

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis

MACHINE LEARNING - BASED EXCITED
STATE MOLECULAR DYNAMICS

Kicheol Kim

Department of Chemistry

Graduate School of UNIST

2019

[UCI]I804:31001-200000223587[UCI]I804:31001-200000223587[UCI]I804:31001-200000223587

MACHINE LEARNING - BASED EXCITED
STATE MOLECULAR DYNAMICS

Kicheol Kim

Department of Chemistry

Graduate School of UNIST

Abstract

We present a new methodology for excited state molecular dynamics (ESMD) (or nonadia-

batic molecular dynamics) based on machine learning (ML) technique. The most time consuming

process in conventional on-the-fly ESMD simulations is an electronic structure calculation in-

cluding analytic gradients of potential energy surfaces (PESs). Our study proposes that we can

bypass this by exploiting ML.

We consider ensemble density functional theory, especially state-interaction state-averaged

spin-restricted ensemble-referenced Kohn-Sham (SI-SA-REKS, or SSR for brevity) method as

electronic structure calculation for the ML model since SSR(2,2) provides two diabatic elec-

tronic states, namely perfectly spin-paired singlet (PPS) and open-shell singlet (OSS), and their

analytic gradients as well as interstate couplings (∆SA).

In this study, we exploit the SchNetPack ML python library for ML procedure. For com-

patibility, the decoherence-induced surface hopping based on exact factorization (DISH-XF)

program is implemented in Python (pyDISH-XF) for nuclear dynamics. Some part of pyDISH-

XF is written in C programming language to minimize the slowdown. We investigate ESMD

of an ethylene molecule to benchmark pyDISH-XF. The performance of pyDISH-XF is better

than UNI-xMD (a reference program is Fortran90). For overall ML-based ESMD, we focus on

photo-induced cis-trans isomerization of trans-Penta-2,4-dieniminium cation (PSB3), which is a

typical model molecule for rhodopsin. The SchNet model is trained with 7500 and 50000 PSB3

geometries getting from previous ESMD studies. We get the poor result with 7500 training set,

while the result with 50000 training set is reliable. Mean absolute error (MAE) energy and force

of PPS is evaluated 0.01001 eV and 0.01750 eV/Å, MAE energy and force of OSS is evaluated

0.00888 eV and 0.01785 eV/Å, and MAE energy and force of ∆SA is evaluated 0.00948 eV and

0.03720 eV/Å.

We investigate ESMD of PSB3 with ML and compare the result with conventional ESMD

of PSB3 with SSR method. The result is comparable to the conventional result. Furthermore,

it takes 21 minutes using 1 cpu thread, while the conventional result takes 1.7 days using 2 gpu

for propagating one trajectory.

Contents

I Introduction . 1

II Theoretical Background . 4

2.1 DISH-XF formalism . 4

2.2 SchNet . 5

2.3 SI-SA-REKS Method . 7

III Computational Method . 10

3.1 Python-based DISH-XF program (pyDISH-XF) 10

3.1.1 API Document . 11

3.2 Extension of SchNet to excited states . 18

3.3 Combination of pyDISH-XF and SchNet 18

IV Result and Discussion . 20

4.1 Verification of pyDISH-XF program . 20

4.2 Training the model . 23

4.3 ESMD of PSB3 with Machine Learning 25

V Conclusion . 27

References . 28

List of Figures

1 Deep neural network structure. 2

2 (a) Brief illustration of SchNet architecture. Zn is atomtype and rn is atomic

coordinates each atom n. P ′ is predicted property. (b) Illustration of interaction

parts. 6

3 Six microstates in the SSR(2,2) method . 7

4 ML architecture to replace quantum mechanics 19

5 FSSH dynamics of C2H4. 20

6 DISH-XF dynamics of C2H4. 21

7 (a) BO population of state 1 and state 2 at Surface Hopping. (b) BO population

of state 1 and state 2 at DISH-XF . 21

8 (a) Difference of total energy, (b) difference of state 1 energy, (c) difference of

state 2 energy at Surface Hopping. Corresponding to (d), (e), (f) at DISH-XF . . 22

9 (a) MAE energy of PPS, (b) MAE energy of OSS, (c) MAE energy of ∆SA. (d)

MAE force of PPS, (e) MAE force of OSS, (f) MAE force of ∆SA 24

10 BO populations of PSB3 ESMD . 25

11 BO populations of PSB3 ESMD with ML and SSR method 26

List of Tables

1 Input parameters of pyDISH-XF . 11

2 Setup for training model . 23

3 Evaluation result of the model . 25

Explanation of Terms and Abbreviations

ESMD

BO

MQC

DFT

ML

DISH-XF

SI-SA-REKS, or

SSR

eDFT

PSB3

PPS

OSS

pyDISH-XF

FSSH

ACSF

DTNN

cfconv

CI

FON

KS

MAE

Excited state molecular dynamics

Born-Oppenheimer

Mixed quantum-classical

Density functional theory

Machine learning

Decoherence-induced surface hopping based on exact factorization

State-interaction state-averaged spin-restricted ensemble-

referenced Kohn-Sham

Ensemble DFT

Trans-Penta-2,4-dieniminium Cation

Perfectly spin-paired singlet

Open-shell singlet

Python-based DISH-XF program

Fewest switch surface hopping

Atom-centered symmetry function

Deep tensor neural network

Continuous-filter convolutional

Conical intersection

Fractional occupation number

Kohn-Sham

Mean absolute error

I Introduction

Excited state molecular dynamics (ESMD) plays on the important role in photodynamic

processes. Born-Oppenheimer (BO) approximation is known as a fundamental tool in chemical

reactions. The BO approximation separates the motion of electrons and the motion of nuclei

because electrons move much faster than nuclei. However, in ESMD, molecules pass through

nonadiabatic coupling regions, where electron-nuclear correlation becomes strong, BO approx-

imation fails to describe nonadiabatic behaviors between multiple BO electronic states. One

of the most promising tools to describe the molecular dynamics in nonadiabatic coupling re-

gions more precisely is mixed quantum-classical (MQC) method; nuclei obey classical dynamics

while electrons obey quantum mechanics. One of the notable MQC methods is surface hop-

ping technique that nuclei hop from one BO adiabatic surface to another BO adiabatic surface,

if calculated hopping probability between two states satisfies some condition. Although many

variants of surface hopping were introduced, most of them fails to describe quantum decoherence.

Another problem of existing ab initio-based molecular dynamics simulations is a short time

scale. From ab initio to semi-empirical quantum chemistry methods, the quantum mechanical

methods have struggled getting efficiency and accuracy. Hartree-Fock approximation is funda-

mental ab initio method. A many-body electronic wave function is expanded in terms of elec-

tronic orbitals, |Φ0〉 = |φ1φ2...φn〉. Fock operator is defined, f̂ = ĥ(1) +
∑N/2

j=1(2Ĵj(1)− K̂j(1)),

where ĥ(1) = −1
2∇

2
1−
∑

I
ZI
r1I

is one electron hamiltonian, Ĵj(1) =
∫
dr2φ

∗
j (2) 1

r12
φj(2) is coulomb

operator, and K̂j =
∫
dr2φ

∗
j (2) 1

r12
φi(2) is exchange operator. Then, solving eigenfunction equa-

tion, f̂φi = εiφi. The orbital energy of the electronic orbital φi is εi. The Hartree-Fock method

has defect neglected electron correlation. For considering electron correlation energy, configu-

ration interaction, Møller-Plesset perturbation theory, and density functional theory (DFT) is

suggested. However, time scale cannot exceed femtosecond which is very short time to describe

realistic molecular dynamics. Machine learning (ML) is a rising methodology overcoming time

scale problems.

ML is a task of creating a model that learns from arbitrary data and predicts uneducated

values. In the field of machine learning, various kinds of models exist; support vector machine,

decision tree learning, and so on. Among them, a deep neural network is in the spotlight.

Artificial neural networks are systems that mimic a human brain. Artificial neural networks

are networked with artificial neurons, y = f(
∑

iwixi + bi), like that the neurons are connected

by synapses to form the brain structures, where w is weights, x is features, b is bias, and f

is activation function. Usually, nonlinear function (ex. sigmoid function) is used by activation

function for making network more complicated. Deep neural network is neural network which

has hidden layers between an input layer and an output layer as shown in Fig. 1. Layer is a

group of artificial neurons. Supervised ML trains the model from a set of examples and labels,

where an example is an instance of a feature, a label is a thing to be predicted. During training

the model, a loss function is defined. A square error, l = (y − y′)2, is commonly used for a

1

𝐱𝐱11

𝐱𝐱𝑖𝑖1

𝐱𝐱𝑛𝑛1

Input Layer

𝑦𝑦1

𝑦𝑦𝑖𝑖

𝑦𝑦𝑛𝑛

Output Layer

𝐱𝐱12

𝐱𝐱𝑖𝑖2

𝐱𝐱𝑗𝑗2

𝐱𝐱𝑛𝑛2

Hidden Layer

𝐱𝐱1𝑙𝑙

𝐱𝐱𝑖𝑖𝑙𝑙

𝐱𝐱𝒋𝒋𝑙𝑙

𝐱𝐱𝒏𝒏𝑙𝑙

∙ ∙ ∙

∙ ∙ ∙

∙ ∙ ∙

∙ ∙ ∙

𝑓𝑓(�
𝑖𝑖
𝐰𝐰𝑖𝑖
1𝐱𝐱𝑖𝑖1 + 𝐛𝐛𝑖𝑖1) 𝑓𝑓(�

𝑖𝑖
𝐰𝐰𝑖𝑖
𝑙𝑙𝐱𝐱𝑖𝑖𝑙𝑙 + 𝐛𝐛𝑖𝑖𝑙𝑙)

Figure 1: Deep neural network structure.

loss function, where y is a label, y′ is a prediction. Then, gradients of weights and losses are

calculated, and weights are adjusted to negative gradients for decreasing loss. After iterating

those processes until a loss function minimizes, training is done.

ML has strengths in situations where it is difficult to formalize algorithms, such as reading

pictures and judging what they are. In this respect, ML can be applied to quantum mechanical

computation. This is because the result of quantum mechanics can be obtained through machine

learning even if the exact formula is not utilized. There are many attempts to solve quantum

mechanics problem through ML in various ways, such as learning to solve the Schrodinger

equation [1] and the nonadiabatic excited-state dynamics [2].

In this study, ML is used for computing electronic structures in MQC dynamics. In previous

studies, a new MQC formalism is suggested, where the nuclear dynamics follows a decoherence-

induced surface hopping based on exact factorization (DISH-XF), while electronic states are

obtained from the state-interaction state-averaged spin-restricted ensemble-referenced Kohn-

Sham (SI-SA-REKS, or SSR) method based on the ensemble DFT (eDFT) [3]. Then, they

are applied to the ESMD of the trans-Penta-2,4-dieniminium Cation (PSB3). Instead of the

direct (or on-the-fly) SSR electronic structure calculation, a ML model implemented in SchNet

2

architecture [4] can predict the ground and excited state energies as well as their gradients

and nonadiabatic coupling vectors. The model consists of 3 independent models which predict

each of perfectly spin-paired singlet (PPS), open-shell singlet (OSS), and interstate coupling

parameter, ∆SA, energy and its gradient from the same atomic structure. DISH-XF algorithm

is implemented in python program (pyDISH-XF). For much faster computation, C language code

is interfaced in pyDISH-XF. In section II, we explain DISH-XF formalism, SchNet architecture,

and SI-SA-REKS methodology briefly. In section III, details of pyDISH-XF, suggested SchNet

models to predict electronic properties, and combination of both pyDISH-XF and the model are

given. In section IV, we explain the result so far; The verification of pyDISH-XF, training the

ML model and ESMD of PSB3 with machine learning. In section V, we describe the conclusion

of ongoing study.

3

II Theoretical Background

2.1 DISH-XF formalism

Tully’s fewest switch surface hopping (FSSH) is the most popular trajectory-based MQC

method because of its simplicity and practicality. [5] Because of its fewest switch algorithm,

nuclei only hop in nonadiabatic coupling region. FSSH calculates trajectories by Newtonian

equation of motion, M d2R
dt2

= −∇E, and propagates electronic wave function Φ(r, t) by the

time-dependent Schrödinger equation for electrons, i~ ∂
∂tΦ(r, t) = ĤBOΦ(r, t). BO expansion of

an electronic wave function for nuclear trajectory R is given as,

ĤBOΦ(r, t; R(t)) =
∑
i

Ci(t)φi(r; R(t)), (1)

where φi(r; R(t)) is the wave function of ith BO state. If density matrix ρik = C∗i (t)Ck(t) is

defined, the electronic equation of motion can be expressed by the density matrix,

d

dt
ρik(t) =

i

~
{Ei(t)− Ek(t)}ρik(t)

−
∑
j

{σij(t)ρjk(t)− ρij(t)σjk(t)}
(2)

where Ei is the ith state BO energy, σjk is a nonadiabatic coupling matrix element between the

jth and kth BO electronic states. However, FSSH lacks of quantum decoherence. To overcome

this problem, DISH-XF method is suggested. [6]

In DISH-XF method, an additional electron-nuclear coupling term from exact factorization

of a full molecular wave function [7–9] is introduced,

Qjk =
∑
ν

i~
Mν

∇ν |χ|
|χ|
|R(t) · (fν,j − fν,k), (3)

where Mν is the mass of the νth nucleus, ∇ν |χ||χ| is a nuclear quantum momentum, and fν,j is an

electronic phase at jth BO electronic state. Then, the electronic equation of motion yields,

d

dt
ρik(t) =

i

~
{Ei(t)− Ek(t)}ρik(t)

−
∑
j

{σij(t)ρjk(t)− ρij(t)σjk(t)}

+
∑
j

{Qji(t) +Qjk(t)}ρij(t)ρjk(t).

(4)

The nuclear quantum momenta are calculated from a set of auxiliary nuclear trajectories ap-

proximately. An auxiliary trajectory Rk(t
′) is generated when ρkk(t

′) exceeds a threshold at

time t′ (i.e. a notable population at the kth state). Then, the nuclear quantum momentum is

given as,
∇ν |χ|
|χ|
|R(t) = − 1

2σ2
{Rk(t)− 〈Rk(t)〉} (5)

4

where 〈Rk(t)〉 =
∑

l ρllRlk(t), with uniform variance σ. The approximate electronic phase term

is evaluated by time integration of momentum change, fν,i = −
∫ t
Mν

d
dt′Rk(t

′)dt′. There is a

strong point that more accurate results can be obtained with less resources based on existing

results. The hopping probability from the ith BO state to the kth BO state at time step size

∆t is calculated,

Pi→k =
2Re[ρik(t)σik(t)]

ρii(t)
∆t. (6)

If hopping probability Pi→k has negative value, it is set to 0. Also, because of total energy

conservation, the hopping is forbidden if the kth BO energy, Ek, is greater than the total energy.

After hopping is done, the nuclear velocities are rescaled to satisfy the energy conservation.

DISH-XF algorithm is proceeded following steps; Step 1: Get BO potential energies each states

and nonadiabatic coupling matrix elements, Step 2: Propagate electron density with decoherence

term, Step 3: Nuclear dynamics is proceeded by Newtonian equation of motion, Step 4: Calculate

hopping probability and determine hopping or not and generate decoherence terms.

2.2 SchNet

To apply ML in chemistry, featuring molecules is a crucial part. There are many tri-

als to describe molecules. One of successful neural network architectures is Behler-Parrinello

network. [10] In this network, atom-centered symmetry functions (ACSFs) represent atomistic

systems. [11] ACSFs have two terms; radial and angular parts. First, a radial symmetry function

is a sum of gaussians,

Gri =
all∑
j 6=i

eα(Rij−Rs)
2
fc(Rij), (7)

where Rs is a shifted center of gaussian parameters, and fc(Rij) is a cutoff function with the

width parameter α. Second, an angular symmetry function

Gai = 21−β
all∑
j,k 6=i

(1 + λ cos θijk)
β × e−α(R

2
ij+R

2
ik+R

2
jk)fc(Rij)fc(Rik)fc(Rjk), (8)

is the sum of cosine functions of angles θijk centered at the ith atom with an angular resolution

parameter β. The parameter λ can have values +1 or −1 corresponding to θijk = 0◦ and 180◦,

respectively, which make maxima of the cosine function. ACSFs have benefits (1) invariance

with respect to translation and rotation of the system, (2) independence of atomic coordinate.

For reliable ACSFs, finding suitable parameters is an important task. Thus, most of time are

consumed to find proper parameters.

Deep tensor neural network (DTNN) solves above problems providing atom embedding and

interaction refinements. [12] SchNet is one of variants of DTNN. Atoms are described tensor

xi ∈ RF , with features F . xi is initialized depending on an atomtype Zi, xi = aZi , where aZi is

a random value to be optimized during the training process. Each feature tensor is propagated

through atom-wise layers, xi = Wxi + b. Because the same atoms share weights W and bias b,

5

atom embeddings

interaction

prediction

𝑍𝑍𝑛𝑛

𝑟𝑟𝑛𝑛

𝑃𝑃𝑃

atom − wise

cfconv

atom − wise

shifted softplus

atom − wise

filter generator

𝑟𝑟𝑛𝑛

(a) (b)

Figure 2: (a) Brief illustration of SchNet architecture. Zn is atomtype and rn is atomic coordi-

nates each atom n. P ′ is predicted property. (b) Illustration of interaction parts.

SchNet can apply any atomistic systems irrespective of the number of atoms. The interaction

part refines atom embeddings with pairwise interactions of surrounding atoms. SchNet use

continuous-filter convolutional (cfconv) layers. cfconv layers are used to generalize discrete

convolutional layers. It is helpful to consider atomic positions without atomic coordinates. In

this model, cfconv layers,

xi =

natoms∑
j=0

xj ◦W f (rj − ri), (9)

with W f : R3 → RF that maps the atomic coordinates to features F , generated by filter-

generating neural network. The operation ◦ represents an element-wise multiplication. Inter-

action part consists of 3 atom-wise layers, cfconv layer and activation functions. Each layer

is located in between atom-wise layers as shown in Fig. 2(b). Shifted softplus, ssp(x) =

ln(0.5ex + 0.5), is used for activation functions. Filter-generating network considers rotational

invariance and periodic boundary conditions within neighbor atoms. Neighbor atoms are atoms

in a cutoff range. Prediction of given property P is a sum of atom-wise layer outputs,

P =

natoms∑
i

xi. (10)

Instead of predicting atomic forces directly, SchNet differentiates a predicted energy function

with respect to atomic positions,

F ′i (Z1, ..., Zn, r1, ..., rn) = −∂E
′

∂ri
(Z1, ..., Zn, r1, ..., rn). (11)

For the sake of training the model, SchNet minimizes the loss function, l(P, P ′) = ‖P − P ′‖2.
For the training both energies and forces of molecular dynamics trajectories, a combined loss

6

function is used,

l((E′, F ′1, ...F
′
n), (E,F1, ...Fn)) = ρ‖E − E′‖2 +

1− ρ
natoms

natoms∑
i

‖Fi − (−∂E
′

∂ri
)‖2, (12)

with trade-off parameter ρ. [13]

2.3 SI-SA-REKS Method

We exploit the SSR method based on eDFT as an electronic structure calculation. [14–19] While

the conventional DFT and time dependent DFT fail to capture the correct topology of the PESs

in the conical intersections (CIs) vicinity, the SSR method enables much accurate description

of the vertical excitation energies with the S1/S0 CIs matching the results calculated from the

multireference ab initio wave function methods. The SSR methodology employs ground state

eDFT to describe multireference ground states of molecules and eDFT for ensembles of ground

and excited state to obtain excitation energies from a variational time-independent formalism.

The concept of the fractional occupation numbers (FONs) of several frontier Kohn-Sham (KS)

orbitals appears due to the use of ensemble representation of the density and the energy. Here,

we use the active space including two electrons in two KS orbitals (i.e. SSR(2,2)) to deal with

the π/π∗ transitions of PSB3.

𝜙𝜙𝑎𝑎 𝜙𝜙𝑏𝑏

1st microstate

𝜙𝜙𝑎𝑎 𝜙𝜙𝑏𝑏

2nd microstate

𝜙𝜙𝑎𝑎 𝜙𝜙𝑏𝑏

3rd microstate

𝜙𝜙𝑎𝑎 𝜙𝜙𝑏𝑏

4th microstate

𝜙𝜙𝑎𝑎 𝜙𝜙𝑏𝑏

5th microstate

𝜙𝜙𝑎𝑎 𝜙𝜙𝑏𝑏

6th microstate

Figure 3: Six microstates in the SSR(2,2) method

In the SSR(2,2) method, the energy of the multireference state is expanded in terms of six

microstates with the fixed and integer occupations of the active orbitals φa and φb as shown in

Fig. 3. The energies of ground and excited states are obtained by minimizing an ensemble of

the PPS and OSS states with respect to the KS orbitals and their FONs. The energies of PPS

and OSS states, EPPS and EOSS , are expressed as an ensemble average over six microstates as

EPPS =
6∑

L=1

CPPSL EL (13)

7

EOSS =
6∑

L=3

COSSL EL (14)

where CPPS1 = na
2 , CPPS2 = nb

2 , C
PPS
3 = CPPS4 = −CPPS5 = −CPPS6 = −f(na/2)

2 , and COSS3 =

COSS4 = −2COSS5 = −2COSS6 = 1 with na and nb is FONs of the active KS orbitals each φa and

φb and f(na/2) = (nanb)
1−1/2((nanb+δ)/(1+δ)) with δ = 0.4 subject to na + nb = 2. The equal

weightings in the SA-REKS(2,2) energy ESA = w0E
PPS +w1E

OSS are chosen. Minimizing the

SA-REKS(2,2) energy leads to a single particle equation,

npF̂pφp =
∑
q

εSApq φq (15)

where the Fock operator F̂p of the pth orbital φp is given by

F̂p =
∑
L

CSAL
nLpαF̂

L
α + nLpβF̂

L
β

np
(16)

where p ∈ core, a, b. Here, the average occupation number np =
∑

LC
SA
L (nLpα + nLpβ) with

CSAL = w0C
PPS
L + w1C

OSS
L , and the Largrangian matrix elements εSApq are obtained. The Fock

operator of each microstate L is calculated within spin-restricted DFT framework.

So far, the S0 and S1 states are assumed decoupled by symmetry. If there is no symmetry

or the two states belong in the same irreducible representation, we do not need to consider the

interaction between the states. However, the assumption that the two states in SA-REKS(2,2)

are decoupled by symmetry is often not realistic, thus the inclusion of states interactions be-

comes important. The interstate coupling ∆SA is calculated using the converged SA-REKS(2,2)

Lagrangian matrix elements εSAab between the active orbitals φa and φb as

∆SA = (
√
na −

√
nb)ε

SA
ab . (17)

The SSR states are obtained by solving the following 2× 2 secular equation(
EPPS ∆SA

∆SA EOSS

)(
a00 a01

a10 a11

)
=

(
ESSR0 0

0 ESSR1

)(
a00 a01

a10 a11

)
(18)

Therefore, the ground and the lowest excited state energies, ESSR0 and ESSR1 , are obtained as

ESSRI = a20IE
PPS + a21IE

OSS + 2a0Ia1I∆
SA (19)

where I = 0 and 1. The derivation of analytic gradients for EPPS , EOSS , and ∆SA can be found

elsewhere. [20] The gradients of the SSR(2,2) states ∇ESSRI are obtained as

∇ESSRI = a20I∇EPPS + a21I∇EOSS + 2a0Ia1I∇∆SA (20)

The nonadiabatic coupling vectors can be expanded in terms of the gradients of the SSR(2,2)

8

states ∇ESSRI and of the interstate coupling ∇∆SA,

H01 =
1

ESSR1 − ESSR0

(
2(a00a01 − a10a11)
a200 − a201 − a210 + a211

G01

− 2(a00a01 − a10a11)(a00a10 − a01a11)
a200 − a201 − a210 + a211

h01

+ (a00a11 + a01a10)h01

) (21)

where G01 = 1
2(∇ESSR0 −∇ESSR1), h01 = ∇∆SA.

9

III Computational Method

3.1 Python-based DISH-XF program (pyDISH-XF)

pyDISH-XF is an object-oriented program whose classes are organized into individual processes.

All processes are managed as objects, which is advantageous for a large number of tasks. For

faster computation, electron dynamics parts is implemented in C language and interfaced in

pyDISH-XF using cython library.

1 from atoms import Atoms

2 from bo import Bo

3 from dynamics import Dynamics

4 from sh import Sh

5 from shxf import Shxf

6 from thermostat import ∗
7 import j son

8

9 i f __name__ == "__main__" :

10 with open ("unixmd . j son ") as f :

11 args = j son . load (f)

12 t r a j = Atoms("unixmd . xyz" , args)

13 bo = Bo(args)

14 sh = Sh(args)

15 shx f = Shxf (args)

16 i f (a rgs ["thermo_type"] == " r e s c a l e 1 ") :

17 thermostat = ve l o c i t y_r e s c a l e (args)

18 e l i f (a rgs ["thermo_type"] == " r e s c a l e 2 ") :

19 thermostat = veloc ity_rescale_dtemp (args)

20 e l s e :

21 thermostat = thermo (args)

22 md = Dynamics (args)

23 md. run (t ra j , bo , sh , shxf , thermostat)

The above code is a code example using pyDISH-XF. The parameters to define computations

such as molecular dynamics scheme, thermostats, and initial conditions are received in a dic-

tionary in the program or can be pre-declared externally through json. The types of input

parameters are described in the table 1 below. After loading input parameters, getting input

geometry from "unixmd.xyz" using Atoms class. Then, declare Bo, Sh, Shxf, thermostat and

Dynamics objects. Bo object executes quantum mechanics program and parses energies, forces,

and nonadiabatic coupling vector or matrix elements. Sh object calculates hopping probability

and decides that hopping is occurred or not. Shxf object generates auxiliary trajectory and

calculates decoherence terms. Finally, running molecular dynamics based on declared objects in

Dynamics object.

10

name description

natoms number of atoms

nsp number of nuclear dimensions per atom

nstates number of BO states

istate the initial state

nsteps number of time steps

nesteps number of time steps for the electronic problem

dt size of time step

temperature temperature for MD, in Kelvin

dtemp temperature tolerance for velocity rescale

nrescale velocity rescale frequency

rho_threshold threshold for BO population

wsigma variance for trajectory

outfreq output frequency

l_simplehop logical for hopping according to energy only

l_adjnac logical for adjusting NAC

l_allphase_dp logical for calculating all phase from momentum changes (SHXFMQC)

l_nacme read NACME.DAT instead of NAC.DAT

Table 1: Input parameters of pyDISH-XF

3.1.1 API Document

atoms.py

class Atoms(fname, args)

Get input geometry from given files.

Parameters: • fname(str) - name of input geometry file

• args(dictionary) - input parameters

write_traj(dir)

Write current positions in TRAJECOTRY file.

Parameters: • dir(str) - path of proceeding calculation

write_traj_xyz(dir)

Write current positions in TRAJECOTRY.xyz file in the .xyz format.

Parameters: • dir(str) - path of proceeding calculation

write_movie(dir, first)

Accumulate current positions and velocities in MOVIE file as dynamics progresses.

11

Parameters: • dir(str) - path of proceeding calculation

• first(bool) - If true, write new MOVIE file.

write_movie_xyz(dir, first)

Accumulate current positions in MOVIE.xyz file in the .xyz format as dynamics progresses.

Parameters: • dir(str) - path of proceeding calculation

• first(bool) - If true, write new MOVIE.xyz file.

write_vel(dir)

Write current velocities in VELOCITY file.

Parameters: • dir(str) - path of proceeding calculation

bo.py

class Bo(args)

Class for quantum mechanics part of the system.

Parameters: • args(dictionary) - input parameters

get_BO(dir, l_nac)

Run quantum mechanics program and call read_BO_files().

Parameters: • dir(str) - path of proceeding calculation

• l_nac(bool) - If true, call adjust_nac().

get_nacme(traj)

Get nonadiabatic coupling matrix elements from nonadiabatic coupling vectors.

Parameters: • traj(Atoms) - Atoms object which has current atomic information.

adjust_nac()

Change sign of nonadiabatic coupling vectors if the overlap of current nonadiabatic coupling

vectors and past nonadiabatic coupling vectors have negative sign.

read_BO_files()

Read energies, forces, and nonadiabatic coupling vectors or matrix elements which are got

from quantum mechanics.

cl_dynamics.py

class Cl_dynamics(args)

Set classic mechanics part of the system.

Parameters: • args(dictionary) - input parameters

cl_update_position(coef, traj, bo, sh)

Proceed to classical dynamics to obtain positions.

12

Parameters: • coef(np.array) - coefficients of BO wave function.

• traj(Atoms) - Atoms object which has current atomic informa-

tion.

• bo(Bo) - Bo object which has current quantum mechanics infor-

mation.

• sh(Sh) - Sh object which has current surface hopping information.

cl_update_position(coef, traj, bo, sh)

Proceed to classical dynamics to obtain positions.

Parameters: • coef(np.array) - coefficients of BO wave function.

• traj(Atoms) - Atoms object which has current atomic informa-

tion.

• bo(Bo) - Bo object which has current quantum mechanics infor-

mation.

• sh(Sh) - Sh object which has current surface hopping information.

cl_update_velocity(coef, traj, bo, sh)

Proceed to classical dynamics to obtain velocities.

Parameters: • coef(np.array) - coefficients of BO wave function.

• traj(Atoms) - Atoms object which has current atomic informa-

tion.

• bo(Bo) - Bo object which has current quantum mechanics infor-

mation.

• sh(Sh) - Sh object which has current surface hopping information.

calculate_force(coef, traj, bo, sh)

Calculate nuclei forces.

Parameters: • coef(np.array) - coefficients of BO wave function.

• traj(Atoms) - Atoms object which has current atomic informa-

tion.

• bo(Bo) - Bo object which has current quantum mechanics infor-

mation.

• sh(Sh) - Sh object which has current surface hopping information.

dynamics.py

class Dynamics(args)

Class for main dynamics.

Parameters: • args(dictionary) - input parameters

run(traj, bo, sh, shxf, thermostat)

Run MQC dynamics loop.

13

Parameters: • coef(np.array) - coefficients of BO wave function.

• traj(Atoms) - Atoms object which has current atomic informa-

tion.

• bo(Bo) - Bo object which has current quantum mechanics infor-

mation.

• sh(Sh) - Sh object which has current surface hopping information.

• shxf(Shxf) - Shxf object which has decoherence information.

• thermostat(thermo) - thermo object which has thermostat infor-

mation.

write_md_trajinfo(traj)

Call write_traj () and write_traj_xyz ()

Parameters: • traj(Atoms) - Atoms object which has current atomic information.

write_md_output(istep, traj, bo, sh)

Call write_vel(), write_movie(), write_movie_xyz (), write_md_energy(), write_BO_coefs().

If first is true, set first to false.

Parameters: • istep(int) - current dynamics step.

• traj(Atoms) - Atoms object which has current atomic informa-

tion.

• bo(Bo) - Bo object which has current quantum mechanics infor-

mation.

• sh(Sh) - Sh object which has current surface hopping information.

write_md_energy(istep, traj, bo, sh)

Accumulate kinetic energy, potential energy, and total energy in MDENERGY file.

Parameters: • istep(int) - current dynamics step.

• traj(Atoms) - Atoms object which has current atomic informa-

tion.

• bo(Bo) - Bo object which has current quantum mechanics infor-

mation.

• sh(Sh) - Sh object which has current surface hopping information.

write_BO_coefs()

Accumulate BO coefficient using density matrix diagonal term and off-diagonal term in BO-

COEF file.

el_dynamics.pyx

el_propagator(el_propagator, nst, nat, nsp, nesteps, dt, wsigma, traj, bo, sh, shxf, rho, coef)

Change python variables which using electron dynamics to C variable. Call C function for

electron dynamics. Runge-Kutta method is used for propagating electron dynamics.

14

Parameters: • el_propagator(str) - method of electron propagator {coefficient

or density}

• nst(int) - total number of states.

• nat(int) - total number of atoms.

• nsp(int) - total number of nuclear dimensions per atom.

• nesteps(int) - total number of time steps for electronic problem.

• dt(int) - size of time step.

• wsigma(int) - variance for trajectory.

• traj(Atoms) - Atoms object which has current atomic informa-

tion.

• bo(Bo) - Bo object which has current quantum mechanics infor-

mation.

• sh(Sh) - Sh object which has current surface hopping information.

• shxf(Shxf) - Shxf object which has decoherence information.

• coef(np.array) - coefficients of BO wave function.

• rho(np.array) - coefficients density matrix of BO wave function.

sh.py

class Sh(args)

Class for surface hopping methods.

Parameters: • args(dictionary) - input parameters

surface_hopping(dir, traj, bo, rho, istep)

Run surface hopping dynamics.

Parameters: • dir(str) - path of proceeding calculation

• traj(Atoms) - Atoms object which has current atomic informa-

tion.

• bo(Bo) - Bo object which has current quantum mechanics infor-

mation.

• rho(np.array) - coefficients density matrix of BO wave function.

• istep(int) - current dynamics step.

hop_prob(rho, bo)

Calculate hopping probability.

Parameters: • rho(np.array) - coefficients density matrix of BO wave function.

• bo(Bo) - Bo object which has current quantum mechanics infor-

mation.

write_sh_output(dir, rho)

Call write_sh_hopping_prob(), write_sh_running_state(), and write_sh_nacme(). If io_first

is true, set io_first to false.

15

Parameters: • dir(str) - path of proceeding calculation

• rho(np.array) - coefficients density matrix of BO wave function.

write_sh_nacme(dir, rho)

Write nonadiabatic coupling matrix elements in NACME file.

Parameters: • dir(str) - path of proceeding calculation

• rho(np.array) - coefficients density matrix of BO wave function.

write_sh_hopping_prob(dir)

Accumulate hopping probability in SHPROB file.

Parameters: • dir(str) - path of proceeding calculation

write_sh_running_state(dir)

Accumulate running state in SHSTATE file.

Parameters: • dir(str) - path of proceeding calculation

shxf.py

class Shxf(args)

Class for decoherence term.

Parameters: • args(dictionary) - input parameters

decoherence_shxf(traj, bo, sh, rho, coef)

Run decoherence term calculation.

Parameters: • traj(Atoms) - Atoms object which has current atomic informa-

tion.

• bo(Bo) - Bo object which has current quantum mechanics infor-

mation.

• sh(Sh) - Sh object which has current surface hopping information.

• rho(np.array) - coefficients density matrix of BO wave function.

• coef(np.array) - coefficients of BO wave function.

get_aux_pos(traj, sh)

Generate auxiliary trajectories.

Parameters: • traj(Atoms) - Atoms object which has current atomic information.

• sh(Sh) - Sh object which has current surface hopping information.

get_aux_vel(traj, sh, bo)

Calculate velocity of auxiliary trajectories.

16

Parameters: • traj(Atoms) - Atoms object which has current atomic informa-

tion.

• sh(Sh) - Sh object which has current surface hopping information.

• bo(Bo) - Bo object which has current quantum mechanics infor-

mation.

get_nabph(traj, sh)

Calculate electronic phase.

Parameters: • traj(Atoms) - Atoms object which has current atomic information.

• sh(Sh) - Sh object which has current surface hopping information.

get_qmcdot(traj, sh, coef, rho)

Calculate decoherence term using BO coefficient.

Parameters: • traj(Atoms) - Atoms object which has current atomic information.

• sh(Sh) - Sh object which has current surface hopping information.

• coef(np.array) - coefficients of BO wave function.

• rho(np.array) - coefficients density matrix of BO wave function.

thermostat.py

class thermo(args)

Class for thermostat base.

Parameters: • args(dictionary) - input parameters

class velocity_rescale(args)

Class for thermostat which rescales velocities at each target step.

Parameters: • args(dictionary) - input parameters

run(traj, shxf)

Rescale velocity at each target step.

Parameters: • traj(Atoms) - Atoms object which has current atomic information.

• shxf(Shxf) - Shxf object which has decoherence information.

class velocity_rescale_dtemp(args)

Class for thermostat which rescales velocities if current temperature over temperature toler-

ance.

Parameters: • args(dictionary) - input parameters

run(traj, shxf)

Rescale velocity if current temperature over temperature tolerance.

Parameters: • traj(Atoms) - Atoms object which has current atomic information.

• shxf(Shxf) - Shxf object which has decoherence information.

17

3.2 Extension of SchNet to excited states

Obtaining the ground and excited state energies, forces and nonadiabatic coupling vector

is an object of quantum chemical calculations in DISH-XF. To replace quantum chemical cal-

culations with ML, we have two choices in training processes; (1) training adiabatic properties,

and (2) training diabatic properties. Since adiabatic electronic energies and their gradients can

have nonanalytic behaviors in the vicinity of CIs, training diabatic energies and gradients may

be more suitable choice for ESMD simulation. In this sense, SSR approach is beneficial since

SSR provides diabatic states (PPS and OSS) and couplings (∆SA) as well as gradients directly.

From identical atomic positions Ri, 3 independent SchNet models train each PPS, OSS, ∆SA

energy and force. Each model consists of F = 256 features and T = 6 interaction blocks. A

cutoff radius is set to 20 Å, which can cover all atoms. Output layer is set predicting energy with

force. For training the model, initial learning late is set to 0.0001. Instead of exponential decay,

ReduceLRonPlateau method is used to decrease learning rate. It decreases learning late when

training loss is not improved during the number of patience epoch. A combined loss function,

l((E′, F ′1, ...F
′
n), (E,F1, ...Fn)) = ρ‖E−E′‖2+ 1−ρ

natoms

∑natoms
i ‖Fi−(−∂E′

∂ri)‖2, is used. All models

are implemented based on SchNetPack. [4, 12, 21–25]

3.3 Combination of pyDISH-XF and SchNet

The SchNet models predict PPS, OSS, ∆SA energies and forces. For the use in DISH-XF

method, they should be converted into ground, excited energies and forces and nonadiabatic

coupling vectors. Ground state energy E0, excited state energy E1, each of gradient ∇E0, ∇E1,

and nonadiabatic coupling vector H01 can be expressed as following equations. First, ground

and excited energy can get from diagonalization of given matrix,

P−1

(
EPPS ∆SA

∆SA EOSS

)
P =

(
E0 0

0 E1

)
(22)

,where P is

(
a00 a01

a10 a11

)
. Gradients of ground and excited state can be calculated the following

equation,

∇E0 = a200∇EPPS + 2a00a10∇∆SA + a210∇EOSS (23)

∇E1 = a201∇EPPS + 2a11a01∇∆SA + a211∇EOSS . (24)

Then, nonadiabatic coupling vector can be express as

H01 =
1

E1 − E0
((a00a01 − a10a11)g01 + (a00a11 + a01a10)h01), (25)

where g01 = 1
2(∇EPPS − ∇EOSS), and h01 = ∇∆SA. After getting energies, gradients, and

nonadiabatic coupling vector, energies are written in ENERGY.DAT, forces Fi = −∇Ei are

written in FORCE.DAT and nonadabatic coupling vector is written in NAC.DAT for parsing

in pyDISH-XF program.

18

𝐑𝐑i

PPS Schnet OSS Schnet Δ𝑆𝑆𝑆𝑆 Schnet

𝐸𝐸𝑃𝑃𝑃𝑃𝑆𝑆,𝛻𝛻𝐸𝐸𝑃𝑃𝑃𝑃𝑆𝑆 𝐸𝐸𝑂𝑂𝑆𝑆𝑆𝑆,𝛻𝛻𝐸𝐸𝑂𝑂𝑆𝑆𝑆𝑆 Δ𝑆𝑆𝑆𝑆,𝛻𝛻Δ𝑆𝑆𝑆𝑆

𝐸𝐸0,𝐸𝐸1,𝛻𝛻𝐸𝐸0,𝛻𝛻𝐸𝐸1,𝐻𝐻01

Figure 4: ML architecture to replace quantum mechanics

19

IV Result and Discussion

4.1 Verification of pyDISH-XF program

To checking pyDISH-XF program, we perform ESMD of C2H4 molecules. The initial geometry

is set as a slightly modified the ground state geometry. We exploit DFTB/SSR method for

electronic structure calculation. [26] Both FSSH and DISH-XF dynamics are done with UNI-

xMD program [6] and pyDISH-XF program.

Figure 5: FSSH dynamics of C2H4.

FSSH dynamics is propagated up to 1000 steps with time step 0.12 fs shown in Fig. 5. Surface

Hopping is done at 395th step forcibly for the same dynamics condition. UNI-xMD takes about

445 seconds. pyDISH-XF takes about 1952 seconds which is 4 times longer than UNI-xMD.

For finding the reason why it takes much time, time analysis is performed. Python has defect

that is slowdown in loop state. We find that elapsed time is proportional to the number of loop

steps. In electronic propagator, 10000 electronic steps is proceeded. As a result, the bottleneck

is electronic propagator part of program. Alternatively using python, electronic propagator is

altered C code. After that, pyDISH-XF interfaced with C code takes about 240 seconds which

is 1.9 times faster than UNI-xMD program.

DISH-XF dynamics is also propagated up to 1000 steps with time step 0.12 fs shown in

Fig. 6. Surface Hopping is done at 362th step forcibly for the same dynamics condition. UNI-

xMD takes about 312 seconds. pyDISH-XF takes about 2711 seconds which is 8.6 times longer

than UNI-xMD. Additional calculation of decoherence terms also takes long times in python.

It is not followed previous study that calculation of decoherence term is in the short time. [6]

After converting python to C code, it takes about 227 seconds which is 1.4 times faster than

20

Figure 6: DISH-XF dynamics of C2H4.

UNI-xMD program. Also, pyDISH-XF program obtains total energy, ground state energy and

excited state energy within 1e-5 errors compared to UNI-xMD program both surface hopping

and DISH-XF dynamics described in Fig. 8 and almost the same BO population of state 1 and

state 2 obtained pyDISH-XF and UNI-xMD at the surface hopping and DISH-XF dynamics

described in Fig. 7.

(a) (b)

Figure 7: (a) BO population of state 1 and state 2 at Surface Hopping. (b) BO population of

state 1 and state 2 at DISH-XF

21

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

F
ig
ur
e
8:

(a
)
D
iff
er
en
ce

of
to
ta
l
en
er
gy
,
(b
)
di
ffe

re
nc

e
of

st
at
e
1
en

er
gy
,
(c
)
di
ffe

re
nc

e
of

st
at
e
2
en

er
gy

at
Su

rf
ac
e
H
op

pi
ng

.
C
or
re
sp
on

di
ng

to

(d
),
(e
),

(f
)
at

D
IS
H
-X

F

22

4.2 Training the model

Training dataset is calculated using the beta-testing version of the TeraChem program (v1.92P,

release 7f19a3bb8334). [27–32] Total 62500 geometries are generated by ESMD of PSB3 that 50

trajectories are propagated up to 1250 steps with PPS and OSS of energies and gradients, and

∆SA and its gradients. We train the model with two different conditions which are summarized

in Table 2. First, 7500 geometries by obtaining 1250 steps each 6 of trajectories are used to train

the model with trade-off between energy force loss, ρ = 0.1 and patience for ReduceLRonPlateau

method is 100 at PPS, OSS and ∆SA model. Initial learning rate is 1e-4. If the model is not

improved during the number of patience epoch, learning rate is reduced to 0.5. Training is

proceeded until learning rate is reduced to 1e-6. The model is trained with mini-batch stochastic

gradient descent using ADAM optimizer. [33] Batch size is set to 100.

model Learning rate Decay Factor Minimal Learning Rate Patience ρ Batch Size

N = 7500

PPS 0.0001 0.5 1e-6 100 0.1 100

OSS 0.0001 0.5 1e-6 100 0.1 100

∆SA 0.0001 0.5 1e-6 100 0.1 100

N = 50000

PPS 0.0001 0.5 1e-6 50 0.1 100

OSS 0.0001 0.5 1e-6 50 0.1 100

∆SA 0.0001 0.5 1e-6 50 0.1 100

Table 2: Setup for training model

Fig. 9 demonstrates the variation of mean absolute error (MAE) energy and force in PPS,

OSS and ∆SA model during training. MAE energies are more fluctuating than MAE forces,

because ρ is set to give weight to force loss. Because ∆SA properties are 1000 times smaller than

PPS and OSS, ∆SA model is converged much faster than PPS and OSS model.

We evaluate the models using 55,000 geometries by obtaining 1250 steps each 44 trajectories.

MAE energy and force of PPS are 0.32320 eV and 0.38730 eV/Å. MAE energy and force of OSS

are 0.41073 eV and 0.44411 eV/Å. MAE energy and force of ∆SA are 0.08501 eV and 0.20221

eV/Å. Compared to result of training set, all of MAEs are relatively high values. The result

shows that this model predicts suitable properties only in training sets. It cannot be substituted

SSR methods.

Then, we increase the training set from 7500 to 50000. It is randomly chosen from 62500

geometries by obtaining 1250 steps each 50 of trajectories. Patience for ReduceLRonPlateau

method is 50 at PPS, OSS and ∆SA model. MAE energy and force of PPS are reduced to

0.01001 eV and 0.01750 eV/Å. MAE energy and force of OSS are reduced to 0.00888 eV and

0.01785 eV/Å. MAE energy and force of ∆SA are reduced to 0.00948 eV and 0.03720 eV/Å. The

23

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

F
ig
ur
e
9:

(a
)
M
A
E

en
er
gy

of
P
P
S,

(b
)
M
A
E

en
er
gy

of
O
SS

,(
c)

M
A
E

en
er
gy

of
∆
S
A
.
(d
)
M
A
E

fo
rc
e
of

P
P
S,

(e
)
M
A
E

fo
rc
e
of

O
SS

,(
f)

M
A
E

fo
rc
e
of

∆
S
A

24

N = 7500 N = 50000

model MAE Energy (eV) MAE Force (eV/Å) MAE Energy (eV) MAE Force (eV/Å)

PPS 0.32320 0.38730 0.01001 0.01750

OSS 0.41073 0.44411 0.00888 0.01785

∆SA 0.08501 0.20221 0.00948 0.03720

Table 3: Evaluation result of the model

results are summarized in Table 3. It is more suitable than the result getting from 7500 training

model.

4.3 ESMD of PSB3 with Machine Learning

Total 100 trajectories are propagated up to 1250 steps with the time step 0.24 fs. Initial geome-

tries are generated by the TeraChem software by Wigner sampling at T = 300 K in previous

study. [3] We exploit pyDISH-XF with the SchNet model that is trained by 50000 training set.

Dynamics is proceeded under microcanonical ensemble.

Figure 10: BO populations of PSB3 ESMD

We analyze BO populations of PSB3 ESMD. Two types of BO populations are used; PI
is obtained from the numbers of trajectories running on the Ith state, 〈ρII〉 is averaged BO

population over all trajectories. Out of 2 trajectories are not hopped that is the reason why

final BO populations are not 0 and 1. Fig. 10 shows two types of BO populations have the same

tendency that decoherence is well applied in ESMD.

We compare our result with ESMD of PSB3 with SSR method. [3] Both PI and 〈ρII〉 have

25

Figure 11: BO populations of PSB3 ESMD with ML and SSR method

comparable result. DISH-XF with SSR dynamics takes 1.7 days to finish one trajectory using

2 gpu. However, DISH-XF with ML dynamics takes 21 minutes to finish one trajectory using 1

cpu thread. It gets 117 times faster result despite low computational cost.

26

V Conclusion

In this study, machine learning has been attempted to replace SSR methodology in DISH-XF

formalism. pyDISH-XF is implemented with python interfaced with the external C code that

propagates electronic steps for combining DISH-XF method and machine learning method easily.

ESMD of an ethylene molecule is proceeded with UNI-xMD program to benchmark pyDISH-

XF program. pyDISH-XF program generates encouraging results that calculation is faster than

UNI-xMD with reliable results.

The SchNet is used for training PPS, OSS and ∆SA energies and forces. The model consists

of three SchNet models each train three properties respectively implemented in SchNetPack;

deep neural network python library. PSB3 database is generated by the beta-testing version of

the TeraChem program (v1.92P, release 7f19a3bb8334) which contains 62500 geometries consist

of 1250 steps each 50 trajectories. However, the model trained with 7500 geometries couldn’t

predict given properties; PPS, OSS, and ∆SA energies and forces. Then, we increase training

set from 7500 to 50000. As a result, the error is reduced then we proceed dynamics to using this

model.

For comparing the result to conventional result, ESMD with machine learning is propagated

in the same condition. It gets a comparable result within 21 minutes using 1 cpu thread compared

to 1.7 day using 2 gpu at the conventional result. Therefore, we achieve the object that decreasing

computational time.

27

References

[1] K. Mills, M. Spanner, and I. Tamblyn, “Deep Learning and the Schrödinger equation,”

Phys. Rev. A, vol. 96, p. 042113, 2017.

[2] W.-K. Chen, X.-Y. Liu, W.-H. Fang, P. O. Dral, and G. Cui, “Deep Learning for Nonadia-

batic Excited-State Dynamics,” J. Phys. Chem. Lett., vol. 9, pp. 6702–6708, 2018.

[3] M. Filatov, S. K. Min, and K. S. Kim, “Direct Nonadiabatic Dynamics by Mixed Quantum-

Classical Formalism Connected with Ensemble Density Functional Theory Method: Ap-

plication to trans-Penta-2,4-dieniminium Cation,” J. Chem. Theory Comput., vol. 14,

pp. 4499–4512, 2018.

[4] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller, “SchNet

- A deep learning architecture for molecules and materials,” J. Chem. Phys., vol. 148,

p. 241722, 2018.

[5] J. C. Tully, “Molecular dynamics with electronic transitions,” J. Chem. Phys., vol. 93,

p. 1061, 1990.

[6] J.-K. Ha, I. S. Lee, and S. K. Min, “Surface Hopping Dynamcis beyond Nonadiabatic

Couplings for Quantum Coherence,” J. Phys. Chem. Lett., vol. 9, pp. 1097–1104, 2018.

[7] A. Abedi, N. T. Maitra, and E. K. U. Gross, “Exact Factorization of the Time-Dependent

Electron-Nuclear Wave Function,” Phys. Rev. Lett., vol. 105, p. 123002, 2010.

[8] A. Abedi, N. T. Maitra, and E. K. U. Gross, “Correlated electron-nuclear dynamics: Exact

factorization of the molecular wavefunction,” J. Chem. Phys., vol. 137, p. 22A530, 2012.

[9] N. I. Gidopoulos and E. K. U. Gross, “Electronic non-adiabatic states: towards a density

functional theory beyond the Born–Oppenheimer approximation,” Philos. Trans. R. Soc.

A, vol. 372, p. 20130059, 2014.

[10] J. Behler and M. Parrinello, “Generalized Neural-Netwrok Representation of High-

Dimensional Potential-Energy Surfaces,” Phys. Rev. Lett., vol. 98, p. 146401, 2007.

[11] J. Behler, “Atom-centered symmetry functions for constructing high-dimensional neural

network potentials,” J. Chem. Phys., vol. 134, p. 074106, 2011.

28

[12] K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko, “Quantum-

chemical insights from deep tensor neural networks,” Nat. Commun., vol. 8, p. 13890, 2017.

[13] A. Pukrittayakamee, M. Malshe, M. Hagan, L. M. Raff, R. Narulkar, S. Bukkapatnum, and

R. Komanduri, “Simultaneous fitting of a potential-energy surface and its corresponding

force fields using feedforward neural networks,” J. Chem. Phys., vol. 130, p. 134101, 2009.

[14] S. M. Valone, “A one-to-one mapping between one-particle densities and some n-particle

ensembles,” J. Chem. Phys., vol. 73, p. 4653, 1980.

[15] E. H. Lieb, “Density functionals for coulomb systemses,” Int. J. Quantum Chem., vol. 24,

pp. 243–277, 1983.

[16] J. P. Perdew, R. G. Parr, M. Levy, and J. Jose L. Balduz, “Density-Functional Theory for

Fractional Particle Number: Derivative Discontinuities of the Energy,” Phys. Rev. Lett.,

vol. 49, pp. 1691–1694, 1982.

[17] H. Englisch and R. Englisch, “Hohenberg-Kohn theorem and non-V-representable densities,”

Phys. A, vol. 121, pp. 253–268, 1983.

[18] H. Englisch and R. Englisch, “Exact Density Functionals for Ground-State Energies. I.

General Results,” Phys. Status Solidi B, vol. 123, pp. 711–721, 1984.

[19] H. Englisch and R. Englisch, “Exact Density Functionals for Ground-State Energies II.

Details and Remarks,” Phys. Status Solidi B, vol. 124, pp. 373–379, 1984.

[20] M. Filatov, F. Liu, and T. J. Martínez, “Analytical derivatives of the individual state

energies in ensemble density functional theory method. I. General formalism,” J. Chem.

Phys., vol. 147, p. 034133, 2017.

[21] K. T. Schütt, P. Kessel, M. Gastegger, K. A. Nicoli, A. Tkatchenko, and K.-R. Müller,

“SchNetPack: A Deep Learning Toolbox For Atomistic Systems,” J. Chem. Theory Com-

put., vol. 15, pp. 448–455, 2019.

[22] K. T. Schütt, P.-J. Kindermans, H. Sauceda, S. Chmiela, A. Tkatchenko, and K.-R. Müller,

“SchNet: A continuous-filter convolutional neural network for modeling quantum interac-

tions,” Adv. Neural Inf. Process. Syst., pp. 991–1001, 2017.

[23] M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi, and P. Marquetand,

“wACSF—Weighted atom-centered symmetry functions as descriptors in machine learn-

ing potentials,” J. Chem. Phys., vol. 148, p. 241709, 2018.

[24] J. Behler and M. Parrinello, “Generalized Neural-Network Representation of High-

Dimensional Potential-Energy Surfaces,” Phys. Rev. Lett., vol. 98, p. 146401, 2007.

29

[25] J. Smith, O. Isayev, and A. Roitberg, “ANI-1, A data set of 20 million calculated off-

equilibrium conformations for organic molecules.,” Sci. Data, vol. 4, p. 170193, 2017.

[26] I. S. Lee, M. Filatov, and S. K. Min, “Formulation and Implementation of the Spin-

Restricted Ensemble-Referenced Kohn-Sham Method in the Context of the Density Func-

tional Tight Binding Approach,” J. Chem. Theory Comput., vol. 15, pp. 3021–3032, 2019.

[27] I. S. Ufimtsev and T. J. Martínez, “Quantum Chemistry on Graphical Processing Units. 1.

Strategies for Two-Electron Integral Evaluation,” J. Chem. Theory Comput., vol. 4, pp. 222–

231, 2008.

[28] I. S. Ufimtsev and T. J. Martínez, “Quantum Chemistry on Graphical Processing Units. 2.

Direct Self-Consistent-Field Implementation,” J. Chem. Theory Comput., vol. 5, pp. 1004–

1015, 2009.

[29] I. S. Ufimtsev and T. J. Martínez, “Quantum Chemistry on Graphical Processing Units.

3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular

Dynamics,” J. Chem. Theory Comput., vol. 5, pp. 2619–2628, 2009.

[30] I. S. Ufimtsev and T. J. Martínez, “Graphical Processing Units for Quantum Chemistry.,”

Comput. Sci. Eng., vol. 10, pp. 26–34, 2008.

[31] A. V. Titov, I. S. Ufimtsev, N. Luehr, and T. J. Martinez, “Generating Efficient Quantum

Chemistry Codes for Novel Architectures,” J. Chem. Theory Comput., vol. 9, pp. 213–221,

2013.

[32] C. Song, L.-P. Wang, and T. J. Martínez, “Automated Code Engine for Graphical Processing

Units: Application to the Effective Core Potential Integrals and Gradients,” J. Chem.

Theory Comput., vol. 12, pp. 92–106, 2016.

[33] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimizatio,” ArXiv preprint,

p. arXiv:1412.6980, 2017.

30

	I Introduction
	II Theoretical Background
	2.1 DISH-XF formalism
	2.2 SchNet
	2.3 SI-SA-REKS Method

	III Computational Method
	3.1 Python-based DISH-XF program (pyDISH-XF)
	3.1.1 API Document

	3.2 Extension of SchNet to excited states
	3.3 Combination of pyDISH-XF and SchNet

	IV Result and Discussion
	4.1 Verification of pyDISH-XF program
	4.2 Training the model
	4.3 ESMD of PSB3 with Machine Learning

	V Conclusion
	References

<startpage>12
I Introduction 1
II Theoretical Background 4
 2.1 DISH-XF formalism 4
 2.2 SchNet 5
 2.3 SI-SA-REKS Method 7
III Computational Method 10
 3.1 Python-based DISH-XF program (pyDISH-XF) 10
 3.1.1 API Document 11
 3.2 Extension of SchNet to excited states 18
 3.3 Combination of pyDISH-XF and SchNet 18
IV Result and Discussion 20
 4.1 Verification of pyDISH-XF program 20
 4.2 Training the model 23
 4.3 ESMD of PSB3 with Machine Learning 25
V Conclusion 27
References 28
</body>

