/2δ}

D3 := D ∩ {λ : δ ≤ |λ| ≤ δ−1},

D4 := D ∩ {λ : δ−1 ≤ |λ|}.

Lemma 4.23. For any fixed constant δ > 0,

sup
Λ∈D1

|D∗(Λ, ε)−DKdV (Λ)| → 0, as ε→ 0. (4.87)

Proof. D∗(Λ, ε) is uniformly continuous on a fixed compact set {(Λ, ε) : ε ∈ [0, ε0],Λ ∈ D1}
since it is jointly continuous on the set. Hence, sup

Λ∈D1

|D∗(Λ, ε) − DKdV (Λ)| is continuous on

[0, ε0]. Now (4.87) follows from that D∗(Λ, 0) = DKdV (Λ). See Prop 4.15 and Prop 4.14.

Lemma 4.24. There exist constants C2, δ2, ε2 > 0 such that for all ε ∈ [0, ε2] and δ ∈ (0, δ2],

sup
λ∈D2

|D(λ, ε)− 1| < C2δ
1/3. (4.88)

Here C2 is independent of ε and δ.

Lemma 4.25. For any fixed constant δ > 0,

sup
λ∈D3

|D(λ, ε)− 1| → 0, as ε→ 0. (4.89)

Proof. This is true since D(λ, ε) is jointly continuous and D(λ, 0) = 1.

Lemma 4.26. There exist constants C4, δ4, ε4 > 0 such that for all ε ∈ [0, ε4] and δ ∈ (0, δ4],

sup
λ∈D4

|D(λ, ε)− 1| < C4ε
1/2. (4.90)

Here C4 is independent of ε and δ.

Proof of Theorem 4.19. Let γ > 0 is given. From the property of DKdV , (4.88), and (4.90),

there exist constants δγ , εγ > 0 such that for all ε ∈ (0, εγ) and δ ∈ (0, δγ ], there hold that

sup
|Λ|≥δ−1

γ

|DKdV (Λ)− 1| < γ

2
, (4.91)

sup
λ∈D2

|D(λ, ε)− 1| < γ

2
, sup

λ∈D4

|D(λ, ε)− 1| < γ

2
. (4.92)

We fix δ = δγ > 0. Then, from (4.89), there is ε3 > 0 such that for all ε ∈ (0, ε3],

sup
λ∈D3

|D(λ, ε)− 1| < γ

2
. (4.93)
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Since D(λ, ε) = D∗(Λ, ε), it follows from (4.91),(4.92),(4.93) that for j = 2, 3, 4,

sup
λ∈Dj

|D∗(Λ, ε)−DKdV (Λ)| < γ. (4.94)

From (4.87), there exists ε1 > 0 such that for all ε ∈ (0, ε1],

sup
Λ∈D1

|D∗(Λ, ε)−DKdV (Λ)| < γ. (4.95)

From (4.94) and (4.95), we conclude that there is ε0 := min{εγ , ε1, ε3} such that for all ε ∈
(0, ε0],

sup
λ∈D
|D∗(Λ, ε)−DKdV (Λ)| < γ.

This finishes the proof.

Remark 6 (The reason for dividing into D2 and D3). There is no way to extend D(λ, ε) to a

(uniformly or jointly) continuous function defined on a compact set including (λ, ε) = (0, 0).

If there were such an extension, its value at (0, 0) must be 1 since D(λ, 0) = 1 for all λ ∈ Ω0.

However, we will see that D(0, ε) = 0 for ε ∈ (0, ε0].

4.5 Asymptotic Behavior of D(λ, ε)

4.5.1 Proof of Lemma 4.24

We first observe the behavior of the roots of the characteristic polynomial d(µ) on D2, which

can be obtained by a perturbation argument. The proof is given in Appendix.

Proposition 4.27. 1. There exists a constant ε0 > 0 such that as long as λ and ε satisfy

ε3/2δ−1 < |λ| < δ and 0 ≤ ε ≤ ε0, where δ > 0 is small, there holds that

µj = (−2
√

1 +K λ)1/3e2πij/3(1 + β̃j) (j = 1, 2, 3),

where β̃j are functions of λ and ε, and β̃j → 0 uniformly in ε as δ → 0.

2. For |λ| < δ sufficiently small,

µ4 =
λ

c+
√

1 +K
+ β̃4,

where β̃4 is a function of µ4 and ε such that β̃4 = O(λ3) uniformly in 0 ≤ ε < 1.

To prove Lemma 4.24, we also apply the following proposition ([26],[28], see Proposition 5.48

for the proof). We note that Proposition 4.27 implies in particular that µj(λ) are all distinct

for λ 6= 0 with ε−3/2λ = Λ ∈ D2.
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Proposition 4.28. We assume that for a matrix A(x, λ) with lim
x→±∞

A(x, λ) = A∞(λ), the

system (5.39) satisfies the hypotheses H1–H4. We further assume that A∞(λ) is diagonalizable

such that for the matrices W and V defined by

W :=


w1

...

wn

 , V :=
[
v1, · · · ,vn

]
,

where wi and vi are the left and right eigenvectors of A∞(λ) associated with µi, we have

WA∞(λ)V = diag{µj}, WV = I.

Let R(x, λ) := A(x, λ)−A∞(λ). Then, there exists 0 < δ0 < 1 such that if

∫ ∞
−∞
|WR(x, λ)V | dx ≤

δ0, then

|D(λ)− 1| ≤ C
∫ ∞
−∞
|WR(x, λ)V | dx. (4.96)

Proof of Lemma 4.24. Let R(x, λ, ε) = A(x, λ, ε)−A∞(λ, ε). It is straightforward to check that

|Rjk(x, λ, ε)| ≤ Cεe−Cε
1/2|x|Ejk, (4.97)

where

E =


ε1/2 + |λ| ε1/2 + |λ| 0 1

ε1/2 + |λ| ε1/2 + |λ| 0 1

0 0 0 0

0 0 1 0

 . (4.98)

Let

V =
[
v1,v2,v3,v4

]
, W =


w1

...

w4

 .
Let vjl and wjl be the l-th component of vj and wj , respectively. Then,

(WRV )jk =
∑
l=1,2

wjl(Rl1vk1 +Rl2vk2 +Rl4vk4) + wj4R43vk3. (4.99)

Applying (4.41), (4.42), (4.97) and (4.98), one can obtain from (4.99) that

|(WRV )jk| ≤ Cεe−Cε
1/2|x|Gjk (4.100)

where

Gjk :=
|1− µ2

j |
|µj |2|G̃j |

{
|µj |
|1− µ2

k|
+
|1− µ2

j |
|µj |

(
|cλ− µj(c2 −K)|+ |λ|

)
×
[
(ε1/2 + |λ|)

(
1 +
|cµk − λ|
|µk|

)
+
|µk|
|1− µ2

k|

]} (4.101)
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and

G̃j = (1− µ2
j )

2λ
2

µ4
j

− 2ε
√

1 +K

µ2
j

− ε2

µ2
j

+ 1 + (2− µ2
j )(c

2 −K).

Using Proposition 4.27, it is strightforward to see that as long as ε3/2δ−1 < |λ| < δ,

|G̃j | = 1 + o(1) uniformly in ε as δ → 0,

for j = 1, 2, 3, and |µ4|2|G̃4| is bounded from above and below by some positive constant C

uniformly in δ and ε. From this, we obtain that ε1/2|Gjk| ≤ Cδ1/3, (j, k = 1, 2, 3, 4), for some

positive constant C independent of δ and ε. On the other hand, we have

ε1/2

∫ ∞
−∞

e−Cε
1/2|x| dx < C ′.

This finishes the proof.

4.5.2 Proof of Lemma 4.26

To prove Lemma 4.26, we need the asymptotic behavior of the roots of characteristic poly-

nomial d(µ) for large |λ|.

Proposition 4.29. The roots of d(µ) can be labelled so that they satisfy19

µ1 = −1 +O(|λ|−2), µ4 = 1 +O(|λ|−2),

µ2 =
cλ−

√
−c2 +K +Kλ2

c2 −K
+O(|λ|−3), µ3 =

cλ+
√
−c2 +K +Kλ2

c2 −K
+O(|λ|−3)

as |λ| → ∞. Here, the big-O terms are uniform in ε ∈ [0, ε0].

The proof of Proposition 4.29 is given in Appendix, and it is based on a perturbation argu-

ment using Rouché’s theorem in a similar fashion to Lemma 1.20 of [26].

From Proposition 4.29, on D4, we have20 for j = 1, 4,

µj = (−1)j +O(|λ|−2), 1− µ2
j = λ−2

(
1 +O(|λ|−1)

)
,

cµj − λ = −λ
(
1 +O(|λ|−1)

)
, cλ− µj(c2 −K) = cλ

(
1 +O(|λ|−1)

)
),

(4.102a)

(4.102b)

19In the case K > 0, the order of the error terms for µ2 and µ3 are different from the case K = 0. See the

proof.
20(4.102b) directly follows using the first equation of (4.102a). To show that 1 − µ2

j = λ−2 (1 +O(|λ|−1)
)
,

we use d(µj) = 0, that is,
1

1− µ2
j

=
(λ− cµj)2 −Kµ2

j

µ2
j

rather than use µj = ±1 + O(|λ|−2) directly. Direct

calculation using (4.103a) leads (4.103b)–(4.103d).
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and for j = 2, 3,

µj =
λ

c+ (−1)j
√
K

(
1 +O(|λ|−2)

)
,

1− µ2
j =

−λ2

(c+ (−1)j
√
K)2

(
1 +O(|λ|−2)

)
,

cµj − λ =
(−1)1+j

√
K

c+ (−1)j
√
K
λ
(
1 +O(|λ|−2)

)
,

cλ− µj(c2 −K) = (−1)j
√
Kλ

(
1 +O(|λ|−2)

)
.

(4.103a)

(4.103b)

(4.103c)

(4.103d)

Additionally, we have

λ±
√
c2 −K µj = λ

(
1 +O(|λ|−1)

)
for j = 1, 4,

λ±
√
c2 −K µj = λ

(
1 +

±
√
c2 −K

c+ (−1)j
√
K

+O(|λ|−2)

)
for j = 2, 3.

(4.104a)

(4.104b)

Using the estimates (4.102), (4.103) and (4.104), we have from (4.42b) that

for j = 1, 4, πjvj =
(1− µ2

j )(λ
2 − µ2

j (c
2 −K))

µ2
j

+
1 + µ2

j

1− µ2
j

= 2λ2
(
1 +O(|λ|−1)

)
,

for j = 2, 3, πjvj = λ2

(
(1− µ2

j )(λ
2 − µ2

j (c
2 −K))

µ2
jλ

2
+

1

λ2

1 + µ2
j

1− µ2
j

)

= −λ2

(
2(−1)j

√
K

(c+ (−1)j
√
K)

+O(|λ|−1)

)
.

(4.105a)

(4.105b)

We first observe that on the domain D4, Proposition 4.28 is not directly applied as the

analysis on the domain D2. Applying (4.102),(4.103),(4.104) and (4.105) to (4.101), we have

for large |λ|,

|Gjk| ≤ C, (j, k = 1, 4), |Gjk| ≤ C|λ|−2, (j = 1, 4, k = 2, 3),

|Gjk| ≤ C|λ|, (j, k = 2, 3), |Gjk| ≤ C|λ|2, (j = 2, 3, k = 1, 4).

The bound |Gjk| ≤ C|λ|, (j, k = 2, 3) is due to |λ| term in (ε1/2 + |λ|). The bound |Gjk| ≤
C|λ|2, (j = 2, 3, k = 1, 4) results from the growth rate of |1 − µ2

k|−1 and the boundedness

of |µk|−1 for k = 1, 4 as |λ| → +∞. Hence, we need a more delicate approach to obtain the

uniform bounds for |Gjk| on the domain D4.

To accomplish this, we write

A(x, λ, ε)−A∞(λ, ε) = λR(1)(x, ε) +R(2)(x, ε),

67



where (see (4.31))

R(1) = R(1)(x, ε) := A2(x, ε)− lim
|x|→∞

A2(x, ε)

=
1

J


c− uc 1 + nc
K

1 + nc
c− uc

02

02 02

− 1

c2 −K


c 1

K c
02

02 02

 .
Then using (4.8), a direct computation yields that

|R(2)
jk (x)| ≤ Cεe−Cε1/2|x|E(2)

jk , (4.107)

where (compare (4.108) with (4.98))

E(2) :=


ε1/2 ε1/2 0 1

ε1/2 ε1/2 0 1

0 0 0 0

0 0 1 0

 . (4.108)

We let V0 be the matrix whose j-th column is (c + (−1)j
√
K)|1 − µ2

j |
1
2 vj and W0 be the

matrix whose j-th row is (c+ (−1)j
√
K)−1|1− µ2

j |−
1
2 wj , that is

W0 :=


(c+ (−1)1

√
K)−1|1− µ2

1|−
1
2 w1

...

(c+ (−1)4
√
K)−1|1− µ2

1|−
1
2 w4

 ,
V0 :=

[
(c+ (−1)1

√
K)|1− µ2

1|
1
2 v1, · · · , (c+ (−1)4

√
K)|1− µ2

4|
1
2 v4

]
.

(4.109)

We note that µj are all distinct on D4 by Proposition 4.29, and it is clear that

W0V0 = I, W0A
∞V0 = diag(µ1, µ2, µ3, µ4) (4.110)

and

W0 (A−A∞)V0 = λW0R
(1)V0 +W0R

(2)V0. (4.111)

Estimate of W0R
(2)V0 From the definitions of V0 and W0, (4.109), we have

(W0R
(2)V0)jk =

c+ (−1)k
√
K

c+ (−1)j
√
K

√
|1− µ2

k|
|1− µ2

j |

×

∑
l=1,2

wjl

(
R

(2)
l1 vk1 +R

(2)
l2 vk2 +R

(2)
l4 vk4

)
+ wj4R

(2)
43 vk3

 .

From (4.41), (4.42), (4.107) and (4.108), we obtain

|(W0R
(2)V0)jk| ≤ Cεe−Cε

1/2|x|G
(2)
jk , (4.112)

68



where (compare G
(2)
jk with Gjk)

21

G
(2)
jk :=

√
|1− µ2

k|
|1− µ2

j |
1

|πj · vj |

{
|µj |
|1− µ2

k|
+
|1− µ2

j |
|µj |

(
|cλ− µj(c2 −K)|+ |λ|

)
×
[
ε1/2

(
1 +
|cµk − λ|
|µk|

)
+
|µk|
|1− µ2

k|

]}
.

By a direct calculation using (4.102), (4.103), (4.104) and (4.105), we have

|G(2)
jk | ≤ C for j, k = 1, 2, 3, 4, (4.113)

uniformly in ε and |λ| ≥ δ−1 for sufficiently small δ. From (4.112) and (4.113), we obtain the

bound

|W0R
(2)(x)V0| ≤ Cεe−Cε

1/2|x|, (4.114)

where the constant C is uniform in ε and λ with |λ| ≥ δ−1 for sufficiently small δ.

Estimate of λW0R
(1)V0 Now we estimate λW0R

(1)V0 part. We have

(λW0R
(1)V0)jk =

c+ (−1)k
√
K

c+ (−1)j
√
K

√
|1− µ2

k|
|1− µ2

j |

∑
l=1,2

λwjl

[
R

(1)
l1 vk1 +R

(1)
l2 vk2

]
=
c+ (−1)k

√
K

c+ (−1)j
√
K

√
|1− µ2

k|
|1− µ2

j |
λ

πj · vj

(
1− µ2

j

µj

)

×
[
(cλ− µj(c2 −K))

(
R

(1)
11 +

cµk − λ
µk

R
(1)
12

)
− λ

(
R

(1)
21 +

cµk − λ
µk

R
(1)
22

)]
.

Using (4.102),(4.103),(4.104) and (4.105), a direct calculation yields a decomposition

λW0R
(1)V0 =

λ

2
√
K
S1 + R̃(1), (4.115)

where S1 = S1(x; ε) is a symmetric matrix defined by

S1 :=


0 0 0 0

0 2
√
KR

(1)
11 −KR

(1)
12 −R

(1)
21 KR

(1)
12 −R

(1)
21 0

0 KR
(1)
12 −R

(1)
21 2

√
KR

(1)
11 +KR

(1)
12 +R

(1)
21 0

0 0 0 0

 (4.116)

21The order of

√
|1− µ2

k|
|1− µ2

j |
is |λ|2 for j = 1, 4, k = 2, 3 and |λ|−2 for j = 2, 3, k = 1, 4. Moreover, there is no

ε1/2 + |λ| term, which caused a problem for getting a uniform bound of Gjk for j, k = 2, 3. Multiplying vj by

1− µ2
j does not work since in that case, the factor

√
1− µ2

k

1− µ2
j

is of the order λ4 for j = 1, 4, k = 2, 3. One might

think that choosing vj by
√

1− µ2
jvj from the beginning of the construction of the Evans function. However,√

1− µ2
j is not analytic on the right half plane for any choice of branch cut. See Ahlfors p.148.
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and R̃(1) is a matrix whose (j, k) entries are functions of (λ, nc, uc, ε) such that

|(R̃(1))jk| ≤ Cεe−Cε
1/2|x| (4.117)

holds for all ε ∈ [0, ε0] and |λ| ≥ δ−1 for sufficiently small δ. (Here, the constant C is uniform

in δ, ε and x.) (Recall that o(1) is indeed O(|λ|−1)). The matrix S1 is positive semi-definite (or

non-negative).22

Lemma 4.30. There exists ε0 > 0 and C > 0, independent of ε and x, such that for all

ε ∈ [0, ε0], the symmetric matrix S1(x; ε) defined in (4.116) is positive semi-definite(or non-

negative) and there holds that |S1(x; ε)| ≤ Cε.

The proof of Lemma 4.30 is straightforward using the solitary wave identities. Since it is

not short, we verify it in Appendix. Now we are ready to prove Lemma 4.26.

Proof of Lemma 4.26. From (4.114), (4.115), (4.116), (4.117), (4.111), (4.110), we have

W0(A− µ1I)V0 = W0(A∞ − µ1I)V0 +W0(A−A∞)V0

= B̃ + F̃ ,

where

B̃(x, λ, ε) := diag(0, µ2 − µ1, µ3 − µ1, µ4 − µ1) +
λ

2
√
K
S1 (4.118)

and

|F̃ (x, λ, ε)| ≤ Cεe−Cε1/2|x|.

We note that for all ε ∈ (0, ε0], ∫ ∞
−∞
|F̃ (x, λ, ε)| dx ≤ Cε1/2, (4.119)

where the constant C is uniform in ε and |λ| ≥ δ−1.

We let

ẽ1 :=
(

(c−
√
K)−1|1− µ2

1|−
1
2 , 0, 0, 0

)T
, ẽ∗1 :=

(
(c−

√
K)|1− µ2

1|
1
2 , 0, 0, 0

)
.

Changing variables ỹ(x) = e−µ1xW0y(x)− ẽ1, we have

dỹ

dx
= B̃(x; )ỹ + F̃ (x; )(ẽ1 + ỹ). (4.120)

With a particular choice of y+, we know that ỹ+(x) := e−µ1xW0y
+(x) − ẽ1 is a solution of

(4.120) satisfying lim
x→+∞

ỹ+(x) = 0 from the definition of W0 and (4.33).

Let Φ(x; s) be the fundamental matrix of the simpler system

da

dx
= B̃(x; )a (4.121)

22This is why we multiplied the eigenvector vj by c + (−1)j
√
K. Indeed, symmetricity is not necessary, but

it gives an easy way to verify that the matrix is non-negative.
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satisfying Φ(s; s) = I. In Lemma 4.31, we will show that |Φ(x; s)| ≤ 1 for x ≤ s. Using this fact

and (4.119), one may apply an iteration argument to show that there is a solution ỹ+
] of (4.120)

satisfying lim
x→+∞

ỹ+
] (x) = 0 as a fixed point of the bounded linear operator T̃ on Cb([0,∞))

defined by (
T̃ ỹ

)
(x) := −

∫ ∞
x

Φ(x; s)
[
F̃ (s)(ẽ1 + ỹ(s))

]
ds.

Since ỹ+
] and ỹ+ tends to 0 as x → +∞, we have ỹ+

] = ỹ+ by the one-to-one correspondence

between bounded solutions of (4.121) and (4.120).23 Hence, from the definition of T̃ , we obtain

sup
x∈[0,∞)

|ỹ+(x)| ≤ Cε1/2.

In a similar fashion, one can obtain that

sup
x∈(−∞,0]

|z̃−(x)| ≤ Cε1/2,

where z̃−(x) := z−(x)eµ1xV0 − ẽ∗1. Since D(λ, ε) = z−y+ = (z̃− + ẽ∗1)(ỹ+ + ẽ1), we arrive at

|D(λ, ε)− 1| ≤ Cε1/2.

Lemma 4.31. For B̃(x; ) given by (4.118) with S1 is defined in (4.116), let Φ(x;x0) ∈ C4×4 be

the fundamental matrix of
da

dx
= B̃(x; )a

satisfying Φ(x0;x0) = I. Then, if ε > 0 and δ > 0 are sufficiently small, we have that for all

λ ∈ D4,

|Φ(x;x0)q| ≤ |q| for all x ≤ x0 and q ∈ C4. (4.122)

Proof. Let a := (a1, a2, a3, a4)T (x) and q := (q1, q2, q3, q4)T . From the structure of B̃, we

observe that
da1

dx
= 0 and

da4

dx
= (µ4−µ1)a4(x). Since a1(x) = q1 and a4(x) = e(µ4−µ1)(x−x0)q4,

we have

|a1|(x) ≤ |q1| and |a4|(x) ≤ |q4| for x ≤ x0,

where we have used that µ4 − µ1 = 2 +O(|λ|−2) (see (4.102)).

Let ã := (a2, a3)T (x). Then, ã satisfies

dã

dx
=

(
µ2 − µ1 0

0 µ3 − µ1

)
+

λ

2
√
K
S̃1,

where

S̃1 :=

(
2
√
KR

(1)
11 −KR

(1)
12 −R

(1)
21 KR

(1)
12 −R

(1)
21

KR
(1)
12 −R

(1)
21 2

√
KR

(1)
11 +KR

(1)
12 +R

(1)
21

)
, (4.123)

23See Coppel, [6]. Or, one may directly use Proposition 4.4 by considering the asymptotic behavior of y+
] and

y+ as x→ +∞, where y+
] , defined by ỹ+

] = e−µ1xW0y
+
] − ẽ1, is a solution of the ODE (4.32). Indeed, we have

e−µ1xy+
] (x)→ V0ẽ1 = v1 and e−µ1xy+(x)→ v1 as x→ +∞.
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and we have
1

2

d

dx
〈ã, ã〉 ≥ min

j=2,3
Re(µj − µ1) 〈ã, ã〉+

Reλ

2
√
K

〈
S̃1ã, ã

〉
.

where 〈, 〉 denotes the standard inner product on C2. From (4.102) and (4.103),

min
j=2,3

Re (µj − µ1) =


Reλ

c+
√
K

+ 1 +O(|λ|−1) if Reλ ≥ 0,

Reλ

c−
√
K

+ 1 +O(|λ|−1) if Reλ < 0,

Thus, since S̃1 is non-negative, we have

1

2

d

dx
〈ã, ã〉 >

 0 if Reλ ≥ 0,
1

2
〈ã, ã〉 if ε3/2c∗0 ≤ Reλ < 0

where c∗0 := −c0

(
1− c2

0

2V

)
+ a < 0. Integrating over [x, x0], we obtain

|(a2, a3)|2(x) ≤ |(a2, a3)|2(x0) = |(q2, q3)|2

for x ≤ x0, which finishes the proof.

4.6 Linear Convective Stability

The linearized system (4.13) can be rewritten as

∂tu = Lu (4.124)

where L is the operator defined in (4.16) and u = (n, u)T . We consider the abstract Cauchy

problem (4.124) in (L2
η)

2. We recall that under the change of variable uη := eηxu, studying

the spectrum and resolvent operator of L in L2
η space is equivalent to studying those of Lη :=

eηxLe−ηx in L2 space. Specifically,

Lηuη := −(L1(∂x − η) + L2)uη −

(
0

(∂x − η)(−(∂x − η)2 + eφc)−1(uη1)

)
. (4.125)

L generates C0-semigroup in (L2
η). It is enough to check that−L1∂x generates C0-semigroup

in (L2)2 space since the remaining terms are bounded operators (see Proposition 5.27). If we

denote the C0-semigroup with generator Lη by eL
ηt, then eLt := e−ηxeL

ηteηx is a C0-semigroup

generated by L in (L2
η)

2 spaces.

We note that L1 is symmetrizable. We let

L
1/2
0 :=


√
K√

1 + nc
0

0
√

1 + nc


and

S0 := L
1/2
0 (−L1)L

−1/2
0 =

(
c+ uc −

√
K

−
√
K c− uc

)
, L̃ := S0∂x − L1/2

0 L1(∂xL
−1/2
0 ).
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If S0∂x generates a C0-semigroup on (L2)2, then L̃ also generates a C0-semigroup, eL̃t, as a

bounded perturbation of S0∂x. Then,

e−L1∂xt := L
−1/2
0 eL̃tL

1/2
0

is a C0-semigroup with generator −L1∂x. Indeed, we have for all uη ∈ (H1)2,

L
−1/2
0 L̃L

1/2
0 uη = L

−1/2
0

(
L

1/2
0 (−L1)L

−1/2
0 ∂x − L1/2

0 L1(∂xL
1/2
0 )

)
L

1/2
0 uη

= −L1L
−1/2
0 ∂x(L

1/2
0 uη)− L1(∂xL

−1/2
0 )L

1/2
0 uη

= −L1∂x

(
L
−1/2
0 L

1/2
0 uη

)
= −L1∂xu

η.

To show that S0∂x generates a C0-semigroup, we first consider the shifted operator S0∂x−I.

Since S0 is a real-valued symmetric matrix, and the derivative of uc is small, integration by parts

yields that

Re〈(S0∂x − I)ũη, ũη〉 = −1

2
Re〈(∂xS0)ũη, ũη〉 − ‖ũη‖2L2 < 0,

that is, S0∂x− I is dissipative by (5.16). By the Lumer-Phillips Generation Theorem (Theorem

5.25), S0∂x − I generates a C0-contraction semigroup, and hence S0∂x also generates a C0-

semigroup as a bounded perturbation of S0∂x − I.

The algebraic multiplicity of λ = 0 as an eigenvalue of L in (L2
η) is two. Since

0 = D(0, ε) = ∂λD(0, ε) 6= ∂2
λD(0, ε), we have from (5.46) and Proposition 5.46 that

∂jλy
+(x, 0, ε) =

{
O(eµ1x+θx) as x→ +∞, for j = 0, 1, 2, · · · ,
O(eµ∗x−θx) as x→ −∞, for j = 0, 1.

(4.126)

Let us omit the ε-dependence. Differentiating (4.32) in λ, we see that y+(x, λ) satisfies (recall

the form of A(x, λ))(
d

dx
−A1(x)

)
(∂j+1
λ y+)|λ=0 = (j + 1)A2(x)(∂jλy

+)|λ=0 (4.127)

for j = 0, 1, · · · . From (4.51) and (4.126), eηx∂jλy
+|λ=0 exponentially decay as |x| → ∞ for

j = 0, 1. We show the following two statements:

1. every non-trivial L2
η solution of (4.32) with λ = 0 is a constant multiple of y+(x, 0);

2. there is no L2
η function ỹ satisfying(

d

dx
−A1(x)

)
ỹ = 2A2(x)(∂λy

+)|λ=0. (4.128)

Recalling the reduction of the eigenvalue problem (4.15), it is straightforward to see that these

statements imply that the algebraic multiplicity of the zero eigenvalue of L in L2
η is two. The

first statement has been already proved in Proposition 4.10.
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To show the second statement, we suppose that there is a function ỹ ∈ L2
η satisfying (4.128).

Since ∂λy
+|λ=0 ∈ L2

η, we then have that ∂xỹ ∈ L2
η from (4.128), and thus eηxỹ is bounded.

Let y0 := ỹ − ∂2
λy

+|λ=0. Then, we see from (4.127) and (4.128) that y0 satisfies

dy0

dx
= A1(x)y0. (4.129)

Since eηxỹ is bounded, and eηx∂2
λy

+ decays to 0 as x→ +∞, we have y0 = O(e−ηx) as x→ +∞.

Hence, from (4.51), y0 = o(e(µ∗−θ)x) as x → +∞ for sufficiently small θ > 0, and this implies

that there is some constant α0 6= 0 such that y0 = α0y
+(x, 0) by Proposition 4.4.

Now we obtain that

∂2
λy

+|λ=0 = ỹ − α0y
+(x, 0) = O(e−ηx) as x→ −∞.

This is a contradiction since Reµ1 < −η but the order of ∂2
λy

+ is exactly eµ1x as x → −∞.

(See Proposition 5.46 and Remark 32.)

Remark 7. The similar argument shows that ∂c(nc, uc)
T is the generalized eigenvector of L in

L2
η space. Let y2 := (∂cnc, ∂cuc, ∂cφc, ∂c∂xφ)T and y1 := (∂xnc, ∂xuc, ∂xφc, ∂

2
xφc)

T . From (4.17)

and Lemma 4.16, we have that(
d

dx
−A1

)
y2 = −A2y1 = −α−1

1 A2y
+|λ=0,

equivalently, (
d

dx
− η −A1

)
(eηxy2) = −α−1

1 A2(eηxy+|λ=0).

Since the operator d
dx − η − A1 is Fredholm with index zero, by the result of [24], the ODE

system ( d
dx − η − A1)y = 0 has exponential dichotomies on R+ and R− (but not on R since

D(0) = 0, or equivalently, the kernel of d
dx − η − A1 in L2 is non-trivial). Since eηxy+(x, 0) is

in L2, we have that eηxy2 ∈ H1 by the generalized Young’s inequality. Hence,

y2 = O(e−ηx) as x→ +∞.

Using (4.127), we have

( d
dx −A1)(y2 + α−1

1 ∂λy
+|λ=0) = 0.

We observe that y2 = o(e(µ∗−θ)x) and ∂λy
+|λ=0 = o(e(µ∗−θ)x) as x → +∞ since −µ∗ − η < 0

and µ1 − µ∗ < 0. Therefore, we conclude that y2 + α−1
1 ∂λy

+|λ=0 is a constant multiple of

y+(x, 0) = α1y1.

Uniform Resolvent Estimate We aim to obtain the uniform bound for the resolvent oper-

ator:

sup
λ∈D4,Reλ>0

‖(λ− Lη)−1‖(L2)2 ≤M.
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Then (λ−Lη)−1 is uniformly bounded on Reλ > 0 in L2 norm, outside any small neighbourhood

of the origin since the resolvent is analytic on the resolvent set.

For each λ ∈ D4, the ODE system ( d
dx − η −A(x, λ, ε))y = 0 has an exponential dichotomy

on R. Indeed,

P (λ) :=
1

D(λ)
y+(0, λ)z−(0, λ) and I − P (λ) =

(
y−(z+y−)−1z+

)
(0, λ)

are the projection matrices onto the space of initial conditions at x = 0 of solutions to (4.32)

satisfying

y(x) = O(eµ1x) as x→ +∞ and y(x) = O(e(µ∗−θ)x) as x→ −∞,

respectively for sufficiently small θ > 0. Let Φ(x) = Φ(x;λ, ε) be the fundamental solution of

(4.32) satisfying Φ(0;λ, ε) = I. Then Gη(x, x′) = Gη(x, x′;λ, ε) defined by

Gη(x, x′) =

{
eη(x−x′)Φ(x)PΦ(x′)−1 x > x′,

−eη(x−x′)Φ(x)(I − P )Φ(x′)−1 x′ > x,

satisfies

(∂x − η)Gη = A(x, λ, ε)Gη for x 6= x′, Gη(x′ + 0, x′)−Gη(x′ − 0, x′) = I,

and Gη(x, x′) → 0 exponentially fast as |x| → ∞ since η + Reµ1 < 0 < η + Reµ∗ on D4.

In particular, the projection of an exponential dichotomy on R is unique. By applying the

generalized Young’s inequality, we see that for given eηx(f1, f2) ∈ (L2)2 the L2 solution yη =

eηx(n, u, φ, ψ)T to the inhomogeneous ODE system

(∂x − η)yη = A(x, λ, ε)yη + fη, fη := eηx(f1, f2, 0, 0)T ,

is given by

yη =

∫ ∞
−∞

Gη(x, x′)fη(x′) dx′.

We show that there is a constant C > 0, independent of λ ∈ D4 with Reλ > 0, such that

sup
x∈R

∫ ∞
−∞
|(Gη)jk(x, x′)| dx′ + sup

x′∈R

∫ ∞
−∞
|(Gη)jk(x, x′)| dx < C,

for j, k = 1, 2, then we would obtain the uniform bound

‖(n, u)‖L2
η

= ‖eηx(n, u)‖L2 ≤ C‖eηx(f1, f2)‖L2 = C‖(f1, f2)‖L2
η
.

Step 0: Diagonalization By letting ỹη := V −1
0 eηxy, we obtain from (4.32) that

∂xỹη = ηW0V0ỹη +W0A
∞V0ỹη +W0(A−A∞)V0ỹη

= [diag(η + µi) +W0(A−A∞)V0] ỹη.
(4.130)
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The matrix G̃η(x, x′) = G̃η(x, x′;λ, ε) := W0G
η(x, x′)V0 satisfies{

∂xG̃η = [diag(µi + η) +W0(A−A∞)V0] G̃η for x 6= x′,

G̃η(x′ + 0, x′)− G̃η(x′ − 0, x′) = I.

One may check that by term by term computation using (4.102), (4.103), (4.104), (4.105),

|(V0)jl||(W0)mk| ≤ C for j, k = 1, 2 and l,m = 1, 2, 3, 4

uniformly in λ ∈ D4. Hence, for j, k = 1, 2,

|(Gη)jk| = |(V0G̃ηW0)jk| ≤ 64C
∑

l,m=1,2,3,4

|(G̃η)lm|.

Here we note that

G̃η(x, x′) = W0G
η(x, x′)V0

=

{
Φ̃η(x)P η(Φ̃η)−1(x′) x > x′,

−Φ̃η(x)(I − P η)(Φ̃η)−1(x′) x′ > x,

where Φ̃η(x) := W0e
ηxΦ(x)V0 is the fundamental solution of (4.130) with Φη(0) = I and

P η := W0PV0 = (P η)2 is a projection. In the next step, we show that there exists constants

ε0, C0, α0 > 0, independent of λ, such that for all (ε, λ) ∈ (0, ε0]×D4, there holds that

|Φ̃η(x)P η(Φ̃η)−1(x′)| ≤ C0e
−α0(x−x′), x > x′,

|Φ̃η(x)(I − P η)(Φ̃η)−1(x′)| ≤ C0e
−α0(x′−x), x′ > x.

(4.131a)

(4.131b)

Step 1: Roughness of Exponential Dichotomy of Simpler Equation We recall that

from (4.111) and (4.115),

W0(A−A∞)V0 =
λ

2
√
K
S1 + R̃(1) +W0R

(2)V0,

and from (4.114) and (4.117),

|R̃(1) +W0R
(2)V0| ≤ Cεe−Cε

1/2|x|

uniformly in λ ∈ D4. We consider the simpler equation

∂xỹ = diag{µi + η}ỹ +
λ

2
√
K
S1ỹ, (4.132)

and show that (4.132) has an exponential dichotomy on R with uniform constants. Then, by

the roughness of exponential dichotomies (Theorem 5.32), we conclude that the system (4.130)

has an exponential dichotomy (4.131) on R with uniform constants.

Consider the fundamental solution Ψ̃(x) of (4.132) which satisfies

∂xΨ̃(x) = diag{µi + η}Ψ̃(x) +
λ

2
√
K
S1Ψ̃(x), Ψ̃(0) = I.
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From the form of S1 (see (4.116)), we see that

Ψ̃(x) = diag(e(Reµ1+η)x, Ψ̃c(x), e(Reµ4+η)x),

where

Ψ̃c(x) :=

(
Ψ̃22(x) Ψ̃23(x)

Ψ̃32(x) Ψ̃33(x)

)
.

Let P̃ := e1e
T
1 . Then, the Green function of (4.132) is

G̃(x, x′) =

{
Ψ̃(x)P Ψ̃−1(x′) for x > x′,

−Ψ̃(x)(I − P )Ψ̃−1(x′) for x′ > x,

provided that (4.132) has an exponential dichotomy. It is easy to see that

G̃(x, x′) =

{
diag(e(Reµ1+η)(x−x′), G̃c(x, x

′), 0) for x > x′,

diag(0, G̃c(x, x
′), e(Reµ4+η)(x−x′)) for x′ > x,

where

G̃c(x, x
′) :=

{
0 for x > x′,

Ψ̃c(x)Ψ̃−1
c (x′) for x′ > x.

Here G̃c(x, x
′) satisfies for x < x′,

∂xG̃c(x; ) = diag(µ2 + η, µ3 + η)G̃c(x; ) +
λ

2
√
K
S̃1G̃c(x; ), G̃c(x

′ − 0, x′) = I, (4.133)

where S̃1, defined in (4.123), is the nonzero 2 × 2 submatrix of S1. By taking the Frobenius

inner product24, we have that

1

2
∂x〈G̃c, G̃c〉F ≥ min

j=2,3
{Reµj + η}〈G̃c, G̃c〉F +

Reλ

2
√
K
〈S̃1G̃c, G̃c〉F .

Since Reµj ≥ 0 (j = 2, 3, 4) when Reλ ≥ 0, and S̃1 is nonnegative, we obtain

∂x〈G̃c, G̃c〉F ≥ 2η〈G̃c, G̃c〉F . (4.134)

Multiplying (4.134) by e−2ηx and then integrating the resultant in x argument over [x, x′], the

jump condition in (4.133) yields that for x′ > x,

〈G̃c, G̃c〉F (x, x′) ≤ e2η(x−x′).

Since Reµ4 > 0 on Reλ ≥ 0 and Reµ1 + η < −1/2 for all sufficiently large |λ| and small ε, the

system (4.132) possesses an exponential dichotomy on R with constants uniform in λ.

24〈A,B〉F := tr(BTA) =
∑

1≤i,j≤nBijAij for A,B ∈ Cn×n. It is easy to check that 2 Re 〈∂xA,A〉F =

∂x 〈A,A〉F since 〈A,B〉F = 〈B,A〉F .
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4.7 Appendix

4.7.1 Specific form of A∗(ξ,Λ, ε)

Using the simplified form of A1(x, ε) (see (4.82)),

A

(
ξ√
ε
, ε3/2Λ, ε

)
=



ε1/2n′∗
1 + n∗

2ε1/2u′∗(1 + n∗)

J
0

1 + n∗
J

0
ε1/2(Kn′∗ + cu′∗)

J(1 + n∗)
0

c− u∗
J

0 0 0 1

−1 0 eφ∗ 0



+
ε3/2Λ

J


c− u∗ 1 + n∗ 0 0
K

1 + n∗
c− u∗ 0 0

0 0 0 0

0 0 0 0

 .

Let aij be the entry of A

(
ξ√
ε
, ε3/2Λ, ε

)
. Then,

A∗(ξ,Λ, ε) =



a22 − Va12√
ε

a21 + Va22 − Va11 − V2a12

ε3/2

a24 − Va14

ε
0

√
ε a12

a11 + Va12√
ε

a14 0

0
eφ∗ − 1

ε
0 eφ∗

−a12√
ε

−a11 + Va12

ε3/2

1− a14

ε
0


. (4.135)

4.7.2 Proof of Proposition 4.3

Proof of Proposition 4.3. It is enough to prove that for k ∈ Z, λI − L is Fredholm with index

k if and only if A(λ) is Fredholm with index k. For a closed subspace R(λ − L) of a Hilbert

space H, we have

H = R(λ− L)⊕R(λ− L)⊥ = R(λ− L)⊕N
(
λ− L∗

)
and a similar decomposition holds for a closed subspace R(A(λ)). Hence we claim that

C1. R(λ− L) is closed if and only if R(A(λ)) is closed;

C2. N (λ− L) is isomorphic to N (A(λ)) ;

C3. N (λ− L∗) is isomorphic to N (A∗(λ)). ( ∗ := Hermitian adjoint)

We see that C1-C3 imply not only (a), but (b) and (c). To check C1–C3, we recall from (4.27)

and (4.28) that the first two rows of A(λ) = ∂x −A(λ) is nothing but (L1)−1(λI − L).

We only prove the right direction of C1 since the converse is easier to check. We suppose

that R(λ − L) is closed and consider a sequence fi = (f1
i , f

2
i , f

3
i , f

4
i )T ∈ R(A(λ)) such that
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fi → f = (f1, f2, f3, f4)T ∈ (L2)4 as i→∞. Let yi be a solution of A(λ)yi = fi for each i. We

may decompose the last two components of A(λ)yi = fi (corresponding to the Poisson equation

(4.28)) into two parts:{
∂xφ

f
i − ψ

f
i = f3

i ,

∂xψ
f
i − e

φcφfi = f4
i ,

{
∂x(φi − φfi )− (ψi − ψfi ) = 0,

∂x(ψi − ψfi )− eφc(φi − φfi ) + ni = 0,
(4.136)

where ni ∈ H1 is the first component of yi. Indeed, since sup
x∈R
|φc| → 0 as ε → 0, by the

roughness of exponential dichotomy of the linear ODE systems (Theorem 5.32) and Remark

18, the solution (φfi , ψ
f
i ) ∈ (H1)2 to the LHS of (4.136) exists for all (f3

i , f
4
i ) ∈ (L2)2. For the

same reason, the solution (φf , ψf ) ∈ (H1)2 to the LHS of (4.136) exists for (f3, f4) ∈ (L2)2. By

using the generalized Young’s inequality, we have that (φfi , ψ
f
i )→ (φf , ψf ) in (L2)2. By letting

ỹi := (ni, ui, φi − φfi , ψi − ψ
f
i )T ,

we have A(λ)ỹi = f̃i := (f1
i +

1 + nc
J

ψfi , f
2
i +

c− uc
J

ψfi , 0, 0)T , equivalently,

(λ− L)(ni, ui)
T = L1(f1

i +
1 + nc
J

ψfi , f
2
i +

c− uc
J

ψfi )T .

Since R(λ− L) is closed, there is (n, u) ∈ (H1)2 such that

(λ− L)(n, u)T = L1(f1 +
1 + nc
J

ψf , f2 +
c− uc
J

ψf )T ,

equivalently,

A(λ)ỹ = (f1 +
1 + nc
J

ψf , f2 +
c− uc
J

ψf , 0, 0)T ,

where ỹ = (n, u, φ̃, ψ̃)T and

φ̃x = ψ̃, ψ̃x = eφc φ̃− n

By adding {
∂xφ

f − ψf = f3,

∂xψ
f − eφcφf = f4,

we have {
∂x(φ̃+ φf )− (ψ̃ + ψf ) = f3,

∂x(ψ̃ + ψf )− eφc(ψ̃ + φf ) + n = f4,

Hence, we have A(λ)y = f , where y := (n, u, φ̃+ φf , ψ̃+ψf )T , and conclude that R(A(λ)) is

closed.

Since (φ, ψ) is determined by n through the linear Poisson equation, it is clear that the

projection mapping

(n, u, φ, ψ) 7→ (n, u)

is an isomorphism between N (∂x −A) and N (λ− L), which proves C2.25

25We note that (n, u, φ, ψ)T ∈ (H1)2 × H3 × H2 as long as (n, u, φ, ψ)T ∈ N (∂x − A) ⊂ (H1)4 due to the

Poisson equation.
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To prove C2, we observe that the adjoint operator of (λI − L) in the standard L2 inner

product is given by

(λI − L)∗(ñ, ũ)T = (λ− ∂xLT1 + LT2 )(ñ, ũ)T +
(

(−∂2
x + eφc)−1(−∂xũ), 0

)T
.

Thus,

(L−1
1 (λI − L))∗(ñ, ũ)T = (λI − L)∗

[
(L−1

1 )T (ñ, ũ)T
]

= (λ(L−1
1 )T − ∂x + LT2 (L−1

1 )T )(ñ, ũ)T

+

(−∂2
x + eφc)−1(−∂x)

(
− 1

J
[(1 + nc)ñ+ (c− uc)ũ]

)
0

 .

(∂x −A)∗ = −∂x −A∗

= −∂x −


−λI2 − LT2

0 −1

0 0

0 0

0 −1

0 eφc

1 0


(

(L−1
1 )T 02

02 I2

)

= −∂x +


λ(L−1

1 )T + LT2 (L−1
1 )T

0 1

0 0

− 1

J

(
0 0

1 + nc c− uc

)
0 −eφc

−1 0

 .

If (ñ, ũ, φ̃, ψ̃)T ∈ Ker(∂x −A)∗, then

−∂xφ̃− eφcψ̃ = 0, −∂xψ̃ −
1

J
((1 + nc)ñ+ (c− uc)ũ)− φ̃ = 0.

Taking ∂x to the second equation and using the first equation, we have

(−∂2
x + eφc)ψ̃ = ∂x

[
1

J
((1 + nc)ñ+ (c− uc)ũ)

]
.

Thus,

(ñ, ũ, φ̃, ψ̃)T → (L−1
1 )T (ñ, ũ)T , (ñ, ũ)T → (((L1)T (ñ, ũ)T )T , φ̃, ψ̃)T

gives an isomorphism between Ker(∂x −A)∗ and Ker(λI − L)∗.

4.7.3 Proof of Lemma 4.30

Proof of Lemma 4.30. Since the matrix S1 defined in (4.116) is symmetric, it is enough to show

that the eigenvalues of S1,

0, 0, 2
√
KR

(1)
11 ±

√
2K2(R

(1)
12 )2 + 2(R

(1)
21 )2,
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are non-negative. Here R
(1)
11 is positive since uc(x) > 0 for all x ∈ R and

R
(1)
11 = uc

(
1

c2 −K
uc +O(|uc|)

)

for sufficiently small ε > 0. We check that 2
√
KR

(1)
11 −

√
2K2(R

(1)
12 )2 + 2(R

(1)
21 )2 is positive.

Since R
(1)
11 > 0, it is enough to show that

4K(R
(1)
11 )2 − 2K2(R

(1)
12 )2 − 2(R

(1)
21 )2

=
2K

J1

2
(
(c− uc)(c2 −K)− cJ

)2
(1 + nc)

2︸ ︷︷ ︸
=:I1

−K
(
(c2 −K)(1 + nc)− J

)2
(1 + nc)

2︸ ︷︷ ︸
=:I2

−K
(
c2 −K − (1 + nc)J

)2︸ ︷︷ ︸
=:I3

 ,
is positive, where J1 := J2(c2 −K)2(1 + nc)

2 > 0. Using the solitary wave identity (4.81a) and

the definition of J (4.26), we have

I1 = 2
(
(c− uc)(c2 −K)− c

(
(c− uc)2 −K

))2
(1 + nc)

2

= 2
(
c(c2 −K)− c (c(c− uc)−K(1 + nc))

)2
= 2c2(cuc +Knc)

2,

I2 = −K
(

(c2 −K)(1 + nc)−
(
(c− uc)2 −K

) )2
(1 + nc)

2

= −K
(

(c2 −K)(1 + nc)
2 −

(
c(c− uc)−K(1 + nc)

))2

= −K
(
nc(c

2 −K)(2 + nc) + (cuc +Knc)
)2

= −K (cuc +Knc)
2 −Kn2

c(c
2 −K)2(2 + nc)

2 − 2Knc(c
2 −K)(2 + nc) (cuc +Knc)

= −K (cuc +Knc)
2 − 4Kn2

c(c
2 −K)2 − 4Knc(c

2 −K) (cuc +Knc)

+O
(
|nc|3 + |nc|2|uc|

)
,

I3 = −K
(
c2 −K − (1 + nc)

(
(c− uc)2 −K

))2
= −K (cuc +Knc)

2 .

Hence,

I1 + I2 + I3 = 2(c2 −K)(cuc +Knc)
2 − 4Kn2

c(c
2 −K)2 − 4Knc(c

2 −K) (cuc +Knc)

+O
(
|nc|3 + |nc|2|uc|

)
= 2(c2 −K)(cuc +Knc) (cuc −Knc)− 4Kn2

c(c
2 −K)2

+O
(
|nc|3 + |nc|2|uc|

)
= 2(c2 −K)(c2u2

c +K2n2
c − 2Kc2n2

c) +O
(
|nc|3 + |nc|2|uc|

)
.
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Since
cnc

1 + nc
= uc from (4.81a), we obtain that

c2u2
c +K2n2

c − 2Kc2n2
c = (c2 −K)2n2

c

(
1 +O(|nc|)

)
.

Therefore, we conclude that I1 + I2 + I3 > 0 for all sufficiently small ε > 0.

4.7.4 Proof of Proposition 4.29

Proof of Proposition 4.29. We set P̃(µ;λ) = (µ2−1)((λ−cµ)2−Kµ2 +1) and L̃(µ) = 1. Then,

(c2 −K)d(µ) = P̃(µ) + L̃(µ). For all λ with sufficiently large |λ|, P̃(µ) has four simple zeros

µ̃1 = −1, µ̃4 = 1, µ̃2 =
cλ−

√
−c2 +K +Kλ2

c2 −K
, µ̃3 =

cλ+
√
−c2 +K +Kλ2

c2 −K
.

In particular, it is clear that for each pair of µ̃j , there is a positive lower bound, uniform in

large |λ|, for the distance between them. Since the derivative of P̃(µ) in µ is

P̃ ′(µ) = 2µ((λ− cµ)2 −Kµ2 + 1) + 2(µ2 − 1)(−cλ+ (c2 −K)µ),

we obtain

P̃ ′(µ̃1) = −2((λ+ c)2 −K + 1), P̃ ′(µ̃4) = 2((λ− c)2 −K + 1),

P̃ ′(µ̃2) = −2(µ̃2
2 − 1)

√
−c2 +K +Kλ2, P̃ ′(µ̃3) = 2(µ̃2

3 − 1)
√
−c2 +K +Kλ2.

Thus, we may take some constant ρ0 > 1, independent of ε and λ, and positive functions ρj(λ)

such that as |λ| → ∞,

ρj(λ) = O(|λ|−2) for j = 1, 4, ρj(λ) = O(|λ|−3) for j = 2, 3, (4.137)

and for all λ with sufficiently large |λ|,

ρj(λ) > ρ0
1

|P̃ ′(µ̃j)|
for j = 1, 2, 3, 4. (4.138)

Moreover, ρj can be taken so that (4.137) and (4.138) hold uniformly in ε ∈ [0, ε0] for some

sufficiently small ε0 since c =
√

1 +K + ε. From (4.137)–(4.138) and the Taylor theorem, we

have that on the circle |µ− µ̃j | = ρj ,

|P̃ (µ)| = |P̃ ′(µ̃j)||µ− µ̃j ||1 +O(|µ− µ̃j |)|

= ρj |P̃ ′(µ̃j)||1 +O(|µ− µ̃j |)|

> ρ0|1 +O(|µ− µ̃|)|

> 1 = |L̃(µ)|

for all λ with sufficiently large |λ|. Now Rouché’s theorem implies that there is exactly one

simple root µj of d(µ) such that |µj − µ̃j | < ρj . The proof is finished from (4.137).
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4.7.5 Proof of Proposition 4.27

Proof of Proposition 4.27. By expanding d−(µ) near µ = 0, (4.43b) is equivalent to

µ3

2
√

1 +K
+ λ = (c−

√
1 +K)µ+ µ5R(µ) = εµ+ µ5R(µ), (4.139)

where R(µ) is analytic near µ = 0 and R(µ) = O(1) as |µ| tends to 0. The RHS of (4.139) is

presumably negligible for small ε and µ. We let µ̃j = (−2
√

1 +Kλ)1/3e2πij/3 for j = 1, 2, 3, and

then plug the Ansatz µj = µ̃j(1− βj)1/3 into (4.139). Then we obtain

βj =
εµ̃j
λ

(1− βj)1/3 +
µ̃5
j (1− βj)5/3

λ
R
(
µ̃j(1− βj)1/3

)
Since

εµ̃j
λ

= O(ε|λ|−2/3) and
µ̃5
j (1− β)5/3

λ
= O(|λ|2/3), employing the fixed point argument, βj

exists and βj = O(ε|λ|−2/3 + |λ|2/3) = o(1) as δ → 0.

We prove the second assertion. we note that at λ = 0, d+(µ) = λ has a (unique) solution

µ4 = 0. Hence, for small |λ|, |µ4| is small, thus, from the form of d+(µ), we have µ4 = O(λ).

By expanding d+,

λ = (c+
√

1 +K)µ+
µ3

2
√

1 +K
+ µ5R(µ)

if and only if

µ =
λ

c+
√

1 +K
− µ3

c+
√

1 +K

(
1

2
√

1 +K
+ µ2R(µ).

)
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Figure 6: The images of curves d±(ik − µ) for c0 = 0.5, ε = 0.2, µ = c0ε
1/2 in different scales.
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5 Linear Stability and Instability of Nonlinear Waves

This section concerns linear (in)stability of nonlinear waves.

Notation: We denote the kernel of a linear (bounded or unbounded) operator L by N (L),

and the range of L by R(L).

5.1 Linear Systems of ODEs with Constant Matrices

We consider the linear systems of ordinary differential equations

dy

dt
= Ay, (5.1)

where A ∈ Cn×n is a constant matrix. We review some basic results of linear algebra on

finite-dimensional vector spaces and asymptotic behaviors of solutions of the system (5.1).

For a constant matrix A ∈ Cn×n, we define

eAt :=
∞∑
n=0

(At)n

n!
, x ∈ R (5.2)

The summation (5.2) is absolutly convergent on R, and it has the following properties.

Lemma 5.1. For all constant matrices A,B ∈ Cn×n, and t, s ∈ R, the following statements

hold.

1. d
dte

At = AeAt.

2. (eAt)−1 = e−At.

3. eA(t+s) = eAteAs = eAseAt.

4. e(A+B)t = eAteBt = eBteAt if AB = BA.

5. eBAB
−1t = BeAtB−1 for an invertible matrix B.

6. eAt is a matrix-valued solution of (5.1) satisfying eAt|t=0 = In.

The spectral information of A gives the asymptotic behaviors of eAt.

Definition 5.1. Let A ∈ Cn×n be a constant matrix. µ is called an eigenvalue of A if det(A−
µIn) = 0. The set of all eigenvalues of A is called the spectrum of A, denoted by σ(A). Any non-

zero vector of N (A−µIn) is called an eigenvector of A corresponding to µ. The order of µ as a

zero of the characteristic polynomial is called the algebraic multiplicity of µ, denoted by ma(µ).

The dimension of N (A− µIn) is called the geometric multiplicity of µ, denoted by mg(µ). We

say that µ ∈ σ(A) is simple if ma(µ) = mg(µ) = 1, and semi-simple if ma(µ) = mg(µ).

In general, we have ma(µ) ≥ mg(µ). When ma(µ) > mg(µ) = 1, for an eigenvector v1 of A,

there is v2 ∈ N (A− µIn)2 \ N (A− µIn) such that (A− µIn)v2 = v1.
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Definition 5.2. For µ ∈ σ(A) and v1 ∈ N (A−µIn), a set of vectors {vj}kj=1 is called the Jordan

chain (of full length k) generated by vk, if we can choose vj satisfying (A − µIn)vj = vj−1

for j = 2, · · · , k, but there is no vector v satisfying (A − µIn)v = vk. For {vl1}rl=1, a basis of

N (A− µIn), let {vlj}1≤j≤kl,1≤l≤r be the set of all elements of the Jordan chains (of full length

kl) generated by vlkl . The subspace

Eµ := the linear span of {vlj}1≤j≤kl,1≤l≤r

is called the generalized eigenspace of A corresponding to µ. The vectors v ∈ Eµ \ N (A− µIn)

are called the generalized eigenvectors of A corresponding to µ.

The set {vlj}1≤j≤kl,1≤l≤r is a linearly independent set of vectors. Moreover, the dimension

of Eµ,
∑r

l=1 kl, coincides with ma(µ).

Definition 5.3. For a matrix A ∈ Cn×n, we decompose the spectrum σ(A) as follows:

σs(A) := {µ ∈ σ(A) : Reµ < 0},

σc(A) := {µ ∈ σ(A) : Reµ = 0},

σu(A) := {µ ∈ σ(A) : Reµ > 0}.

We call σs(A) the stable spectrum, σc(A) the center spectrum, and σu(A) the unstable spectrum.

Let
Es := ⊕{Eµj : µj ∈ σs(A)},

Ec := ⊕{Eµj : µj ∈ σc(A)},

Eu := ⊕{Eµj : µj ∈ σu(A)}.
We call Es the stable eigenspace, Ec the center eigenspace, and Eu the unstable eigenspace.

We define the operator

P s :=
1

2πi

∫
C

(λI −A)−1dλ, (5.3)

where C is a simple closed curve lies in the open left half-plane and contains the stable spectrum

σs(A) in its interior. P s satisfies P s = P sP s and the range of P s is Es. The operator P s is

called the spectral projection onto the stable eigenspace Es. The spectral projections P c and

P u onto the center eigenspace Ec and the unstable eigenspace Eu are defined in a similar way.

Theorem 5.2. For a matrix A ∈ Cn×n, the following properties hold.

1. Cn = Es ⊕ Ec ⊕ Eu.

2. dimEs =
∑

µ∈σs(A)

ma(µ), dimEc =
∑

µ∈σc(A)

ma(µ), dimEu =
∑

µ∈σu(A)

ma(µ).

3. AP s,c,u = P s,c,uA, respectively. In other words, A commutes with the spectral projections.

4. eAtEs,c,u ⊂ Es,c,u, respectively. In other words, Es, Ec, and Eu are invariant subspaces

under the multiplication by eAt.
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Since any vector y0 ∈ Cn can be decomposed as

y0 = P sy0 + P cy0 + P uy0,

the solution of (5.1) with the initial value y0 has the form

eAty0 = eAtP sy0 + eAtP cy0 + eAtP uy0.

The asymptotic behavior of the solution is obtained from the following proposition. We let

σsM := max{Reµ : µ ∈ σs(A)}, σuM := max{Reµ : µ ∈ σu(A)},

σsm := min{Reµ : µ ∈ σs(A)}, σum := min{Reµ : µ ∈ σu(A)}.

Proposition 5.3. For a matrix A ∈ Cn×n, the following hold.

1. For all sufficiently small ε > 0, there exist constants M(ε),m(ε) > 0 such that

meσ
s
mt|P sy0| ≤ |eAtP sy0| ≤Me(σsM t+ε|t|)|P sy0|, t > 0,

meσ
s
M t|P sy0| ≤ |eAtP sy0| ≤Me(σsmt+ε|t|)|P sy0|, t < 0,

meσ
u
mt|P uy0| ≤ |eAtP uy0| ≤Me(σuM t+ε|t|)|P uy0|, t > 0,

meσ
u
M t|P uy0| ≤ |eAtP uy0| ≤Me(σumt+ε|t|)|P uy0|, t < 0,

for all y0 ∈ Cn.

2. There exists some integer k with 0 ≤ k ≤ n− 1 such that for all y0 ∈ Cn

m|P cy0| ≤ |eAtP cy0| ≤M(1 + |t|k)|P cy0|, t ∈ R.

Remark 8. If the eigenvalue µ with Reµ = σsM (or σsm, σuM , σum) is semi-simple, then ε = 0 can

be chosen for the upper bound estimate. If all µ ∈ σc(A) are semi-simple, then k = 0 can be

chosen.

We say that a matrix A is hyperbolic if σc(A) = ∅. From the above discussion, every

solution of the system (5.1) with a hyperbolic coefficient matrix is decomposed into two linearly

independent solutions: one exponentially decays as t→ +∞, and the other exponentially grows

as t→ +∞ (decays as t→ −∞). In such a case, we say that the system possesses an exponential

dichotomy. This concept will be discussed further in a following section.

If σc(A) 6= ∅ and σu(A) = ∅, then the asymptotic behavior of the solution eAty0 to the

system (5.1) for a large time t > 0 is described by the dynamics of eAtP cy0 in the sense that

eAty0 − eAtP cy0 → 0 as t→ +∞.

In the next two sections, we study the asymptotic behavior of the solution to the infinite-

dimensional version of (5.1).
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5.2 Spectral Theory of Linear Operators

Notation: Throughout this section, X (or Y) denotes a Banach space.

We consider linear operators L : D(L) ⊂ X → Y defined on a subspace D(L), the domain

of L. If D(L) is dense in X , we say that L is densely defined. We say that L is closed if for any

sequence {xj} ⊂ D(L) such that

xj → x in X and Lxj → y in Y, (5.4)

then we have x ∈ D(L) and Lx = y = lim
j→∞

Lxj . L is closed if and only if the graph of L,

{(x,Lx) ∈ X × Y : x ∈ D(L)}, is closed in X × Y.

Let L : D(L) ⊂ X → Y be a closed linear operator. The kernel of L is a closed subspace of

X . For a bounded linear operator B : X → Y, the operator B + L is closed with the domain

D(B + L) = D(L). If B : Z → X is bounded with R(B) ⊂ D(L), then LB is also closed. If

B : Y → Z has the inverse, then BL is a closed operator. If L is invertible, then L−1 is also a

closed operator.

Theorem 5.4 (Closed graph theorem26). Let L : D(L) = X → Y be a linear operator. Then L
is continuous if and only if L is closed.

We require densely defined operators to define the adjoint operator.27 In terms of semigroup

theory, we will see that generators of strongly continuous semigroups are necessarily closed and

densely defined operators.

5.2.1 Projection Operators

A bounded linear operator P : X → X with P 2 = P is called a projection. For a projection

P , I − P is also a projection. We introduce elementary properties of projection operators.

Lemma 5.5. For a projection operator P on X , the following hold.

(a) Px = x for all x ∈ R(P ).

(b) X = N (P )⊕R(P ).

(c) R(I − P ) = N (P ) and N (I − P ) = R(P ).

(d) R(P ) and R(I − P ) are closed subspaces of X .

(e) If P, P̃ : X → X are projections such that N (P ) = N (P̃ ) and R(P ) = R(P̃ ), then P = P̃ .

26The proof invokes the axiom of choice.
27See [20], Chapter 3.
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Proof. (a) is trivial. To prove (b), we first check that N (P )∩R(P ) = {0}. If x ∈ N (P )∩R(P ),

then Px = 0 and x = Py for some y ∈ X . Hence we have

0 = Px = P 2y = Py = x.

Now (b) follows from that for any x ∈ X ,

Px ∈ R(P ), x− Px ∈ N (P ), and x = Px+ (x− Px) .

To prove (c), it suffices to show the first equality since I−P is also a projection. For x ∈ N (P ),

(b) implies that x = x1 + x2 for some x1 ∈ N (I − P ) and x2 ∈ R(I − P ). On the other hand,

x = (I − P )x = (I − P )x1 + (I − P )x2 = x2 ∈ R(I − P ).

Conversely, for x ∈ R(I −P ), we have x = (I −P )x = x−Px. Thus, Px = 0. Now (d) follows

from (c) since the kernel of a bounded operator is closed. To prove (e), for all x ∈ X we let

x = x1 + x2, where x1 ∈ N (P ) = N (P̃ ) and x2 ∈ R(P ) = R(P̃ ). Then we have

Px− P̃ x = Px2 − P̃ x2 = x2 − x2 = 0.

Remark 9. For a projection P on a Hilbert space H, let P ∗ : H → H be the adjoint operator of

P . Then, P ∗ is also a projection since P ∗ = (PP )∗ = P ∗P ∗. We remark that the direct sum in

Lemma 5.5 is orthogonal if and only if the projection P is self-adjoint. Also, we have

N (P ∗) = R(P )⊥, N (P ) = R(P ∗)⊥.

5.2.2 Spectrum of Linear Operators

For L : D(L) ⊂ X → Y a densely defined closed linear operator, λI −L : D(L) ⊂ X → Y is

also a densely defined closed linear operator for any λ ∈ C. We are interested in the invertibility

of λI − L.

We say that λ ∈ C is in the resolvent set, ρ(L), if λI−L is has the bounded inverse operator

(λI − L)−1 : Y → D(L) ⊂ X .28,29 The inverse operator (λI − L)−1 is called the resolvent. We

say that λ ∈ C \ ρ(L) is an eigenvalue of L if N (λI −L) is a non-trivial subspace of the domain

D(L). Unlike the finite dimensional case, however, C \ ρ(L) is not the set of all eigenvalues of

L in general. We call σ(L) := C \ ρ(L) the spectrum of L, and decompose it in terms of the

Fredholm properties of the operator λI − L.

28(λI − L)−1 : Y → D(L) ⊂ X exists and there is a constant C > 0 such that ‖(λI − L)−1f‖X ≤ C‖f‖Y for

all f ∈ Y.
29Indeed, invertibility implies bounded invertibility. This follows from the closed graph theorem and that the

inverse of a closed operator is also closed.
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Definition 5.4 (Fredholm operator). Let L : X → Y be a closed and densely defined operator.

We say that L is Fredholm if

1. the range of L, R(L), is closed30,

2. the dimension of N (L) is finite,

3. the codimension of R(L)31 is finite.

For a Fredholm operator L, we define the Fredholm index

ind(L) = dimN (L)− codimR(L).

The Fredholm index of an operator tells us how far an operator is from being invertible. If

ind(L) = 0, the operator L is injective if and only if it is surjective. If ind(L) 6= 0, the operator

L cannot be bijective.

We decompose σ(L) as follows:

1. we say that λ ∈ σ(L) is in the point spectrum, σpt(L), if λI−L is Fredholm with ind(λI−
L) = 0, but it is not invertible;

2. we call σess(L) := σ(L) \ σpt(L) the essential spectrum of L.

By the above classification, the essential spectrum of L is the set of all λ ∈ C such that

1. λI − L is not Fredholm, or

2. λI − L is Fredholm with ind(λI − L) 6= 0.

We note that λI−L is Fredholm with ind(λI−L) = 0 for all λ ∈ ρ(L) since R(λI−L) = Y
and N (λI − L) = 0; R(λI − L) is closed in Y, dimN (λI − L) = 0, and codimR(λI − L) = 0.

Remark 10. For each k ∈ Z, the set of λ ∈ C for which (λI − L) is Fredholm with index k is

open since small bounded perturbations of a Fredholm operator do not change the Fredholm

index.32 The set of λ ∈ C for which λI − L is Fredholm is called the Fredholm domain for

L. The complement set of the Fredholm domain for L is called the Fredholm border for L.

The Fredholm domain is open and the Fredholm border is closed. In general the Fredholm

domain is the union of countable open connected components. In many applications, however,

the Freholm domain is the union of a finite number of open connected components, and the

Fredholm border is the union of some parametrized curves.

30Invoking the axiom of choice, this condition is implied by the other two conditions.
31The dimension of Y/R(L).
32See [20], Chapter 4, Section 5.3
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Remark 11. In some literatures33, the essential spectrum of an operator is defined by the set of

λ ∈ C for which λI −L is not Fredholm. Our definition of the essential spectrum is larger, and

it takes an advantage in that the point spectrum consists of isolated eigenvalues of L with finite

algebraic multiplicities. This can be explained from properties of the Evans function. The set

of λ for which λI −L has the Fredholm index zero is open. On an open connected subset Ω of

this set, either the zeros of the Evans function, which is analytic, must be a discrete set, or the

Evans function is identically zero. However, the Evans function typically tends to a non-zero

value as Reλ tends to +∞. The relative complement set of the zero set of the Evans function

with respect to Ω lies in the resolvent set.

5.2.3 Resolvent Operators

Notation: We denote the resolvent operator (λ− L)−1 by R(λ,L) or R(λ).34,

Proposition 5.6 (Resolvent identities). For λ, µ ∈ ρ(L) with λ 6= µ, the following hold:

(a) R(λ)−R(µ) = (µ− λ)R(λ)R(µ).

(b) R(λ)R(µ) = R(µ)R(λ).

Proof. (a) is obtained by subtracting two equations

R(λ) = R(λ)(µ− L)R(µ),

R(µ) = R(λ)(λ− L)R(µ).

Since LR(λ) = λR(λ)− I is a bounded operator, (a) holds for all X . (b) follows from (a).

Proposition 5.7. For a closed operator L on X , the following hold.

(a) The resolvent set ρ(L) is open in C, and the resolvent R(λ) is (piecewise35) analytic in

λ ∈ ρ(L). In particular, for fixed λ0 ∈ ρ(L), we have

R(λ) =
∞∑
n=0

(λ0 − λ)nR(λ0)n+1 (5.5)

for all λ ∈ C with |λ− λ0| < 1/‖R(λ0)‖.

(b) ‖R(λ)‖ ≥ 1

dist (λ, σ(L))
.

(c) For a sequence λn ∈ ρ(L) such that lim
n→∞

λn = λ0, we have that λ0 ∈ σ(L) if and only if

lim
n→∞

‖R(λn)‖ =∞.

33See [20], Chapter 4, Section 5.6, for instance
34In some literatures such as [20], the notation R(λ) = (L − λ)−1 is used.
35The resolvent set is not connected in general.
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Proof. For fixed λ0 ∈ ρ(L), we have that

λ− L = [I − (λ0 − λ)R(λ0)] (λ0 − L) = (λ0 − L) [I − (λ0 − λ)R(λ0)]

for all λ ∈ C and x ∈ D(L). Since λ0 − L is invertible, λ − L is boundedly invertible if

I − (λ0 − λ)R(λ0) has the bounded inverse, which is true for all λ with |λ− λ0| ≤ 1/‖R(λ0)‖.
Hence, ρ(L) is open and we have

[I − (λ0 − λ)R(λ0)]−1 =

∞∑
n=0

(λ0 − λ)nR(λ0)n.

In particular, [I − (λ0 − λ)R(λ0)]−1 : X → D(L) since L is closed. Indeed, for x ∈ X , R(λ0)nx ∈
D(L) for all n ∈ N, and thus

∑∞
n=0(λ0 − λ)nR(λ0)nx ∈ D(L). Therefore, we obtain

R(λ) = R(λ0) [I − (λ0 − λ)R(λ0)]−1 = [I − (λ0 − λ)R(λ0)]−1R(λ0)

=

∞∑
n=0

(λ0 − λ)nR(λ0)n+1.

To prove (b), we fix λ0 ∈ ρ(L). We showed in the proof of (a) that if |λ − λ0| ≤ 1/‖R(λ0)‖,
then λ ∈ ρ(L). Hence, for all λ ∈ σ(L) = C \ ρ(L), we have |λ− λ0| > 1/‖R(λ0)‖. Taking the

infimum in λ ∈ σ(L), we obtain (b). To prove (c), we assume that λ ∈ ρ(L). Then, since the

set {λn : n ≥ 0} is compact and R(λ) is continuous, R(λn) must be uniformly bounded for all

n ≥ 0. The converse follows from (b).

Remark 12. As a direct consequence of Proposition 5.7, σ(L) is closed. In general, the spectrum

of an unbounded operator is not bounded. However, for a bounded operator L, σ(L) is bounded

(hence compact) since

R(λ) =
1

λ

(
1− L

λ

)−1

=
∞∑
n=0

Ln

λn+1
<∞

for all |λ| > ‖L‖. Also, by the Liouville’s theorem, we see that σ(L) 6= ∅ since

‖R(λ)‖ ≤ 1

|λ|

(
1− ‖L‖

|λ|

)−1

= (|λ| − ‖L‖)−1 → 0 as |λ| → ∞.

Moreover, R(λ) is analytic at the infinity.

This remark introduces the following definition for bounded operators.

Definition 5.5. For a bounded operator L on X , we define the spectral radius of L by

r(L) := sup{|λ| : λ ∈ σ(L)}.

Corollary 5.8. For a bounded operator L on X , we have r(L) ≤ ‖L‖.
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5.2.4 Commutativity and Spectral Decomposition

Definition 5.6. Let L be an operator on X . We say that L commutes with A (or A commutes

with L) if for all x ∈ D(L), we have that Ax ∈ D(L) and

LAx = ALx.

From Lemma 5.5, we know that a projection P decomposes a Banach space X in such a

way that

X = M1 ⊕M2, (5.6)

where M1 := R(P ) and M2 := R(I − P ).

Definition 5.7. Let L be an operator on X and P be a projection such that the decomposition

(5.6) holds. We say that L is decomposed according to X = M1 ⊕M2 if

PD(L) ⊂ D(L), LM1 ⊂M1, LM2 ⊂M2. (5.7)

We observe that (5.7) is equivalent to that L commutes with P . Indeed, from (5.7), we have

Px ∈ D(L), LPx ∈ M1 and L(I − P )x ∈ M2 for all x ∈ D(L). Thus (I − P )LPx = 0 and

PL(I − P )x = 0 from Lemma 5.5, and this implies LPx = PLx. The converse is easy.

Definition 5.8. Let L be an operator on X and M be a subspace of X . The part L|M of L in

M is defined by L|Mx := Lx with the domain D(L|M ) := {x ∈ D(L) ∩M : Lx ∈M}.

If L is a closed operator and M is a closed subspace, then L|M is also closed since the graph

of L|M is the intersection of the graph of L and the closed set M ×M .

LR(λ) = λR(λ) − I is a bounded operator. Since λR(λ) − I = R(λ)L, L commutes with

the resolvent R(λ).

Proposition 5.9. Assume that ρ(L) 6= φ. If L commutes with a bounded operator A, then we

have

R(λ,L)A = AR(λ,L)

for all λ ∈ ρ(L). Conversely, if R(λ0) commutes with A for some λ0 ∈ ρ(L), then L commutes

with A.

Proof. We first claim that if an invertible operator T : D(T ) ⊂ X → X commutes with a

bounded operator A, then T−1 also commutes with A. Since A is bounded, Ax ∈ D(T−1) = X
for all x ∈ X . Since

TAT−1x = ATT−1x = Ax

for all x ∈ X , we prove the claim by taking T−1. If L commutes with A, then (λ − L), which

is invertible for all λ ∈ ρ(L), commutes with A for all λ ∈ ρ(L). The result follows from the

claim. The converse also follows from the claim.
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Theorem 5.10 (Spectral Decomposition). Let L be a closed operator on X . Suppose that the

spectrum of L is decomposed as σ(L) = σc(L) ∪ σu(L) in such a way that σc(L) is enclosed by

a simple closed curve C and σu(L) lies in the exterior of C. Then we have a decomposition of

L according to a decomposition X = Mc ⊕Mu such that the following hold:

(a) PL = LP and (I − P )L = L(I − P ).

(b) Mc and Mu are closed.

(c) The parts L|Mc and L|Mu are closed, and L|Mc is bounded.

(d) σ(L|Mc) = σc(L) and σ(L|Mu) = σu(L).

Proof. Let

P =
1

2πi

∫
C
R(λ) dλ.

One may check that P is a bounded operator with P 2 = P . Let Mc := PX and Mu := (I−P )X .

Since the resolvents commutes, PR(λ) = R(λ)P for all λ ∈ ρ(L). Thus, from Proposition 5.9,

P commutes with L. This implies that (see below (5.7)) the parts L|Mc and L|Mu are defined.

It is easy to see that R(λ)|Mc and R(λ)|Mu are the inverses of λ − L|Mc and λ − L|Mc ,

respectively, for all λ ∈ ρ(L). Hence, ρ(L|Mc) and ρ(L|Mu) contain ρ(L). We show that

ρ(L|Mc) ⊃ σu(L). To see this, we note that R(λ)|Mcx = R(λ)x = R(λ)Px for all x ∈ Mc and

λ ∈ ρ(L). For any λ ∈ ρ(L) \ C, we have

R(λ)P =
1

2πi

∫
C
R(λ)R(λ′) dλ′ =

1

2πi

∫
C

(
R(λ)−R(λ′)

) dλ′

λ′ − λ

by the resolvent identity. If λ lies outside of C, we have

R(λ)P = − 1

2πi

∫
C
R(λ′)

dλ′

λ′ − λ
.

Since the RHS is analytic in λ outside of C,36 R(λ)P , and hence R(λ)|Mc also, has an analytic

extension outside C. This analytic extension is the resolvent of L|Mc . Similarly, one may check

that ρ(L|Mu) ⊃ σc(L). Therefore, we conclude that σ(L|Mc) ⊂ σc(L) and σ(L|Mu) ⊂ σu(L).

If λ ∈ σc(L) \ σ(L|Mc), then λ ∈ ρ(L|Mc) and λ ∈ ρ(L|Mu). But, this implies that

R(λ)|McP +R(λ)|Mu(I − P )

is the inverse of λ − L. This shows that σ(L|Mc) = σc(L) and in a similar fashion, σ(L|Mu) =

σu(L).

Lastly, by using that LR(λ) = λR(λ) − I is bounded, L is closed, and the summation

representaion of R(λ), we obtain that

LP =
1

2πi

∫
C
LR(λ) dλ =

1

2πi

∫
C
λR(λ) dλ,

where the last one is a bounded on X . Thus, L|Mc is a bounded on Mc.
36Since R(λ) is continuous on C, it is also analytic inside of C.
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5.3 Semigroups and Application to Linear Stability of Nonlinear Waves

5.3.1 Strongly Continuous Semigroups

Definition 5.9. A family of bounded linear operators (T (t))t≥0 : X → X is called a (one-

parameter) semigroup if it satisfies the functional equation

T (t+ s) = T (t)T (s) for all t, s ≥ 0, T (0) = I. (5.8)

A semigroup T (t) is called a strongly continuous (one-paramter) semigroup (or C0-semigroup),

if the orbit map

ξx : t ∈ [0,∞) 7→ ξx(t) := T (t)x ∈ X (5.9)

is continuous for every x ∈ X .

In fact, combined with (5.8), (5.9) is equivalent to a weaker condition. To see this, we first

observe that a C0-semigroup T (t) is uniformly bounded on any compact set [0, t0], that is,

sup
t∈[0,t0]

‖T (t)‖ <∞. (5.10)

Since the orbit map T (t)x is continuous for each x ∈ X , the image of a compact set [0, t0] under

T (t)x is also compact, and hence sup
t∈[0,t0]

‖T (t)x‖ <∞ for each x ∈ X . Now (5.10) follows from

the uniform boundedness principle.

Proposition 5.11. For a semigroup T (t) on X , the following are equivalent.

(a) t 7→ T (t)x is continuous on [0,∞) for all x ∈ X .

(b) lim
h↓0

T (h)x = x for all x ∈ X .

Proof. It is enough to show that (b) implies (a). For t ≥ 0 and h > 0,

‖T (t+ h)x− T (t)x‖ ≤ ‖T (t)‖‖T (h)x− x‖ → 0 as h ↓ 0

for all x ∈ X . On the other hands, for t > 0 and h < 0,

‖T (t+ h)x− T (t)x‖ = ‖T (t+ h) (I − T (−t− h)T (t))x‖

≤ ‖T (t+ h)‖‖x− T (−h)x‖

→ 0 as h ↑ 0

using (5.10).

The fact that a C0-semigroup T (t) is uniformly bounded on any compact set [0, t0] implies

that the uniform norm of T (t) is controlled by some exponential function on [0,∞).
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Proposition 5.12. For all C0-semigroup T (t), there exist some constants w ∈ R and M ≥ 1

such that

‖T (t)‖ ≤Mewt (5.11)

for all t ≥ 0.

Proof. We can choose M ≥ 1 such that ‖T (s)‖ ≤M for all s ∈ [0, 1]. We write t ≥ 0 as t = s+k

for some k ∈ N and s ∈ [0, 1]. Let w := logM ≥ 0. Then, we have

‖T (t)‖ ≤ ‖T (s)‖‖T (1)‖k ≤Mk+1 = Mek logM = Mew(t−s) ≤Mewt.

Definition 5.10. For a C0-semigroup T (t), its growth bound w0 is defined by

w0 := inf{w ∈ R : there exists Mw ≥ 1 such that ‖T (t)‖ ≤Mwe
wt for all t ≥ 0}

= inf{w ∈ R : lim
t→∞

ewt‖T (t)‖ = 0}.

T (t) is called bounded if w = 0, and contractive if w = 0 and M = 1 can be chosen in (5.11).

Proposition 5.13. 37 Let T (t) be a C0-semigroup with the growth bound w0. Then the spectral

radius of T (t) is given by

r (T (t)) = ew0t for all t ≥ 0.

5.3.2 Generators of Semigroups

The differentiability of a C0-semigroup is equivalent to a weaker condition.

Lemma 5.14. Let T (t) be a C0-semigroup on X and x be an element of X . For the orbit map

ξx : t 7→ T (t)x, the following are equivalent.

(a) ξx(t) is differentiable on [0,∞).

(b) ξx(t) is right differentiable at t = 0.

Proof. It is enought to show that (b) implies (a). For t ≥ 0 and h > 0, we have

ξx(t+ h)− ξx(h)

h
= T (t)

T (h)x− x
h

and the RHS converges to T (t)ξ′x(0) as h ↓ 0. For −t < h < 0, we have

ξx(t+ h)− ξx(t)

h
− T (t)ξ′x(0) = T (t+ h)

(
T (−h)x− x
−h

− ξ′x(0)

)
+ (T (t+ h)− T (t)) ξ′x(0).

Since ‖T (t+ h)‖ is uniformly bounded in h for all small h < 0,∥∥∥∥T (t+ h)

(
T (−h)x− x
−h

− ξ′x(0)

)∥∥∥∥→ 0 as h ↑ 0.

37For the proof, we refer to [10], Proposition 2.2, Chapter 4
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Since T (t) is strongly continuous,∥∥(T (t+ h)− T (t)) ξ′x(0)
∥∥→ 0 as h ↑ 0.

Therefore, we conclude that ξx(t) is differentiable for all t ≥ 0 and we have

ξ′x(t) = T (t)ξ′x(0). (5.12)

Definition 5.11. For a C0-semigroup (T (t))t≥0 on X , let

D(L) := {x ∈ X : lim
h→+0

1
h (T (h)x− x) exists}.

The generator L : D(L) ⊂ X → X of (T (t))t≥0 is the linear operator

Lx := ξ′x(0) = lim
h→+0

1
h (T (h)x− x)

and D(L) is called its domain.

Proposition 5.15. For the generator L of a C0-semigroup (T (t))t≥0 on X , the following prop-

erties hold.

(a) For x ∈ D(L), we have T (t)x ∈ D(L) and

d

dt
T (t)x = T (t)Lx = LT (t)x for all t ≥ 0.

(b) For t ≥ 0 and x ∈ X , we have ∫ t

0
T (s)x ds ∈ D(L).

(c) For t ≥ 0, we have

T (t)x− x = L
∫ t

0
T (s)x ds for x ∈ X

=

∫ t

0
T (s)Lx ds for x ∈ D(L).

Proof. By the definition of D(A), x ∈ D(A) means ξ′x(0) exists. From Lemma 5.14, ξ′x(t) exists

for all t ∈ [0,∞) and in particular, from (5.12), we have

T (t)Ax = ξ′x(t) = lim
h↓0

T (h)T (t)x− T (t)x

h
= AT (t)x,
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which proves (a). To prove (c), we see that for x ∈ X , t ≥ 0 and h > 0,

1

h
(T (h)− I)

∫ t

0
T (s)x ds =

1

h

(∫ t

0
T (h+ s)x ds−

∫ t

0
T (s)x ds

)
=

1

h

(∫ h+t

h
T (s′)x ds′ −

∫ t

0
T (s′)x ds′

)
=

1

h

(∫ h+t

t
T (s′)x ds′ −

∫ h

0
T (s′)x ds′

)
→ T (t)x+ x as h ↓ 0.

Thus, the LHS converges as h ↓ 0, which implies the first equality of (c) as well as (b). For

x ∈ D(L),

lim
h↓0

1

h
(T (h)− I)

∫ t

0
T (s)x ds = lim

h↓0

∫ t

0
T (s)

1

h
(T (h)− I)x ds

=

∫ t

0
T (s) lim

h↓0

1

h
(T (h)− I)x ds

=

∫ t

0
T (s)Lx ds,

where the second line is from that s 7→ T (s) 1
h (T (h)− I)x uniformly converses to T (s)Lx on

[0, t]. (Recall (5.10).)

Remark 13 (Rescaled Semigroups). For a C0-semigroup T (t) with the generator L, S(s) :=

e−λsT (s) is also a C0-semigroup with the generator L−λ and domain D(L−λ) := D(L). This

scaling will be used frequently.

Theorem 5.16. The generator of a C0-semigroup is a closed and densely defined linear operator

that determines the semigroup uniquely.

Theorem 5.17. Let L be the generator of a C0- semigroup (T (t))t≥0 on X such that ‖T (t)‖ ≤
Mewt for all t ≥ 0 (see (5.11)). Then the following statements hold.

(a) If there is λ ∈ C such that R̃(λ)x := lim
t→∞

∫ t

0
e−λsT (s)x ds exists for all x ∈ X , then

λ ∈ ρ(L) and R(λ,L) = R̃(λ).

(b) If Reλ > w, then λ ∈ ρ(L) and the resolvent R(λ,L) is given by R̃(λ).

(c) ‖R(λ,L)‖ ≤ M
Reλ−w for all Reλ > w.

Proof. We first prove (b) and (c) using (a). If Reλ > w, then

‖
∫ t

0
e−λsT (s)x ds‖ ≤M

∫ t

0
e−Reλs+ws ds = M

[
1

w − Reλ
e(−Reλ+w)s

]t
0

Since −Reλ+ w < 0, the RHS converges to M
Reλ−w as t→∞. Thus, (b) and (c) follows from

(a). To prove (a), we assume that λ = 0 without loss of generality (see Remark 13). For x ∈ X
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and h > 0, we have

T (h)− I
h

R̃(0)x =
T (h)− I

h

∫ ∞
0

T (s)x ds

=
1

h

∫ ∞
0

T (h+ s)x ds− 1

h

∫ ∞
0

T (s)x ds

=
1

h

∫ ∞
h

T (s)x ds− 1

h

∫ ∞
0

T (s)x ds

= −1

h

∫ h

0
T (s)x ds

→ −x as h ↓ 0.

Hence, R̃(0)x ∈ D(L) and LR̃(0) = −I for all x ∈ X . For x ∈ D(L),

lim
t→∞
L
∫ t

0
T (s)x ds = lim

t→∞

∫ t

0
T (s)Lx ds = R̃(0)Lx,

where we have used Proposition 5.15 (c). On the other hand, we have

LR̃(0) = L lim
t→∞

∫ t

0
T (s)x ds = lim

t→∞
L
∫ t

0
T (s)x ds,

where one can justify the interchange of limit from that L is closed and Proposition 5.15 (b).

Since −x = LR̃(0)x = R̃(0)Lx, we conclude that R̃(0) = R(0,L).

Definition 5.12. For a linear operator L, its spectral bound is defined by

s(L) := sup{Reλ : λ ∈ σ(L)}.

As a direct consequence of Theorem 5.17, we have the following.

Corollary 5.18. For a C0-semigroup with the generator L, we have

−∞ ≤ s(L) ≤ w0 < +∞.

Remark 14. Theorem 5.16 and Theorem 5.17 imply some necessary properties for the generator

of a C0-semigroup : it is closed and densely defined, and its spectrum lies in some left half-plane.

Moreover, the resolvent of the generator can be represented by the Laplace transform of T (t).

5.3.3 Inversion Formulas

Theorem 5.19. Let (T (t))t≥0 be a bounded C0-semigroup on X generated by L. Then for all

δ > 0 and x ∈ X , ∫ t

0
T (s)x dx = lim

n→+∞

1

2πi

∫ δ+in

δ−in

eλt

λ
R(λ,L)x dλ.

Here the convergence is uniform in t on compact intervals.
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Corollary 5.20. Let (T (t))t≥0 be a C0-semigroup on X generated by L. Then for all x ∈ D(L)

and w > w0,

T (t)x = lim
n→+∞

1

2πi

∫ w+in

w−in
eλtR(λ,L)x dλ.

Here the convergence is uniform in t on compact intervals of (0,∞).

If we require more regularity on x ∈ X , then the inversion formula absolutely converges.

Corollary 5.21. Let (T (t))t≥0 be a C0-semigroup on X generated by L. Then for all x ∈ D(L2),

w > w0, k ∈ N, t > 0,

T (t)x =
(k − 1)!

tk−1

1

2πi
lim

n→+∞

∫ w+in

w−in
eλtR(λ,L)kx dλ.

For k ≥ 2, the integral converges absolutely and uniformly for t > 0.

5.3.4 Generation Theorems

The following theorem is due to Hille and Yosida. We recall that the generator of a C0-

semigroup is necessarily closed and densely defined.

Theorem 5.22. For a densely defined closed linear operator L on X , the following are equiv-

alent:

(a) L generates a C0-contraction semigroup.

(b) for every λ > 0 we have λ ∈ ρ(L) and

‖λ(λ− L)−1‖ ≤ 1. (5.13)

(c) for all λ ∈ C such that Reλ > 0 we have

‖(λ− L)−1‖ ≤ 1

Reλ
. (5.14)

Remark 13 on the rescaled semigroup leads the following corollary.

Corollary 5.23. For w ∈ R and a a densely defined closed linear operator L on X , the following

are equivalent.

1. L generates a C0-semigroup T (t) satisfying

‖T (t)‖ ≤ ewt for all t ≥ 0.

2. for every λ > w, we have λ ∈ ρ(L) and

‖(λ− w)(λ− L)−1‖ ≤ 1.
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3. for every λ ∈ C such that Reλ > w, we have λ ∈ ρ(L) and

‖(λ− L)−1‖ ≤ 1

Reλ− w
.

Definition 5.13. A linear operator L on X is called dissipative if

λ‖x‖ ≤ ‖(λ− L)x‖ (5.15)

for all λ > 0 and x ∈ D(L).

Proposition 5.24. For a dissipative operator L, we have the following:

(a) λ− L is injective for all λ > 0 and

‖λ(λ− L)−1z‖ ≤ ‖z‖

for all z ∈ R(λ− L) := (λ− L)D(L).

(b) λ− L is surjective for some λ > 0 if and only if it is surjective for all λ > 0. In this case,

we have (0,∞) ⊂ ρ(L).

Proof. From (5.15), we see that the kernel of λ − L is trivial for all λ > 0. We substitute

x = (λ − L)−1z ∈ D(L) ito (5.15). Suppose that λ0 − L is surjective for some λ0 > 0. From

(a), λ0 ∈ ρ(L) and ‖(λ0 − L)−1‖ ≤ 1/λ0. From (5.5), we have (0, 2λ0) ⊂ ρ(L) since all λ

satisfying |λ − λ0| < λ0 ≤ ‖(λ0 − L)−1‖ are included in ρ(L). In this way, one can check that

(0,∞) ⊂ ρ(L).

The following theorem is practically useful since it does not require the resolvent bounds.

Theorem 5.25 (Lumer-Phillips). For a densely defined closed linear operator L on X , the

following are equivalent:

(a) L generates a C0-contraction semigroup.

(b) L is dissipative and R(λ0 − L) = X for some λ0 > 0.

Proof. (a) implies (b) by Theorem 5.22. Suppose that (b) holds. Then, from Proposition 5.24,

(0,∞) ⊂ ρ(L). From (5.15), we have ‖λ(λ − L)−1‖ ≤ 1 for all λ > 0. Hence, (a) follows from

Theorem 5.22.

We introduce a practically useful characterization of dissipative operators.

Proposition 5.26. Let H be a Hilbert space. An operator L on H is dissipative if and only if

Re 〈Lx, x〉 ≤ 0 for all x ∈ D(L). (5.16)
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Proof. We only prove the ‘if’ statement.38 Suppose that (5.16) holds. Then, for all λ > 0 and

x ∈ D(L) with x 6= 0,

‖λx− Lx‖‖x‖ ≥ | 〈λx− Lx, x〉 |

≥ Re 〈λx− Lx, x〉

= λ‖x‖2 − Re 〈Ax, x〉

≥ λ‖x‖2.

Theorem 5.27 (Bounded Perturbation of Generators). Let L be the generator of a C0- semi-

group T (t) on X satisfying

‖T (t)‖ ≤Mewt for all t ≥ 0

and some w ∈ R, M ≥ 1. If B is a linear bounded operator on X , then L̃ := L + B with

D(L̃) := D(L) generates a C0-semigroup S(t) satisfying

‖S(t)‖ ≤Me(w+M‖B‖)t for all t ≥ 0.

Proof. We only prove the contraction case (w = 0 and M = 1).39 In this case, we have

(0,∞) ⊂ ρ(L) from Theorem 5.22, and λ− L̃ can be written as

λ− L̃ = (I −BR(λ,L))(λ− L)

for all λ > 0. From Theorem 5.22, we see that ‖BR(λ,L)‖ ≤ ‖B‖/λ for all λ > 0, and hence

I −BR(λ,L) is boundedly invertible for all λ > ‖B‖. This implies that λ− L̃ is invertible, and

we have

R(λ, L̃) = R(λ,L)(I −BR(λ,L))−1

for all λ > ‖B‖. Moreover, for all λ ≥ ‖B‖,

‖R(λ, L̃)‖ ≤ 1

λ

1

1− ‖B‖/λ
=

1

λ− ‖B‖
.

From Corollary 5.23, we finish the proof for the case that w = 0 and M = 1.

5.3.5 Asymptotic Behavior of Semigroups

We introduce some notions of stability for C0-semigroups.

Definition 5.14. We say that a C0-semigroup (T (t))t≥0 on X is

1. uniformly exponentially stable if for some ε > 0

lim
t→+∞

eεt‖T (t)‖ = 0, (5.17)

38For the converse direction, we refer to [10], Chapter 2.
39For the general case, we refer to [10], Chapter 3.
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2. uniformly stable if

lim
t→+∞

‖T (t)‖ = 0. (5.18)

The uniform exponential stability is equivalent to weaker conditions.

Proposition 5.28. For a C0-semigroup T (t), the following are equivalent:

(a) T (t) is uniformly exponentially stable,

(b) T (t) is uniformly stable,

(c) there exists ε > 0 such that lim
t→+∞

eεt‖T (t)x‖ = 0 for all x ∈ X .

Proof. It is obvious that (a) implies (b) and (c). From Proposition 5.13 and Corollary 5.8. we

have ew0t = r (T (t)) ≤ ‖T (t)‖. Since (b) implies that ew0t decreases as t → 0, we must have

w0 < 0, which means (a). Suppose that (c) holds. Then, sup
t∈[0,∞)

‖eεtT (t)x‖ < ∞ for each x.

By the uniform boundedness principle, we obtain sup
t∈[0,∞)

‖eεtT (t)‖ < ∞, which implies that

lim
t→∞

eε/2t‖T (t)‖ = 0.

The following theorem is very useful in that it only requires the uniform boundedness of the

resolvent.

Theorem 5.29 (Gearhart-Prüss-Greiner). Let L be a generator of a C0-semigroup (T (t))t≥0

on a Hilbert space H. Then, T (t) is uniformly exponentially stable if and only if

M := sup
Reλ>0

‖(λ− L)−1‖ <∞. (5.19)

Remark 15. Theorem 5.29 does not hold without the uniform bound (5.19). Also the theorem

is not true for arbitrary Banach spaces. See ([10], Chapter 5) for some related examples.

Proof. If T (t) is uniformly exponentially stable, then we have w0 < 0, and the uniform bound

(5.19) follows from Theorem 5.17. We note that the uniform bound (5.19) and Proposition 5.7

imply that the imaginary axis is also included in ρ(L). Thus, (5.19) also holds for Reλ ≥ 0

from continuity of R(λ,L). We consider the rescaled semigroup T−w(t) := e−wtT (t) for some

w > |w0|+ 1. By Theorem 5.17, we have

R(w + is,L)x =

∫ ∞
0

e−(w+is)tT (t)x dt =

∫ ∞
0

e−istT−w(t)x dt = R(is,L − w)x

for all x ∈ H and s ∈ R. We extend T−w(t) to R by letting T−w(t) := 0 for t < 0. Since T−w(t)

is exponentially stable, we have T−w(·)x ∈ L2(R,H). Hence we can represent the above integral

in terms of the Fourier transform F : L2(R,H)→ L2(R,H), and we obtain

R(w + is,L)x = F (T−w(·)x) (s).
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By using the Plancherel theorem40 and the fact that T−w(t) is exponentially stable, we get∫ +∞

−∞
‖R(w + is,L)x‖2 ds =

∫ +∞

−∞
‖F (T−w(·)x) ‖2 ds

=

∫ ∞
0
‖T−w(t)x‖2 dt

≤ C‖x‖2

for all x ∈ H and some constant C > 0. From the resolvent identity (Proposition 5.6 (a)), we

have

R(is,L) = R(w + is,L) + wR(is,L)R(w + is,L),

and thus the estimate

‖R(is,L)x‖ ≤ (1 + wM)‖R(w + is,L)x‖

holds for all x ∈ H and s ∈ R. From these estimates, we have for all x ∈ H,∫ +∞

−∞
‖R(is,L)x‖2 ds ≤ (1 + wM)2

∫ +∞

−∞
‖R(w + is,L)x‖2 ds ≤ (1 + wM)2‖x‖2.

Let T ∗(t) be the adjoint C0-semigroup of T (t) with generator L∗.41 Since T (t) is bounded on a

Hilbert space, we have ‖T (t)‖ = ‖T ∗(t)‖. Thus, by symmetry, we have for all y ∈ H,∫ +∞

−∞
‖R(is,L∗)x‖2 ds ≤ (1 + wM)2‖x‖2.

By the inversion formula of T (t) for k = 2, we have

〈tT (t)x, y〉 =
1

2π

∫ ∞
−∞

e(w+is)t
〈
R(w + is,L)2x, y

〉
ds

=
1

2π

∫ ∞
−∞

eist 〈R(is,L)x,R(−is,L∗)y〉 ds

for all x ∈ D(L2) and y ∈ H, where we used the Cauchy integral theorem in the second line.

This shifting of contour is possible since, from the definition of R(λ,L) and that R(λ,L) is

uniformly bounded by M on Reλ ≥ 0, we have for all x ∈ D(L) and λ 6= 0 with Reλ ≥ 0,

‖R(λ,L)x‖ ≤ 1

|λ|
‖R(λ,L)Lx+ x‖ ≤ 1

|λ|
(M‖Lx‖+ ‖x‖) ,

which implies that ‖R(w + is,L)x‖ → 0 as |s| → ∞. By the Cauchy-Schwarz inequity, we

obtain for all x, y ∈ D(A2),

| 〈tT (t)x, y〉 | ≤ 1

2π

(∫ ∞
−∞
‖R(is,L)x‖2 ds

)1/2(∫ ∞
−∞
‖R(is,L∗)y‖2 ds

)1/2

≤ (1 +Mw)2L2

2π
‖x‖‖y‖.

.

By the density of D(L2) in H,42 we obtain

‖tT (t)‖ = sup{| 〈tT (t)x, y〉 | : x, y ∈ D(L2), ‖x‖ = ‖y‖ = 1} ≤ (1 +Mw)2L2

2π
.

Since ‖T (t)‖ → 0 as t→∞, T (t) is uniformly exponentially stable by Proposition 5.28.
40This theorem holds only for Hilbert space valued functions.
41See [25] Chapter 1, Section 10.
42See [10], Chapter 2, Section 1
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5.3.6 Abstract Cauchy Problem

We consider the abstract43 Cauchy problem

{
∂tu(t) = Lu(t) (t ≥ 0),

u(0) = u0

(5.20)

where L is a linear operator on X .

(a) A function u : [0,∞) → X is called a (classical) solution of (5.20) if u ∈ C1([0,∞);X ),

u(t) ∈ D(L) for all t ≥ 0, and (5.20) holds.

(b) A function u : [0,∞)→ X is called a mild solution of (5.20) if u ∈ C([0,∞);X ),

∫ t

0
u(s) ds ∈

D(L) for all t ≥ 0, and

u(t)− u0 = L
∫ t

0
u(s) ds.

From Proposition 5.15, we see that the C0-semigroup with generator L yields solutions of

(5.20).

Proposition 5.30. Let L be the generator of a C0-semigroup T (t). Then, the following state-

ments hold.

(a) For every u0 ∈ D(L), u(t) := T (t)u0 is the unique (classical) solution of (5.20).

(b) For every u0 ∈ X , u(t) := T (t)u0 is the unique mild solution of (5.20).

5.3.7 Application: Linear Stability of Nonlinear Waves

Typically, a family of nonlinear traveling waves are realized as a stationary point of the

nonlinear PDEs in the moving frame with the speed of the family of traveling waves. Let L be

the linearized operator around a fixed point of a nonlinear operator F . We consider the initial

value problem (5.20) with L on a Hilbert space H. For simplicity, we assume that σpt(L) = {0}.
Such a case is typical when the PDE under consideration has the translation invariance. We

further assume that

(i) L : D(L) ⊂ H → H generates a C0-semigroup.

(ii) λ = 0 is an isolated eigenvalue of L with algebraic multiplicity k ≥ 1.

(iii) (λ − L)−1 is uniformly bounded on Reλ > 0, outside any small neighbourhood of the

origin.

43u(t) is considered as a Banach space valued function.
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From the assumption (ii), we can choose a sufficiently small disk U0 containing λ = 0 so

that U0 \ {0} ⊂ ρ(L). We define the spectral projection

P :=
1

2πi

∮
C0

(λI − L)−1 dλ, (5.21)

where C0 is a positively oriented simple closed curve enclosing the interior of U0. The range of

P is the k-dimensional generalized eigenspace of L associated with λ = 0.

From the spectral decomposition theorem (Theorem 5.10), P and its complementary pro-

jection Q := I − P satisfy the following properties:

(a) P : H → R(P ), PP = P on H, PL = LP on D(L);

(b) Q : H → R(Q), QQ = Q on H, QL = LQ on D(L);

(c) L|R(P ) = L = LP on R(P ) ∩D(L), L|R(Q) = L = LQ on R(Q) ∩D(L) ;

(d) σ
(
L|R(P )

)
= {0} = σpt(L), σ

(
L|R(Q)

)
= σ(L) \ {0} = σess(L);

Moreover, the operator P satisfying these properties is unique since N (P ) and R(P ) are

uniquely determined.

From the assumption (i), u(t) := eLtu0 is the solution to (5.20) in a suitable sense depending

the regularity of the initial data u0. Since P +Q = I, we have

∂t(Pu+Qu) = L(Pu+Qu), u(0) = Pu0 +Qu0.

Applying P and Q, and then using the commutativity of L with P and Q, we get{
∂tPu = PL(Pu+Qu) = LPu, Pu(0) = Pu0,

∂tQu = QL(Pu+Qu) = LQu, Qu(0) = Qu0,

since PQ = QP = 0, P 2 = P , and Q2 = Q. Since R(P ) = and R(Q) are invariant subspaces

under L, we obtain two decoupled system for u+ := Pu and u− := Qu,

∂tu
+ = L|R(P )u

+, u+(0) = u+
0 := Pu0 ∈ R(P ),

∂tu
− = L|R(Q)u

−, u−(0) = u−0 := Qu0 ∈ R(Q).

(5.22a)

(5.22b)

The equation (5.22a) describes the dynamics on the k-dimensional invariant subspace R(P ),

and the equation (5.22b) represents the dynamics on the complementary infinite-dimensional

invariant subspace R(Q).

The C0-semigroup eLt is also decomposed as follows:

eLt = eL|R(P )t + eL|R(Q)t,

where eL|R(P )t and eL|R(Q)t are the C0-semigroups generated by the parts L|R(P ) and L|R(Q),

respectively, and thus, the solution operators of (5.22a) and (5.22b), respectively, in a suitable

sense.
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The resolvent of the part L|R(Q) is given as follows: on R(Q),

(λ− L|R(Q))
−1 =


(λ− L)−1(I − P ) = (λ− L)−1 for λ ∈ ρ(L),

analytic extension of (λ− L)−1(I − P ) inside the curve C0

for λ ∈ {the inside region of C0}.

Since the resolvent is analytic, the assumption (iii) implies that (λ−L|R(Q))
−1 : R(Q)→ R(Q)

satisfies the uniform boundedness condition (5.19), and hence we conclude that there exists

C > 0 such that for u−0 ∈ R(Q),

‖eL|R(Q)tu−0 ‖H ≤ e
−Ct‖u−0 ‖H for all t ≥ 0. (5.23)

To illustrate the finite-dimensional dynamics, we suppose for instance that λ = 0 is an

isolated eigenvalue with algebraic multiplicity two, and that

Lu1 = 0, Lu2 = u1.

Then, the behavior of two-dimensional dynamics u+(t) is characterized by

u+(t) = c1u1 + c2(u2 + tu1).

where c1 and c2 is determined by solving c1u1 + c2u2 = u+(0) = Pu0.

Definition 5.15. Let L be the linearized operator around a fixed point of a nonlinear operator

F . We say that the fixed point of F is spectrally stable if σ(L) ⊂ {λ ∈ C : Reλ ≤ 0}. We

say that the fixed point of F is linearly asymptotically stable modulo R(P ) if the C0-semigroup

generated by L|R(Q) satisfies (5.23).

Remark 16. If σpt(L) = {λ0}, then the point spectrum of the adjoint operator L∗ is σpt(L∗) =

{λ0}. The generalized eigenspace E of L corresponding to λ0 is the range of the spectral

projection operator P . The adjoint operator of P , denoted by P ∗, is the spectral projection

onto the generalized eigenspace E∗ of L∗, and we have dimE = dimE∗ (see [20]). Moreover,

since

R(Q) = R(I − P ) = N (P ) = R(P ∗)⊥ = E∗⊥,

we have a decomposition

H = R(P )⊕R(Q) = E⊕ E∗⊥.

5.4 Reformulation of Eigenvalue Problem

It is often useful to study the eigenvalue problem of an operator L by reformulating it to

the associated system of linear first-order ODEs (5.24). We consider the operator

A(λ) := d
dx −A(x, λ) : D(A) ⊂ X → X ,
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where x ∈ R, λ ∈ C, and A ∈ Cn×n is a matrix. Here either X = L2(R,Cn) with D(A) =

H1(R,Cn) or X = Cb(R,Cn) with D(A) = C1
b (R,Cn) can be taken. In many applications, the

similar statements as Proposition 4.3, which relates the Fredholm properties of λ−L and those

of A(λ), hold true. Typically, A(λ) has the form of

A(λ) = d
dx −A1(x)− λA2(x).

For simplicity, we suppose that A(λ) is Fredholm with index zero and dimN (A(λ)) = 1. We

further assume that there is a set of functions {yj}kj=1 ⊂ D(A) such that(
d
dx −A1 − λA2

)
yj = A2yj−1 for j = 2, · · · , k,

but there is no function y ∈ D(A) satisfying(
d
dx −A1 − λA2

)
y = A2yk.

Then the algebraic multiplicity of an eigenvalue of L typically coincides with the length of the

longest possible chain {y1, · · · ,yk}.

Now our interest is to study the invertibility of the operator A(λ). The Fredholm properties

of A(λ) will be characterized in terms of exponential dichotomy.

5.4.1 Exponential Dichotomies

We consider the linear systems of ODEs

dy

dx
= A(x, λ)y, (5.24)

where x ∈ I = (a, b) ⊆ R, λ ∈ C, A ∈ Cn×n.

Theorem 5.31 (Initial value problem). Suppose that for fixed λ, A(x, λ) is continuous in x ∈ I.

Then for each x0 ∈ I, and y0 ∈ Cn, there exists a unique solution to the initial value problem

of (5.24) with the initial value y(x0, λ) = y0. If A(x, λ) and y0(λ) are analytic in λ for each

x, then the solution y(x, λ) is also analytic in λ for each x.

We refer to ([18], Chapter 5) for more details on the initial value problem of the system of

ODEs such as dependence on parameters and initial conditions. Throughout Section 5.4.1, we

will suppress the λ dependence whenever it is not important.

Let {v1, · · · ,vn} be a basis of Cn and {y1(x), · · · ,yn(x)} be a set of solutions of (5.24) with

yi(x0) = vi. By the uniqueness, this set of solutions is a basis of Cn for each x. The matrix

defined by

Φ(x) := (y1(x), · · · ,yn(x))

is a matrix-valued solution to (5.24), and it is called a fundamental matrix. We note that

Φ(x;x0) := Φ(x)Φ−1(x0)
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is also a matrix-valued solution to (5.24) satisfying Φ(x0;x0) = I. If Φ(x) is a fundamental

matrix of (5.24) satisfying Φ(x0) = I, then for any vector y0,

y(x) := Φ(x;x0)y0

is the unique solution to the initial value problem (5.24) with y(x0) = y0.

Definition 5.16. Let Φ(x) be a fundamental matrix of (5.24). We say that the system (5.24)

has an exponential dichotomy on I, if there is a projection P : Cn → Cn and some constants

K,α > 0 such that

|Φ(x)PΦ(y)−1| ≤ Ke−α(x−y), x > y,

|Φ(x)(I − P )Φ(y)−1| ≤ Ke−α(y−x), y > x,

(5.25a)

(5.25b)

for all x, y ∈ I.

Roughly speaking, the existence of an exponential dichotomy implies that the solution space

of the system is decomposed into two subspaces: a subspace of solutions exponentially decays

to zero as x→ +∞ and a subspace of solutions exponentially grows as x→ +∞. In Section 5.1,

we have observed that when the coefficient matrix A is independent of x, the system (5.24) has

an exponential dichotomy on I if and only if A is hyperbolic. In this case, Φ(x) = eAx and the

projection P can be taken as the spectral projection P s onto the stable eigenspace Es defined

in (5.3).

To see the meaning of an exponential dichotomy more precisely, we observe that (5.25)

implies that (apply Φ(y)Py and Φ(y)(I − P )y)

|Φ(x)Py| ≤ Ke−α(x−y)|Φ(y)Py| for x > y,

|Φ(x)(I − P )y| ≤ Ke−α(y−x)|Φ(y)(I − P )y| for y > x,

(5.26a)

(5.26b)

where y ∈ Cn is an arbitrary constant vector.44

Suppose that I = R+ and P has rank k. Then, the first condition (5.26a) says that there

is a k-dimensional subspace of solutions exponentially decays to zero as x→ +∞. The second

condition (5.26b) says that there is a complementary (n− k)-dimensional subspace of solutions

exponentially grows to infinity as x→ +∞.45

We suppose that the system (5.24) has exponential dichotomies on R+ and R− with pro-

jections, denoted by P+ and P−, respectively, and the fundamental matrix Φ(x) satisfying

Φ(0) = I. On R+, the set of initial conditions y0 such that y(x) = Φ(x)y0 decays exponentially

as x → +∞ is given by R(P+). The set of initial conditions y0 such that y(x) = Φ(x)y0

exponentially grows as x → +∞ is given by N (P+). On R−, the set of initial conditions y0

such that y(x) = Φ(x)y0 decays exponentially as x → −∞ is given by R(I − P−) = N (P−).

44Indeed, (5.26) is a part of the conditions equivalent to (5.25). See Coppel [7], Chapter 2.
45Fix x and let y → +∞.
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The set of initial conditions y0 such that y(x) = Φ(x)y0 exponentially grows as x → −∞ is

given by N (I − P−) = R(P−).

The dimension of the kernel of the projection is reffered to as the Morse index of the

exponential dichotomy. If the system (5.24) has exponential dichotomies on R+ and R−, we

denote the Morse indices by m+(λ) := dimN (P+) and m−(λ) := dimN (P−), respectively.

Remark 17. If the ODE system has an exponential dichotomy on I = [x0,∞), where x0 > 0,

with a projection P , then it has an exponential dichotomy on I = R+ with the same projection

P . (See [7], Chapter 2, p.13.) If P̃ is another projection with R(P ) = R(P̃ ), then the ODE

system also has an exponential dichotomy with the projection P̃ . (See [7], Chapter 2, p.15.)

The projection P of an exponential dichotomy is not unique in general. While R(P ) is

uniquely determined as the subspace of initial conditions of bounded solutions, there is no

unique choice for N (P ) since the direct sum decomposition of a vector space is not unique.

However, if the ODE system has an exponential dichotomy on I = R, then the projection P

is uniquely determined. This is because R(P ) must be the subspace of initial conditions of

bounded solutions on R+ and N (P ) must be the subspace of initial conditions of bounded

solutions on R−. In other word, every projection satisfying (5.25) has the same kernel and the

same range. Lemma 5.5 completes the claim.

Remark 18. We suppose that the system (5.24) has exponential dichotomies on R+ and R−.

It is clear that N (P−) ∩R(P+) 6= {0} is equivalent to that the system (5.24) has a non-trivial

solution decaying exponentially as |x| → +∞. On the other hand, if N (P−)∩R(P+) = {0} and

dimN (P−) + dimR(P+) = n, then we have P = P− = P+ due to Lemma 5.5. Hence, (5.24)

possesses an exponential dichotomy on R with the (unique) projection P . The converse is also

true. In this case,

G(x, y) :=

Φ(x)PΦ−1(y), x > y,

−Φ(x)(I − P )Φ−1(y), y > x
(5.27)

is the Green’s function of the system (5.24) on I = R with the boundary condition G(x, ·)→ 0

as |x| → +∞. Indeed, G(x, y) satisfies
d

dx
G(x, y) = A(x)G(x, y), x 6= y,

G(y+, y)−G(y−, y) = I.
(5.28)

Moreover, we have

sup
y∈R

∫
|G(x, y)| dx ≤ C, sup

x∈R

∫
|G(x, y)| dy ≤ C

for some constant C > 0. By the generalized Young’s inequality for integral operator, for any

given f ∈ L2(R) (or Cb(R)),

y(x) :=

∫ ∞
−∞

G(x, ·)f(·) dy =

∫ x

−∞
Φ(x)PΦ(·)−1f(·) dy −

∫ ∞
x

Φ(x)(I − P )Φ(·)−1f(·) dy
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satisfies

‖y‖L2 ≤ C‖f‖L2 (or ‖y‖L∞ ≤ C‖f‖L∞),

and
dy

dx
−A(x)y = f . (5.29)

Hence, y is a unique solution to the problem (5.29), and y ∈ H1(R) (or C1
b (R)).

The following theorem says that the exponential dichotomy is stable under small perturba-

tions of the system (5.24). In particular, the Morse indicies i±(λ) are preserved under small

perturbations.

Theorem 5.32 (Roughness of exponential dichotomies, [7], Chapter 4). Suppose that the system

(5.24) has an exponential dichotomy (5.25) on R+ with the fundamental matrix Φ(x) such that

Φ(0) = I. If

δ = sup
x∈R+

|B(x)| < α/4K2,

then the perturbed system
dy

dx
= (A(x) +B(x))y

also has an exponential dichotomy on R+:

|Φ̃(x)P̃ Φ̃(y)−1| ≤ (5/2)K2e−(α−2Kδ)(x−y), x > y ≥ 0,

|Φ̃(x)(I − P̃ )Φ̃(y)−1| ≤ (5/2)K2e−(α−2Kδ)(y−x), y > x ≥ 0,

where Φ̃ is the fundamental matrix for the perturbed system with Φ̃(0) = I, and P̃ is a projection

such that N (P̃ ) = N (P ). Moreover, for all x ≥ 0,

|Φ̃(x)P̃ Φ̃(x)−1 − Φ(x)PΦ(x)−1| ≤ 4α−1K3δ.

Remark 19. Similar statements to Theorem 5.32 also holds on the intervals I = R−, [x0,+∞),

(−∞, x0], R. We refer to [23] for the roughness of the exponential dichotomy (Theorem 5.32)

under the perturbation B(x) with lim
x→+∞

B(x)→ 0.

5.4.2 Exponential Dichotomies and the Fredholm Properties

Theorem 5.33 (Palmer,[23],[24]). Consider the operator

A(λ) = d
dx −A(x, λ) : H1(R,Cn) ⊂ L2(R,Cn)→ L2(R,Cn),

where λ ∈ C. Then A(λ) is Fredholm if and only if the system (5.24) possesses exponential

dichotomies on R±. Moreover, the Fredholm index of A(λ) is given by

ind (A(λ)) = dimR (P+(λ)) + dimN (P−(λ))− n.
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Remark 20. The following proof is a modification of the Palmer’s original result, where the

space X = Cb(R,Rn) with D(A) = C1
b (R,Rn) is considered. We apply the generalized Young’s

inequality with different exponents and consider the complex adjoint system. The similar state-

ment for the case X = Cb(R,Cn) with D(A) = C1
b (R,Cn) also holds.

Proof. We only prove the ‘if ’ statement. We refer to [24] for the other direction. We omit λ

dependence for simplicity.

Suppose that the system (5.24) possesses exponential dichotomies (5.25) on R± with the

fundamental matrix Φ(x) satisfying Φ(0) = I and the associated projection operators P±,

respectively. Then, we have

dimN (A) = dim (N (P−) ∩R(P+)) <∞ (5.31)

since all bounded solutions of the linear ODE system (5.24) (or equivalently, all elements of

the kernel of A) with linearly independent initial values must be linearly independent by the

uniqueness. To prove that R(A) is closed and that codimR(A) is finite, we first claim that

f ∈ R(A) if and only if ∫ ∞
−∞

ψ∗f dx = 0 (5.32)

for all bounded (hence exponentially decaying) solution ψ(x) of the (complex) adjoint system

dz

dx
= −A∗(x)z, (5.33)

where A∗ = AT .

By taking the derivative of Φ(x)Φ−1(x) = I, one can check that (Φ−1)∗(x) is the funda-

mental matrix of (5.33). Moreover, by taking the adjoint of (5.25), we see that (5.33) possesses

exponential dichotomies (5.25) on R± with projections I−(P±)∗.46 Thus, the subspace of initial

values of bounded solutions to the adjoint system (5.33) is

N (I − P ∗−) ∩R(I − P ∗+) = R(P+)⊥ ∩N (P−)⊥, (5.34)

where the equality comes from

N (I − P ∗−) = R(P ∗−) = N (P−)⊥ and R(I − P ∗+) = N (P ∗+) = R(P+)⊥.

If f ∈ R(A) ∈ L2, then there is y ∈ H1 (hence bounded on R) such that

dy

dx
−A(x)y = f(x).

For all bounded (hence exponentially decaying) solutions ψ(x) of (5.33) we have∫ ∞
−∞

ψ∗f dx =

∫ ∞
−∞

ψ∗∂xy − ψ∗Ay dx

=

∫ ∞
−∞

ψ∗∂xy + ∂xψ
∗y dx = 0.

46RP+(stable), R(I − P+)(unstable) ↔ RP ∗+(unstable), R(I − P ∗+)(stable)
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Conversely, we suppose that f ∈ L2. Since (5.24) has exponential dichotomies, for any given

initial value y0,

y+(x) := Φ(x)P+y0 +

∫ x

0
Φ(x)P+Φ−1(·)f(·) dy −

∫ ∞
x

Φ(x)(I − P+)Φ−1(·)f(·) dy,

y−(x) := Φ(x)(I − P−)y0 +

∫ x

−∞
Φ(x)P−Φ−1(·)f(·) dy −

∫ 0

x
Φ(x)(I − P−)Φ−1(·)f(·) dy,

are the solutions of (5.24) in C1(R+) ∩ H1(R+) and C1(R−) ∩ H1(R−) respectively. (See

Remark 18.) Our goal is now to find y0 such that y−(0) = y+(0) holds. Equivalently, we find

y0 satisfying

(P+ − (I − P−)) y0 =

∫ ∞
0

(I − P+)Φ−1f dy +

∫ 0

−∞
P−Φ−1f dy ∈ Cn. (5.36)

Such y0 exists when the RHS of (5.36) is in
[
N
(
P ∗+ − (I − P ∗−)

)]⊥
.

For all q with (P+ − (I − P−)) q = 0, we define

ψ(x) :=

(Φ−1)∗(x)(I − P ∗+)q, x ≥ 0,

(Φ−1)∗(x)P ∗−q, x ≤ 0.
(5.37)

Then, ψ(x) is a exponentially decaying solution of (5.33) (see (5.34)). From the assumption

(5.32), it follows that

0 =

∫ ∞
−∞

ψ∗f dx = q∗
[∫ ∞

0
(I − P+)Φ−1f dx+

∫ 0

−∞
P−Φ−1f dx

]
for all q ∈ N (P+ − (I − P−)). This proves the claim.

To finish the proof, we take a basis {ψi} of the finite dimensional subspace N (d/dx+A∗(x)),

which is isomorphic to (5.34), and define a linear bounded mapping

T : f ∈ L2 7→
(∫ ∞
−∞

ψ1f dx, · · · ,
∫ ∞
−∞

ψjf dx

)
∈ Cn.

From what we just have proved, the kernel of T is exactly R(A). Since T is continuous, the

kernel of T is closed, and hence R(A) is closed. Since R(A)⊥ = N (A∗), we have47

codimR(A) = dimR(A)⊥ = dimN (A∗) = dim
[
N (P−)⊥ ∩R(P+)⊥

]
<∞,

where the last equality is from (5.34). Since

codimR(A) = dim
[
N (P−)⊥ ∩R(P+)⊥

]
= dim [N (P−) +R(P+)]⊥

= n− dim [N (P−) +R(P+)]

= n−
(
dimN (P−) + dimR(P+)− dim [N (P−) ∩R(P+)]

)
,

(5.38)

47See [20], Chapter 3, Lemma 1.40, for the first equality.
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we finally obtain using (5.31) that

dimN (A)− codimR(A) = dimN (P−) + dimR(P+)− n.

We note that the Fredholm index and the Morse indicies are related as follows:

ind (A(λ)) = dimN (P−)− dimN (P+) = m−(λ)−m+(λ).

From Theorem 5.33, we have the following statements for the system (5.24):

1. A(λ) is not Fredholm ⇐⇒ (5.24) does not have an exponential dichotomy on R+ or

R−;

2. ind (A(λ)) = k 6= 0 ⇐⇒ (5.24) has exponential dichotomies on R± and m−(λ) −
m+(λ) = k 6= 0;

3. ind (A(λ)) = 0 and N (A(λ)) = {0} ⇐⇒ (5.24) has exponential dichotomies on R±
with m+(λ) = m−(λ) and R(P+(λ)) ∩N (P−(λ)) = {0};

4. ind (A(λ)) = 0 and N (A(λ)) 6= {0} ⇐⇒ (5.24) has exponential dichotomies on R±
with m+(λ) = m−(λ) and R(P+(λ)) ∩N (P−(λ)) 6= {0}.

Different asymptotic matrices: front type waves Suppose that A(x, λ) has different

asymptotic matrices as x → ±∞. This is typical when one consider the stability of front-type

traveling waves such as viscous shock waves. Let A±∞(λ) := lim
x→±∞

A(x, λ). By the roughness of

exponential dichotomies (Theorem 5.32), we have the following statements:

1. A(λ) is not Fredholm ⇐⇒ one of A±∞(λ) is not hyperbolic;

2. ind (A(λ)) = k 6= 0 ⇐⇒ A±∞(λ) are both hyperbolic with m−(λ)−m+(λ) = k 6= 0;

3. ind (A(λ)) = 0 and N (A(λ)) = {0} ⇐⇒ A±∞(λ) are both hyperbolic with m+(λ) =

m−(λ) and R(P+(λ)) ∩N (P−(λ)) = {0};

4. ind (A(λ)) = 0 and N (A(λ)) 6= {0} ⇐⇒ A±∞(λ) are both hyperbolic with m+(λ) =

m−(λ) and R(P+(λ)) ∩N (P−(λ)) 6= {0}.

Same asymptotic matrix: pulse type waves When one consider the stability of pulse-type

traveling waves such as solitary waves, A(x, λ) has the same asymptotic matrix as x → ±∞.

Let A∞(λ) := lim
|x|→+∞

A(x, λ). In this case, we always have m+(λ) = m−(λ), and hence, we

have the following:

1. A(λ) is not Fredholm ⇐⇒ A∞(λ) is not hyperbolic;
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2. ind (A(λ)) = 0 and N (A(λ)) = {0} ⇐⇒ A∞(λ) is hyperbolic and R(P+(λ)) ∩
N (P−(λ)) = {0};

3. ind (A(λ)) = 0 and N (A(λ)) 6= {0} ⇐⇒ A∞(λ) is hyperbolic and R(P+(λ)) ∩
N (P−(λ)) 6= {0}.

Remark 21. If one of A±∞(λ) is not hyperbolic, one may show that R(∂x−A±∞(λ)) is not closed

using an oscillating solution. (See [35], Chapter 3)
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5.5 The Evans Function

The Evans function was first introduced by Evans ([11]–[14]) for the study of stability of

some class of traveling waves. The Evans function is an analytic function in the parameter λ,

which is particularly useful for detecting eigenvalues and their algebraic multiplicities. Its zeros

are related to the values of λ such that the subspace of solutions exponentially decays to zero as

x→ +∞ and the subspace of solutions exponentially decays as x→ −∞ intersect non-trivially,

that is, R(P+(λ))∩N (P−(λ)) 6= {0}. We introduce the Evans function and its properties sum-

marizing the formulation given in [26]. As an application, we discuss the instability of solitary

waves for the generalized KdV equation in the last section.

We consider a linear ODE system

dy

dx
= A(x, λ)y (5.39)

and its associated transposed system

dz

dx
= −zA(x, λ), (5.40)

Here, λ ∈ C is a parameter, A(x, λ) is a n × n matrix, y(x, λ) is a column vector, and z(x, λ)

is a row vector.

We assume that on a simply connected domain Ω ⊂ C, H1–H4 hold.

H1. A(x, λ) is jointly continuous in (x, λ) ∈ R× Ω and is analytic in λ for each fixed x.

H2. lim
x→±∞

A(x, λ) = A±∞(λ) exist, and the limit is uniform in λ on any compact subset of Ω.

H3.

∫ ∞
−∞
|R(x, λ)| dx converges for all λ, uniformly on any compact subsets of Ω, where

R(x, λ) :=

A(x, λ)−A−∞(λ) for x < 0,

A(x, λ)−A+
∞(λ) for x ≥ 0.

H4. For every λ ∈ Ω, A±∞(λ) has a unique eigenvalue of smallest real part, which is simple.

Equivalently, the eigenvalues µ±j (λ) of A±∞(λ) can be labelled so that

Reµ±1 < µ±∗ := min{Reµ±j : i = 2, · · · , n}. (5.41)

Proposition 5.34. For any solution y of (5.39) and z of (5.40), zy is independent of x .

Indeed, we have
d(zy)

dx
= −zAy + zAy = 0.
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This is one of the advantages of considering the transposed system.

Notation: A+
∞(λ) and A−∞(λ) are different in general. For notational simplicity, we suppress

± signs as long as there is no confusion. We use the notation f(x) ∼ g(x) as x → +∞ for

lim
x→+∞

f(x)

g(x)
= 1.

5.5.1 Analytic Eigenvectors

By Morera’s theorem, H2 implies that A∞(λ) is analytic on Ω. It is easy to see that µ1(λ)

is analytic on Ω since µ1 simple from H4.48

We show that we can make an analytic choice of the normalized left and right eigenvectors

of A±∞(λ) corresponding to the simple eigenvalue µ±1 (λ) so that for all λ ∈ Ω,

[
A±∞ − µ±1 I

]
v±(λ) = 0, w±(λ)

[
A±∞ − µ±1 I

]
= 0, w±(λ)v±(λ) = 1. (5.42)

We need the following lemma49:

Lemma 5.35 ([20]). Let P (λ) be a projection on a finite-dimensional vector space X , analytic

on a simply connected domain Ω ⊂ C. Then, for λ0 ∈ Ω, there exists an operator-valued

function U(λ) such that

1. U(λ) is analytic in λ ∈ Ω, and its inverse U−1(λ) exists for all λ ∈ Ω and is also analytic

in λ ∈ Ω,

2. U(λ)P (λ0) = P (λ)U(λ) for all λ ∈ Ω.

From H4, for any fixed λ0 ∈ Ω, we may choose the left and right eigenvectors, w0 = w(λ0)

and v0 = v(λ0), of A∞(λ0) corresponding to the simple eigenvalue µ1(λ0) so that w0v0 = 1.50

We define the operator

P (λ) :=

∫
Γ

(A∞(λ)− νI)−1 dν,

where Γ is a positively oriented circle around µ1(λ) excluding the other eigenvalues inside the

circle. P (λ) is analytic51 in λ and is a projection onto the eigenspace of the simple eigenvalue

µ1(λ) with dim ImP (λ) = 1. From Lemma 5.35, we see that

v(λ) := U(λ)v0, w(λ) := w0U
−1(λ)

are the desired eigenvectors satisfying (5.42).

48For any fixed λ0 ∈ Ω and µ1 = µ1(λ0), we have det (A∞(λ)− µI) = (µ − µ1)d̄(µ, λ), where d̄(µ1, λ0) 6= 0.

Hence, µ1(λ) is analytic from the implicit function theorem since lim
µ→µ1

det (A∞(λ)− µI)

µ− µ1
= d̄(µ1, λ0) 6= 0.

49The proof of Lemma 5.35 does not require the assumptions H1–H4.
50This is possible whenever the eigenvalue is semi-simple. Consider the Jordan normal form.
51Analyticity of P (λ) has nothing to do with the multiplicity of the eigenvalue µ1(λ). See [20], p.68.
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Proof of Lemma 5.35. Let us denote
d

dλ
by ′. Since P 2 = P , we have

P ′P + PP ′ = P ′. (5.43)

Multiplying (5.43) by P , we obtain PP ′ = PP ′P + PP ′. Hence, we get PP ′P = 0. Let

Q(λ) := P ′P − PP ′. We note that PQ = −PP ′ and QP = P ′P . From (5.43), we obtain

P ′ = QP − PQ. (5.44)

Now we consider the operator-valued ODE

X ′ = Q(λ)X, X(λ0) = X0. (5.45)

Since Q is analytic on a simply connected domain D and the problem is linear, from the usual

iteration argument and the analytic continuation, one may show that this problem has a unique

analytic solution X(λ) on D.

Let U(λ) be the solution of the operator-valued ODE U ′ = Q(λ)U with U(λ0) = I, and let

V (λ) be the solution of V ′ = −V Q(λ) with V (λ0) = I. We note that (V U)′ = −V QU+V QU =

0. Hence, V (λ)U(λ) = V (λ0)U(λ0) = I.

To prove the second statement, using (5.44), we see that

(PU)′ = P ′U + PQU = (P ′ + PQ)U = QPU.

Thus, P (λ)U(λ) is a solution to the ODE (5.45) with X0 = P (λ0)U(λ0) = P (λ0)I = P (λ0). On

the other hand, U(λ)P (λ0) is also a solution to (5.45) with X0 = U(λ0)P (λ0) = P (λ0). The

proof is done by the uniqueness of the ODE.

Remark 22. Lemma 5.35 imples that if {vj} is a basis of P (λ0)X , then {U(λ)vj} forms an

analytic basis of P (λ)X .52 Suppose that µ1(λ) is not simple. In this case, for an eigenvector

v0 of A∞(λ) and a projection P (λ) onto the eigenspace corresponding to µ1(λ), we cannot

guarantee that U(λ)v0 is an eigenvector of A∞(λ).

Remark 23. P (λ)v0 is analytic, and it lies in the space spanned by the eigenvector of µ1(λ). But,

it may vanish at some λ ∈ Ω. Thus, even if µ1 is simple, P (λ)v0 may not be the eigenvector.

Remark 24. Consider the matrix

A(λ) =

(
0 0

λ 0

)
,

where λ ∈ C. The eigenvalue of A is 0 with multiplicity two. When λ = 0, there are two linearly

independent eigenvectors (1, 0)T and (0, 1)T . When λ 6= 0, the only eigenvector is (0, 1)T . Even

if A(λ) and its eigenvalues are all analytic, the eigenvector may not be analytic in general. As

this example shows, eigenvectors may degenerate at some point.
52If P (λ) is continuous on a connected domain Ω, then P (λ)X is isomorphic to P (λ0)X . In particular,

dimP (λ)X = dimP (λ0)X for all λ ∈ Ω. See [20] for more details.
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5.5.2 Asymptotic Behavior of Solutions

Proposition 5.36. There exist unique solutions y+ of (5.39) and z− of (5.40) satisfying the

following properties:

(a) y+(x, λ) ∼ eµ
+
1 (λ)xv+(λ) as x→ +∞ and z−(x, λ) ∼ e−µ

−
1 (λ)xw−(λ) as x→ −∞, and the

limits are uniform in λ on any compact sets of Ω;

(b) y+(x, λ) and z−(x, λ) are analytic in λ for each x.

Moreover, any solution of (5.39) ( (5.40)) satisfying y = O(eµ
+
1 x) as x → +∞ (z = O(e−µ

−
1 x)

as x→ −∞) is a constant multiple of y+ (z− respectively.).

Remark 25. One may expect that ∂λy
+ ∼ ∂λµ

+
1 xe

µ+1 xv+ as x → +∞. This is true and is

justified as follows. Let µ = µ+
1 (λ) for simplicity. Since the limit e−µxy+(x, λ) → v+(λ) is

uniform in λ (on any compact sets of Ω from Proposition 5.36), we have that (e−µxy+)λ → v+
λ

as x→ +∞ uniformly in λ. On the other hand, we have

0 = lim
x→+∞

(e−µxy+)λ − v+
λ

x
= lim

x→+∞

(
y+
λ e
−µx

x
− y+µλe

−µx −
v+
λ

x

)
.

Since

lim
x→+∞

(
y+µλe

−µx +
v+
λ

x

)
= µλv

+,

we get

∂λy
+(x, λ) ∼ xeµ

+
1 x∂λµ

+
1 v+ as x→ +∞.

A similar procedure yields that for each k ∈ N,

∂jλy
+(x, λ) = O(e(µ+1 +δ)x) as x→ +∞ (5.46)

for all sufficiently small δ > 0.

Proof of Proposition 5.36. Let ỹ(x) := e−µ
+
1 xy(x). Then, (5.39) becomes

dỹ

dx
= [B(λ) +R(x, λ)] ỹ, (5.47)

wehre B(λ) := A+
∞(λ)−µ+

1 I and R(x, λ) := A(x, λ)−A+
∞(λ). From H4, one of the eigenvalues

of B(λ) is 0 and the real part of the other eigenvalues are strictlfy positive. Hence, for all x ≤ 0,

we have ‖eB(λ)x‖ ≤ C(λ), where C(λ) is bounded on any compact subsets of Ω.

We let

(F ỹ)(x) := −
∫ ∞
x

eB(λ)(x−s)R(s, λ)ỹ(s) ds.

For any fixed x0 ∈ R and λ ∈ Ω, F is a bounded linear operator on Cb([x0,∞)). Indeed,

|(F ỹ)(x)| ≤
∫ ∞
x

C(λ)|R(s, λ)||ỹ(s)| ds

≤ sup
x≥x0

|ỹ(x)|C(λ)

∫ ∞
x
|R(s, λ)| ds.

(5.48)
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We fix a compact domain Ω1 ⊂ Ω. From H3, we can choose sufficiently large x0 > 0 so that

θ := sup
λ∈Ω1

C(λ)

∫ ∞
x0

|R(s, λ)| ds < 1.

Hence, F is a contraction on Cb([x0,∞)). For any given bounded function ỹ0, we define a

sequence

ỹi+1 := ỹ0 + F ỹi, (i ≥ 1) (5.49)

Using that F is a contraction, one may show that the sequence (5.49) is Cauchy in Cb([x0,∞)),

and thus there exists a unique53 ỹ(x, λ) ∈ Cb([x0,∞)) satisfying

ỹ = ỹ0 + F ỹ (5.50)

Here, we note that if ỹ0 is differentiable in x, then ỹ is also differentiable in x since F ỹ is

differentiable in x.

Taking the derivative (formally) of (5.50), we see that

d(ỹ − ỹ0)

x
= R(x, λ)ỹ(x) +B(λ)(F ỹ)(x)

= R(x, λ)ỹ(x) +B(λ)(ỹ − ỹ0).

Thus, if ỹ0 is a bounded solution of
dỹ0

dx
= B(λ)ỹ0, then ỹ, uniquely determined by (5.50), is a

bounded solution of (5.47). Conversely, if ỹ is a bounded solution of (5.47), then ỹ0 := ỹ−F ỹ

is a bounded solution of
dỹ0

dx
= B(λ)ỹ0. Any bounded solution of

dỹ0

dx
= B(λ)ỹ0 on Cb([x0,∞))

is a constant multiple of v+(λ). We choose ỹ0(x, λ) := v+(λ).

To finish the proof, we note that since the sequence (5.49) converges uniformly in λ on Ω1,

ỹ(x, λ) is also analytic in λ on Ω1. From (5.48) and H3,

ỹ − v+ = ỹ − ỹ0 = (F ỹ) (x)→ 0 as x→ +∞

uniformly in λ ∈ Ω1. ỹ(x, λ) is uniquely and analytically (in λ) extended on the half line

(−∞, x0] by solving the initial value problem. From the implicit function theorem, µ+
1 (λ) is

analytic since µ+
1 is simple. Hence, y+ := eµ

+
1 xỹ is the desired solution.

We extend this local (in λ) result to Ω. We note that this extension is possible since Ω

is simply connected. For any two region Ω1,Ω2 ⊂ Ω with Ω1 ∩ Ω2 6= ∅, there exist unique

ỹ1 = ỹ0 +F ỹ1 on [x1,∞)×Ω1 and ỹ2 = ỹ0 +F ỹ2 on [x2,∞)×Ω2. By the uniqueness, ỹ1 = ỹ2

on [x3,∞)× (Ω1 ∩Ω2), where x3 = max{x1, x2}. By solving the initial value problem, ỹ1 = ỹ2

on (−∞,∞)× (Ω1 ∩ Ω2).

In the following proposition, we characterize the asymptotic behavior of any solution of

(5.39) in terms of the solution z− of the transposed equation (5.40). We note that any solution

y of (5.39) satisfies y = O(eµ
−
1 x) as x→ −∞ since µ−1 is the smallest simple eigenvalue.

53Uniqueness follows from that F is a constraction.
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Proposition 5.37. Suppose that y is a solution (5.39) and z is a solution of (5.40). Then,

there holds that

y(x, λ) ∼ (z− y)(λ)eµ
−
1 (λ)xv−(λ) as x→ −∞,

z(x, λ) ∼ (z y+)(λ)e−µ
+
1 (λ)xw+(λ) as x→ +∞.

(5.51a)

(5.51b)

Moreover, if y and z are analytic in λ ∈ Ω for each x, the limits are uniform in λ on any

compact subsets of Ω.

Proof. We fix λ. Let ỹ(x) := e−µ
−
1 xy(x). From (5.39), we obtain the equation (5.47), but now

B(λ) := A−∞(λ)− µ−1 I and R(x, λ) := A(x, λ)−A−∞(λ). The eigenvalues of B are composed of

0 and n − 1 values of strictly positive real parts. We define the linear bounded operator F on

Cb((−∞, x0]) by

(F ỹ)(x) := −
∫ x0

x
eB(λ)(x−s)PR(s, λ)ỹ(s) ds

+

∫ x

−∞
eB(λ)(x−s)(I − P )R(s, λ)ỹ(s) ds,

(5.52)

where P is a projection operator onto the unstable subspace.54 Since ‖eB(x−s)P‖ ≤ Ceµ̃∗(x−s)

for x− s ≤ 0, where µ̃∗ > 0, and ‖eB(x−s)(I − P )‖ ≤ C for x− s ≥ 0, we have

|(F ỹ)(x)| ≤ C sup
x≤x0

|ỹ(x)|
(∫ x0

x
|R(s, λ)| ds+

∫ x

−∞
|R(s, λ)| ds

)
≤ C sup

x≤x0
|ỹ(x)|

∫ x0

−∞
|R(s, λ)| ds.

Thus, for x0 < 0 with sufficiently large modulus, F is a contraction. As before, there is a one-to-

one correspondence between bounded solutions of (5.47) and bounded solutions of
dỹ0

dx
= Bỹ0.

Moreover, |ỹ − ỹ0| → 0 as x→ −∞. Indeed, for given ε > 0, we choose x1(ε) < x0 so that

C sup
x≤x0

|ỹ(x)|
∫ x1(ε)

−∞
|R(s, λ)| ds < ε/2.

Then,

|(F ỹ)(x)| ≤
∣∣∣∣∫ x0

x1

eB(λ)(x−s)PR(s, λ)ỹ(s) ds

∣∣∣∣+

∣∣∣∣∫ x1

x
eB(λ)(x−s)PR(s, λ)ỹ(s) ds

∣∣∣∣
+

∣∣∣∣∫ x

−∞
eB(λ)(x−s)(I − P )R(s, λ)ỹ(s) ds

∣∣∣∣
≤
∣∣∣∣∫ x0

x1

eB(λ)(x−s)PR(s, λ)ỹ(s) ds

∣∣∣∣+ ε/2.

We let x→ −∞ so that

|eB(λ)xP |
∣∣∣∣∫ x0

x1

e−sB(λ)R(s, λ)ỹ(s) ds

∣∣∣∣ < ε/2.

Any bounded solution (indeed, any solution) of
dỹ0

dx
= Bỹ0 on (−∞, x0] satisfies lim

x→−∞
y0 =

cv−(λ) for some constant c since it is a linear combination of v−(λ) and the other n−1 linearly

54Direct sum of the generalized eigenspaces corresponding to the eigenvalues with positive real parts.

121



independent solutions of
dỹ0

dx
= Bỹ0 which tend to zero as x → −∞.55 From the previous

proposition, we have

z−y = eµ
−
1 xz−ỹ→ cw−v− = c as x→ −∞,

which implies that z−y = c.

Suppose that y is analytic in λ. Then, z−(x, λ)y(x, λ) = c(λ) is analytic in λ, and thus

ỹ0 = c(λ)v−(λ) is also analytic. Fix a domain Ω1. From the one-to-one correspondence,

|ỹ(x, λ)| ≤ sup
λ∈Ω1

|ỹ0(λ)|+ |(F ỹ)(x, λ)|

≤ sup
λ∈Ω1

|ỹ0(λ)|+ C(λ) sup
x≤x0

|ỹ(x, λ)|
∫ x0

−∞
|R(s, λ)| ds

≤ sup
λ∈Ω1

|ỹ0(λ)|+ 1

2
sup

x≤x0,λ∈Ω1

|ỹ(x, λ)|

for x0 < 0 sufficiently large |x0| so that sup
λ∈Ω1

(
C(λ)

∫ x0

−∞
|R(s, λ)| ds

)
<

1

2
holds. Thus,

sup
x≤x0,λ∈Ω1

|ỹ(x, λ)| < 2 sup
λ∈Ω1

|ỹ0(λ)|.

Using this, we can show that |ỹ − ỹ0| → 0 as x→ −∞ uniformly in λ ∈ Ω1.

Proposition 5.38. There exist n−1 linearly independent solutions y−i (x, λ) of (5.39), and n−1

linearly independent solutions z+
i (x, λ) of (5.40) such that the following hold. For i = 2, · · · , n,

(a) y−i (x, λ) and z+
i (x, λ) are analytic in λ ∈ Ω for each x;

(b) y−i (x, λ) = O(eµ
−
∗ xeδ|x|) as x→ −∞ for any δ ∈ (0, µ+

∗ −Reµ+
1 ), and z+

i (x, λ) = O(e−µ
+
∗ xeδ|x|)

as x→ +∞ for any δ ∈ (0, µ−∗ − Reµ−1 );

(c) Any solution of (5.39) ( (5.40)) with y(x) = O(eµ
−
∗ xeδ|x|) as x→ −∞ (z(x) = O(e−µ

+
∗ xeδ|x|)

as x→ +∞) is a linear combination of y−i (x, λ) (z+
i (x, λ) respectively).

Proof. For any fixed λ ∈ Ω, it is classical (see [6]) that that there exist linearly independent

solutions y−i (x) of (5.39) with y−i (x) = O(eδ|x|eµ
−
∗ x) as x → −∞ for i = 2, · · · , n. Here we

construct such solutions which are analytic in λ ∈ Ω.

Recall that for any solution of (5.39), f(y) := z−y is independent of x. Indeed, f is a

linear mapping from the n-dimensional solution space of (5.39) to a complex number. Thus,

dim N (f) = n− 1. From Proposition 5.37, we see that f(y−i (x)) = 0. Thus, {y−i (x)} is a basis

of N (f), and every element y ∈ N (f) satisfies y = O(eδ|x|eµ
−
∗ x) as x→ −∞.

We fix x0. Suppose that there exists an analytic n × (n − 1) matrix V (λ) with rank n − 1

such that z−(x0, λ)V (λ) = 0. We solve the initial value problem of a matrix valued ODE

dy−

dx
= A(x, λ)y−, y−(x0, λ) = V (λ).

55We recall that if a < b, eax dominates ebx as x→ −∞ in the sense that eax(1 + e(b−a)x) ∼ eax as x→ −∞.
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Then, the n− 1 columns of y−(x, λ) is the desired y−i (x, λ) since we have

0 = z−(x0, λ)y−i (x0, λ) = z−(λ)y−i (λ),

which implies that y−i (x, λ) ∈ N (f).56

Let us construct V (λ). We define P (λ) := I − ztz

zzt
, where z = z−(x0, λ). P (λ) is a

projection onto the space orthogonal to z−(x0, λ). Since z−(x0, λ) is analytic, P (λ) is also

analytic. We fix λ0. Let V0 = (y−2 , · · · ,y
−
n )(x0, λ0). Note that z−(x0, λ0)y−i (x0, λ0) = 0. Thus,

P (λ0)y−i (x0, λ0) = y−i (x0, λ0). From Lemma 5.35, there exists an analytic n × n matrix U(λ)

such that U(λ)P (λ0) = P (λ)U(λ) for all λ ∈ Ω. Let V (λ) := U(λ)V0. Then,

V (λ) = U(λ)V0 = U(λ)P (λ0)V0 = P (λ)U(λ)V0 = P (λ)V (λ).

Therefore, z−(x0, λ)V (λ) = 0. Recall that U(λ) is invertible, and the columns of V0 are linearly

independent. Thus, the columns of V (λ) are linearly independent.

Proposition 5.39 (Characterizations of the asymptotic behaviors of solutions of (5.39)). If y

is a solution of (5.39), then (a)–(d) are equivalent.

1. (a) y(x) = o(eµ1x) as x→ −∞;

(b) z−y = 0;

(c) y =
n∑
i=2

ciy
−
i (x, λ) for some ci ∈ C;

(d) y = O(eµ∗xeδ|x|) as x→ −∞ for any δ ∈ (0, µ∗ − Reµ1).

2. (a) y(x) = O(eµ1x) as x→ +∞;

(b) z+
i y = 0 for all i with 2 ≤ i ≤ n;

(c) y = cy+(x, λ) for some c ∈ C;

(d) y(x) = o(eµ∗xe−δ|x|) as x→ +∞.

Proof. We first prove the first assertion. (a) and (b) are equivalent from Proposition 5.37. (b)

and (c) are equivalent since {y−i } is a basis of kerf , where f(y) = z−y is defined in the proof

of Proposition 5.38. (c) are (d) are equivalent from Proposition 5.38.

We prove the second assertion. (a) and (c) are equivalent from Proposition 5.37. Since

z+
i y+ = O(e(δ−µ+∗ +µ1)x) as x → +∞ for all i and δ − µ+

∗ + Reµ+
1 < 0, z+

i y+ = 0. Thus, (c)

implies (b). Since z+
i are linearly independent, the dimension of the solution space of z+

i y = 0

(i = 2, · · · , n) is 1. Since z+
i y+ = 0, (b) implies (c). (a) implies (d) since e(δ−µ∗)xy(x) =

O(e(δ−µ+∗ +µ1)x) as x→ +∞ and δ−µ+
∗ + Reµ+

1 < 0. (d) implies (b) since z+
i y = O(eδxe−µ∗x)y

as x→ +∞.

56By uniqueness, solutions of the linear ODE system with linearly independent initial data are linearly inde-

pendent. Or one may consider the transposed equation and solve the matrix valued ODE.
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Let

y− :=
[
y−2 , · · · ,y

−
n

]
∈ Cn×(n−1) and z+ :=


z+

2
...

z+
n

 ∈ C(n−1)×n.

The proof of Proposition 5.39 implies that for all λ ∈ Ω,

(z+y+)(λ) = (0, · · · , 0)T ∈ Cn−1 and (z−y−)(λ) = (0, · · · , 0) ∈ Cn−1. (5.53)

Remark 26 (Regarding Prop 5.39). When µ < µ∗, we recall that eµ∗x dominates eµx as x→ +∞
whereas eµx dominates eµ∗x as x→ −∞. Hence, the statements that the big O part implies the

small o part is trivial from (5.41). The idea of the converse part is as follows. For simplicity, we

suppose that A+
∞ = A−∞ ∈ C3×3 and Reµ1 < 0 < Reµ2 < Reµ3. We forget about analyticity

of solutions. For each λ ∈ Ω, we can construct a solution y+ of (5.39) satisfying y+ ∼ eµ1x as

x→ +∞. Similarly, we can construct linearly independent solutions of (5.39) satisfying

y−1 ∼ e
µ1x, y−2 ∼ e

µ2x, y−3 ∼ e
µ3x as x→ −∞.

Hence y+ =
3∑
i=1

cny
−
i for some functions cn(λ), and we have

y+ ∼ c1(λ)eµ1x as x→ −∞.

Now it is clear that c1(λ) = 0 for some λ if and only if y+ is a linear combination of y−2 and y−3 ,

which decays to zero as x → −∞. The important part is that by introducing the transposed

system, one can show that z−y+(λ) = c1(λ). Moreover, z−y+(λ) can be chosen to be analytic

in λ.

The proof invokes the relation of the ODE system and its transpose system. The crucial

properties are the following:

1. the dot product of the solutions of each system is independent of x;

2. construction of the analytic basis of the kernel of z−y (and z+
i y) with the behavior

O(e(µ∗−δ)x) as x→ −∞ (and O(eµ1x) as x→ +∞).

The property that small o implies big O means that there are some dichotomies:

1. as x→ +∞, either y = O(eµ1x) or |y| ≥ Ceµ∗x for some constant C > 0;

2. as x→ −∞, either y = O(e(µ∗−δ)x) or |y| ≥ Ceµ1x for some constant C > 0.

In particular, this indicates the possible asymptotic behaviors of y+ (as x→ −∞) and y−i (as

x→ +∞).
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5.5.3 Definition of the Evans Function

Definition 5.17. For λ ∈ Ω, we define the Evans function

D(λ) := z−(x, λ)y+(x, λ).

Theorem 5.40. D(λ) is analytic in λ ∈ Ω. D(λ) = 0 if and only if there exists a non-trivial

solution y of (5.39) satisfying

y(x) = o(eµ
−
1 x) as x→ −∞ and y(x) = O(eµ

+
1 x) as x→ +∞. (5.54)

Proof. Since z− and y+ are analytic in λ ∈ Ω, D(λ) is analytic. By the construction (Proposition

5.36), we have y+(x, λ) = O(eµ
+
1 x) as x→ +∞. From Proposition 5.37, we have

lim
x→−∞

e−µ
−
1 xy+(x, λ) = (z− y+)v− = D(λ)v−. (5.55)

Hence D(λ) = 0 implies (5.54). Conversely, if y(x) = O(eµ
+
1 x) as x→ +∞, then y is a constant

multiple of y+ by Proposition 5.36. Hence, we have y+(x) = o(eµ
−
1 x) as x→ −∞, which implies

that D(λ) = 0 by (5.55).

Proposition 5.41. For λ ∈ Ω, the following statements are equivalent.

(a) D(λ) := (z−y+)(x, λ) = 0. (b) det [y+y−](x, λ) = 0.

(c) det(z+y−)(x, λ) = 0. (d) det

[
z−

z+

]
(x, λ) = 0.

Proof. From Proposition 5.39, (a) if and only if y+ =
∑n

i=2 ciy
−
i . Without loss of generality,

we let y−2 = y+ +
∑n

i=3 ciy
−
i . Since z+y+ = 0 from (5.53),

z+y− =
[
z+y−2 , · · · , z

+y−n

]
=
[
z+(y+ +

∑n
i=3 ciy

−
i ), z+y−3 , · · · , z+y−n

]
=
[
z+(
∑n

i=3 ciy
−
i ), z+y−3 , · · · , z+y−n

] .

Now it easily follows that (a),(b) and (c) are equivalent. We omit the proof for (d).

Indeed, the following stronger result is true. We refer to [26], p.64, for the proof.

Proposition 5.42. Fix x0 ∈ R. There exist analytic functions f1, f2, f3 of λ ∈ Ω, having no

zeros in Ω, such that

D(λ) = f1 det[z+y−](λ) = f2 det[y+y−](λ) = f3 det

[
z−

z+

]
(λ)

Remark 27. On any open connected set of Ω, the zeros of D(λ) are isolated points unless D(λ)

is identically zero.
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Remark 28. If Reµ1 < 0 < µ∗, then (5.54) is equivalent to that y(x) is bounded on R. From

Proposition 5.39, (5.54) is equivalent to that

y(x) = o(eµ1x) as x→ −∞ and y(x) = o(e(µ∗−δ)x) as x→ +∞.

Thus, if y is bounded, then (5.54) holds. On the other hand, (5.54) is equivalent to that

y(x) = O(e(µ∗−δ)x) as x→ −∞ and y(x) = O(eµ1x) as x→ +∞.

Thus, (5.54) implies that y is bounded. In particular, this shows that (5.54) is equivalent to

that y(x) exponentially decreases as |x| → ∞.

Remark 29. From Proposition 5.39, (5.54) is equivalent to that

z−y = 0 and z+
i y = 0 for i = 2, · · · , n.

These can be interpreted as asymptotic conditions of (5.39) on R: one condition z−y = 0 for

x→ −∞, and n− 1 conditions z+
i y = 0 for x→ +∞.

Remark 30. Suppose that A+
∞(λ) = A−∞(λ). For a solution y+(x, λ) ∼ eµ1xv as x → +∞, we

have y+(x, λ) ∼ D(λ)eµ1xv as x → −∞. If A(x, λ) = A(λ), we see that D(λ) cannot be zero

for all λ ∈ Ω since any solution y satisfying y(x, λ) ∼ eµ1xv as x→ +∞ must be eµ1xv.

5.5.4 Properties of the Evans Function

Proposition 5.43. Suppose that A(x, λ) is real for all x whenever λ ∈ Ω is real. Then whenever

λ, λ ∈ Ω, we have A(x, λ) = A(x, λ), y+(x, λ) = y+(x, λ), y−(x, λ) = y−(x, λ), z−(x, λ) =

z−(x, λ), z+(x, λ) = z+(x, λ), and D(λ) = D(λ).

Proof. A(x, λ) = A(x, λ) follows from the Schwarz reflection principle. Since we already know

that y+ is analytic in λ, it is enough to show that y+(x, λ) is real when λ is real. First, we

observe that since A±(λ) is real when λ is real, µ±1 (λ) is also an eigenvalue of A±(λ). Hence,

µ±1 (λ) must be real due to H4.

We claim that v±(λ) is real when λ is real. To do this, we recall the construction of v±(λ).

Recall that we chose v(λ) := U(λ)v0(λ0), where U(λ) is the solution of

U ′(λ) = (P ′P − PP ′)(λ)U(λ)

with U(λ0) = I. It is enough to show that P (λ) is pure imaginary valued when λ is real. Then,

P ′(λ) is also pure imaginary valued by the definition of analytic function. Then, we choose

real-valued v0(λ0) for a fixed real λ0, which is possible since A(λ) is real.

We observe that if ν is not an eigenvalue of A∞(λ), then

(A∞(λ)− νI)−1 = (A∞(λ)− νI)−1.
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Choose a contour Γ(θ) := µ1(λ) + εeiθ for sufficiently small ε > 0. Then, for λ real,

P (λ) =

∫
Γ
(A∞(λ)− νI)−1 dν

=

∫ 2π

0
(A∞(λ)− (µ1(λ) + εe−iθ)I)−1(−εie−iθ) dθ

=

∫ −2π

0
(A∞(λ)− (µ1(λ) + εeiθ

′
)I)−1(εieiθ

′
) dθ′

= −P (λ).

Now, since y+(x, λ) satisfies (5.39) and has the same asympotic behavior as y+(x, λ) from

Proposition 5.36, we see that y+(x, λ) = y+(x, λ) for λ real. For y−j (x, λ) = y−j (x, λ), we choose

V0 to be real for real λ0 (See the construction of y−j in the proof of Proposition 5.38.).

Proposition 5.44 (Resolvent formula). For λ ∈ Ω with D(λ) 6= 0, let

G(x, s;λ) :=


1

D(λ)
y+(x, λ)z−(s, λ), x > s,

−y−(x, λ)(z+y−)−1(λ)z+(s, λ), x < s.

Then G satisfies 
dG

dx
(x, s;λ) = A(x, λ)G(x, s;λ), (x 6= s),

lim
x→s+

G(x, s)− lim
x→s−

G(x, s) = I.
(5.56)

Proof. We note that for any x0 ∈ R,([
z−

z+

] [
y+y−

])
(x0, λ) =

[
D(λ) 0

0 (z+y−)(λ)

]
.

Since D(λ) 6= 0, we have

I =

[
z−

z+

]−1 [
D 0

0 z+y−

] [
y+y−

]−1
,

and thus,

I =
[
y+y−

] [D−1 0

0 (z+y−)−1

][
z−

z+

]

=
y+(x0, λ)z−(x0, λ)

D(λ)
+ y−(x0, λ)(z+y−)−1(λ)z+(x0, λ)

Let

P (λ) :=
y+(x0, λ)z−(x0, λ)

D(λ)

and Φ(x, λ) be the fundamental matrix such that

d

dx
Φ(x, λ) = A(x, λ)Φ(x, λ), Φ(x0, λ) = I.
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Then we get

1

D(λ)
y+(x, λ)z−(s, λ) =

1

D(λ)
Φ(x; )y+(x0; )z−(x0; )Φ−1(s; )

= Φ(x; )P (λ)Φ−1(s; )

and

−y−(x, λ)(z+y−)−1(λ)z+(s, λ) = −Φ(x; )(I − P (λ))Φ−1(s; ).

One may check that

G(x, s;λ) :=

{
Φ(x; )P (λ)Φ−1(s; ) x > s,

−Φ(x; )(I − P )(λ)Φ−1(s; ) x < s.

satisfies (5.56).

Theorem 5.45 (Derivatives of D(λ)). Let

µ(x, λ) :=

µ
−
1 (λ) for x < 0,

µ+
1 (λ) for x > 0.

Then for all λ ∈ Ω,

D′(λ) =−
∫ ∞
−∞

z−(x, λ) [Aλ(x, λ)− µλ(x, λ)I] y+(x, λ) dx

+D(λ)
[
w−λ (λ) · v−(λ) + w+(λ) · v+

λ (λ)
]
,

(5.57)

in the sense of an improper integral. Also for k ≥ 2, ∂kλD is given by taking the derivatives of

(5.57).

Proof. D′(λ) = z−λ y+ + z−y+
λ . On the other hand, we have (see remark below)

dz−λ
dx

= −z−Aλ − z−λA,
dy+

λ

dx
= Aλy

+ +Ay+
λ . (5.58)

Hence, from (5.39) and (5.40),

d

dx
(z−λ y+) =

dz−λ
dx

y+ + z−λ
dy+

dx

= −z−Aλy
+

= − d

dx
(z−y+

λ ).

(5.59)

For R,S > 0, we have

z−λ y+(0, λ)− z−λ y+(−R, λ) =

∫ 0

−R
−z−Aλy

+ dx (5.60)

z−y+
λ (S, λ)− z−y+

λ (0, λ) =

∫ S

0
z−Aλy

+ dx (5.61)
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Thus,

D′(λ) = z−λ y+(0, λ) + z−y+
λ (0, λ)

=

∫ S

−R
−z−Aλy

+ dx+ z−λ y+(−R, λ) + z−y+
λ (S, λ).

(5.62)

Let ỹ = e−µxy+ and z̃ = eµxz−. Since ỹλ = −µλxe−µxy++e−µxy+
λ and z̃λ = µλxe

µxz−+eµxz−λ ,

we have

D′(λ) =

∫ S

−R
−z−Aλy

+ dx+ (z̃λe
−µxy+ − µλxz−y+)(−R, λ)

+ (z−eµxỹλ + µλxz−y+)(S, λ)

=−
∫ S

−R
z−(Aλ − µλI)y+ dx+ (z̃λỹ)(−R, λ)

+ (z̃ỹλ)(S, λ),

(5.63)

where we have used that (z−y+)x = 0 in the second line. Since

ỹ→ v+ (x→ +∞), ỹ→ D(λ)v− (x→ −∞),

z̃→ w− (x→ −∞), z̃→ D(λ)w+ (x→ +∞)

(5.64a)

(5.64b)

uniformly in λ, we have ỹλ → v+
λ as x→ +∞ and z̃λ → w−λ as x→ −∞. Letting R,S → +∞,

we obtain (5.57). The higher order derivatives are obtained by taking derivatives of (5.63) and

(5.64) in λ.

Remark 31 (Interchanging the order of derivative (5.58)). We have

dy+

dx
= A(x, λ)y+,

∂

∂λ

dy+

dx
= Aλy

+ +Ay+
λ .

y+
x (x, λ) is analytic in λ for each fixed x from the ODE. Thus, from the Cauchy integral

formula, we have
∂

∂λ

dy+

dx
(x, λ) =

1

2πi

∫
Γ

y+
x (x, z)

(z − λ)2
dz.

Since y+(x, λ) is analytic in λ, by the Cauchy integral formula, we have

∂

∂λ
y+(x, λ) =

1

2πi

∫
Γ

y+(x, z)

(z − λ)2
dz.

Since A(x, λ) and y+(x, λ) are jointly continuous57, y+
x (x, λ) is also jointly continuous from the

ODE.

Thus, by the bounded convergence theorem, (or by other useful theorem) ∂x∂λy
+(x, λ) exists

and
dy+

λ

dx
=

∂

∂λ

dy+

dx
(x, λ).

57Since we know that y+(x0, λ) is continuous in λ and A(x, λ) is jointly continuous, the proof can be done by

the standard iteration argument on any compact set of R × Ω. For instance, fixed point of y(x, λ) = y(x0, λ) +∫ x

x0

A(s, λ)y(s, λ) ds.
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If the parameter is real, we cannot use this argument. In this case, we show that yλ exists

and it a solution of inhomogeneous linear ODE ∂xy = Ay +Aλy. Due to this fact, it turns out

that ∂x∂λy
+ = ∂λ∂xy

+. See [18], Chapter 5.

The following proposition relates the order of zeros of D(λ) and the decay rates of ∂jλy
+.

This is useful when one calculate the algebraic multiplicity of the eigenvalues, equivalently, the

longest possible length of the Jordan chain.

Proposition 5.46. Suppose that λ ∈ Ω is a zero of the Evans function D of order k ≥ 1, that

is, 0 = D(j)(λ) 6= D(k)(λ) for 0 ≤ j ≤ k− 1. Then, for 0 ≤ j ≤ k− 1 and any sufficiently small

δ > 0,

∂jλy
+(x, λ) = O(eµ

−
∗ xeδ|x|) as x→ −∞, (5.65)

D(k)(λ) = lim
x→−∞

z+(x, λ)∂kλy
+(x, λ). (5.66)

Remark 32. Proposition 5.46 says that the order of ∂kλy
+ as x → −∞ is exactly eµ

−
1 x. Let

µ− = µ−1 . Suppose that we have 0 = D(0) 6= D′(0). We recall that the limit

lim
x→−∞

e−µ
−xy+ = D(λ)v(λ)

is uniform in λ. By taking the derivative in λ, we obtain

lim
x→−∞

(
e−µ

−xy+
λ − µ

−
λ xe

−µ−xy+
)

= D′(0)v(0) +D(0)vλ(0).

at λ = 0. Since D(0) = 0, we have y+ = o(eµ
−x) as x → −∞, equivalently, y+ = O(eµ

−
∗ xeδ|x|)

as x→ −∞ from Proposition 5.39. Hence from µ− < µ−∗ , we have

lim
x→−∞

xe−µ
−xy+ = 0.

Therefore, we obtain

lim
x→−∞

e−µ
−xy+

λ = D′(0)v(0) 6= 0.

Indeed, Proposition 5.46 can be proved by induction based on this observation. We refer to

[26].

The next two propositions are useful for studying the asymptotic behavior of the Evans

function for large |λ|. In many cases, the asymptotic matrix is diagonalizable with distinct ma-

trix eigenvalues for large |λ|. One may apply some perturbation arguments such as Proposition

5.47 to investigate the asymptotic behavior of the matrix eigenvalues.

Proposition 5.47. Suppose that P̃ (µ;λ) and L(µ;λ) are analytic functions in µ, where λ is a

parameter. Suppose that P̃ has a simple zero µ̃ = µ̃(λ) as |λ| → 0 and that there is a positive

function ρ(λ) and a constant ρ0 > 1 such that ρ(λ) → 0 as |λ| → ∞, and ρ ≥ ρ0
|L(µ̃)|
|P̃ ′(µ̃)|

on

|µ− µ̃| = ρ. Then, P := P̃ + L has exactly one zero µ0 = µ0(λ) satisfying |µ0 − µ̃| ≤ ρ.
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Proof. By Taylor’s theorem, P̃ (µ) = P̃ ′(µ̃)(µ−µ̃)(1+O
P̃

(|µ−µ̃|)) and L(µ) = L(µ̃)(1+OL(|µ−
µ̃|)). On |µ− µ̃| = ρ,

|P̃ (µ)| = |P̃ ′(µ̃)||µ− µ̃||1 +O
P̃

(|µ− µ̃|)| = ρ|P̃ ′(µ̃)||1 +O
P̃

(|µ− µ̃|)|

> ρ0|L(µ̃)||1 +O
P̃

(|µ− µ̃|)|

> |L(µ̃)||1 +OL(|µ− µ̃|)| = |L(µ)|.

The proof is finished by applying Rouché’s theorem.

Proposition 5.48. We assume that for a matrix A(x, λ) with lim
x→±∞

A(x, λ) = A∞(λ), the

system (5.39) satisfies the hypotheses H1–H4. We further assume that A∞(λ) is diagonalizable

such that for the matrices W and V defined by

W :=


w1

...

wn

 , V :=
[
v1, · · · ,vn

]
,

where wi and vi are the left and right eigenvectors of A∞(λ) associated with µi, we have

WA∞(λ)V = diag{µj}, WV = I.

Let R(x, λ) := A(x, λ)−A∞(λ). Then, there exists 0 < δ0 < 1 such that if

∫ ∞
−∞
|WR(x, λ)V | dx ≤

δ0, then

|D(λ)− 1| ≤ C
∫ ∞
−∞
|WR(x, λ)V | dx. (5.67)

Proof. By the construction of y+ (see Proposition 5.36), we have lim
x→+∞

e−µ1xWy+(x) = e1.

We define v+(x) := e−µ1xWy+(x)− e1. Then v+(x)→ 0 as x→ +∞, and

dv+

dx
= Bv+(x) + F (x)(e1 + v+(x)), (5.68)

where
B(λ) := W (A∞(λ)− µ1(λ)I)V = diag{µj − µ1},

F (x) := W (A(x, λ)−A∞(λ))V.

We multiply by e−Bx and integrate it on [x, x1], then we have

e−Bx1v+(x1)− e−Bxv+(x) =

∫ x1

x
e−BsF (s)(e1 + v+(s)) ds. (5.70)

Multiplying by eBx, we have

eB(x−x1)v+(x1)− v+(x) =

∫ x1

x
eB(x−s)F (s)(e1 + v+(s)) ds. (5.71)

Since B is diagonal and the smallest value of real part of the eigenvalues is 0, we have ‖eBx‖ ≤ 1

for x ≤ 0, and thus the first term tends to 0 as x1 → +∞. Moreover,∫ +∞

x
eB(x−s)F (s)(e1 + v+(s)) ds <∞.
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Hence, we have

v+(x) = −
∫ ∞
x

eB(x−s)F (s)(e1 + v+(s)) ds.

And

|v+(x)| ≤
∫ ∞

0
|F (s)| ds(1 + sup

s∈[0,∞)
|v+(s)|). (5.72)

Thus, if

∫ ∞
0
|F (s)| ds < δ0 < 1, then

sup
x∈[0,∞)

|v+(x)| ≤ C
∫ ∞

0
|F (s)| ds. (5.73)

In a similar fashion, let w−(x) := z−(x)eµ1xV − et1. Then

dw−

dx
= −w−(x)B − (et1 + w−(x))F (x). (5.74)

Since eµ1xz−(x) → w1 as x → −∞, we have w−(x) → 0 as x → −∞. Multiplying (5.74) by

eBx, and then integrating the resultant over [x1, x], we get

w−(x) = w−(x1)eB(x1−x) −
∫ x

x1

(et1 + w−(s))F (s)eB(s−x) ds. (5.75)

The first term tends to zero as x1 → −∞. Thus,

w−(x) = −
∫ x

−∞
(et1 + w−(s))F (s)eB(s−x) ds. (5.76)

Thus, we have if

∫ ∞
0
|F (s)| ds < δ0, then

sup
x∈(−∞,0]

|w−(x)| ≤ C
∫ 0

−∞
|F (s)| ds. (5.77)

Since D(λ, ε) = z−y+ = (w− + et1)(v+ + e1) (recall that WV = I), we arrive at

|D(λ, ε)− 1| ≤ C
∫ ∞
−∞
|F (s)| ds. (5.78)

5.5.5 Application: Linear Instability of Nonlinear Waves

We consider the generalized KdV equation

∂tu+ ∂sf(u) + ∂3
su = 0,

where f(u) = up+1/(p + 1) and p ≥ 1. Considering the change of variable x = s − ct, one can

show via a phase plane analysis that the gKdV equation has a solitary wave solution uc(s− ct)
traveling with the speed c > 0, and it satisfies

−c∂xuc + ∂xf(uc) + ∂3
xuc = 0. (5.79)
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Indeed, following the calculation given in Appendix, one can obtain the explicit form of uc,

uc(x) =

(
1

2
c(p+ 1)(p+ 2)

)1/p

sech2/p

(
p
√
c x

2

)
, (c > 0). (5.80)

We consider the linearized gKdV equation around uc:

∂tv = ∂xLcv,

where Lc := −∂2
x + c − f ′(uc). We consider the operator ∂xLc : H3(R) ⊂ L2(R) → L2(R) and

the eigenvalue problem

λv = ∂xLcv. (5.81)

We study the eigenvalue problem (5.81). By applying the Evans function, we show that

there is an unstable eigenvalue of the operator ∂xLc. This result is due to [26]. We recall that

the Evans function can be constructed such that D(λ) ∈ R for λ ∈ R.

Reformulation of the eigenvalue problem We let

y = (v, ∂xv, ∂
2
xv)T .

Then we obtain from (5.81) that

dy

dx
= A(x, λ)y =


0 1 0

0 0 1

−λ− ∂x(f ′(uc)) c− f ′(uc) 0

y. (5.82)

We consider the transpose equation dz/dx = −zA(x, λ). Each component of z, say zj , satisfies

z′1 = −z3(−λ− ∂x(f ′(uc))), z′2 = −z1 − z3(c− f ′(uc)), z′3 = −z2. (5.83)

In particular, z3 satisfies the transpose equation of the eigenvalue problem (5.81)58:

λz3 = −Lc∂xz3. (5.84)

The asymptotic matrix of A(x, λ) is

A∞(λ) =


0 1 0

0 0 1

−λ c 0

 ,

and the characteristic polynomial is

d(µ;λ) = µ3 − cµ+ λ. (5.85)

58A similar observation also holds for the general n-th order differential operators.
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The right and left eigenvectors, vj and wj , of A∞ corresponding the matrix eigenvalue µj are

given by

vj = (1, µj , µ
2
j )
t, wj =

1

3µ2
j − c

(µ2
j − c, µj , 1)

so that wjvj = 1 holds. We note that 3µ2
j − c = ∂µd(µj) 6= 0 if µj is simple. By a simple

calculation, one can check that there is a simply connected domain Ω containing the closed

right-half plane such that for λ ∈ Ω,

Reµ1 < Reµ2,Reµ3,

which implies that the assumption H4 holds on Ω. H1-H3 also hold on Ω since uc(x) expo-

nentially decreases to zero as |x| → +∞. Hence the Evans function D(λ) is defined on Ω. In

particular, for λ ∈ Ω with Reλ > 0,

Reµ1 < 0 < Reµ2,Reµ3

holds. Therefore, the zeros of D(λ) lies on the open left-half corresponds to the isolated eigen-

values of ∂xLc in L2(R).

Asymptotic behavior of eigenvalues as |λ| → ∞ Let P̃ = µ3 +λ and L(µ) = −cµ. P̃ has

three simple roots µ̃i = (−λ)1/3 for λ 6= 0. For µ sufficiently close to µ̃,

|L(µ̃)|
|P̃ ′(µ̃)|

=
c

3|λ|1/3
, L(µ) = −cµ̃(1 +O(|µ− µ̃|), P̃ ′(µ) = 3µ̃2(1 +O(|µ− µ̃|)).

We let ρ(λ) = ρ0
c

3|λ|1/3
for any ρ0 > 1. Applying Proposition 5.47, we conclude that the

characteristic polynomial d(µ;λ) in (5.85) has three simple zeros µi satisfying |µi − µ̃i| ≤ ρ.

Asymptotic behavior of D(λ) as |λ| → ∞ Let us define 3× 3 matrices

W :=


w1

w2

w3

 and V :=
[
v1 v2 v3

]
.

By a direct computation, we obtain

(W (A−A∞)V )jk

=

W


0 0 0

0 0 0

−∂x(f ′(uc))− f ′(uc)µ1 −∂x(f ′(uc))− f ′(uc)µ2 −∂x(f ′(uc))− f ′(uc)µ3



jk

= −∂x(f ′(uc)) + f ′(uc)µk
3µ2

j − c
,

where j = 1, 2, 3 is the row index and k = 1, 2, 3 is the column index. Using the above result

for asymptotic behavior of the matrix eigenvalues, we obtain∫ ∞
−∞

W (A−A∞)V dx→ 0 as |λ| → ∞.

Applying Proposition 5.48, we conclude that D(λ)→ 1 as |λ| → ∞.
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Derivatives of D(λ) at λ = 0 At λ = 0, we have −
√
c = µ1 < µ2 = 0 < µ3 =

√
c. We let

y+ = y+
1 , z− = z−3 , and µ = µ1 for simplicity. At λ = 0, the following hold:

y+ ∼ eµx (x→ +∞),

y+ ∼ D(λ)eµx (x→ −∞),

z− ∼ e−µx(2c)−1 (x→ −∞),

0 = ∂xLcy
+, 0 = −Lc∂xz−.

Recall that the solitary wave solution uc(x) satisfies

−∂2
xuc + cuc − f(uc) = 0. (5.87)

Differentiating (5.87) in x, we see that

0 = Lc∂xuc, 0 = ∂xLc∂xuc, (5.88)

that is, yc := (∂xuc, ∂
2
xuc, ∂

3
xuc)

T is a solution of (5.82) with λ = 0, and zc defined by the relation

(5.83) with z3 = uc is a solution of the transpose ODE. Since yc and zc decays exponentially,

yc = o(e−δx) as x → +∞ and zc = o(e+δx) as x → −∞ for sufficiently small δ > 0. Thus, by

Proposition 5.39, there exist non-zero constants β1 and β′1 satisfying

y+ = β1∂xuc, z− = β′1uc.

Since y+ decays exponentially (or bounded) as x→ −∞, we conclude that D(λ) = 0. Since we

know that D(0) = 0, the formula (5.57) is simplified, and we have59

D′(0) =

∫ ∞
−∞

z−y+ dx = β1β
′
1

∫ ∞
−∞

uc∂xuc dx = 0. (5.89)

Since D(0) = D′(0) = 0, we have

D′′(0) =

∫ ∞
−∞

z−λ y
+ + z−y+

λ dx. (5.90)

Here we need to determine exact values of β1 and β′1. From (5.80), we see that there is a

constant β > 0 such that60

(uc, ∂xuc)e
−µx → β(1, µ) as x→ +∞.

Thus, we have

y+ = (βµ)−1∂xuc, z− = (2cβ)−1uc. (5.91)

Differentiating (5.81) and (5.84) in λ, we see that at λ = 0,

y+ = ∂xLcy
+
λ , z− = −Lc∂xz−λ ,

59Observe that

∫
u2 dx is constant of motion of the gKdV which is conserved.

60It is also possible to derive this from the equation (5.87). See [6] p.104.
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where y+
λ and z−λ decays to zero exponentially. By differentiating (5.87) in c,

Lc∂cuc = −uc, ∂xLc∂cuc = −∂xuc, Lc∂x

∫ x

−∞
∂cuc dx = −uc. (5.92)

Since

∂xLcy
+
λ = y+ = (βµ)−1∂xuc = −(βµ)−1∂xLc∂cuc, (5.93)

we have

∂xLc(y
+
λ + (βµ)−1∂cuc) = 0. (5.94)

Similarly, we have

Lc∂xz
−
λ = −z− = −(2cβ)−1uc = (2cβ)−1Lc∂x

∫ x

−∞
∂cuc dx,

and thus,

Lc∂x(z−λ − (2cβ)−1

∫ x

−∞
∂cuc dx) = 0.

Therefore, there exist constants β2, β
′
2 6= 0 such that β2y

+ = y+
λ + (βµ)−1∂cuc and β′2z

− =

z−λ − (2cβ)−1

∫ x

−∞
∂cuc dx.

From (5.91),

y+
λ = β2(βµ)−1∂xuc − (βµ)−1∂cuc

z−λ = β′2(2cβ)−1uc + (2cβ)−1

∫ x

−∞
∂cuc dx.

(5.95a)

(5.95b)

From (5.90), (5.91), and (5.95), we have

D′′(0) = (2cβ2µ)−1

∫ ∞
−∞

∂xuc

∫ x

−∞
∂cuc dx− uc∂cuc dx

= −(cβ2µ)−1

∫ ∞
−∞

uc∂cuc dx

= −(cβ2µ)−1∂c

∫ ∞
−∞

u2
c

2
dx.

Since µ < 0, we have sgnD′′(0) = sgn ∂c

∫ ∞
−∞

u2
c

2
dx. We let Q[uc] :=

1

2

∫ ∞
−∞

u2
c dx.

Sign of ∂cQ[uc] Let α =

(
1

2
c(p+ 1)(p+ 2)

)1/p

and γ =
p
√
c

2
. Then, we have

Q[uc] =
α2

2

∫
sech4/p(γx) dx =

α2

2γ

∫
sech4/p(x) dx.
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Thus,

Q[uc]
−1∂cQ[uc] = ∂c lnQ[uc]

= ∂c

(
2 lnα+ ln

∫
sech4/p(x) dx− ln 2− ln γ

)
= ∂c (2 lnα− ln γ)

= ∂c

(
2

p
ln
( c

2
(p+ 1)(p+ 2)

)
− ln p

√
c+ ln 2

)
=

2

pc
− 1

2c

=
4− p
2cp

.

Thus, we conclude that

∂cQ[uc] > 0 if p < 4

∂cQ[uc] < 0 if p > 4.

(5.96a)

(5.96b)
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