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Abstract

This thesis is a thorough review of the Ph.D thesis titled "The Zeros of Elliptic Curve L-

functions" [Spi15] by Simon Spicer. His thesis is devoted to compute the ranks of elliptic curves.

Firstly, we provide basic knowledge and facts about elliptic curves and in Section 8, we explain

his algorithm. The below is his algorithm to compute the rank of elliptic curves.

Let E be an elliptic curve with the global minimal Weierstrass equation E : y2+a1xy+a3y =

x3 + a2x
2 + a4x+ a6 with the conductor NE .

The algorithm goes like :

1. Compute the real period ΩE of E.

2. Set k = d26 + 3.86 log2NE + log2(Γ(1.8 + 0.25 logNE))− log2 ΩEe.

3. Evaluate LE(1) to k bits precision.

4. If k-bit binary digits are not zero, then the rank is 0.

5. Otherwise, LE(1) ≡ 0 and now evaluate L′E(1). That is, m 7→ m+ 1.

6. This procedure stops if L(m)
E (1) is not zero to k bits precision, and then output the analytic

rank of elliptic curve rE = m.

For elliptic curves with large conductors, we give an upper bound and a lower bound on the

rank.

1

2
logNE − 4.426− βE < rE < 0.5 + 0.32 logNE .

In the last section, we collected a list of minor mistakes and typos in his thesis.
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I Introduction

1.1 Basic De�nitions and Backgrounds

An elliptic curve is a smooth curve of genus one and represented by the Weierstrass equation.

Explicitly,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

And the reduced curve Ẽ/Fp modulo p is given by

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6

where ãi is ai modulo prime p.

The discriminant of an elliptic curve, DE , is de�ned by some values associated to E, can be

computed by coe�cients of the curve.

b2 = a1
2 + 4a2, b4 = a1a3 + 2a4, b6 = a23 + 4a6

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6

DE := −b22b8 − 8b34 − 27b26 + 9b2b4b6

A prime p is called a good prime if a curve Ẽ/Fp is non-singular. In the case, E is said to

have good reduction at p. If Ẽ/Fp is singular, then E is said to have a bad reduction at p.

Example I.1. E : y2 = x3 + 35x + 5 have good reduction at p = 7 since y2 = x3 + 5 is non-

singular, and E has bad reduction at p = 5 since y2 = x3 is singular. In this case, E has additive

reduction at 5 since the tangent space at the singular point of y2 = x3, is one dimensional. In

other words, the singular point of E (0, 0) is a cusp.

Example I.2. E : y2 = x3− x2 + 35 have bad reduction at p = 5 and 7, but they are slightly not

the same type of bad reduction. At �rst, both primes are multiplicative bad reduction since the

tangent space of the singular points is two dimensional(called a node).

However, when p = 5, the tangent space of E at the singular point is de�ned over Fp. Because
y2 + x2 − x3 = (y + 2x)(y − 2x) − x3 = 0 is the Taylor expansion at (0, 0). When p = 7, the

tangent space at (0, 0) is de�ned over a quadratic extension of Fp. Precisely, y2 + x2 − x3 =

(y +
√
ix)(y −

√
ix)− x3 = 0. The former is called split multiplicative reduction, and the latter

is called non-split one.

The conductor of an elliptic curve NE , is de�ned by

NE =
∏

primes

pfp(E), fp(E) =


0 if E has a good reduction at p

1 if E has a multiplicative reduction at p

2 if E has an additive reduction at p
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L-function attached to E is represented by the following Euler product.

L(E, s) =
∏

bad primes

1

1− app−s
×

∏
good primes

1

1− app−s + p1−2s

where ap is 1,−1 and 0 if E has a split, non-split, and an additive bad reduction at p respectively.

The completed L-function is made by L-function

ΛE(s) = (NE)s/2(2π)−sΓ(s)LE(s)

For elliptic curve L-functions, the point s = 1 is called the critical point, and the line <(s) = 1

is called the critical line.

The analytic rank of E, denoted by ran(E), is de�ned by the �rst non-zero coe�cient of the

Taylor series of L(E, s) at s = 1. That is, if L(E, 1 + s) = a0 + a1s+ a2s
2 + · · · , then the �rst

non-zero an(vanishing order of the series) is said to be the analytic rank of E.

By the Mordell-Weil theorem, the group of rational points on E is E(Q) ∼= Etor(Q)×Zr and
the algebraic rank of an elliptic curve is ral(E) = r, which is the exponent of non-torsion part.

ral(E) is �nite since E(Q) is �nitely generated as above.
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II The Conjectures

Conjecture II.1 (Birch, Swinnerton-Dyer, BSD). According to the BSD conjecture, the analytic

rank and the algebraic rank are exactly same. Moreover, the value of the �rst non-zero coe�cient

of the L-series at the central point is computed by

CE =
ΩE × RegE ×#Sha(E)×

∏
p cp

(#Etor(Q))2

where ΩE is the real period of E, RegE is the regulator of E, #Sha(E) is the order of the

Shafarevich-Tate group to E/Q,
∏
p cp is the product of the Tamagawa numbers of E, and

#Etor(Q) is the number of torsion points on E.

Conjecture II.2 (Generalized Riemann Hypothesis, GRH). Let L(E, s) be the L-series of the

elliptic curve E/Q, then its non-trivial zero always lie on the critical line Re(s) = 1.

Conjecture II.3 (Masser-Oesterlé conjecture ver.1, ABC). Let a, b, c be the relatively prime

satisfying a + b = c. And the radical of abc is de�ned by rad(abc) =
∏
p|abc p. Then for any

ε > 0, there exist a constant Kε such that c < Kε · rad(abc)1+ε.

Note that the radical is square-free integer. Equivalently,

Conjecture II.4 (Masser-Oesterlé conjecture ver.2, ABC). There are only �nitely many triples

(a, b, c) satisfying the same condition above, such that c > rad(abc)1+ε
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III The Gamma Function

3.1 The Gamma function

The Gamma function is well-known function as a continuous extension of the factorial function

on natural numbers. As an extension, if n is a positive integer, it needs to be the factorial

function. More various information can be seen at [Vio16].

De�nition III.1 (Gamma function). For s ∈ C, <(s) > 0,

Γ(s) :=

∫ ∞
0

e−tts−1dt

Note that Γ(s + 1) = sΓ(s) by integration by parts. But one can wonder that indeed the

extension is unique. We have the answer, under some conditions.

Theorem III.2 (Bohr-Mollerup). Let Γ(x) be the Gamma function. This is the only function

on x > 0 satisfying

1. Γ(1) = 1.

2. Γ(x+ 1) = xΓ(x) for x > 0.

3. log Γ(x) is convex.

Lemma III.3. 0 < e−t − (1− t/N)N < t2e−t/N for 0 < t < N .

Proof.

1 +
t

N
< 1 +

t

N
+

t2

2!N2
+ · · · < 1 +

t

N
+

t2

N2
+ · · · gives 1 +

t

N
< e

t
N <

(
1− t

N

)−1
It means that (1 + t/N) < et and (1− t/N) < e−t. And

0 < e−t −
(

1− t

N

)N
= e−t

(
1− et

(
1− t

N

)N)
< e−t

(
1−

(
1− t2

N2

)N)

Note that 1−Nx < (1− x)N for 0 < x ≤ 1/N , it gives 1− t2/N < (1− t2/N2)N

And through the next theorem, we can obtain the limit form of the Gamma function so that

simple poles of the Gamma function lies on the non-positive integers.
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Theorem III.4 (Euler). For any s ∈ C \ {0,−1, · · · },

Γ(s) = lim
n→∞

nsn!

s(s+ 1) · · · (s+ n)

Proof. For <(s) > 0, Γ(s) =
∫∞
0 e−tts−1dt. And note that

lim
n→∞

∫ n

0

(
1− t

n

)n
ts−1dt = Γ(s)− lim

n→∞

∫ n

0

(
et −

(
1− t

n

)n)
ts−1dt

Using the Lemma III.3, as n→∞,

∣∣∣∣∫ n

0

(
e−t −

(
1− t

n

)n)
ts−1dt

∣∣∣∣ ≤ ∫ n

0

t2

n
e−tt<(s)−1dt ≤ 1

n

∫ ∞
0

e−tt<(s)+1dt→ 0.

So limn→∞
∫ n
0

(
1− t

n

)n
ts−1dt = Γ(s).

Now through the change of variable, let t
n = τ and repeating integration by parts, we can

get ∫ n

0

(
1− t

n

)n
ts−1dt = ns

∫ 1

0
(1− τ)nτ s−1dτ =

nsn!

s(s+ 1) · · · (s+ n)

If <(s) ≤ 0, for k ∈ N such that −(k + 1) < <(s) ≤ −k, s 6= k, the remaining thing is

Γ(s) =
1

s · · · (s+ k)
Γ(s+ k + 1) =

1

s · · · (s+ k)
lim
n→∞

ns+k+1n!

(s+ k + 1) · · · (s+ k + 1 + n)

= lim
n→∞

nsn!

(s+ 1)(s+ 2) · · · (s+ n)
· nk+1

(s+ n+ 1) · · · (s+ n+ k + 1)

and the second factor will be 1 by the limit.

Through this theorem, one can prove the Bohr-Mollerup theorem also. The �rst and the

second condition will be directly obtained by the resulting formula, and the third condition -

convexity of log(Γ(s)) can be obtained by the de�nition of convexity and some calculations.

Using the theorem III.4, we can make the recursive relation of the Gamma function wider to

the whole real line. The simple poles of the Gamma function also can be found by the recursive

relation. For example, Γ(s+ 1) = sΓ(s) implies that 0 is a simple pole of Γ(s).
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Note that, for a complex function f(s), at a simple pole c, the residue of f is given by

Res(f, c) = lims→c(s− c)f(s). If s = −n,

Res(Γ,−n) = lim
s→−n

(s− (−n))Γ(s) = lim
s→−n

Γ(s+ n+ 1)

s(s+ 1) · · · (s+ n− 1)
=

(−1)n

n!

3.2 A relation to the Riemann zeta function

For <(s) > 1, the Riemann zeta function is de�ned by

ζ(s) =
∞∑
n=1

1

ns

By the change of variable, n 7→ nt for Γ(s),

Γ(s) =

∫ ∞
0

e−tts−1dt⇒ Γ(s) =

∫ ∞
0

nse−ntts−1dt

Then

N∑
n=1

1

ns
=

1

Γ(s)

∫ ∞
0

N∑
n=1

e−ntts−1dt =
1

Γ(s)

{∫ ∞
0

e−tts−1

1− e−t
−
∫ ∞
0

e−te−Nt

1− e−t
ts−1dt

}
Now let N go to ∞,

ζ(s) =

∞∑
n=1

1

ns
=

1

Γ(s)

∫ ∞
0

ts−1

et − 1
dt

In case of the incomplete Gamma function,

ζ(s) =
∞∑
n=1

1

ns
=

1

Γ(s, x)

∫ ∞
x

ts−1

et − 1
dt

And there is another famous functional relation between the zeta function and the Gamma

function.

ζ(s) = 2(2π)s−1Γ(1− s)sin(
πs

2
)ζ(1− s)

To obtain this relation, note that the zeta function is analytic for s 6= 1 and Γ(1− s) has simple

poles at positive integers. Then the last two factors of the right hand side should have simple

zeros at s = 2, 3, 4, · · · . Since the sine factor has zeros when s is even, the zeta factor obviously
has zeros when s is odd. That means the zeta function have zeros for a negative even numbers.

These zeros are called the trivial zeros.
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3.3 The Digamma function

In chapter to come about nontrivial zeros and their summations, the logarithmic derivative of

some functions have an important role to play with summation of nontrivial zeros. And the

Digamma function is one of them, as the logarithmic derivative of the Gamma function.

De�nition III.5 (Digamma function). The Digamma function ψ(s) is the logarithmic derivative

of the Gamma function.

ψ(s) :=
d

ds
log Γ(s) =

Γ′(s)

Γ(s)

Obviously many properties of the Digamma function inherits the properties of the Gamma

function. For example, Γ(s+ 1) = sΓ(s) and Γ(s)Γ(1− s) = π/sin(πs) give the followings.

ψ(s+ 1) = ψ(s) +
1

s
, ψ(1− s) = ψ(s) + π cot(πs)

And using the Weierstrass factorization of the Gamma function, we can obtain the series form of

the Digamma function. More precisely, take the logarithmic derivative to the Gamma function

Γ(s) = s−1 · e−γs ·
∞∏
n=1

(
1 +

s

n

)−1
· es/n

then

ψ(s) = −γ − 1

s
+

∞∑
n=1

(
1

n
− 1

n+ s

)
Since ψ(s+ 1) = ψ(s) + 1/s, more brief form is shown.

ψ(s+ 1) = −γ +
∞∑
n=1

s

n(n+ s)

This series converges absolutely for any s ∈ C except for the negative integer. If x is an integer,

by using the fact that

ψ(1 + x) = −γ +

∞∑
n=1

(
1

n
− 1

n+ x

)
= −γ +

x∑
n=1

1

n
= −γ +Hx

where Hx is the harmonic series. Note that Hx − γ < log x, then we obtain a bound for the

Digamma function on the non-negative real line.

ψ(1 + x) < log(1 + x)
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IV L-function attached to an Elliptic curves

4.1 L-function

Let's recall the Euler product of LE(s).

LE(s) =
∏

bad primes

1

1− app−s
×

∏
good primes

1

1− app−s + p1−2s

The coe�cient ap is 1,−1 and 0 if E has split, non-split, and additive bad reduction at p

respectively. For good primes, we have the bound for ap obtained by Hasse.

Theorem IV.1 (Hasse). For all elliptic curves over Q and for all p,

|ap| ≤ 2
√
p

If we normalize ap, that is, observe the distribution of ap/2
√
p, it is the semicircular distri-

bution.

Theorem IV.2 (Taylor). For E/Q, the distribution of ap/2
√
p is semicircular.

So by the Hasse's theorem, the Dirichlet series for LE(s) converge absolutely for <(s) > 3/2.

By the Taylor's theorem, the Dirichlet series for LE(s) converge conditionally for <(s) > 1/2.

And for the completed L-function ΛE(s), it obeys the functional relation

ΛE(s) = ωEΛE(2− s)

where ωE ∈ {−1, 1}.
To get the coe�cients of ΛE(s), we need the following formula

Theorem IV.3.

ΛE(1) =


√
NE
π

∑∞
n=1

an
n e
− 2πn√

NE if ωE = 1

0 if ωE = −1

Proof. Before we start the proof, we need to de�ne the auxiliary function λE(s) by

λE(s) =

(√
NE

2π

)s ∞∑
n=1

ann
−sΓ

(
s,

2πn√
NE

)
(1)

where an is given by the Dirichlet series for LE(s). And from [Kna92], page 270, the formula

ΛE(s) = λE(s) + ωEλE(2− s). And the incomplete Gamma function is

Γ(s, x) =

∫ ∞
x

ts−1e−tdt

Since the sum in the equation (1) converges absolutely for any s, the summation in λE(s) can

be switched to any order. Then

λE(1 + s) =

(√
NE

2π

)1+s ∫ ∞
2πn/

√
NE

tse−t
∞∑
n=1

ann
−1−sdt

8



Take t 7→ 2πnt and dt 7→ 2πndt,

λE(1 + s) = NE
(1+s)/2

∫ ∞
1/
√
NE

tse−2πnt
∞∑
n=1

andt

Note that ΛE(1 + s) = λE(1 + s) + ωEλE(1− s), if ωE = 1,

ΛE(1 + s) =
(
NE

(1+s)/2 + ωENE
(1−s)/2

)∫ ∞
1/
√
NE

tse−2πnt
∞∑
n=1

andt

=
(
NE

(1+s)/2 +NE
(1−s)/2

)∫ ∞
1/
√
NE

tse−2πnt
∞∑
n=1

andt

And if ωE = −1,

ΛE(1 + s) =
(
NE

(1+s)/2 −NE
(1−s)/2

)∫ ∞
1/
√
NE

tse−2πnt
∞∑
n=1

andt

Substituting s = 0, we obtain the desired result.

Theorem IV.4. If m has the same parity as E,

Λ
(m)
E (1) = 2

∞∑
n=1

an

∫ ∞
1

e
− 2πn√

NE
t
(log t)mdt

Otherwise, Λ
(m)
E (1) = 0.

Proof. Also get started with

λE(1 + s) = NE
(1+s)/2

∫ ∞
1/
√
NE

tse−2πnt
∞∑
n=1

andt

The derivative of λE(1 + s) is

λ′E(1 + s) =
(
NE

(1+s)/2
)′ ∫ ∞

1/
√
NE

tse−2πnt
∞∑
n=1

andt+NE
(1+s)/2

∫ ∞
1/
√
NE

(ts)′e−2πnt
∞∑
n=1

andt

Use the binomial expansion for derivatives, we can generalize

λ
(m)
E (1 + s) =

∞∑
n=1

an

∫ ∞
1/
√
NE

e−2πnt

(
m∑
i=0

(
m

i

)
f (m−i)(s)g(i)(s)

)
dt

where f(s) = NE
(1+s)/2, g(s) = ts. And note that

f (m−i)(s) =

(
1

2

)m−i
NE

(1+s)/2(logNE)m−i, g(i)(s) = ts(log t)i

Now consider Λ′E(1 + s) = λ′E(1 + s) + ωEλ
′
E(1 − s)(−1)m, if ωE and m have the same parity,

ωE(−1)m = 1. And if they have the opposite parity, then ωE(−1)m = −1. So for the same

parity,

Λ
(m)
E (1) = λ

(m)
E (1) + λ

(m)
E (1) =

∞∑
n=1

an

∫ ∞
1/
√
NE

e−2πnt

(
m∑
i=0

(
m

i

)
f (m−i)(0)g(i)(0)

)
dt

=
∞∑
n=1

an

∫ ∞
1/
√
NE

e−2πnt
√
NE

(
m∑
i=0

(
m

i

)
(log

√
NE)m−i(log t)i

)
dt
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The inner binomial summation is nothing but (log
√
NE + log t)m. For the �nal trimming, take

t 7→ t/
√
NE and dt 7→ dt/

√
NE

Λ
(m)
E (1) = 2

∞∑
n=1

an

∫ ∞
1

e
−2πn√
NE

t
(log t)mdt

And for the opposite parity,

Λ
(m)
E (1) = λ

(m)
E (1)− λ(m)

E (1) = 0

Proof is done.

Like the Digamma function, the logarithmic derivative of the completed L-function will be

useful later.

Theorem IV.5. The logarithmic derivative of the L-function is given by

Λ′E
ΛE

(s) = log

(√
NE

2π

)
+ ψ(s) +

L′E
LE

(s)

where ψ(s) is the Digamma function.

Proof. It is directly deduced from the de�nition of the completed L-function.

If we are not on the critical strip, we can roughly estimate the L-series and its logarithmic

derivative.

Theorem IV.6. For any s ∈ C with <(s) := σ > 3/2, we have

1.
ζ(2σ − 1)2

ζ(σ − 1/2)2
< |LE(s)| < ζ

(
σ − 1

2

)2

2.

2
ζ ′

ζ

(
σ − 1

2

)
<

∣∣∣∣L′ELE (s)

∣∣∣∣ < −2
ζ ′

ζ

(
σ − 1

2

)
where ζ(s) is the Riemann zeta function.
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V The Real Period ΩE of an Elliptic curve E

5.1 Elliptic curve and Torus

An elliptic curve over the complex numbers C, is actually isomorphic to some lattice quotient

of a complex number group. And the real period of an elliptic curve shows us how those shapes

that torus(that is, C/Λ). More precisely, the non-singular elliptic curve over the real numbers

have two topologically distinct shapes. One is connected, and the other is separated. The real

period is an index to determine these two distinct shapes of curve on the real plane.

De�nition V.1. For ω1, ω2 ∈ C such that linearly independent over R, i.e., r1ω1 + r2ω2 = 0

only when r1 = r2 = 0,

1. Lattice : L = Zω1 + Zω2 = {nω1 +mω2|n,m ∈ Z}

2. Fundamental parallelogram : F = {aω1 + bω2|0 ≤ a, b < 1}

3. Doubly periodic function : Meromorphic function f : C → C ∪ {∞} s.t. f(s + ω) = f(s)

for all s ∈ C, ω ∈ L. That ω's are called a period.

4. Note that since f is meromorphic, f(s) = ar(s−ω)r+ar+1(s−ω)r+1+ · · · with all ar 6= 0.

5. The order of f at ω : r = ordωf ∈ Z

6. The divisor of f : div(f) =
∑

ω∈F (ordωf)[ω]

Note that, if meromorphic f is bounded, then it is a constant.

5.2 Weierstrass ℘ - function

Lemma V.2. If k > 2, then
∑

ω∈L,ω 6=0
1
|ω|k converges.

Theorem V.3. Given a lattice L, de�ne the Weierstrass ℘-function

℘(s) = ℘(s;L) =
1

s2
+

∑
ω∈F, ω 6=0

(
1

(s− ω)2
− 1

ω2

)
Then

1. The summation part converges absolutely and uniformly on compact sets not intersecting

L

2. ℘(s) is meromorphic in C and has a double pole at each ω ∈ L.

3. ℘(−s) = ℘(s) for all s ∈ C

4. ℘(s+ ω) = ℘(s) for all ω ∈ L

5. { doubly periodic function for L } = C(℘, ℘′)

11



Proof. Having V.2, then the remaining thing is to prove that the summation part is dominated

by the cubic reciprocal terms. Note that∣∣∣∣ 1

(s− ω)2
− 1

ω2

∣∣∣∣ =

∣∣∣∣ s(2ω − s)(s− ω)2ω2

∣∣∣∣ ≤ |s|(2|ω|+ |s|)|ω|2(|ω| − |s|)2
.

For a compact set containing s, if |ω| ≥ 2|s| for all s, we have

|s− ω| ≥ |ω|
2
, |2ω − s| ≤ 5|ω|

2

It's easy to check by drawing some area on C. So we have∣∣∣∣ 1

(s− ω)2
− 1

ω2

∣∣∣∣ ≤ |s|(2|ω|+ |s|)|ω|2(|ω| − |s|)2
≤ |s||ω|(5/2)

|ω|2(|ω|2/4)
=

10|s|
|ω|3

So the summation part is dominated by converging term.

The remaining proofs can be seen at [Was03].

Theorem V.4 (Doubly periodic). Let f be a doubly periodic function for L and F be a funda-

mental parallelogram for L. Then,

1. If f has no poles, then f is a constant.

2. If f is not identically equal to 0, then deg(div(f)) =
∑

ω∈F ordωf = 0.

3. If f is not identically equal to 0, then
∑

ω∈F ω · ordωf ∈ L.

4. If f is not constant, then f : C→ C ∪ {∞} is surjective.

5. If n = the sum of the orders of the poles of f in F and s0 ∈ C, then f(s) = s0 has n

solutions.

De�nition For k ≥ 3, the Eisenstein series is given by

Gk(L) =
∑

ω∈L,ω 6=0

ω−k

Note that this sum converges(lemma V.2) andG2k+1 = 0. And under the condition |s/ω| < 1,

some manipulation gives

1

(s− ω)2
− 1

ω2
=

1

ω2

(
1

(1− (s/ω))2
− 1

)
=

1

ω2
· s/ω

(1− s/ω)2
=

1

ω2

∞∑
n=1

(n+ 1)
( s
ω

)n
So the Weierstrass ℘-function can be expressed by the Eisenstein series.

℘(s) =
1

s2
+
∑
ω 6=0

∞∑
n=1

(n+ 1)
sn

ωn+2
=

1

s2
+
∞∑
k=1

(2k + 1)
s2k

ω2k+2
=

1

s2
+
∞∑
k=1

(2k + 1)G2k+2(L)s2k

Using this, we can compute

℘(s) =
1

s2
+ 3G4s

2 + 5G6s
4 + · · · , ℘′(s) =

−2

s3
+ 6G4s+ 20G6s

3 + · · ·

12



So ℘′(s) has a triple pole at 0, and through further computation, we can delete all reciprocal

terms as followings

f(s) = ℘′(s)2 − 4℘(s)3 + 60G4℘(s) + 140G6 = c1s+ c2s
2 + · · · ∈ C(℘, ℘′)

Now f is doubly periodic and has no constant term, no negative powers. So f has no poles,

then f is constant with f(0) = 0.

Then the equality is now familiar relation.

℘′(s)2 = 4℘(s)3 − 60G4℘(s)− 140G6

And fortunately, the curve is non-singular. i.e., The discriminant of that cubic polynomial is

nonzero.

Theorem V.5. Let 60G4 = g2 and 140G6 = g3. Then ∆ = g32 − 27g23 6= 0.

Now we can obtain the isomorphism between C/L and E(C).

Theorem V.6. Let L be a lattice and E be an elliptic curve y2 = 4x3− g2x− g3. Then the map

Φ : C/L→ E(C) de�ned by Φ(s) = (℘(s), ℘′(s)),Φ(0) = {∞} is an isomorphism of groups.

Proof. First, we want to show that for a point of an elliptic curve Φ(si) = Pi = (xi, yi), the

given Φ is a group homomorphism. I'll give some part of a proof. The remaining things can be

found at [Was03].

Assume that P1, P2 are �nite points and P1P2 intersects E in a �nite point. The other cases

are easy to check. Now namely s1, s2, s3 ∈ C and Φ(si) = Pi = (xi, yi) such that P1P2∩E = P3.

For an elliptic curve E : y2 = 4x3 − g2x− g3, the group law formula gives

x3 =
1

4

(
y2 − y1
x2 − x1

)2

− x2 − x1 =
1

4

(
℘′(s2)− ℘′(s1)
℘(s2)− ℘(s1)

)2

− ℘(s2)− ℘(s1)

So we can consider the intersecting line P1P2 : y = ax+ b.

For h(s) = ℘′(s) − a℘(s) + b, h(s) has triple poles at 0. So h(s) = 0 at {s1, s2, s3} =

P1P2 ∩ E = P3

Therefore,

div(h) =
∑
ω∈F

(ordωh)[ω] = [s1] + [s2] + [s3]− 3[0]

Since h is not identically 0, by theorem V.4 (3),∑
ω∈F

ω · ordωh = s1 + s2 + s3 ∈ L

Then, s1 + s2 ≡ −s3 (mod L), so ℘(s1 + s2) = ℘(−s3) = ℘(s3) = x3.

If s1 = s2, then use the duplication formula.

13



In fact, two homothetic lattices have the same j-invariants. Homothety classes of lattices are

in one-to-one correspondence with C-isomorphism classes of elliptic curves.(
Lattice Λ1

∼= Λ2

)
⇐⇒

(
Elliptic curves C/Λ1

∼= C/Λ2

)
.

The lattice Λ have a basis (ω1, ω2) properly(that is, ω1 ∈ R), and the real part of ω2 is either 0

or ω1/2 corresponding to the case that the discriminant DE > 0 or that of DE < 0 respectively.

A overall proof can be seen in Chapter 9 of [Was03].
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5.3 The Real period

In this sense, we can de�ne the real period of a rational elliptic curve.

De�nition V.7 (The real period). The real period of E is given by

ΩE =

{
2ω1 if DE > 0

ω1 if DE < 0

Let de�ne the Ramanujan Delta function ∆(s) on the upper half plane

∆(s) = q
∞∏
n=1

(1− qn)24, where q = e2πis

If we set s = ω2
ω1

with =(s) > 0, then we obtain a relation between the discriminant DE and the

lattice basis of E/C [Sil13].

DE =

(
2π

ω1

)12

∆(s) (2)

Theorem V.8. For E/Q, ΩE < 8.829 · · · |DE |−
1
12 .

Proof. Using (2) and s = ω2
ω1
, we get

ω1 = 2π

(
1

DE
∆

(
ω2

ω1

)) 1
12

(3)

Now we have that if DE > 0 then <(s) = 0, and if DE < 0 then <(s) = 1/2. That is, if DE > 0

then ω2/ω1 = it, and if DE < 0 then ω2/ω1 = 1/2 + it. Therefore,

DE > 0 =⇒ q = e2πi(it) = e−2πit ∈ (0, 1)

DE < 0 =⇒ q = e2πi(1/2+it) = eπi · e−2πit ∈ (−1, 0)

Since ∆(s) is a holomorphic cusp form, as a function of q, ∆(q) is continuous on (−1, 1),

and zero at q = −1, 0 and 1. So its maximum absolute value will be located on (−1, 0) or (0, 1).

By [IJT14] [WY14], ∆(q) has only one critical point on each (−1, 0) and (0, 1), moreover the

values are q = 0.03728 · · · and q = −0.43929 · · · . Then, ∆(q)1/12 is 0.7026 · · · and 1.4052 · · ·
respectively. Since ΩE ≤ 2ω1, by (3),

ΩE ≤ 2π · 1.4052 · · · |DE |−1/12 = 8.829 · · · |DE |−1/12

And since the conductor divides the discriminant of an elliptic curve,

Corollary V.9. For E/Q, ΩE < 8.829 · · · |NE |−
1
12 .

We'll use this theorem to make a bound for the Taylor coe�cient, which is key object in the

rank algorithm.
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VI A Summation over Nontrivial zeros of zeta

Let's recall the Riemann hypothesis again.

Conjecture VI.1 (GRH). Let L(E, s) be the L-series of the elliptic curve E/Q, then the non-

trivial zeros always lie on the critical line <(s) = 1.

Now we can denote nontrivial zeros as 1 + it under GRH assumption. For a moment, let's

think about the Riemann zeta function. We want to see how the nontrivial zeros are distributed

along the line <(s) = 1/2. First, the number of nontrivial zeros with t ∈ (0, T ], N(T ) is given

by

N(T ) =
T

2π
log

T

2πe
+O(log T )

Second, the gaps between two consecutive nontrivial zeros along the line <(s) = 1/2 is bounded

by

tn+1 − tn �
1

log log log tn

for nontrivial zeros ρn = 1/2 + tn.

It might be helpful adding the zeros in speci�c way and analyzing its behavior for obtaining

some information on the distribution of the zeros. Analogously, the twin prime conjecture is the

idea of gaps, and the Erdös conjecture on arithmetic progressions is the idea of summations.

Extremely simple cases are reciprocal sum of the natural numbers and the squares. The former

diverges and the latter converges. It tells us that the square numbers are distributed more

sparsely than the natural numbers. More deep discussion can be seen in several topics with

Szemerédi's theorem.

The �rst way to add them is a simple reciprocal sum of nontrivial zeros ρ = 1/2 + it along

the line <(s) = 1/2 and =(s) > 0. Lower half plane is not our business since conjugate of zeros

are also zeros of the zeta function.

Theorem VI.2. Let ρ be nontrivial zeros of the Riemann zeta function.∑
ρ

1

ρ
= − log(2

√
π) + 1 +

γ

2

where γ is the Euler constant.

Proof of this theorem can be found at [Edw74]. According to this result, intuitively, the

imaginary parts of nontrivial zeros are distributed sparsely than natural numbers.

16



And under RH, some plain computation can show that∑
ρ

1

ρ
=
∑
t==(ρ)

4

1 + 4t2

∑
ρ

1

ρ2
= −

∑
t==(ρ)

8(4t2 − 1)

(4t2 + 1)2

∑
ρ

1

ρ3
= −

∑
t==(ρ)

16(12t2 − 1)

(4t2 + 1)3

By theorem 5.2., the reciprocal sum of nontrivial zeros converges, so the summation of any power

of the reciprocals will also converge. Naturally we extend this idea to nontrivial zeros of the

L-series for an elliptic curve.

Under the same philosophy of the Hadamard product, we can obtain representation of the

completed L-function as a product over its zeros, and the logarithmic derivative of the completed

L-function as a sum over its zeros. Let the leading coe�cient of ΛE at the central point be C ′E .

ΛE(1 + s) = C ′E · srE ·
∏
ρ>0

(
1 +

s2

ρ2

)
(4)

the product term is made by the product of nontrivial zero terms, which have commonly conju-

gates of it. And obviously rE is the analytic rank, which is the vanishing order of ΛE at s = 0.

And the logarithmic derivative of ΛE is given by

Λ′E
ΛE

(1 + s) =
rE
s

+ 2
∑
ρ>0

s

s2 + ρ2
=
∑
ρ 6=0

s

s2 + ρ2
(5)

which can be directly computed from the above product form.

Using these forms, unconditional bound for the analytic rank is obtained.

Theorem VI.3. Let rE be the analytic rank of an elliptic curve E and NE be its conductor.

Then

rE < 1.6 +
1

2
logNE

this result does not depend on the GRH.

Proof. First, under the GRH, using the equation 5, we know that

rE < rE + 2
∑
ρ>0

1

1 + ρ2
=

Λ′E
ΛE

(2) (6)

And we are with theorem IV.5,

Λ′E
ΛE

(2) = log

(√
NE

2π

)
+ ψ(2) +

L′E
LE

(2)

From the Harmonic series form of the Digamma function, ψ(2) = 1− γ. And by the inequality

(2) from the theorem IV.6, we have the case of σ = 2. So

L′E
LE

(2) < −2
ζ ′

ζ

(
3

2

)
17



Then the �nal trimming gives

rE <
Λ′E
ΛE

(2) <
1

2
logNE − log(2π) + 1− γ − 2

ζ ′

ζ

(
3

2

)
so the remaining thing is just evaluating them. And note that the inequality 6 still hold if we

are not under the GRH.

And if we use the GRH with the sinc function, which is given by

sinc2(x) =

(
sin(πx)

πx

)2

then we can bound the analytic rank more tightly so that the following corollary is obtained.

See the proof in [Spi15] page 67-71.

Corollary VI.4. (GRH)

rE < 0.5 + 0.32 logNE

Now let me introduce one important quantity called the bite of an elliptic curve. This

de�nition is directly from [MS13].

De�nition VI.5 (The bite). For L-series LE(s), the bite is given by

β(E) =
∑
γ

1

γ2

where γ is nonzero imaginary part of nontrivial zeros of LE(s).

This quantity is deeply related to the completed L-function and the rank of an elliptic curve.

From the equality (4), we know that

ΛE(1 + s) = C ′E · (srE + βEs
rE+2 + p(s))

where p(s) is polynomial with higher order than rE + 4 and C ′E is the leading coe�cient at the

central point. Then we get
Λ
(rE+2)
E (1)

(rE + 2)!
= βE · C ′E

or
1

(rE + 1)(rE + 2)

Λ
(rE+2)
E (1)

Λ
(rE)
E (1)

= βE

And the bite can be one way to represent the exact value of the analytic rank. Despite of its

simple form, it is not easy to compute the logarithmic derivative of L-function, and the bite is

also tough to know if there are many low-lying zeros.
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Theorem VI.6. For the analytic rank rE of an elliptic curve and the bite βE,

rE =

⌊
1√
βE
·

Λ′E
ΛE

(
1 +

1√
βE

)⌋
Proof. From the equation 5, multiplying s on both sides,

s ·
Λ′E
ΛE

(1 + s) = rE + 2
∑
ρ>0

s2

s2 + ρ2

Then we have

s ·
Λ′E
ΛE

(1 + s) = rE +
∑
ρ 6=0

1

1 + (ρ/s)2
< rE +

∑
ρ6=0

1

(ρ/s)2
= rE + βE · s2

so if we substitute s =
√

1/βE , then we have one bound

rE <
1√
βE
·

Λ′E
ΛE

(
1 +

1√
βE

)
< rE + 1.
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VII The Regulator RegE of an Elliptic curve E

The mordell theorem tells us that the elliptic curve over Q is isomorphic to the product of the

torsion points part and the free part. So we can consider a generators of E(Q)/Etor(Q), namely

P1, P2, · · · , Pr where r is rank of an elliptic curve. Before we de�ne the regulator, let's consider

a height function on the elliptic curve over rational numbers.

De�nition VII.1 (The naive logarithmic height). Let h be a function from E/Q to R such that

h(O) = 0. For nonzero point P on E, let x(P ) = p
q denotes the reduced fraction of the �rst

coordinate of P under assumption that q > 0. Then the naive height of P is given by

h(P ) = max{log |p|, log |q|}

We can easily prove that this function is nearly a quadratic form on E, that is, h([n]P ) ∼
n2h(P ) for all integer n. Without loss of generality, we can consider n coprime to q (if not,

then reduce once more). Then the left-hand side is simply computed by the Double-and-Add

numerical method, and the right-hand side is more straightforward. To compute the Double-

and-Add method, we need about log2 n doubling and some adding procedure. And the remaining

thing is only a brief case classi�cation (for example, whether h(P ) = log |p| or not).
Through this, the naive height can be exactly a quadratic form.

De�nition VII.2 (The Néron-Tate height). Let h be the naive logarithmic height as above.

Then de�ne ĥ : E/Q→ R as following

ĥ(P ) = lim
n→∞

h([2n]P )

(2n)2

Theorem VII.3 (Néron-Tate). Let ĥ be the Néron-Tate height function as above. Then for all

points P , Q ∈ E(Q), we have the followings

1. ĥ(P + Q) + ĥ(P − Q) = 2(ĥ(P ) + ĥ(Q)). This equality is nothing but the parallelogram

law for ĥ.

2. ĥ is even and quadratic. That is, ĥ([n]P ) = n2ĥ(P ).

3. The pairing 〈 , 〉 : E(Q)× E(Q)→ R as following is bilinear.

〈P,Q〉 =
1

2

(
ĥ(P +Q)− ĥ(P )− ĥ(Q)

)
4. ĥ(P ) = 0 i� P is a torsion point.
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Proof. Proof is easy when we have (1) already. For (2), even-ness is obtained by substituting P

into O. Then ĥ(O+Q)+ ĥ(O−Q) = 2(ĥ(O)+ ĥ(Q)) and this implies ĥ(−Q) = ĥ(Q). And note

that ĥ([n]P ) = n2ĥ(P ) hold for n = 0 and n = 1. Let assume that ĥ is quadratic form for k and

k−1. Then from (1), we have ĥ([k+1]P )+ĥ([k−1]P ) = 2(ĥ([k]P )+ĥ(P )) by substituting P and

Q to [k]P and P respectively. Then ĥ([k+1]P ) = (−(k−1)2+2k2+2)ĥ(P ) = (k+1)2ĥ(P ). Also

(4) is obtained simultaneously by (2). To prove (3), we only need 〈P1+P2, Q〉 = 〈P1, Q〉+〈P2, Q〉
without loss of generality. There is a four-equations argument in Linear Algebra. In (1), use

P1 + P2 and Q instead of P and Q. And use P1 and P2 −Q, use P1 +Q and P2, use P2 and Q

instead of P and Q respectively. Then the four equations are given by

ĥ(P1 + P2 +Q) + ĥ(P1 + P2 −Q) = 2ĥ(P1 + P2) + 2ĥ(Q)

ĥ(P1 + P2 −Q) + ĥ(P1 − P2 +Q) = 2ĥ(P1) + 2ĥ(P2 −Q)

ĥ(P1 + P2 +Q) + ĥ(P1 − P2 +Q) = 2ĥ(P1 +Q) + 2ĥ(P2)

2ĥ(P2 +Q) + 2ĥ(P2 −Q) = 4ĥ(P2) + 4ĥ(Q)

(The �rst)−(The second)+(The third)−(The fourth) gives 2ĥ(P1 + P2 + Q) − 2ĥ(P2 + Q) =

2ĥ(P1 + P2) + 2ĥ(Q)− 2ĥ(P1) + 2ĥ(P1 +Q) + 2ĥ(P2)− 2ĥ(P2)− 4ĥ(Q). Divide both sides into

4 and after brief rearranging,

LHS =
1

2

(
ĥ(P1 + P2 +Q)− ĥ(P1 + P2)− ĥ(Q)

)
RHS =

1

2

(
ĥ(P1 +Q)− ĥ(P1)− ĥ(Q)

)
+

1

2

(
ĥ(P2 +Q)− ĥ(P2)− ĥ(Q)

)
the obtained equality is what we desired.

By using this height function, the regulator can be de�ned. Through the pairing made by the

Néron-Tate height function, the quotient of the Mordell-Weil group E(Q)/Etor(Q) is embedded

to Rr where r is the algebraic rank of an elliptic curve.

De�nition VII.4 (The regulator). Let {P1, P2, · · · , Pr} be a generator set of the quotient

E(Q)/Etor(Q). Then the regulator of an elliptic curve RegE is given by

RegE = det (〈Pi, Pj〉)1≤i,j≤r

where (〈Pi, Pj〉)1≤i,j≤r is the square matrix made by 〈Pi, Pj〉 for (i, j)-component.

Since we got started with a basis of the quotient of the Mordell-Weil group, the value of

the regulator does not depend on the choice of generators. Because any linear combination of

row vectors can be negligible when we compute the determinant. So this is well-de�ned, THE

regulator makes sense.
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If we consider a rank 1 curve, then the regulator is just the determinant of a singleton matrix.

And RegE = 〈P, P 〉 = ĥ(P ). Since P is a generator and ĥ is a quadratic form, the regulator is

the smallest positive height of the curve. If generators Pi jump with big steps (or tiny steps)

while generating the free part, the regulator will be large (or small). That is, the regulator

regulates a regularity size of the free part.

Conjecture VII.5 (Lang's height conjecture). There exists a positive constant K such that

ĥ(P ) ≥ K log |DE | for any non-torsion point P of an elliptic curve.

This conjecture is from [LLL+97]. By Elkies [Elk06], assuming the ABC, K is bounded

below by 3.9479× 10−5. Since the conductor always divides the discriminant,

Corollary VII.6. There exists a positive constant K such that ĥ(P ) ≥ K for any non-torsion

point P of an elliptic curve.

Theorem VII.7. Under BSD and ABC,

RegE ≥ 4.36 · 10−6 · (NE)−3.86 · 1

Γ(1.8 + 0.25 logNE)

Furthermore, under GRH,

RegE ≥ 2.11 · 10−2 · (NE)−2.47 · 1

Γ(1.25 + 0.16 logNE)

Proof. For a conductor less than 350000, the Cremona table gives us numerical proof. So let

assume that NE ≥ 350000. By Elkies' bound for conjecture 5.5,

ĥ ≥ 3.9479 · 10−5 · log |DE | ≥ 3.9479 · 10−5 · log(350000) = 5.0397 · 10−4

Then the minimum height is given by h = 5.0397 · 10−4 Consider the quotient image of E(Q)

under the map ĥ where r is the rank of E. By Minkowski's inequality about r-dimensional

lattice covolume VL,

VL ≥
(√

π

2
h

)r
· 1

Γ(1 + 0.5r)

where h is the non-zero vector in L with the minimum length. Now we obtain

RegE ≥
(√

π

2
h

)r
· 1

Γ(1 + 0.5r)

Note that the regulator is de�ned as the covolume of the lattice under Néron-Tate pairing map.

We know that there are two bounds from the theorem VI.3 and corollary VI.4,

r < 0.5 logNE + 1.6, r < 0.32 logNE + 0.5

Additionally under the GRH, the latter one is given. So trim the regulator inequality by using

two bounds and h = 5.0397 · 10−4, then it yields

RegE ≥
(√

π

2
· h
)a logNE+b

· 1

Γ(1 + 0.5(a logNE + b))
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Note that the base of the �rst factor is less than 1 obviously, and the Gamma function is

increasing since NE > 350000, so the inequality still hold for upper bound of rank. Now direct

substitution gives the results as stated.

As the conductor grows up, bounds of the regulator decrease since negative power of the

conductor and the gamma value of logNE is in denominator, so it is nearly obeys a factorial

scale. The one sad thing is rank bound stated. According to recent works, average value of rank

is nearly between 0 and 1. Especially Goldfeld, Katz-Sarnak guessed 1/2 for the average value.

Under the BSD and GRH, Heath-Brown [HB+04] improved that value to be 2. Bhargava and

Shankar [BS15a] [BS15b] [BS13] cut this upper bound down to 0.885 unconditionally.
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VIII The Algorithm and Bounds

8.1 The analytic algorithm

Now we have all ingredients to make the algorithm, and we basically assume the BSD conjecture,

so we actually obtain the analytic rank but it is the rank of an elliptic curve. For the basic setting,

we have global minimal Weierstrass equation E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 with

the conductor NE . The following is Spicer's analytic rank algorithm.

Algorithm 1 Analytic Rank Algorithm.

1: Compute the real period ΩE of E.

2: Set k = d26 + 3.86 log2NE + log2(Γ(1.8 + 0.25 logNE))− log2 ΩEe.
3: Evaluate LE(1) to k bits precision.

4: If all k-bit digits are non-zero, then the rank is 0.

5: Otherwise, LE(1) ≡ 0 and now evaluate L′E(1). That is, m 7→ m+ 1.

6: This procedure stops if L(m)
E (1) is not zero to k bits precision, and then output the analytic

rank of elliptic curve rE = m.

In this algorithm, we have one important step. It is the step (5). Why would we conclude

that LE(1) is identically 0? Spicer o�ers the right route in [Spi15].

Theorem VIII.1 (Spicer). Let k be the given value

k = d26 + 3.86 log2NE + log2(Γ(1.8 + 0.25 logNE))− log2 ΩEe

For m ≥ 0, if L
(m)
E (1) is zero to k bits precision, then L

(m)
E (1) is identically 0.

Proof. Note that the Taylor series of LE(1 + s) at s = 0 is given by

LE(1 + s) = LE(1) + L′E(1)s+ L′′E(1)
s2

2!
+ · · ·

As considering the rank of E,

LE(1 + s) = CE · L(rE)
E (1)

srE

(rE)!
+DE · L(rE+1)

E (1)
srE+1

(rE + 1)!
+ · · ·

And by the BSD conjecture, we can compute that leading coe�cient CE

CE =
ΩE × RegE ×#Sha(E)×

∏
p cp

(#Etor(Q))2

we have the following trivial bounds

#Sha(E) ≥ 1,
∏
p

cp ≥ 1, #Etor(Q) ≤ 16

Taking log with base 2 both sides and use the theorem VII.7,

log2CE ≥ −25.81− 3.86 log2NE − log2(Γ(1.8 + 0.25 logNE)) + log2 ΩE > −k

.
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8.2 Some bounds of the rank

Theoritically, the analytic algorithm in [Spi15] can run for all elliptic curves. But for an elliptic

curve with the large conductor, the speed of algorithm is much slower. In that situation, instead

of the algorithm which gives us the exact value of the rank, we can bound the rank of an elliptic

curve in the shorter runtime. Let <(s) > 0 and s = σ + iτ , then the equation (5) says that

<
(

Λ′E
ΛE

(1 + s)

)
= <

∑
ρ6=0

s

s2 + ρ2

 =
1

2

∑
ρ6=0

<
(

1

σ + iτ
+

1

σ − iτ

)

=
1

2

∑
ρ6=0

(
σ

σ2 + (ρ− τ)2
+

σ

σ2 + (ρ+ τ)2

)
In the last summation, the �rst inner term and the second inner term are symmetric as a result,

since the �rst inner term for ρ < 0 is the same as the second inner term for ρ > 0 and vice versa.

Therefore

<
(

Λ′E
ΛE

(1 + s)

)
=
∑
ρ 6=0

(
σ

σ2 + (ρ− τ)2

)
Using this, we can approximate the growth tendency of the real part of the logarithmic derivative.

Lemma VIII.2. Let s = σ + iτ and ρ be a nontrivial zeros of L-function.∣∣∣∣∑
ρ 6=0

(
σ

σ2 + (ρ− τ)2

)
−
{

log

(√
NE

2π

)
+ <(ψ(1 + σ + iτ))

}∣∣∣∣ < −2
ζ ′

ζ

(
1

2
+ σ

)

where NE is the conductor, ψ(s) is the Digamma function.

Proof. ∑
ρ6=0

(
σ

σ2 + (ρ− τ)2

)
= <

(
Λ′E
ΛE

(1 + s)

)

= log

(√
NE

2π

)
+ <(ψ(1 + σ + iτ)) + <

(
L′E
LE

(1 + s)

)
Properly transpose the logarithm and the Digamma function, and use the inequality (2) of

theorem IV.6.

Theorem VIII.3. (GRH) Let σ > 1/2, and rE be the analytic rank of an elliptic curve, then

σ · βE +
rE
σ
>

1

2
logNE + ψ(1 + σ)− log(2π) + 2

ζ ′

ζ

(
1

2
+ σ

)
where βE is the bite, ψ(s) is the Digamma function and NE is the conductor of an elliptic curve

E.

Proof. By the lemma VIII.2, taking τ = 0,

log

(√
NE

2π

)
+ <(ψ(1 + σ)) + 2

ζ ′

ζ

(
1

2
+ σ

)
<
∑
ρ 6=0

(
σ

σ2 + ρ2

)
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And ∑
ρ6=0

(
σ

σ2 + ρ2

)
=

1

σ

∑
ρ6=0

1

1 + (ρ/σ)2

<
1

σ

rE +
∑
ρ 6=0

1

(ρ/σ)2

 =
rE
σ

+ σ · βE

Using this theorem, �nally we get some bounds of the bite, the rank, and the leading coe�-

cient. With these inequalities, we can approximate the growth rate of those quantities with the

logarithm scale of the conductor of E.

Corollary VIII.4. Let C ′E be the leading coe�cient of the Taylor series of the completed L-

function, then

1. (1 + βE) · C ′E < 0.173 ·NE

2. βE + logC ′E > logNE − 5.229

3. βE + rE >
1
2 logNE − 4.426

where βE is the bite, NE is the conductor of E, and rE is the analytic rank of E.

Proof. Noting that the equality 4 and the de�nition of ΛE(s), we have

C ′E ·
∏
ρ6=0

(
1 +

1

ρ2

)
= ΛE(2) =

NE

(2π)2
· LE(2)

And using (1) of theorem IV.6, we can bound LE(2)

C ′E · (1 + βE) < C ′E ·
∏
ρ6=0

(
1 +

1

ρ2

)
= ΛE(2) =

NE

(2π)2
· LE(2) <

NE

(2π)2
· ζ
(

3

2

)2

This gives the �rst inequality. In other way,

C ′E · eβE > C ′E ·
∏
ρ6=0

(
1 +

1

ρ2

)
= ΛE(2) =

NE

(2π)2
· LE(2) >

NE

(2π)2
· ζ(3)2

ζ(3/2)2

so this gives the second inequality. The third inequality is just the case of σ = 1 for the theorem

VIII.3.
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IX The List of Corrections

Actually Simon Spicer take some insigni�cant mistakes in his thesis [Spi15]. As I have reviewed

his thesis, I corrected his computations. In [Spi15],

1. If m has the same parity as E, the derivative of the completed L-function at the central

point is

Λ
(m)
E (1) = 2

∞∑
n=1

an

∫ ∞
1

e
− 2πn√

NE
t
(

log
t√
NE

)m
dt.

2. In the Spicer's algorithm, the original k value is given by

k = d34 + 3.86 log2NE + log2(Γ(1.8 + 0.25 logNE))− log2 ΩEe.

The Corrections

1. If m has the same parity as E, the derivative of the completed L-function at the central

point is

Λ
(m)
E (1) = 2

∞∑
n=1

an

∫ ∞
1

e
− 2πn√

NE
t
(log t)mdt

The inner logarithm is �xed.

2. In the Spicer's algorithm, the original k value is given by

k = d26 + 3.86 log2NE + log2(Γ(1.8 + 0.25 logNE))− log2 ΩEe

the k value becomes smaller, so the algorithm becomes better since the less bit-precision

checking is needed.
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