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Abstract 

Scallops are distinguished from other bivalves in that they can rapidly swim. One species of the 

scallop, Patinopecten yessoensis is known as inefficient swimmer or zigzag swimmer. Nevertheless P. 

yessoensis can swim long distance quickly. The scallop has reversed airfoil-like shape, and low aspect 

ratio (AR < 1.5). To investigated hydrodynamic characteristics of swimming scallop, swimming 

motion of the scallop is recorded, and the three-dimensional kinematics of swimming motion is 

analyzed. The scallop swims in the range of Reynolds number less than 45000. It also found that the 

scallop is not always jump but swims touching the ground. Directly forces and moment are measured 

by water tunnel experiment under 2 conditions, in ground effect and out of ground effect. Based on 

the results of forces and moment measurement, expected trajectory of swimming scallop is computed 

and compared with the trajectory of swimming actual scallop. By the comparison, quasi-steady state 

assumption of swimming scallop is verified so water tunnel experiment is validated. 2 step stall 

occurs out of ground effect. After first stall, lift is slightly decreased and increased again until second 

stall. As angle of attack increased, nonlinear lift is increased so lift coefficient reaches maximum right 

before second stall, because tip vortex helps the flow attach to the surface of the scallop. In case of 

typical 3-dimensional wing, lift is increased, and drag is decreased in ground effect, but in case of 

scallop, both lift and drag are increased. Multiple two-dimensional flow fields around the model out 

of ground effect are measured by conducting particle image velocimetry. During first stall, separation 

bubble from leading edge and wake region near the trailing edge encounter, so flow separation occurs 

over all surface of the model. However, tip-vortex induced downwash make the leading-edge vortex 

(LEV) attach to the surface, so lift is increased again. When angle of attack reaches 34°, tip-vortex 

induced downwash no longer formed over the scallop, and second stall occurs. Compared with that of 

level swimmer, hydrodynamic performance of zigzag swimmer is comparable to that of level 

swimmer. Therefore, zigzag swimmer is enough applicable to engineering problem. 

 

Keywords: Zigzag swimmer, Ground effect, Low aspect ratio, Tip-vortex induced downwash 
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1. Introduction 

Most bivalves do not move their habitation but live in a place where they settled (Bayne and 

Newell 1983). By these habits, bivalves are prone to be eaten by predators. Thus, most bivalves bury 

themselves in the ground to avoid predators, and some, such as mussels, stick their bodies on hard 

surfaces. Most of these sedentary bivalves have solid shells to protect themselves from predators. 

Starfish, however, break the protection strategy of bivalve by opening the shells with tentacles and 

eating them by putting the stomach into it (Feder 1955). 

 

Figure 1. Directions of swimming and water jet during scallop swimming. 

 

Distinguished from other bivalves, scallops have unique ability to swim for keeping their bodies 

from predators (Gosling 2008). When a scallop encounters a predator such as a starfish, as shown in 

figure 1, it can swim in ventral direction perpendicular to the hinge line by quickly closing the two 

shells and expelling water into the orifice on either side of the hinge (Moore and Trueman 1971). 

Scallops can use these swimming skills to move their habitation or to successfully escape from 

predators.  

The shell morphology and the swimming behaviour varies depending on the scallop genera 

(Stanley 1970). Based on the shell shape and the swimming locomotion, scallops can be divided into 

2 groups, level swimmers and zigzag swimmers (Hayami 1991). Level swimmers include 

Placopecten and Amusium. The shell of level swimmers is thin and weakly upward-convex, so they 
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have airfoil like shape. Level swimmers have shallow surface grooves on the shells. According to 

Caddy (1968), one of level swimmer, Placopecten magellanicus, jump from 30° to 50° to swim. Then 

it moves up to 4m while maintaining altitude. This is called level flight. There are several factors that 

make the scallops to swim distance of several times of their body length without sinking. According to 

Vogel (1997), the muscles of the Placopecten magellanicus are tuned appropriately for swimming. 

Anderson et al. (1997) suggested the possibility that the surface grooves on shells of Placopecten 

magellanicus can reduce drag while swimming. Studies also carried out to measure hydrodynamic 

property of level swimmers using towing tank or water tunnel (Gruffydd 1976; Hayami 1991; 

Milward and Whyte 1992). 

Zigzag swimmers include Patinopecten, Argopecten. The shell of zigzag swimmers is thick and 

equiconvex or strongly downward convex, resulting flow separation on the surface when swimming 

so they are known to swim awkward to zigzag. They have relatively large surface grooves on the shell. 

Choi et al. (2012) showed that surface grooves on the shell of Patinopecten yessoensis increases 

hydrodynamic performance of the scallop through wind tunnel experiments. Milward and Whyte 

(1992), on the other hand, found that surface grooves on the shell of Pecten alba do not significantly 

affect hydrodynamic performance using water tunnel. 

Above studies measuring the hydrodynamic performance of surface grooves of zigzag swimmers 

have two limitations, so the result is different to each other. First limitation is that swimming motion 

of scallop is assumed to be a steady motion. However, while actual scallop is swimming, 

instantaneous velocity and pitch angle are constantly changing and shape of the scallop is also not 

consistent because of successive adduction, so swimming motion of the scallop is not steady motion. 

Considering these factors, quasi-steady assumption of swimming scallop is needed to be verified. The 

second limitation is that the scallops do not always jump high, but they swim on the ground when they 

move a short distance so hydrodynamic performance in ground effect also needs to be studied. 

The surface grooves on zigzag swimmers are much larger (by about 7-8 times) than those on level 

swimmers (Anderson et al. 1997, Choi et al. 2012). It should be noted here that for a surface device, 

too small a size may hamper its applicability to engineering problems due to operational factors such 

as dust accumulation (Sagong et al. 2008). Therefore, if any improvement in hydrodynamic (or 

aerodynamic) performance is possible, large surface grooves of zigzag swimmers have a high 

potential to be implemented in practical applications such as low-aspect-ratio wings used in small 

UAVs (unmanned aerial vehicles). In this context, it is important to analyze the hydrodynamic 

function of large surface grooves of zigzag swimmers in scallop swimming. 
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Before researching hydrodynamic performances of surface grooves on the shell of zigzag 

swimmers, the hydrodynamic characteristics of zigzag swimmers must be analyzed. There are 4 main 

hydrodynamic characteristics of swimming zigzag swimmers. First characteristics is cross section 

shape. The cross section of the zigzag swimmer is similar to a reversed airfoil having sharp leading 

edge and blunt trailing edge. Lind et al. (2014) studied a two-dimensional reversed airfoil 

(NACA0012) which is thinner than the scallop. At angle of attack is 0°, wake region is formed behind 

the airfoil, and at angle of attack is 6°, leading edge stall occurs. Second one is planform shape of the 

scallop. Zigzag swimmers have circular planform shape and have low aspect ratio. Third one is 

Reynolds number of the scallop. Zigzag swimmers are small, so they swim in the range of low 

Reynolds number. Torres and Mueller (2004) reported that elliptical planform wing which has low 

aspect ratio (AR < 2) is stalled at higher angle of attack than high aspect ratio wing because of tip 

vortex. The last characteristics of the scallop is ground effect. Since the scallop swims on the ground, 

flow around the scallop is affected by ground. Traub (2014) investigated low aspect ratio wing (AR < 

5) in ground effect experimentally and analytically and found that lift is increased and drag is 

decreased in ground effect. Since the zigzag swimmer has above 4 characteristics, it is necessary to 

study the hydrodynamic characteristics. 

Therefore, the objective of this thesis is to investigate the hydrodynamic characteristics of zigzag-

swimmer scallop, Patinopecten yessoensis. For this purpose, the kinematics of the actual scallop 

Patinopecten yessoensis was measured and based on the measured kinematics, the water tunnel 

experiment was conducted. Hydrodynamic forces and moments were measured under 2 conditions, in 

ground effect and out of ground effect using water tunnel. Quasi steady state of swimming scallop 

was verified through the measured forces and moment. Finally, the flow around scallops was 

quantitatively analyzed by digital particle image velocimetry (DPIV). 
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2. Experimental setup 

2.1. Measurement of kinematic data of actual scallop 

 

Figure 2. (a) Schematic diagram of the experimental setup for measurement of kinematic data 

and (b) left (upper) valve of scallop. 

 

Sample name 
Shell length 

(mm) 

Shell height 

(mm) 

Hinge length 

(mm) 
Mass (g) 

Number of 

movements 

A 84 82.7 39.5 71.4 11 

B 69.55 60.8 29.6 58 1 

C 83.45 84.15 33.55 62.1 7 

D 73.2 73 26.85 54.9 6 

E 87.8 85.9 38.7 106.2 4 

F 80 79.5 31 65 7 

G 75.2 68.6 28.8 65.2 2 

H 75.5 77.25 33 74.1 3 

I 75.3 74.25 30.5 58.9 2 

Table 1 Specification of specimens for measurement of kinematic data 

To know the kinematics of swimming scallop, Patinopecten yessoensis, 43 movements of 9 

scallops were recorded. Patinopecten yessoensis was provided by the East Sea Fisheries Research 

Institute of the National Institute of Fisheries Science, Gangneung. At the nearby harbor, starfishes, 

Asterias amurensis, which are predator of Patinopecten yessoensis according to Dautov & Karpenko 

(1984), are captured to stimulate the scallop to swim. Figure 2(a) shows experimental setup used to 
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measure kinematic data of swimming scallop. To measure 3-dimensional motion of the scallops, 2 

high speed cameras with resolution of 1280 × 800 pixels (Dantec Dynamics Speedsense) are used. 

Camera 1 and 2 recorded xy-plane and yz-plane (figure 3(a) and (b)) respectively. The movies have a 

time resolution of 50 frames per second. The water tank used in the experiment is made of glass, 

1200mm long, 450mm wide and was filled with 16°C seawater at a depth of 405mm. the water tank is 

large enough not to affect swimming of the scallop.  

Figure 2(b) shows schematic diagram of left (upper) valve of a scallop. A line which is along hinge 

of the scallop, is called hinge line (red line in figure 2(b)). On the hinge, a protruding part near the 

center of the hinge is called umbo (yellow point in figure 2(b)), on which trailing edge is. The point 

on the shell edge which is the furthest from umbo is called leading edge, and the line connecting 

umbo and leading edge is defined as chord (white line at figure 3(a)) and the distance of chord is 

called chordlength or height. The greatest distance between 2 points on the shell edge, along the line 

parallel to hinge line is called length (white line at figure 3(b)). Length also called as span because the 

line connecting the 2 points are almost perpendicular to chord (Martin et al. 2000). Angle of attack is 

defined as the angle between velocity of the scallop and the plane on which lip of the scallop lies 

(Dadswell and Weih, 1990). Lip of the scallop is defined as the line where the upper shell and the 

lower shell meet (blue line in figure 1(b)), and it also called as commissure. 

 The specification of the specimens is in table 1. Averaged mass of the specimens is 68.7g, 

averaged height is 76.2mm and averaged length is 78.2mm. Hinge length means the length of the 

hinge line (red line in figure 1(b)). Before measuring mass of samples, all samples were taken out 

from the water tank and the water in the shell was removed. According to Silina (2008), P. yessoensis 

which is healthy young jumps to distances as long as 100 cm, but the adult scallop jumps only 40cm. 

In addition, a scallop, P. magellanicus, of which length is larger than 70mm and smaller than 100mm 

can keep pace without falling or captured by predators (Caddy 1968), so almost specimens have 

length which is within the range. 

Velocity of the scallop is defined as velocity of the center of the scallop. Figure 3(a) and (b) shows 

how center of the scallop is defined. Center of the scallop (blue point) is located at midpoint of the 

chordline in xy-plane (figure 3(a)), and midpoint of the line connecting the rightmost point and 

leftmost point of the scallop shell (red point) in yz-plane (figure 3(b)). Velocities of the scallop at ith 

frame in xy- and yz-plane (denoted by 𝑣𝑥𝑦,𝑖 and 𝑣𝑦𝑧,𝑖 respectively) are calculated as follows. 

𝒗𝒙𝒚,𝒊 = (𝒗𝒙,𝒊, 𝒗𝒚,𝟏,𝒊) = (
𝑠𝒙,𝒊+𝟏−𝑠𝒙,𝒊−𝟏

𝟐∆𝒕
,   

𝑠𝒚,𝟏,𝒊+𝟏−𝑠𝒚,𝟏,𝒊−𝟏

𝟐∆𝒕
) ×

𝑯𝒆𝒊𝒈𝒉𝒕𝒎𝒆𝒕𝒆𝒓

𝑯𝒆𝒊𝒈𝒉𝒕𝒑𝒊𝒙𝒆𝒍,𝒊
   ( 1 ) 

𝒗𝒚𝒛,𝒊 = (𝒗𝒚,𝟐,𝒊, 𝒗𝒛,𝒊) = (
𝑠𝒚,𝟐,𝒊+𝟏−𝒔𝒚,𝟐,𝒊−𝟏

𝟐∆𝒕
,   

𝑠𝒛,𝒊+𝟏−𝑠𝒛,𝒊−𝟏

𝟐∆𝒕
) ×

𝑳𝒆𝒏𝒈𝒕𝒉𝒎𝒆𝒕𝒆𝒓

𝑳𝒆𝒏𝒈𝒕𝒉𝒑𝒊𝒙𝒆𝒍,𝒊
   ( 2 ) 
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where subscript pixel and denotes the unit of the value. 𝐻𝑒𝑖𝑔ℎ𝑡𝑝𝑖𝑥𝑒𝑙,𝑖 and 𝐿𝑒𝑛𝑔𝑡ℎ𝑝𝑖𝑥𝑒𝑙,𝑖 are shown 

in figure 3, and 𝐻𝑒𝑖𝑔ℎ𝑡𝑚𝑒𝑡𝑒𝑟 and 𝐿𝑒𝑛𝑔𝑡ℎ𝑚𝑒𝑡𝑒𝑟 are shown in table 1. The ratio of height in meter 

and pixel is multiplied to unit conversion as shown in equation (1). Since the scallop rotated about the 

z-axis, the distances from rightmost point to leftmost point (shown in figure 3(b)) is not actual length. 

However, the distance is almost the same with length because planform shape of the scallop is almost 

circular, so ratio of the lengths also multiplied as shown in equation (2). Velocity in y-direction can be 

calculated in both xy- and yz-plane, so the average value is used. Finally, 3-dimensional velocity of 

the scallop is calculated as  

𝒗𝒊 = (𝒗𝒙,𝒊,
𝟏

𝟐
(𝒗𝒚,𝟏,𝒊 + 𝒗𝒚,𝟐,𝒊), 𝒗𝒛,𝒊)    ( 3 ) 

 

 

Figure 3. Image analysis for calculating velocity of scallop swimming (a) xy-plane which is 

captured by camera1; (b) yz-plane which is captured by camera2. 

 

To calculate angle of attack at each frame, the commissure plane 𝑝 is suggested, on which lip of 

the scallop lies. The commissure plane 𝑝  has normal vector of 𝑝  which has the following 

characteristics. 

𝑝 ⊥ 𝑐 ,      ( 4 ) 

 𝑝 ⊥ ℎ⃗       ( 5 ) 

 



7 

ℎ⃗  and 𝑐  denotes vectors which is on the hinge line, and chordline respectively (white arrow in figure 

4(a) and 4(b)). 𝑐  and ℎ⃗  are calculated as 

𝑐 = (𝑥𝑙 − 𝑥𝑡 , 𝑦𝑙 − 𝑦𝑡 ,   𝑧𝑐),       ( 6 ) 

ℎ⃗ = (𝑥ℎ, 𝑦𝑝 − 𝑦𝑎 , 𝑧𝑝 − 𝑧𝑎)        ( 7 ) 

(𝑥𝑙 , 𝑦𝑙) and (𝑥𝑡 , 𝑦𝑡) are position coordinates of leading edge and trailing edge in figure 4(a), 

respectively. (𝑦𝑎 , 𝑧𝑎) and (𝑦𝑝, 𝑧𝑝) are position coordinates of the most anterior and most posterior 

point on hinge of the scallop in figure 4(b), respectively. 𝑦𝑐 in equation (6) and 𝑥ℎ in equation (7) 

are unknown component of vector 𝑐  and ℎ⃗  because they are normal component to xy-plane (figure 

4(a)), and yz-plane (figure 4(b)), respectively. Since we need information about only direction, each 

component in the vectors can be divided as the same factors. Thus, rewriting equation (6) and (7) as 

𝒄⃗ ′ =
𝒄⃗ 

𝒙𝒍−𝒙𝒕
= (𝟏,     

𝒚𝒍−𝒚𝒕

𝒙𝒍−𝒙𝒕
 ,     

𝒛𝒄

𝒙𝒍−𝒙𝒕
 ),        ( 8-1 ) 

𝒉⃗⃗ ′ =
𝒉⃗⃗ 

𝒛𝒑−𝒛𝒂
= (

𝒙𝒉

𝒛𝒑−𝒛𝒂
,

𝒚𝒑−𝒚𝒂

𝒛𝒑−𝒛𝒂
,    𝟏)        ( 9-1 ) 

In equation (8-1) and (9-1), y-components can be substituted as tangent function (in figure 4(a), and 

4(b)) and fraction components can be written simpler as 𝑧𝑐 (𝑥𝑙 − 𝑥𝑡⁄ ) = 𝑧𝑐
′   and 𝑥ℎ (𝑧𝑝 − 𝑧𝑎⁄ ) = 𝑥ℎ

′ . 

Then, the vectors are as follows 

𝑐 ′ = (1,    tan 𝜃𝑝𝑖𝑡𝑐ℎ   ,     zc
′  ),         (8-2) 

ℎ⃗ ′ = (𝑥ℎ
′ ,    tan 𝜃𝑟𝑜𝑙𝑙 ,       1)       (9-2) 

 

Figure 4. Image analysis for calculating angle of attack of scallop swimming (a) xy-plane which 

is captured by camera1; (b) yz-plane which is captured by camera2; (c) xz-plane. 
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Suppose hinge length of the scallop in pixel (ℎ𝑟𝑒𝑎𝑙,𝑝𝑖𝑥𝑒𝑙), which is calculated by 

𝐡𝐫𝐞𝐚𝐥,𝐩𝐢𝐱𝐞𝐥 = 𝐡𝐫𝐞𝐚𝐥,𝐦𝐞𝐭𝐞𝐫 ×
𝐥𝐞𝐧𝐠𝐭𝐡𝐩𝐢𝐱𝐞𝐥

𝐥𝐞𝐧𝐠𝐭𝐡𝐦𝐞𝐭𝐞𝐫
    ( 10 ) 

where ℎ𝑟𝑒𝑎𝑙,𝑚𝑒𝑡𝑒𝑟 is metric hinge length in Table 1 and the unit is converted as velocity calculation. 

Then, projected hinge length on yz-plane (ℎ𝑦𝑧) is used to find the exact value of θyaw. θyaw can be 

calculated by following equation. 

cosθyaw =
hyz

hreal,pixel
=

√(yp−ya)
2
+(zp−za)

2

hreal,pixel
        ( 11 ) 

Combining equation (9-2) and (11), 𝑥ℎ
′  can be calculated as following equations. 

cosθyaw =
√1+tan2 𝜃𝑟𝑜𝑙𝑙

|ℎ⃗⃗ ′|
= √

tan2 𝜃𝑟𝑜𝑙𝑙+1

𝑥ℎ
′ 2

+tan2 𝜃𝑟𝑜𝑙𝑙+1
        ( 12 ) 

Now, all 3 components of ℎ⃗  is known, and it is as follows. 

ℎ⃗ ′ = (𝑡𝑎𝑛𝜃𝑦𝑎𝑤√1 + tan2 𝜃𝑟𝑜𝑙𝑙 , tan 𝜃𝑟𝑜𝑙𝑙 ,       1)         ( 13 ) 

Then, 𝑐  can be calculated, because 𝑐  is perpendicular to ℎ⃗ , and ℎ⃗  ⋅ 𝑐 = 0. 𝑐  is known as follows. 

𝑐 ′ = (1, tan 𝜃𝑝𝑖𝑡𝑐ℎ , −tanθyaw√1 + tan2 θroll − tanθroll tan θpitch )       ( 14 ) 

Exact direction of 𝑝  can be calculated by ℎ⃗ ′ × 𝑐 ′ which is derived from equation (1) and (2). 

p⃗ = |

î ĵ k̂

tanθyaw√1 + tan2 θroll tan θroll 1

1 tan θpitch −tanθyaw√1 + tan2 θroll − tan θroll tan θpitch

|  ( 15 ) 

Finally angle of attack is found using following equation, because it is defined as the angle between 

the velocity of the scallop swimming (𝑉⃗ ) and the planform. 

𝐴𝑜𝐴 = 𝑠𝑖𝑛−1 𝑉⃗⃗ ⋅𝑝  

| 𝑉⃗⃗  ⃗||𝑝 |
     ( 16 ) 

 

2.2. Forces and moment measurement 

To measure the hydrodynamic forces and moments acting on the scallops, we conducted water 

tunnel experiment. Lift, drag and pitching moment were measured. The force measurements were 
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conducted for two cases: when the scallop swims in ground effect and out of ground effect. The 

scallop model was made of enlarging the size of the Patinopecten yessoensis shell A (Table 1) by 2 

times larger than the actual size, because scallop A moved the most times. Actual scallop is 3D 

scanned using 3D scanning system (DAVID SLS-3-3D) in resolution of 0.05mm, and a model is made 

by nylon at UDMC in UNIST using 3D printer (EOS P770) which resolution is 0.1mm. The model 

has height of 165.4mm and length of 169mm. Height and length are used as chord (c) and span (s), 

respectively. Planform area (A) of the scallop is 21088mm2, so aspect ratio (s2/A) is 1.35. The 

thickness of the model is 46mm (0.28c). The model when viewed on the posterior side is very similar 

to reversed symmetric airfoil (figure 5) which has sharp leading edge and blunt trailing edge. Based 

on the kinematics of the actual scallop swimming, the experiment is conducted in the range of 

Reynolds number (based on the height of the scallop) Re = 20000 - 45000. The schematic diagram of 

experimental setup is shown in figure 6. Angle of attack varied from 0° to 50° by 2°. The streamwise 

length, width and depth of the water tunnel test section are respectively 1200mm×500mm×460mm. 

Freestream turbulence of test section is less than 3% at every Re. Strut was attached to the most 

posterior point of the scallop (figure 5) in the length-direction to prevent flow interpretation. The strut 

was designed to be very thin with a diameter of 3mm to minimize the effect of strut. In the experiment, 

two loadcells (CAS BCA-5L) for lift and drag and a torque sensor (QMSYSTEM QMF-1) for 

pitching moment were installed at the other side of the strut. The moment coefficient at quarter chord 

(CM,c 4⁄ ) is calculated by 

CM,c 4⁄ = CM,s − {(
xs

c
−

1

4
)  cosα +

ys

c
sinα}CL − {(

x

c
−

1

4
) sinα −

ys

c
cosα} CD    ( 17 ) 

where CM,s is moment coefficient at position of strut, xs and ys is distances from leading edge in 

direction of x- and y-axis in figure 5, respectively. 

Ground is made by acryl plate of which length in streamwise direction is 500mm (3.03c), and it is 

installed next to the right (lower) valve of the model. When angle of attack is 0°, leading edge of 

model is 100mm away from leading edge of ground in streamwise direction. Considering kinematics 

of the scallop (See sec. 3.1), scallops always swim touching the ground. However, since the force and 

moment cannot be measured when the ground is touched, the ground and the model are kept at a 

minimum distance of 1 mm (0.006c). As the angle of attack increases, the plate is moved in the y 

direction so that the distance between the scallop and the plate does not change. For each AoA, a 

camera (Dantec Dynamics Speedsense) was installed at the bottom of the scallop to measure the 

distance between the scallop and the plate. The spatial resolution of the camera used for distance 

measurement is 0.15 mm/px. 
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Figure 5. Posterior view of the model. 

 

 

Figure 6. Schematic diagram of the experimental setup for force and moment measurement. 

 

2.3. Trajectory of swimming scallop simulation 

Prior to analyzing the hydrodynamic characteristics of the scallop, it is necessary to guarantee that 

the flow around the model in water tunnel experiment satisfies hydrodynamic similarity with the flow 

around the swimming actual scallop. The trajectory of the scallop was computed using the forces and 

moment obtained from the experiment in ground effect, and the computed trajectory was compared 



11 

with the trajectory of swimming actual scallop. Since the forces and moment are measured in steady 

state, computed trajectory is steady state, while trajectory of actual scallop is not steady state. If the 

two trajectories are similar, actual scallop swimming can be assumed to be quasi-steady state and 

water tunnel experiment will satisfy the hydrodynamic similarity with the flow around the actual 

scallop. 

 

Figure 7. Free body diagram for trajectory computation. 

 

Trajectory is computed under two assumptions for convenience. The first assumption is that the 

movement of scallop is two-dimensional. The second assumption is that the shape of the scallop is a 

zero-volume rod. However, when computing angle of attack, the second assumption was not applied 

for accurate calculation, but the actual volume of scallops was considered. A detailed explanation 

follows later. Figure 7 shows all the forces and moments applied to the scallop while swimming, and 

the equations of motions are 

𝑁 =
𝑟𝜃̈𝑐𝑜𝑠𝜃−{

𝜌|𝑉⃗⃗ |
2
𝐴

2𝑚
(𝐶𝐿𝑐𝑜𝑠𝛽−𝐶𝐷𝑠𝑖𝑛𝛽)−𝑔+

𝜌𝑤𝑔∀

𝑚
}−𝑟𝜃̇2𝑠𝑖𝑛𝜃

𝑟2𝑐𝑜𝑠𝜃(𝑐𝑜𝑠𝜃+𝑓𝑠𝑖𝑛𝜃)

𝐼𝑚
+

1

𝑚

,   ( 18 ) 

𝜃̈ = 𝑓𝜃(|𝑉⃗ |, 𝜃, 𝛼) =  
𝜌|𝑉⃗⃗ |

2
𝐴𝑐

2𝐼𝑚
𝐶𝑀,𝐶𝑜𝑀 −

𝑁𝑟(𝑐𝑜𝑠𝜃+𝑓𝑠𝑖𝑛𝜃)

𝐼𝑚
 ,            ( 19 ) 

𝑥̈ = 𝑓𝑥(|𝑉⃗ |, 𝜃, 𝛼) =  −
𝜌|𝑉⃗⃗ |

2
𝐴

2𝑚
(𝐶𝐷𝑐𝑜𝑠𝛽 + 𝐶𝐿𝑠𝑖𝑛𝛽) −

𝑓𝑁

𝑚
 ,         ( 20 ) 

𝑦̈ = 𝑓𝑦(|𝑉⃗ |, 𝜃, 𝛼) =  
𝜌|𝑉⃗⃗ |

2
𝐴

2𝑚
(𝐶𝐿𝑐𝑜𝑠𝛽 − 𝐶𝐷𝑠𝑖𝑛𝛽) − 𝑔 +

𝜌𝑤𝑔∀

𝑚
+

𝑁

𝑚
          ( 21 ) 

where 𝑁 is normal force from ground, 𝑟 is the distance from center of mass to trailing edge of 
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scallop and θ is pitch angle. ρ and ρw are density of scallop and water respectively, m is mass of 

the scallop and A is planform area of scallop shell. 𝛽 is the angle between the velocity (𝑉⃗ ) and the 

ground, 𝑔 is gravitational constant and ∀ is volume of the scallop. 𝑓 is friction coefficient between 

wet glass bottom and scallop shell and 𝐼𝑚 is pitching moment of inertia at center of mass. 𝑥 and y 

are center of mass position of the scallop in horizontal and vertical direction respectively. Lift (𝐶𝐿), 

drag (𝐶𝐷) and moment coefficient (𝐶𝑀,𝐶𝑜𝑀) are all functions of 𝑅𝑒, and 𝐴𝑜𝐴 (𝛼), that is functions of 

𝑉⃗  and α. 𝐶𝑀,𝐶𝑜𝑀   is moment coefficient at center of mass, and it is calculated using moment at the 

most posterior point at which strut is attached. Friction coefficient between wet glass bottom and 

scallop shell is measured by multi-function adhesion scratch test system (Neoplus AST210). 𝐼𝑚 was 

measured with 3D-scanned model data (See secion 2.2) on the assumption of constant density. 

In the integration for the trajectory calculation, 4th-order Runge-Kutta method with a time interval 

(∆t) of 0.0002 seconds between steps is used and the calculation formula of each step is as follows. 

|𝑉⃗ |
𝑖,1

= |𝑉⃗ |
𝑖
,           ( 22 ) 

𝜃𝑖,1 = 𝜃𝑖,          ( 23 ) 

𝛼𝑖,1 = 𝛼𝑖,           ( 24 ) 

𝒙̇𝒊,𝟏 = |𝑽⃗⃗ |
𝒊
𝒄𝒐𝒔𝜽𝒊,       ( 25 )  

𝒚̇𝒊,𝟏 = |𝑽⃗⃗ |
𝒊
𝒔𝒊𝒏𝜽𝒊,      ( 26 ) 

  𝜽̇𝒊,𝟏 = 𝜽̇𝒊,            ( 27 ) 

𝒙̈𝒊,𝟏 = 𝒇𝒙 (|𝑽⃗⃗ |
𝒊,𝟏

, 𝜽𝒊,𝟏, 𝜶𝒊,𝟏) ,          ( 28 ) 

 𝒚̈𝒊,𝟏 = 𝒇𝒚 (|𝑽⃗⃗ |
𝒊,𝟏

, 𝜽𝒊,𝟏, 𝜶𝒊,𝟏) ,          ( 29 ) 

 𝜽̈𝒊,𝟏 = 𝒇𝜽 (|𝑽⃗⃗ |
𝒊,𝟏

, 𝜽𝒊,𝟏, 𝜶𝒊,𝟏),         ( 30 ) 

𝒙̇𝒊,𝟐 = 𝒙̇𝒊,𝟏 + 𝒙̈𝒊,𝟏 (
𝟏

𝟐
∆𝒕),        ( 31 ) 

  𝒚̇𝒊,𝟐 = 𝒚̇𝒊,𝟏 + 𝒚̈𝒊,𝟏 (
𝟏

𝟐
∆𝒕) ,          ( 32 ) 

 𝜽̇𝒊,𝟐 = 𝜽̇𝒊,𝟏 + 𝜽̈𝒊,𝟏 (
𝟏

𝟐
∆𝒕),               ( 33 ) 

𝜽𝒊,𝟐 = 𝜽𝒊,𝟏 + 𝜽̇𝒊,𝟏 (
𝟏

𝟐
∆𝒕),        ( 34 ) 
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  𝜶𝒊,𝟐 = 𝜽𝒊,𝟐 − 𝒕𝒂𝒏−𝟏 𝒚̇𝒊,𝟐+𝒚̇𝒊,𝟐,𝒗𝒐𝒍𝒖𝒎𝒆

𝒙̇𝒊,𝟐
,          ( 35 ) 

𝒙̈𝒊,𝟐 = 𝒇𝒙(𝒙̇𝒊,𝟐, 𝒚̇𝒊,𝟐, 𝜶𝒊,𝟐),           ( 36 ) 

  𝒚̈𝒊,𝟐 = 𝒇𝒚(𝒙̇𝒊,𝟐, 𝒚̇𝒊,𝟐, 𝜶𝒊,𝟐),           ( 37 ) 

𝜽̈𝒊,𝟐 = 𝒇𝜽(𝒙̇𝒊,𝟐, 𝒚̇𝒊,𝟐, 𝜶𝒊,𝟐),       ( 38 ) 

𝒙̇𝒊,𝟑 = 𝒙̇𝒊,𝟏 + 𝒙̈𝒊,𝟐 (
𝟏

𝟐
∆𝒕) ,         ( 39 ) 

 𝒚̇𝒊,𝟑 = 𝒚̇𝒊,𝟏 + 𝒚̈𝒊,𝟐 (
𝟏

𝟐
∆𝒕),      ( 40 ) 

  𝜽̇𝒊,𝟑 = 𝜽̇𝒊,𝟏 + 𝜽̈𝒊,𝟐 (
𝟏

𝟐
∆𝒕),      ( 41 ) 

𝜽𝒊,𝟑 = 𝜽𝒊,𝟏 + 𝜽̇𝒊,𝟐 (
𝟏

𝟐
∆𝒕),       ( 42 ) 

  𝜶𝒊,𝟑 = 𝜽𝒊,𝟑 − 𝒕𝒂𝒏−𝟏 𝒚̇𝒊,𝟑+𝒚̇𝒊,𝟑,𝒗𝒐𝒍𝒖𝒎𝒆

𝒙̇𝒊,𝟑
,         ( 43 ) 

 𝒙̈𝒊,𝟑 = 𝒇𝒙(𝒙̇𝒊,𝟑, 𝒚̇𝒊,𝟑, 𝜶𝒊,𝟑),             ( 44 ) 

 𝒚̈𝒊,𝟑 = 𝒇𝒚(𝒙̇𝒊,𝟑, 𝒚̇𝒊,𝟑, 𝜶𝒊,𝟑),       ( 45 ) 

𝜽̈𝒊,𝟑 = 𝒇𝜽(𝒙̇𝒊,𝟑, 𝒚̇𝒊,𝟑, 𝜶𝒊,𝟑),           ( 46 ) 

𝒙̇𝒊,𝟒 = 𝒙̇𝒊,𝟏 + 𝒙̈𝒊,𝟑∆𝒕,                ( 47 ) 

  𝒚̇𝒊,𝟒 = 𝒚̇𝒊,𝟏 + 𝒚̈𝒊,𝟑∆𝒕,                 ( 48 ) 

 𝜽̇𝒊,𝟒 = 𝜽̇𝒊,𝟏 + 𝜽̈𝒊,𝟑∆𝒕,          ( 49 ) 

𝜽𝒊,𝟒 = 𝜽𝒊,𝟏 + 𝜽̇𝒊,𝟑∆𝒕,          ( 50 ) 

  𝜶𝟒,𝒊 = 𝜽𝒊,𝟒 − 𝒕𝒂𝒏−𝟏 𝒚̇𝒊,𝟒+𝒚̇𝒊,𝟒,𝒗𝒐𝒍𝒖𝒎𝒆

𝒙̇𝒊,𝟒
,               ( 51 ) 

𝒙̈𝒊,𝟒 = 𝒇𝒙(𝒙̇𝒊,𝟒, 𝒚̇𝒊,𝟒, 𝜶𝒊,𝟒),           ( 52 ) 

  𝒚̈𝒊,𝟒 = 𝒇𝒚(𝒙̇𝒊,𝟒, 𝒚̇𝒊,𝟒, 𝜶𝒊,𝟒),            ( 53 ) 

𝜽̈𝒊,𝟒 = 𝒇𝜽(𝒙̇𝒊,𝟒, 𝒚̇𝒊,𝟒, 𝜶𝒊,𝟒),           ( 54 ) 

𝒙𝒊+𝟏 = 𝒙𝒊,𝟏 +
∆𝒕

𝟔
(𝒙̇𝒊,𝟏 + 𝟐𝒙̇𝒊,𝟐 + 𝟐𝒙̇𝒊,𝟑 + 𝒙̇𝒊,𝟒),    ( 55 ) 

𝒚𝒊+𝟏 = 𝒚𝒊,𝟏 +
∆𝒕

𝟔
(𝒚̇𝒊,𝟏 + 𝟐𝒚̇𝒊,𝟐 + 𝟐𝒚̇𝒊,𝟑 + 𝒚̇𝒊,𝟒),   ( 56 ) 

𝜽𝒊+𝟏 = 𝜽𝒊,𝟏 +
∆𝒕

𝟔
(𝜽̇𝒊,𝟏 + 𝟐𝜽̇𝒊,𝟐 + 𝟐𝜽̇𝒊,𝟑 + 𝜽̇𝒊,𝟒),    ( 57 ) 
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𝒙̇𝒊+𝟏 = 𝒙̇𝒊,𝟏 +
∆𝒕

𝟔
(𝒙̈𝒊,𝟏 + 𝟐𝒙̈𝒊,𝟐 + 𝟐𝒙̈𝒊,𝟑 + 𝒙̈𝒊,𝟒),    ( 58 ) 

𝒚̇𝒊+𝟏 = 𝒚̇𝒊,𝟏 +
∆𝒕

𝟔
(𝒚̈𝒊,𝟏 + 𝟐𝒚̈𝒊,𝟐 + 𝟐𝒚̈𝒊,𝟑 + 𝒚̈𝒊,𝟒),    ( 59 ) 

𝜽̇𝒊+𝟏 = 𝜽̇𝒊,𝟏 +
∆𝒕

𝟔
(𝜽̈𝒊,𝟏 + 𝟐𝜽̈𝒊,𝟐 + 𝟐𝜽̈𝒊,𝟑 + 𝜽̈𝒊,𝟒),    ( 60 ) 

𝜶𝒊+𝟏 = 𝜽𝒊+𝟏 − 𝐭𝐚𝐧−𝟏 𝒚̇𝒊+𝟏+𝒚̇𝒊+𝟏,𝒗𝒐𝒍𝒖𝒎𝒆

𝒙̇𝒊+𝟏
       ( 61 ) 

Since the scallop is assumed to be a zero-volume rod, trailing edge of the scallop is always attached to 

ground, but during the real scallop swimming, the point on the scallop, which is attached to ground 

keeps changing, because of round bottom shape of the scallop. It causes little error of dislocation in 

𝑦-direction. For calculating velocity, this change is negligibly small, but for calculating angle of 

attack, the error must be corrected. Hence, 𝑦̇𝑖+1,𝑣𝑜𝑙𝑢𝑚𝑒 and 𝑦̇𝑖,𝑛,𝑣𝑜𝑙𝑢𝑚𝑒 (𝑛 = 2,3,4) are considered in 

each step of calculating angle of attack. 𝑦̇𝑖+1,𝑣𝑜𝑙𝑢𝑚𝑒 and 𝑦̇𝑖,𝑛,𝑣𝑜𝑙𝑢𝑚𝑒 (𝑛 = 2,3,4) means how much 

the distance between center of mass of scallop and the lowest point of scallop (𝑦𝑖,𝑣𝑜𝑙𝑢𝑚𝑒 in figure 8) 

is changed as pitch angle of scallop being changed from 𝜃𝑖,1 to 𝜃𝑖+1 or 𝜃𝑖,𝑛 (𝑛 = 2,3,4). 

 

 

Figure 8. The distance between center of mass of scallop and the lowest point of scallop. 
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2.4. Particle image velocimetry 

The experimental setup for particle image velocimetry (PIV) to measure flow field around the 

model is shown schematically in figure 9. The PIV measurement was performed in the same water 

tunnel used for the force measurement. The PIV system consist of a high-speed camera which is used 

to measure kinematics of swimming scallop (see section 2.1.) a continuous DPSS laser of 5W output 

power (MGL-N-532) and laser mirror to prevent shadows of the model. Hollow glass, of which 

diameter is approximately 10μm, is used as tracing particle. Since the model has 3-dimensional shape, 

flow fields on which 5 streamwise-horizontal (x−y) plane at inverval of 30mm (0.18s) (figure 9(b)) 

were measured, and the third plane (P3) coincides with the center plane (figure 2(b)). The surface of 

model is painted black to reduce reflection of laser light. Table 2 shows details of each plane, 

including field-of-view (FoV) and spatial resolution. The interrogation window was size of 16×16 

pixels which is recursively refined from 32×32 pixels based on the iterative application of cross 

correlation analysis. The interrogation windows were overlapped by 50%, and spatial resolution of 

each measurements are shown is table 2. 4008 vector fields are averaged to obtain a fully converged 

velocity field. Assessing urms value at the point on which urms reaches maximum, the value is 

converged when the number of instantaneous fields is larger than 4000. Time intervals of each 

measurement is small enough to satisfy one-quarter rule. Every flow fields are nondimensionalized 

using freestream velocity (U) and chordlength (c). 

 

Figure 9. (a) Schematic diagram of the experimental setup for PIV measurement and (b) planes 

in which flow field is measured by PIV 
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Plane FoV (mm) Spatial resolution Reynolds number 

P1 215 × 134.4 0.0081c (1.34mm) 45000 

P2 225.3 × 140.8 0.0085c (1.41mm) 45000 

P3 235.5 × 147.2 0.0089c (1.47mm) 20000, 30000, 45000 

P4 245.8 × 153.6 0.0093c (1.54mm) 45000 

P5 258.6 × 161.6 0.0098c (1.62mm) 45000 

Table 2. Details of each flow fields. 
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3. Results and discussion 

3.1. Kinematics of swimming scallop 

 

Figure 10. Variations of Reynolds number and angle of attack with swimming time for all 

movements; (a) positive pitching motions and (b) negative pitching motions. 
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Figure 11. Variations of the Reynolds number and angle of attack with swimming time for 2 

representative movements; (a) positive pitching motion and (b) negative pitching motion. 

 

Figure 10 shows measured kinematic data of all movements and figure 11 shows data of 

representative 2 movements. Kinematic data consists of the variations in Reynolds number and AoA 

with swimming time. Image was analyzed from when the scallop's two valves were completely closed 

so no thrust was generated to when the scallop was no longer advancing. The Reynolds number graph 

is not finally zeroed because the scallops standing by the increased or decreased pitch angle have their 

velocity to lie on the ground again. Figure 10(a) and 11(a) show positive pitching motion and Figure 

10(b) and 11(b) show negative pitching motion. Positive pitching motion is the motion during that the 

scallop advances with increasing pitch angle, and negative pitching the motion is motion during that 

the scallop advances with decreasing pitch angle. As shown in figure 10(a), in the case of positive 

pitching motion, AoA keeps increasing since the start of swimming, and the Reynolds number based 

on the instantaneous velocity keeps decreasing. AoA increases from 0° to 70°, and Reynolds number 

decreases from 45,000. Although AoA is increased as 70°, forces and moment are measured in the 

range of 0°-50°, because over the AoA of 50°, the velocity is very low. The scallop is attached to the 

ground, so the flow around the scallop is in ground effect. In the case of negative pitching motion, 

The Reynolds number is decreased from 45000, similar with positive pitching motion. However, AoA 

is decreased to negative value, different with positive pitching motion. 

In figure 12, when the scallop advances to left, the trajectories of the scallop are shown at intervals 

of 0.1 seconds. Among 41 movements of all samples, positive pitching motions are 32 and the 

remaining 9 are negative pitching motions. Positive pitching motion was more common than negative 

pitching motion. Despite being a zigzag swimmer, the range of angle of attack is similar with level 

swimmer (Morton, 1980). 
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Figure 12. Trajectories of scallop in 0.1 second time intervals; (a) positive pitching motion and 

(b) negative pitching motion. 

 

3.2. Forces and moment measurement in ground effect 

The hydrodynamic forces and moment which the scallop is applied in ground effect was measured 

by water tunnel experiment, and the results are shown in the figure 13. When the angle of attack is 

lower than the stall angle, lift is not changed as Re, and after stall, the lift is increased slightly as Re 

increases. From AoA=22°, the stall occurred, lift slope is concave down and drag is increased more 

steeply than before. At AoA is about 35°, the lift reaches maximum value.  

 

Figure 13. Forces and moment measurement in ground effect; (a) force; CL (Closed circle) CD 

(Open circle) and (b) moment; CM,c/4. 

Thomas and Taylor (2001) suggested that the nose-down pitching moment for gliding animals, 

which means negative pitching moment (−CM,c 4⁄ ). The nose-down pitching moment should be 
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increased as increasing AoA to acquire longitudinal static stability. The more steeply −CM,c 4⁄  is 

increased, the more stable the flight is. CM,c 4⁄  of the model is decreased as shown in figure 13(b), so 

the scallop swimming is stable. 

 

3.3. Swimming trajectory simulation 

Based on the measured forces and moment, the trajectory was computed as shown in figure 14(a). 

In figure 14(a), circle means leading edge of the scallop, and the scallop procced to right. The 

recorded trajectory of the actual scallop and the computed trajectory tend to be similar, and the 

velocity, AoA, and pitch angle change similarly, as can be seen in the figure 14(b). Therefore, quasi-

steady state can be assumed in scallop swimming, and hydrodynamic forces and moment measured by 

water tunnel experiment can be regarded as the force applied on swimming actual scallop. There is 

difference at pitch angle and velocity because the scallop was assumed to be a zero-volume rod. 

 

 

Figure 14. Trajectory computation results in 0.05 second time intervals; (a) computed trajectory 

compared with recorded trajectory of actual scallop, and (b) quantitative comparison with each 

trajectory. 

 

3.4. Forces and moment measurement out of ground effect 

Figure 15 shows the results of measured forces and moment out of ground effect. Since camber is 0, 

the lift and moment are almost zero when the angle of attack is 0 degrees. When the angle of attack is 

lower than stall angle, the Reynolds number effect appears. When the Reynolds number is low, the lift 
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coefficient is concave up as increasing angle of attack, but as the Reynolds number increases, the lift 

coefficient curve gradually becomes more linear. The stall occurs twice, unlike when forces and 

moment are measured in the ground effect. The lift slightly decreases after the first stall, then 

increases again, and the lift decreases significantly after the second stall. The moment coefficient in 

the quarter chord (CM,c 4⁄ ) is almost zero at AoA = 0°. After slight increasing, the moment is 

decreased until the second stall. 

 

Figure 15. Force and moment measurement out of ground effect; (a) force; CL (Closed circle), 

CD (Open circle) and (b) moment; CM,c/4. 

 

Figure 16. Variations of (a) CL,max and (b) AoACL,max of the scallop and elliptical planform wing 

as aspect ratio (AR). 
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Figure 16(a) shows the maximum value of CL (CL,max) which is the value right before stall, and 

figure 16(b) shows the value of angle of attack, when CL has the maximum value (AoACL,max) which is 

stall angle. According to Torres and Mueller (2004), there is transition zone for CL,max and AoACL,max 

in the aspect ratio range between 1.5 and 1.75 (figure 16(a) and (b)). When aspect ratio is lower than 

the transition zone, wing-tip vortices can energize the flow on the upper side of the model, so 

separation is delayed to high AoA. However, as aspect ratio increases, the wing-tip vortex is 

weakened, thus the separation no longer delayed.  

Scallop planform is similar with ellipse, so AoACL,max of the model matches the value of elliptical 

planform wing (Torres and Mueller 2004), but CL,max of the scallop is less than the value of reference. 

This is because the model is already stalled once. 

 

Figure 17. Variations of lift slope as aspect ratio (AR). 

As shown in figure 17, lift slope of elliptical wing measured by Torres and Mueller (2004) is 

decreased when AR is decreased, so high AR wing has better hydrodynamic performances than low 

AR wing before stall. However, the stall of low AR wing occurs at larger angle of attack than high AR 

wing as shown in figure 16. Thus, the maximum lift coefficient is increased as decreasing AR. The 

scallop is thick, so wake region is formed behind the scallop. The wake region makes lift slope of the 

scallop smaller than elliptical wing. 

Figure 18 shows the position of the center of pressure (hCL) with the change of the angle of attack 

and measured hCL is compared with the result of Torres and Mueller (2004). hCL is defined as  

𝐡𝐂𝐋 =
𝒙𝑪𝑳

𝒄
         ( 62 ) 

where 𝑥𝐶𝐿 is the distance between center of pressure and the leading edge of the model. ℎ𝐶𝐿 is 

calculated by following equation. 

𝐡𝐂𝐋 = 𝟎. 𝟐𝟓 −
𝑪𝑴,𝒄 𝟒⁄

𝑪𝑳𝒄𝒐𝒔𝜶+𝑪𝑫𝐬𝐢𝐧𝛂
        ( 63 ) 

When the angle of attack is low, the effects of linear lift, which can be obtained with the Kutta-
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Joukowski theorem, closely match the center of pressure with the 1/4 chord, the aerodynamic center. 

However, if the angle of attack of the scallop increases larger than 15 degrees, the position of the 

center of pressure will move downstream. This indicates that the effect of nonlinear lifts induced by 

the tip vortex due to the low aspect ratio is increasing. Compared to the results of Torres and Mueller 

(2004), the model results agree well with the elliptical flat wing of which aspect ratio is 1.25. 

 

Figure 18. Changes of center of pressure position (𝐡𝐂𝐋) as angle of attack 

 

3.5. Comparison with measurements in ground effect and out of ground effect 

 

Figure 19. Comparison with measurements in ground effect (dashed line) and out of ground 

effect (solid line); (a) CL (closed circle), CD (open circle) and (b) CM,c/4. 
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For a 2-dimensional body, such as airfoil, drag is decreased, and lift is increased in ground effect. In 

ground effect, Karman vortex shedding is prevented, so drag of airfoil is decreased, and pressure at 

the lower surface is increased, so lift of airfoil is increased (Kim and Geropp 1988; Choi and Lee 

2000; Ahmed and Sharma 2006). In the other hand, for a 3-dimensional body, such as finite wing, tip 

vortex is weakened by ground, so lift is increased, and drag is decreased in ground effect 

(Wieselsberger 1922; Phillips and Hunsaker 2013; Traub 2015).  

As shown in figure 19, lift and drag is increase and moment is decreased for every angle of attack 

in ground effect. It is expected that 3-dimensional convex bottom of the model strengthens tip vortex 

in ground effect. This is because the closer to the tip from the root, the greater the distance between 

ground and the model. 

The quarter-chord moment is decreased, and the slope also became steeper in ground effect. That is 

nose-down moment is increased more steeply Therefore the scallop can swim more stable near the 

ground. 

 

3.6. Flow-field visualization 

Figure 20 is representative flow field measured by PIV when the angle of attack is 0° on center 

plane. In the figure 20, the gray region is the cross section of the model for each plane, and the black 

region is not clearly measured region because of too much light reflection. Wake region is formed at 

the rear (downstream) of the model due to high adverse pressure gradient caused by the thickness of 

0.28c and blunt trailing edge. Karman vortex shedding is shown in figure 20(d). Wake region is also 

formed on the other planes (P4, P5). It was also shown by Lind et al. (2014). 

Figure 21 shows flow field on center plane, P3, as Reynolds number of 20,000, 30,000 and 45,000. 

Shown in figure 21, separation is delayed downstream as Re increased, thereby lift is increased at 

low AoA. To analyze separation delay quantitatively, the chordwise distances between leading edge 

and separation point (xsep) are found according to the Reynolds number when the angle of attack is 6° 

and 12° (table 3). At AoA = 6°, separation points when Re=20000 and 30000 are the same, but when 

Re=45000, separation is delayed. At AoA = 12°, separation is also delayed when Re = 30000. This 

result is consistent with the force measurement results. This is because the flow with high Reynolds 

number has more momentum to overcome the adverse pressure gradient. 

Figure 22 and 23 show the change of the flow field with the angle of attack on 3 planes when the 

angle of attack is around the first stall angle, and Re=45,000. In planes near the tip (P1 and P5), the 

flow is totally separated from the scallop surface at AoA = 22° in contrast to center plane (P3) on 



25 

which flow field is not totally separated. This is because the local Reynolds number near the tip based 

on the chordlength of the section is lower than the center plane (P3). At AoA = 24°, the separation 

bubble from the leading edge meets the wake region behind (downstream) the model on every plane 

and does not reattach to the surface, resulting in the first stall. When the AoA is greater than 26°, tip 

vortices help the flow attach to the upper surface of the model and the lift increases again.  

 

Figure 20. Time-averaged u and vorticity (𝛚) contours and streamlines when AoA=0°, and 

Re=45,000 on planes of P1, P2, and P3. 
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Figure 21. Time-averaged u contours and streamlines when AoA=6° and 12°, and      

Re=45,000 on plane of P3. 

 

Re AoA = 6° AoA = 12° 

20000 0.73c. 0.73c 

30000 0.73c 0.77c 

45000 0.89c 0.89c 

Table 3. Locations of separation point (xsep) as Re at AoA=6° and 12°. 
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Figure 22. Time-averaged u contours and streamlines when AoA=22°, 24° and 26°, and      

Re=45,000 on planes of P3, P2 and P1. 

 

Looking at the v contours of the P3 plane and the P2 plane (figure 23(g) and (h)), downwash was 

formed on the suction side of the model, caused by tip vortex, so it is called tip-vortex induced 

downwash. There is upwash behind the section of the model on plane P1 (figure 23(f) and (i)). On the 

other hand, there is downwash at the same point on contour on plane P2 (figure 23(e) and (h)). This is 

because the tip vortex is formed along the tip of the model and passes between plane P2 and P1, so 

upwash is shown in P1, and downwash is shown in P2. 

In figure 24, vorticity grows from the leading edge and this is called leading edge vortex (LEV). 

The LEV proceeds to negative y direction on P3 and P2 planes (figure 24(g) and (h)) although stall 

already occurs, because LEV affected by tip-vortex induced downwash. Hence, flow is reattached to 

the surface of the model, and lift is increased although stall already occurs. 
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Figure 23. Time-averaged v contours and streamlines when AoA=22°, 24° and 26°, and      

Re=45,000 on planes of P3, P2 and P1. 

 

When the angle of attack becomes 36°, in figure 25(a), tip-vortex induced downwash are not 

formed over the model as increasing AoA, so the vorticity contour (figure 25(b)) shows that the gap 

between the model and the LEV is considerably wider. This wide gap indicates LEV is no longer 

interact with tip-vortex induced downwash on the model. Therefore, tip vortices no longer help flow 

attach to the surface and the flow is separated, resulting in a significant reduction in lift and the 

second stall.  
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Figure 24. Time-averaged vorticity contours and streamlines when AoA=22°, 24° and 26°, and 

Re=45,000 on planes of P3, P2 and P1. 

 

Figure 25. Time-averaged (a) v-component and (b) vorticity contours and streamlines when 

AoA=32°, and 36°, and Re=45,000 on planes of P3. 
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4. Conclusions 

To know hydrodynamic characteristics of the scallop, swimming motions of the actual scallop are 

recorded by 2 high-speed cameras, and analyzed to obtain kinematic data of the scallop, such as 

Reynolds number and angle of attack. The scallops were attached to the ground when swimming, and 

generally moved with increasing pitch angle. While the scallop swims in a positive pitching motion, 

angle of attack is increased to 70°, Reynolds number is decreased from 45000. 

Based on the obtained kinematic data, hydrodynamic forces and moment in ground effect are 

measured by water tunnel experiment. Trajectory is computed with the results of forces and moment 

measurement and compared with recorded trajectory of actual scallop swimming to verify quasi-

steady assumption of scallop swimming motion, and hydrodynamic similarity between the flow 

around actual scallop swimming, and the flow around scallop model in water tunnel experiment.  

After verifying hydrodynamic similarity between actual scallop and model, hydrodynamic 

characteristics of the scallop out of ground effect is measured by direct force measurement, and 

particle image velocimetry.  

Comparing the forces and moment with those in ground effect, both lift and drag are decreased in 

all region of Re and AoA. The reason of this phenomenon is not known, but it is expected that the 

shape of scallop bottom, which is convex in spanwise axis, contributes to increasing lift and drag. 

Counterintuitively, tip vortices seemed to be strengthened because of convex bottom of the model, so 

further research about ground effect on the scallop is needed. 

Since the scallop, Patinopecten yessoensis, is thick and has blunt trailing edge, a wake region is 

formed in the vicinity of the trailing edge despite of low AoA, 0°. The size of the wake region before 

the stall becomes narrower as the Reynolds number increases, and thus the lift coefficient before the 

stall increases as the Reynolds number increases. 

A separation bubble is formed from the sharp leading edge of the scallop. When the angle of attack 

is 24°, the first stall occurs when the reattachment point of separation bubble encounters the wake 

near the trailing edge. Then the flow is no longer reattached to the surface of the scallop. Immediately 

after the first stall (AoA=26°), tip-vortex induced downwash reattaches LEV to the surface of the 

scallop and increases the lift again. 

When the angle of attack is increased to 34°, tip-vortex induced downwash is not formed over the 

model and no longer make leading edge vortex attach to the surface, resulting in a second stall. 

Further study on the tip vortex structure as the angle of attack is needed.  
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