

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master's Thesis

Efficient Sneak Path-aware Training of Binarized

Neural Networks for RRAM Crossbar Arrays

 Sugil Lee

Department of Computer Science and Engineering

Graduate School of UNIST

2019

[UCI]I804:31001-200000223558[UCI]I804:31001-200000223558

Efficient Sneak Path-aware Training of Binarized

Neural Networks for RRAM Crossbar Arrays

Sugil Lee

Department of Computer Science and Engineering

Graduate School of UNIST

Efficient Sneak Path-aware Training of Binarized

Neural Networks for RRAM Crossbar Arrays

A thesis

submitted to the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Master of Science

Sugil Lee

6. 21. 2019

Approved by

Advisor

Jongeun Lee

Efficient Sneak Path-aware Training of Binarized

Neural Networks for RRAM Crossbar Arrays

Sugil Lee

This certifies that the thesis of Sugil Lee is approved.

6. 21. 2019

 signature

 Advisor: Jongeun Lee

 signature

 Myeongjae Jeon

 signature

 Kyung Rok Kim

Abstract

Although RRAM crossbar arrays have been suggested as an efficient way to implement MVM for
DNNS, the sneak path problem of RRAM crossbar arrays due to wire resistance can distort the result of
MVM quite significantly, resulting harsh performance degradation of the network. Therefore, a software
solution that can predict the effect of sneak paths to mitigate the impact without permanent hardware
cost or expensive SPICE simulations is very desirable. In this paper, a novel method to incorporate the
sneak path problem during training with a negligible overhead is proposed. The test validation results,
done through accurate SPICE simulations, show very high improvement in the performance close to the
baseline BNNs on GPU, which demonstrates the efficiency of the proposed method to capture the sneak
path problem.

Contents

I. Introduction 1

II. Background and Related Work 3
2.1 RRAM Crossbar Array . 3
2.2 Binary Weight Realization . 3
2.3 DNN on RRAM Array . 3

III. Problem Description 5
3.1 Sneak Path Problem . 5
3.2 DNN Application . 6

IV. Prediction of Effective Weights 7
4.1 Mask Method . 7
4.2 Row-wise Linear Regression . 7
4.3 Parallel Linear Network . 8
4.4 Convolutional Layers . 8
4.5 Scaled Convolutional Network . 9

V. Sneak Path-aware Training Rule 10
5.1 HW-Accurate BNN Inference for Validation . 10
5.2 Modification for Training . 10

VI. Experiments 11
6.1 Experimental Setup . 11
6.2 Comparison Among Regression Models . 11
6.3 Results on Various RRAM Conditions . 12
6.4 Time Overhead Comparison . 13
6.5 Comparison with 1T1R Scheme . 13

VII. Conclusion 16

List of Figures

1.1 Test validation accuracy vs. wire resistance per cell (Rw) before retraining; white bars
represent the baseline accuracy on GPU. 2

1.2 Our SPICE-based validation flow (in orange) and sneak path-aware training flow (in red). 2

2.1 Unbalanced synaptic weight realization using RCAs. 4
3.1 Normalized sensed current for 128× 128 crossbar array with one reference column. . . . 5

6.1 Accuracy curves for PLN during retraining (Rw = 1 Ω, 9 Reference Columns). 12
6.2 Test validation accuracy under different RRAM conditions. 14
6.3 Training time comparison (per iteration). 15

List of Tables

6.1 BNNs and training parameters. 11
6.2 MSE and MNIST accuracy for different predictors. 12
6.3 CIFAR10 Pre-validation accuracy (%). 13
6.4 Area and latency comparison between 1T1R and 0T1R architectures for image classifi-

cation; 1T1R is serial implementation, 0T1R full parallel implementation. 15

Chapter I

Introduction

RRAM (Resistive RAM) crossbar arrays have been suggested as an efficient way to implement matrix-
vector multiplication (MVM) [1], which is the main computation for deep neural networks (DNNs)
and many others. To perform the MVM, the input matrix is programmed on the RRAM array cells as
conductance values first, and the input vector is applied as voltage at rows. Then the current generated
at each cell is proportional to the voltage and conductance, and summed along each column. Therefore,
we can get MVM result vectors as the output currents at columns.

In the real devices, however, the nonidealities such as write disturbance, read disturbance, device
variabilities, inherent noise and others make it difficult to get right results. [2]. Especially, the sneak path
problem caused by wire resistance and surrounding cells’ resistance states can harshly distort the result
of MVM computation. The voltage drop from unwanted resistance will change current contribution of
each cell and the output currents. Though the sneak path problem for memory applications, activating
one row at a time, is a solved issue, the simultaneous activation of parallel rows as for MVM computation
still suffers from it.

We show that the sneak path problem can degrade quality of simple BNN (binary neural network)
inference even at moderate wire resistance values if the array size is large, as in Fig. 1.1 for 128 ×
128 RRAM crossbar arrays (RCAs) (see Section 6.1 for experimental setup), where the accuracy starts
to decline only with Rw = 0.1 Ω. Moreover, according to the ITRS roadmap [3], wire resistance is
expected to keep increasing because while wires getting shorter linearly, the cross-sectional areas of
wires decrease quadratically.

In this paper we focus on the sneak path problem among the device nonidealities. We first check the
impact of wire resistance on BNN inference using generic RRAM crossbar SPICE model [4]. Then, to
recover the significant accuracy drop due to sneak paths on BNNs, we propose a novel training method
based on the prediction of RRAM nonidealities and the compensation of them through weight adjust-
ment during training (see Fig. 1.2), without any hardware overhead. Our experimental results based on
accurate SPICE-level simulations demonstrate that our sneak path-aware training method can reclaim
many crossbars with considerable sneak paths, enabling them to run complex BNNs with near software-
level accuracy.

1

Figure 1.1: Test validation accuracy vs. wire resistance per cell (Rw) before retraining; white bars rep-
resent the baseline accuracy on GPU.

Sneak Path

Estimation

GPU /

FPGA

IM
A

G
E

C
L

A
S

S

IM
A

G
E

C
L

A
S

S

Binarize

SPICE

Simulation

Wb

Ŵe

DNN

Training

DNN Accelerator

RRAM Crossbar Array

based DNN Accelerator

We

Figure 1.2: Our SPICE-based validation flow (in orange) and sneak path-aware training flow (in red).

2

Chapter II

Background and Related Work

2.1 RRAM Crossbar Array

Crossbar structures offer a fast MVM platform, especially for neural network acceleration, which re-
duces MVM’s time complexity to O(1) instead of O(N2) using conventional approaches. The multi-
plication operation is performed through sensing the current at the output ports, which can be written
as

Ij =
m∑
i=1

GijVi (2.1)

where Ij is the neural current of the jth neuron, Gij the synaptic weight in conductance, and Vi the
ith input voltage. Afterward the neural current passes through activation circuit. Usually two memory
devices are needed to realize each weight to have bipolar values, but different methods have been pro-
posed to realize weights such as RRAM (or memristor), floating-gate transistor [5], and capacitor [6].
Memristors have a good potential to be used for MVM operations due to better retention, endurance,
and stackability. While continuous memristors (RRAMs) show good potential for full-precision neural
networks, current device fabrication techniques are not mature enough to support fine-tuning of a de-
vice’s resistance, endurance, and variability [7]. On the other hand, binary devices that switch between
two levels offer high retention and endurance performance [8].

2.2 Binary Weight Realization

In BNNs, weights are quantized into two levels, {−1,+1}, while activation function output can be
continuous or binarized depending on the network. In order to store and represent negative weights in
RRAMs, typically two devices are needed. Alternatively, one can use a shared reference RRAM with
the conductance of Gr = (Gmax + Gmin)/2 ≈ Gmax/2 for high switching ratio as shown in Fig. 2.1
[9], which is referred to as unbalanced realization. The figure show the example for n wordlines and m
bitlines. A variable weight is set to either Gmax or Gmin. Hence, the realized weight values are Gmax/2
and−Gmax/2 for 1 and−1, respectively. This realization requires smaller crossbar arrays (i.e., less area
and less power dissipation) compared with two-device realization.

2.3 DNN on RRAM Array

Recently, different experiments on RCA-based accelerator have been introduced utilizing the analogue
behavior of RRAMs to solve classification and regression problems [10, 11, 12]. These experimen-
tal examples are performed for networks that require small arrays to perform MVM. The training of
these experiments is performed through in-situ learning where RCAs are used for the inference, and the
gradients and the weight updates are calculated on software. This approach would be useful for small

3

𝐺11 𝐺12 𝐺𝑟𝑒𝑓 𝐺1𝑚−1 𝐺1𝑚

𝐺21 𝐺22 𝐺𝑟𝑒𝑓 𝐺2𝑚−1 𝐺2𝑚

𝐺𝑛1 𝐺𝑛2 𝐺𝑟𝑒𝑓 𝐺𝑛𝑚−1 𝐺𝑛𝑚

+ −

∑
𝑓

Figure 2.1: Unbalanced synaptic weight realization using RCAs.

networks where the number of trainable parameters is small. However, in case of large and dense net-
works, the in-situ learning would be impossible. Thus, several works have proposed to train the network
while taking the nonidealities of the RCA into consideration to ensure correct functionality after weight
transfer [13, 14].

BNNs are considered to be a promising way that can avoid nonidealities that exist in analogue mem-
ristors such as asymmetric non-linearity, variability, and low retention. Hence several works have shown
through simulations and some hardware implementations that RRAM crossbar-based neural networks
can be trained with high accuracy—typically with less than 1%p drop in accuracy for networks designed
for MNIST and CIFAR10. In [15, 16] the authors used a 1T1R crossbar structure and proposed sequen-
tial BNNs where the current sensing circuit (neuron) is shared between all the neurons so only one
column is activated at a time. In [17], a binary RRAM-accelerated CNN was designed and optimized to
feature a massive parallelism with high energy efficiency. In [18], multi-bit binary conventional neural
network was introduced using selector-less crossbar arrays with pipeline implementation, and included
the device variations as well. In [19], the authors presented a full hardware implementation for robust
RRAM-based convolutional blocks using single-ended XNOR sensing capable of performing dot prod-
uct operations in a single cycle, for computer vision and image processing applications. Although those
work provide good implementation techniques of BNNs using RRAMs, none of them consider wire
resistance which is inevitable in the crossbar arrays and would highly degrade the results especially for
both 0T1R arrays and 1T1R with parallel computation.

Using 1T1R-based RCA architectures such as in [16] helps avoid the sneak path problem, thanks to
the sequential operation. However, as shown in Section 6.5, it requires far more processing time because
the time complexity of MVM becomes O(N) instead of O(1).

4

-1
0

-0.5

20

0

040

N
or

m
al

iz
ed

 C
ur

re
nt

20

0.5

60 40

1

6080 80100 100120 120

Wordline
Bitline

-0.5 0 0.5 1

(a) Rw = 0.1 Ω

0

0
20

0.5

040

N
or

m
al

iz
ed

 C
ur

re
nt

1

2060 40

1.5

6080 80100 100120 120

Wordline Bitline

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

(b) Rw = 2 Ω

Figure 3.1: Normalized sensed current for 128× 128 crossbar array with one reference column.

Chapter III

Problem Description

3.1 Sneak Path Problem

Ideally, the absolute value of the sensed current per a RRAM cell should be constant regardless of the
position of the cell in the array. But due to the existence of wire resistance, which is inevitable in any
interconnect, the sensed current can vary depending on the location. The variation in the sensed current
is due to the voltage drops over the wire resistances that create leakage paths throughout the array which
is referred as the sneak path problem.

To illustrate the effect of sneak paths, Fig. 3.1 plots the sensed current from each cell while simulat-
ing random binary weights. The sensed current is the perceived weight value as seen at the output port.
The graphs clearly show that the sensed current decays exponentially across the diagonal direction of
an array instead of having constant values in {−1, 1}. Also, with increasing wire resistance, the weights
decay much faster.

One way to mitigate this problem is to use a selector device/material in series with a switching
device. However, selector has voltage-dependent nonlinearity (e.g., exponential or quadratic), which
disturbs MVM computation (i.e., I = G · sinh(V)) in addition to increasing the area of a cell. This non-
linearity must be taken into consideration during training, which would require re-designing the neural
network frameworks. Our proposed technique can be used in conjunction with the selector approach, but
does not require it.

5

3.2 DNN Application

The problem can be stated as follows: Given a BNN, a train dataset, and the physical parameters of
RCAs such as LRS, HRS, wire resistance, array size, etc., to find the best synaptic weights for the BNN
to be programmed into RCAs such that the accuracy of inference on RCAs can be maximized despite
the existence of sneak path currents.

The BNN part of the problem can be solved easily using the back-propagation algorithm, with a
proper consideration of sneak path effects. The new challenge is how to quickly and accurately estimate
the effect of sneak path currents during training so that we can guide the back-propagation algorithm
to minimize or even compensate for the sneak paths. Note that sneak path patterns can vary widely and
nonlinearly depending on the programmed binary weights, requiring re-evaluation of sneak paths for
every weight update. Also, since the number of RCAs in a BNN can be quite large, a naı̈ve integration
of SPICE simulation during training would require a prohibitive amount of resources.

Now, if we limit ourselves to the steady-state behavior, a passive RCA can be seen as a resistive
network with constant, albeit programmable, resistance values. Then we can use the result of [4] on a
generic resistive network model, which is shown to be as accurate as SPICE simulation. Importantly, this
model implies that despite the presence of sneak path currents, a resistive network’s output should be
linear to input. Therefore, we can express the observed output current y as the product of input voltage
x and some matrix We:

y = f(Wb,x) = g(Wb)x = Wex (3.1)

Here Wb is the programmed weight matrix and We the effective weight matrix. They have the same size
as RCAs, which is n×m. For BNN applications, both input x and programmed weight matrix Wb are
binary, whereas effective weight matrix We is real-valued.

Now the goal is to find We from Wb. One may use SPICE simulation or equivalent numerical
models such as [4], both of which are extremely slow. Inference, fortunately, does not require many
SPICE simulations; one simulation per RCA is enough due to (3.1). This allows us to build an accurate
and practical evaluation setup for sneak path-aware inference on RCAs. For training, however, we need
a very fast model, and preferably in a closed-form expression so that it can be directly integrated into an
existing DNN training framework. Also, the model must be differentiable for back-propagation to work.
This suggests that we can use regression methods to identify the function g, treating Wb and We as the
input and output of the system to be identified.

In the next section we present the solution to the regression problem. Note that though in this paper
we obtain We from SPICE or a SPICE-equivalent model, it could also be derived from real device
measurement data, to which our technique should be applicable as well.

6

Chapter IV

Prediction of Effective Weights

In this section we present different models to estimate effective weight matrix, including one that was
recently proposed.

4.1 Mask Method

Recently the Mask method was proposed [20], which is to use a single matrix M, called mask, of the
same size as the RCA to compensate for the difference between Wb and We as

We = Wb ◦M (4.1)

where ◦ is the Hadamard product (i.e., element-wise multiplication). The intuition behind this method
is that the physical location within an RCA has a dominant effect on the deviation of We from Wb as
seen in Fig. 3.1, which is captured by a mask.

It works on a small dataset (MNIST) with some easy settings. It is also very fast and can be easily
integrated into any training framework. For more challenging datasets and settings, however, we find
that it does not give satisfactory accuracy. This is because Mask captures only the first-order effect, but
ignores the effect of the other cells on the same crossbar, which may be crucial in estimating the sneak
path effect.

4.2 Row-wise Linear Regression

While linear and polynomial regressions are popular, there is one problem to apply them to our problem:
our input and output data are very high-dimensional. For a 128 × 128 RCA, input Wb (or output We)
has 16K dimensions, requiring 256 million parameters for linear regression.

Instead, we perform linear regression on each row, meaning that each row is treated as an indepen-
dent data sample. Specifically,

W[i]
e = W

[i]
b ·R + b (4.2)

where W
[i]
b and W

[i]
e are the ith row vector in the programmed and effective weight matrices, respec-

tively. In addition, R and b are an m × m matrix and an m-dim bias vector, respectively, which are
determined through regression.

Note that here all rows share the same regression parameters, which ignores the effect of physical
location and may lead to low regression accuracy. Moreover, the sneak path effect as seen in Fig. 3.1 is
clearly nonlinear, which may motivate the use of a nonlinear model.

7

4.3 Parallel Linear Network

We now present Parallel Linear Network (PLN). Despite its name, it is a nonlinear model, built by stack-
ing multiple neural network layers. There are many factors suggesting the use of neural networks. Not
only can they model nonlinear systems, they allow stacking, which is very useful for learning high-level
features. Sneak paths exist in both row and column directions, thus combining row-wise and column-
wise models makes sense. We first define two layers, and combine them to create PLN. Like in row-wise
linear regression, we divide the input and output matrices into rows, but apply fully-connected layers
(also known as linear layers) between each pair of input/output rows. In what follows, we use X and Y
to refer to input and output matrices:

PLrow : X→ Y where Y[i] = f(X[i] ·Ri + bi) (4.3)

where X[i] is the i-th row of X and f a nonlinear activation function (we use tanh), Ri a weight matrix
of size m ×m, and bi an m-dim bias vector. Unlike row-wise linear regression, each row has its own
set of parameters, which can ensure better regression quality. In neural network frameworks, this layer
can be easily implemented as a hierarchy of primitive layers: a parallel layer and linear layers below it
(hence called parallel linear layer).

Column-wise parallel linear layer is defined similarly:

PLcol(X) = PLrow(XT)T (4.4)

Then we define a parallel linear network to capture both row- and column-wise dependency:

PLN : We = PLcol(PLrow(Wb)) ◦U (4.5)

where U is an n×m parameter matrix for an element-wise multiplication layer, which is needed because
the range of We can go beyond [−1, 1], as seen in Fig. 3.1.

One concern on this method is that each linear layer has its independent parameters and PLN has
many of it in parallel, resulting more memory requirement during training. Though it does not matter on
inference since the prediction models will not be included in the BNN validations once training is over.

4.4 Convolutional Layers

Another possible approach for considering the effect of other cells on the same crossbar is that using con-
volutional layers, specialized in capturing spatial information on 2D data. Here we feed each 128x128
array as a single-channel input through convolutional layers. We use fixed filter size as 3 and the number
of hidden channels is same through layers in a network for simpler design space exploration. Not to
change the feature map size, padding and stride is set to 1 and no pooling layer is included.

Now we define an n stack of convolutional layers given c hidden channels with activation function
f , CLn,c, as:

CLn,c : X→ Y where X1 = X,

Xk+1 = f(Conv(Xk)) for 1 ≤ k ≤ n− 1,Y = Conv(Xn)
(4.6)

Here only the last layer’s output channel size is 1 and all others are c. We apply ReLU activation function
on each layer’s output but the last one’s, not to lost negative-valued information.

We expect that a stack of convolutional layers can capture the sneak path effect from the adjacent
cells, but still cannot deal with the effect of physical locations as linear regression and may show low
performance.

8

4.5 Scaled Convolutional Network

To manage the locational information, simple yet powerful method is to scale the data according to
the location, using element-wise multiplication layers. It has similar insight as Mask method, but the
difference is that it is trainable through backpropagation along with other layers. We add 2 element-wise
multiplication layers, one before the convolutional layers to scale input data, and the other one after the
convolutional layers to adjust output range, as follows:

SCN : CLn,c(X ◦U1) ◦U2 (4.7)

The first element-wise multiplication layer U1 scales the input according to the physical location to
hide the locational impact, so that convolutional layers in the middle can solely recognize the effect of
adjacent cells. After that, the activation is scaled through the last element-wise multiplication layer U2,
applying locational information again to the output. We denote it scaled convolutional Network (SCN).

To train the networks we use mean squared error (MSE) loss, defined as

L =
1

N
‖Ŵe −We‖22 (4.8)

where N = nm is the number of elements in We, and Ŵe is the estimated effective weight matrix.
After exploring some combination of n and c, we apply CL7,32 for our SCN which gives the least loss
considering the model size.

9

Chapter V

Sneak Path-aware Training Rule

5.1 HW-Accurate BNN Inference for Validation

We have built a validation flow (see Fig. 1.2) to accurately account for the effect of sneak paths during
BNN inference. After training is finished, binarized weights are first exported, which consist of sev-
eral binary weight matrices as each layer requires many RCAs to represent a large weight matrix. Then
the set of binary weight matrices {Wb} is fed to the SPICE or an equivalent numerical model simula-
tion. Simulation generates a set of real-valued weight matrices {We} as per (3.1). Finally, in the BNN
framework we substitute We for Wb in the forward path. That is, x(l+1) = f(Wbx

(l)) is replaced with
x(l+1) = f(Wex

(l)), where x(l) is activation at layer l, and f an activation function.

5.2 Modification for Training

Unlike numerical simulation, regression models can be evaluated within a DNN framework itself, which
allows fast training based on estimated sneak path effect (see Fig. 1.2). For training, we perform back-
propagation using We instead of Wb:

δ(l)x = We
T · (δ(l+1)

x ◦ f ′) (5.1)

δ
(l)
We

= (δ(l+1)
x ◦ f ′) · x(l)T (5.2)

where δX = ∂L
∂X .

While (5.2) gives the weight gradient for We, what we need is the weight gradient for W, the real-
valued weights before binarization. It is possible to derive δW from δWe using We = g(Wb) ≈ g(W)
through chain rule, but we found that just approximating δW ≈ δWe is fine to train the network to
simplify the implementation.

10

Chapter VI

Experiments

6.1 Experimental Setup

To evaluate our proposed technique we use published BNNs [21] for MNIST, CIFAR10, and SVHN
datasets. Table 6.1 lists key parameters of BNNs and training. Our primary metric is test accuracy,
or the accuracy on unseen data, using the validation setup as described in Section 5.1. The baseline
accuracy is that on GPU, which is the highest accuracy we can expect. While we mostly follow [21] for
training setting, we reduce the learning rate by 1/8 at the beginning of retraining. The crossbar array is
128 × 128, with the number of reference columns varied. The wire resistance per cell is varied from
0.1 Ω to 2 Ω. For device parameters, we consider Ta/HfO2/Pd device that has linear switching behavior
[22] with these parameters: Gmin = 1 µS, Gmax = 1 mS, Vset = 1.1 V and Vreset = −1.3 V. For the
simulation of RCAs, we use the model published in [4], which has the same steady-state behavior as
SPICE simulation.

To train the regression models, we use 60,000 randomly generated 128×128 binary data as in-
puts and corresponding SPICE-equivalent simulation results as targets, except for the Mask method,
for which we follow the procedure in [20] using 100 data samples only. We use Adam optimizer for
DNN-based regression models.

6.2 Comparison Among Regression Models

Table 6.2 compares the performance of regression models. For this experiment we use 1 Ω wire resis-
tance and 1 reference column. MSE is as per (4.8), measuring the accuracy of predicting We. Unsur-
prisingly, there is a clear difference in performance among the models. The (row-wise) linear regression
model performs the worst, while our PLN and SCN perform the best, with an order of magnitude differ-
ence in MSE.

Using the trained models, we then train the MNIST BNN. We only retrain the BNN as opposed
to training from scratch, as detailed in Section 6.1. At the end of the training we measure MNIST
test accuracy, which is pre-validation accuracy, and RCA validation accuracy. In terms of the MNIST
test accuracy, they all achieve near-baseline accuracy; the accuracy drop from the baseline model is

Table 6.1: BNNs and training parameters.
MNIST CIFAR10 SVHN

Network type MLP CNN CNN
#Layers 4 9 9
Initial training #epochs 100 500 200
Retraining #epochs 50 200 80
Baseline test accuracy on GPU 98.41% 88.62% 97.18%

11

Test svhn training errorTrain test error Test

77.21 0.644784 35.5216 0.933006 6.699447

80.44 0.142297 85.77027 0.100184 89.98156 0.5

82.32 0.064475 93.55251 0.104448 89.55516 0.25

80.88 0.062635 93.73651 0.100991 89.90089 0.125

82.28 0.062371 93.76291 0.099378 90.06223 0.0625

80.18 0.061753 93.82474 0.094845 90.51552 0.03125

81.77 0.061208 93.87922 0.107906 89.20943 0.015625

79.43 0.061173 93.88273 0.104909 89.50907 0.007813

82.97 0.060822 93.91783 0.101721 89.8279 0.003906

80.54 0.060845 93.91549 0.086701 91.3299 0.001953 1.953125

81.7 0.060675 93.93253 0.110287 88.97127 0.000977 0.976563

81.23 0.061524 93.84764 0.091733 90.82667 0.000488 0.488281

81.48 0.060967 93.90329 0.100991 89.90089 0.000244 0.244141

83.53 0.061173 93.88273 0.100338 89.9662 0.000122 0.12207

81.81 0.061163 93.88373 0.098648 90.13522

83.41 0.061011 93.89894 0.09884 90.11601

79.96 0.061428 93.85716 0.094883 90.51168

81 0.060947 93.90529 0.09496 90.504

81.83 0.06076 93.92401 0.110633 88.93669

82.13 0.061502 93.84981 0.096497 90.35034

82.69 0.046206 95.37942 0.070144 92.98556

82.53 0.043467 95.65332 0.066495 93.35049

83.75 0.043086 95.69142 0.067763 93.22372

82.46 0.042489 95.75108 0.071335 92.86647

82.04 0.042469 95.75309 0.070721 92.92793

83.1 0.042778 95.72217 0.06734 93.26598

82.65 0.042548 95.74524 0.065035 93.49647

81.97 0.042399 95.76011 0.067686 93.23141

82.29 0.041886 95.81141 0.068108 93.18915

82.69 0.041702 95.8298 0.068646 93.13537

80.91 0.042193 95.78066 0.067955 93.20452

81.85 0.042123 95.78768 0.062692 93.73079

84.16 0.041817 95.81827 0.064574 93.54256

82.27 0.041652 95.83481 0.06711 93.28903

83.81 0.041545 95.8455 0.062039 93.7961

82.5 0.042304 95.76963 0.069069 93.09312

82.32 0.041839 95.81609 0.066226 93.37738

82.15 0.041918 95.80824 0.065151 93.48494

81.14 0.041749 95.82512 0.070068 92.99324

80.24 0.041745 95.82545 0.064766 93.52336

82.09 0.03345 96.65501 0.051283 94.8717

83.52 0.031503 96.8497 0.049055 95.0945

84.11 0.0304 96.96 0.050592 94.94084

83.48 0.030362 96.96384 0.049439 95.05608

83.18 0.029842 97.01582 0.050515 94.94852

81.04 0.029982 97.00178 0.047787 95.22127

80.39 0.029508 97.04924 0.047134 95.28657

81.09 0.029237 97.07631 0.045713 95.4287

95

96

97

98

99

100

0 20 40 60 80 100

A
cc

u
ra

cy
 (

%
)

Epoch

Train

Test

80

83

86

89

92

95

0 100 200 300 400 500

A
cc

u
ra

cy
 (

%
)

Epoch

Train

Test

88

90

92

94

96

98

100

0 40 80 120 160 200

A
cc

u
ra

cy
 (

%
)

Epoch

Train

Test

(a) MNIST

Test svhn training errorTrain test error Test

77.21 0.644784 35.5216 0.933006 6.699447

80.44 0.142297 85.77027 0.100184 89.98156 0.5

82.32 0.064475 93.55251 0.104448 89.55516 0.25

80.88 0.062635 93.73651 0.100991 89.90089 0.125

82.28 0.062371 93.76291 0.099378 90.06223 0.0625

80.18 0.061753 93.82474 0.094845 90.51552 0.03125

81.77 0.061208 93.87922 0.107906 89.20943 0.015625

79.43 0.061173 93.88273 0.104909 89.50907 0.007813

82.97 0.060822 93.91783 0.101721 89.8279 0.003906

80.54 0.060845 93.91549 0.086701 91.3299 0.001953 1.953125

81.7 0.060675 93.93253 0.110287 88.97127 0.000977 0.976563

81.23 0.061524 93.84764 0.091733 90.82667 0.000488 0.488281

81.48 0.060967 93.90329 0.100991 89.90089 0.000244 0.244141

83.53 0.061173 93.88273 0.100338 89.9662 0.000122 0.12207

81.81 0.061163 93.88373 0.098648 90.13522

83.41 0.061011 93.89894 0.09884 90.11601

79.96 0.061428 93.85716 0.094883 90.51168

81 0.060947 93.90529 0.09496 90.504

81.83 0.06076 93.92401 0.110633 88.93669

82.13 0.061502 93.84981 0.096497 90.35034

82.69 0.046206 95.37942 0.070144 92.98556

82.53 0.043467 95.65332 0.066495 93.35049

83.75 0.043086 95.69142 0.067763 93.22372

82.46 0.042489 95.75108 0.071335 92.86647

82.04 0.042469 95.75309 0.070721 92.92793

83.1 0.042778 95.72217 0.06734 93.26598

82.65 0.042548 95.74524 0.065035 93.49647

81.97 0.042399 95.76011 0.067686 93.23141

82.29 0.041886 95.81141 0.068108 93.18915

82.69 0.041702 95.8298 0.068646 93.13537

80.91 0.042193 95.78066 0.067955 93.20452

81.85 0.042123 95.78768 0.062692 93.73079

84.16 0.041817 95.81827 0.064574 93.54256

82.27 0.041652 95.83481 0.06711 93.28903

83.81 0.041545 95.8455 0.062039 93.7961

82.5 0.042304 95.76963 0.069069 93.09312

82.32 0.041839 95.81609 0.066226 93.37738

82.15 0.041918 95.80824 0.065151 93.48494

81.14 0.041749 95.82512 0.070068 92.99324

80.24 0.041745 95.82545 0.064766 93.52336

82.09 0.03345 96.65501 0.051283 94.8717

83.52 0.031503 96.8497 0.049055 95.0945

84.11 0.0304 96.96 0.050592 94.94084

83.48 0.030362 96.96384 0.049439 95.05608

83.18 0.029842 97.01582 0.050515 94.94852

81.04 0.029982 97.00178 0.047787 95.22127

80.39 0.029508 97.04924 0.047134 95.28657

81.09 0.029237 97.07631 0.045713 95.4287

95

96

97

98

99

100

0 20 40 60 80 100

A
cc

u
ra

cy
 (

%
)

Epoch

Train

Test

80

83

86

89

92

95

0 100 200 300 400 500

A
cc

u
ra

cy
 (

%
)

Epoch

Train

Test

88

90

92

94

96

98

100

0 40 80 120 160 200

A
cc

u
ra

cy
 (

%
)

Epoch

Train

Test

(b) CIFAR10

Test svhn training errorTrain test error Test

77.21 0.644784 35.5216 0.933006 6.699447

80.44 0.142297 85.77027 0.100184 89.98156 0.5

82.32 0.064475 93.55251 0.104448 89.55516 0.25

80.88 0.062635 93.73651 0.100991 89.90089 0.125

82.28 0.062371 93.76291 0.099378 90.06223 0.0625

80.18 0.061753 93.82474 0.094845 90.51552 0.03125

81.77 0.061208 93.87922 0.107906 89.20943 0.015625

79.43 0.061173 93.88273 0.104909 89.50907 0.007813

82.97 0.060822 93.91783 0.101721 89.8279 0.003906

80.54 0.060845 93.91549 0.086701 91.3299 0.001953 1.953125

81.7 0.060675 93.93253 0.110287 88.97127 0.000977 0.976563

81.23 0.061524 93.84764 0.091733 90.82667 0.000488 0.488281

81.48 0.060967 93.90329 0.100991 89.90089 0.000244 0.244141

83.53 0.061173 93.88273 0.100338 89.9662 0.000122 0.12207

81.81 0.061163 93.88373 0.098648 90.13522

83.41 0.061011 93.89894 0.09884 90.11601

79.96 0.061428 93.85716 0.094883 90.51168

81 0.060947 93.90529 0.09496 90.504

81.83 0.06076 93.92401 0.110633 88.93669

82.13 0.061502 93.84981 0.096497 90.35034

82.69 0.046206 95.37942 0.070144 92.98556

82.53 0.043467 95.65332 0.066495 93.35049

83.75 0.043086 95.69142 0.067763 93.22372

82.46 0.042489 95.75108 0.071335 92.86647

82.04 0.042469 95.75309 0.070721 92.92793

83.1 0.042778 95.72217 0.06734 93.26598

82.65 0.042548 95.74524 0.065035 93.49647

81.97 0.042399 95.76011 0.067686 93.23141

82.29 0.041886 95.81141 0.068108 93.18915

82.69 0.041702 95.8298 0.068646 93.13537

80.91 0.042193 95.78066 0.067955 93.20452

81.85 0.042123 95.78768 0.062692 93.73079

84.16 0.041817 95.81827 0.064574 93.54256

82.27 0.041652 95.83481 0.06711 93.28903

83.81 0.041545 95.8455 0.062039 93.7961

82.5 0.042304 95.76963 0.069069 93.09312

82.32 0.041839 95.81609 0.066226 93.37738

82.15 0.041918 95.80824 0.065151 93.48494

81.14 0.041749 95.82512 0.070068 92.99324

80.24 0.041745 95.82545 0.064766 93.52336

82.09 0.03345 96.65501 0.051283 94.8717

83.52 0.031503 96.8497 0.049055 95.0945

84.11 0.0304 96.96 0.050592 94.94084

83.48 0.030362 96.96384 0.049439 95.05608

83.18 0.029842 97.01582 0.050515 94.94852

81.04 0.029982 97.00178 0.047787 95.22127

80.39 0.029508 97.04924 0.047134 95.28657

81.09 0.029237 97.07631 0.045713 95.4287

95

96

97

98

99

100

0 20 40 60 80 100

A
cc

u
ra

cy
 (

%
)

Epoch

Train

Test

80

83

86

89

92

95

0 100 200 300 400 500

A
cc

u
ra

cy
 (

%
)

Epoch

Train

Test

88

90

92

94

96

98

100

0 40 80 120 160 200

A
cc

u
ra

cy
 (

%
)

Epoch

Train

Test

(c) SVHN

Figure 6.1: Accuracy curves for PLN during retraining (Rw = 1 Ω, 9 Reference Columns).

Table 6.2: MSE and MNIST accuracy for different predictors.
Mask LR PLN SCN

MSE on random weights 9.28e-3 1.79e-2 1.32e-4 1.16e-4
Pre-validation accuracy 98.39% 96.88% 98.03% 98.25%
Validation accuracy 37.10% 44.86% 97.80% 97.71%

within 1%p∼1.5%p. This accuracy is one that is reported by the BNN framework, calculated using the
prediction models, and may not be representative of the real accuracy on real RCAs. Nonetheless, the
high pre-validation accuracy indicates that the training itself was successful, somewhat validating our
training rule modifications.

The ultimate measure of success, however, is validation accuracy, which is the accuracy obtained
using the method explained in Section 5.1. Considering that validation accuracy before retraining (i.e.,
after initial training) was around only 10%, all methods did improve, but only PLN and SCN achieve
near-baseline accuracy on validation test. That our models perform much better than the others is no
coincidence, given they have much lower MSE than any other.

6.3 Results on Various RRAM Conditions

To see the effect of various RRAM conditions, we vary wire resistance (Rw) and the number of reference
columns (#RefCols). Fig. 6.2 shows the validation accuracy for all four networks, where the white bars
represent the baseline accuracy on GPU. Again, these results are not simply DNN training results, but
obtained by exporting binary weights from the BNN framework, doing SPICE simulation on many
RCAs, and feeding them back to the BNN framework to get very realistic inference accuracy.

First, we observe that the validation accuracy without retraining is universally low, at typically 10%.
This is due to the discrepancy between the programmed RCA weights (Wb) vs. the effective RCA
weights (We), which is ultimately caused by the existence of sneak paths. The only exception is the
MNIST case at Rw = 0.1, which is because the MNIST task is much easier and the sneak path effect at
Rw = 0.1 is relatively mild as evidenced by Fig. 3.1a.

Second, our proposed PLN and SCN methods perform consistently better than the Mask method,
sometimes with a large margin. For MNIST, SCN achieves the baseline accuracy in all cases, and PLN
does except for one condition (Rw = 2, #RefCols = 1), which still is much better than Mask. CIFAR10
is the most challenging dataset, and though sometimes not as good as it could be, SCN achieves near-
baseline performance in most cases, narrowing the gap with the baseline accuracy to as low as 4%p in
one case. PLN also performs well in about half the cases and does better than SCN in one case (Rw =
0.1, #RefCols = 15), achieving lower accuracy gap (3.5%p). For SVHN, PLN and SCN achieves near-
baseline accuracy again in most cases, which is very impressive compared with the alternatives as Mask
achieves in just 2 cases.

12

Table 6.3: CIFAR10 Pre-validation accuracy (%).

Rw #RefCols Mask PLN SCN

0.1
1 81.77 84.10 84.09
9 84.04 83.75 84.85
15 82.96 85.85 83.39

1
1 84.29 79.96 82.69
9 83.79 85.42 85.27
15 83.68 84.47 85.89

2
1 82.20 67.81 78.27
9 82.18 79.06 84.19
15 82.94 81.21 84.67

To find out the reason for lower performance in some cases, we made a closer examination of the
CIFAR10 training result. Table 6.3 compares the pre-validation accuracy of Mask, PLN, and SCN.
Interestingly, while Mask always achieves over 80% accuracy before validation, PLN’s accuracy varies
with the RRAM condition, reaching below 70% in one case. SCN also shows below 80% accuracy in
one case. This result suggests that in the case of Mask, the prediction model is clearly the culprit. In
the case of PLN and SCN, the training method could be improved, to increase either the result quality,
convergence speed, or both. But another possibility is that the BNN model itself, so much damaged by
the sneak path-ridden device imperfections, might be unable to learn the complex task. In the extreme
case, a network wouldn’t be able to learn well if half of the neurons/synapses were gone bad. A more
analysis to pinpoint the exact cause of this quantitatively is left for future work.

Fig. 6.1 reports accuracy curves, showing the progress of train/test accuracy during retraining (Rw =
1 Ω, #RefCols = 9). As can be seen in another figure (the w/o retraining accuracy in Fig. 6.2), the initial
accuracy at the beginning of retraining is very low, at around 10% for all three curves, even though we
start from the fully trained baseline models. However, our BNN training can quickly recover most of
the accuracy within a few epochs. These graphs also confirm that the numbers of epochs we use for
retraining, as listed in Table 6.1, are sufficient to reach convergence.

6.4 Time Overhead Comparison

The low training time overhead is a definite advantage of our proposed scheme, as shown in Fig. 6.3. The
BNN framework is implemented in Torch7, and evaluation as well as training with Mask/PLN/SCN is
done using GPU on a system with Intel Xeon CPU E5-2630 v4 and Nvidia GPU GeForce GTX 1080Ti.
The total training time depends also on the number of iterations and the number of epochs.

To put this in perspective, replacing the regression models with a SPICE simulation would take
exceedingly longer. Even a SPICE-equivalent numerical simulation [4] we use for validation, which is
at least an order of magnitude faster than SPICE simulation, takes several minutes per iteration on 30
CPU cores. At that rate, retraining the MNIST BNN would take over 5,000 hours, or about 7 months
while SCN requires only around 6 hours.

6.5 Comparison with 1T1R Scheme

Table 6.4 shows a comparison of the area and latency while processing one input image. The reported
area is calculated for RCAs, drivers, sensing circuits, and registers (wire resistance is 1 Ω, RRAM
feature size is 5nm). 0T1R-based implementations have slightly less area compared to 1T1R-based
implementations. It is worth mentioning that in the implementation based on 0T1R, the CMOS circuit
area (e.g., sensing circuits, and registers) is approximately equal to the RCAs area, which means that a

13

ref1 ref5 ref9 ref1 ref5 ref9 ref1 ref5

mnist retraining 98.39 98.37 98.44 98.19 98.31 98.13 97.72 97.87

Wsp 98.31 98.28 98.32 97.8 97.87 97.99 85.47 97.35

ref1 ref9 ref15 ref1 ref9 ref15 ref1 ref9

svhn retraining 97.1 97.07 97.02 96.19 96.73 96.73 95.02 95.63

Wsp 96.78 96.99 97.09 92.48 95.54 95.89 25.94 94.33

cifar10 retraining 84.1 83.75 85.85 79.96 85.42 84.47 67.81 79.06

Wsp 82.4 83.31 85.18 65.07 82.35 79.1 38.19 44.59

(0.1, 1) (0.1, 5) (0.1, 9) (1, 1) (1, 5) (1, 9) (2, 1) (2, 5) (2, 9)

before retraining73.01 72.16 71.03 9.94 11.2 11.33 9.9 8.92 8.92

mask-retraining98.43 98.36 98.39 98.39 98.37 98.41 98.06 97.88 98

mask validation97.94 98.22 98.2 37.1 96.8 97.23 21.73 95.34 95.84

PL-retraining 98.39 98.37 98.44 98.19 98.31 98.13 97.72 97.87 97.62

PL-validation 98.31 98.28 98.32 97.8 97.87 97.99 85.47 97.35 97.46

SCN 98.22 98.25 98.26 97.71 97.76 97.89 96.92 97.47 97.57

baseline 98.41 98.41 98.41 98.41 98.41 98.41 98.41 98.41 98.41

(0.1, 1) (0.1, 9) (0.1, 15) (1, 1) (1, 9) (1, 15) (2, 1) (2, 9) (2, 15)

before retraining 10 10.69 9.76 10 10 10 10 10 10

mask-retraining81.77 84.04 82.96 84.29 83.79 83.68 82.2 82.18 82.94

mask validation 4.8 82.56 80.68 10 56.32 68.74 10 18.43 40.43

parallel linear retraining84.1 83.75 85.85 79.96 85.42 84.47 67.81 79.06 81.21

parallel linear validation82.4 83.31 85.18 65.07 82.35 79.1 38.19 44.59 63

SCN 83.87 84.77 82.75 21.22 84.33 83.4 71.97 83.33 82.06

baseline 88.62 88.62 88.62 88.62 88.62 88.62 88.62 88.62 88.62

(0.1, 1) (0.1, 9) (0.1, 15) (1, 1) (1, 9) (1, 15) (2, 1) (2, 9) (2, 15)

before retraining9.16 11.36 9.68 19.59 9.69 9.69 19.59 7.76 7.76

mask-retraining97.07 97.1 96.92 96.72 96.72 96.48 95.72 95.93 95.69

mask-validation12.43 96.44 96.45 7.59 69.89 88.96 19.59 20.03 44.68

PL-retraining 97.1 97.07 97.02 96.19 96.73 96.73 95.02 95.63 95.56

PL-validation 96.78 96.99 97.09 92.48 95.54 95.89 25.94 94.33 92.19

SCN 96.5 96.65 96.62 34.62 96.04 96.59 89.37 95.79 95.78

baseline 97.18 97.18 97.18 97.18 97.18 97.18 97.18 97.18 97.18

80 epochs

(0.1, 1) (0.1, 9) (0.1, 15) (1, 1) (1, 9) (1, 15) (2, 1) (2, 9) (2, 15)

before retrainingref1 ref9 ref15 ref1 ref9 ref15 ref1 ref9 ref15

mask-retraining

mask-validation13.78 96.6 96.39 7.59 73.64 85.78 19.59 15.5 43.84

PL-retraining

PL-validation 97.06 97.11 97.07 94.05 95.77 96.03 20.34 94.85 92.89

0

20

40

60

80

100

(0.1, 1) (0.1, 5) (0.1, 9) (1, 1) (1, 5) (1, 9) (2, 1) (2, 5) (2, 9)

A
cc

u
ra

cy
 (

%
)

0

20

40

60

80

100

(0.1, 1) (0.1, 9) (0.1, 15) (1, 1) (1, 9) (1, 15) (2, 1) (2, 9) (2, 15)

A
cc

u
ra

cy
 (

%
)

0

20

40

60

80

100

(0.1, 1) (0.1, 9) (0.1, 15) (1, 1) (1, 9) (1, 15) (2, 1) (2, 9) (2, 15)

A
cc

u
ra

cy
 (

%
)

W/o Retrain Mask PLN SCN

(a) MNIST

ref1 ref9 ref15 ref1 ref9 ref15 ref1 ref9

svhn retraining 97.1 97.07 97.02 96.19 96.73 96.73 95.02 95.63

Wsp 96.78 96.99 97.09 92.48 95.54 95.89 25.94 94.33

cifar10 retraining 84.1 83.75 85.85 79.96 85.42 84.47 67.81 79.06

Wsp 82.4 83.31 85.18 65.07 82.35 79.1 38.19 44.59

(0.1, 1) (0.1, 5) (0.1, 9) (1, 1) (1, 5) (1, 9) (2, 1) (2, 5) (2, 9)

before retraining73.01 72.16 71.03 9.94 11.2 11.33 9.9 8.92 8.92

mask-retraining98.43 98.36 98.39 98.39 98.37 98.41 98.06 97.88 98

mask validation97.94 98.22 98.2 37.1 96.8 97.23 21.73 95.34 95.84

PL-retraining 98.39 98.37 98.44 98.19 98.31 98.13 97.72 97.87 97.62

PL-validation 98.31 98.28 98.32 97.8 97.87 97.99 85.47 97.35 97.46

SCN 98.22 98.25 98.26 97.71 97.76 97.89 96.92 97.47 97.57

baseline 98.41 98.41 98.41 98.41 98.41 98.41 98.41 98.41 98.41

(0.1, 1) (0.1, 9) (0.1, 15) (1, 1) (1, 9) (1, 15) (2, 1) (2, 9) (2, 15)

before retraining 10 10.69 9.76 10 10 10 10 10 10

mask-retraining81.77 84.04 82.96 84.29 83.79 83.68 82.2 82.18 82.94

mask validation 4.8 82.56 80.68 10 56.32 68.74 10 18.43 40.43

parallel linear retraining84.1 83.75 85.85 79.96 85.42 84.47 67.81 79.06 81.21

parallel linear validation82.4 83.31 85.18 65.07 82.35 79.1 38.19 44.59 63

SCN 83.87 84.77 82.75 82.22 84.33 83.4 71.97 83.33 82.06

baseline 88.62 88.62 88.62 88.62 88.62 88.62 88.62 88.62 88.62

(0.1, 1) (0.1, 9) (0.1, 15) (1, 1) (1, 9) (1, 15) (2, 1) (2, 9) (2, 15)

before retraining9.16 11.36 9.68 19.59 9.69 9.69 19.59 7.76 7.76

mask-retraining97.07 97.1 96.92 96.72 96.72 96.48 95.72 95.93 95.69

mask-validation12.43 96.44 96.45 7.59 69.89 88.96 19.59 20.03 44.68

PL-retraining 97.1 97.07 97.02 96.19 96.73 96.73 95.02 95.63 95.56

PL-validation 96.78 96.99 97.09 92.48 95.54 95.89 25.94 94.33 92.19

SCN 96.5 96.65 96.62 95.62 96.04 96.59 89.37 95.79 95.78

baseline 97.18 97.18 97.18 97.18 97.18 97.18 97.18 97.18 97.18

80 epochs

(0.1, 1) (0.1, 9) (0.1, 15) (1, 1) (1, 9) (1, 15) (2, 1) (2, 9) (2, 15)

before retrainingref1 ref9 ref15 ref1 ref9 ref15 ref1 ref9 ref15

mask-retraining

mask-validation13.78 96.6 96.39 7.59 73.64 85.78 19.59 15.5 43.84

PL-retraining

PL-validation 97.06 97.11 97.07 94.05 95.77 96.03 20.34 94.85 92.89

0

20

40

60

80

100

(0.1, 1) (0.1, 5) (0.1, 9) (1, 1) (1, 5) (1, 9) (2, 1) (2, 5) (2, 9)

A
cc

u
ra

cy
 (

%
)

0

20

40

60

80

100

(0.1, 1) (0.1, 9) (0.1, 15) (1, 1) (1, 9) (1, 15) (2, 1) (2, 9) (2, 15)

A
cc

u
ra

cy
 (

%
)

0

20

40

60

80

100

(0.1, 1) (0.1, 9) (0.1, 15) (1, 1) (1, 9) (1, 15) (2, 1) (2, 9) (2, 15)

A
cc

u
ra

cy
 (

%
)

(b) CIFAR10

ref1 ref9 ref15 ref1 ref9 ref15 ref1 ref9

svhn retraining 97.1 97.07 97.02 96.19 96.73 96.73 95.02 95.63

Wsp 96.78 96.99 97.09 92.48 95.54 95.89 25.94 94.33

cifar10 retraining 84.1 83.75 85.85 79.96 85.42 84.47 67.81 79.06

Wsp 82.4 83.31 85.18 65.07 82.35 79.1 38.19 44.59

(0.1, 1) (0.1, 5) (0.1, 9) (1, 1) (1, 5) (1, 9) (2, 1) (2, 5) (2, 9)

before retraining73.01 72.16 71.03 9.94 11.2 11.33 9.9 8.92 8.92

mask-retraining98.43 98.36 98.39 98.39 98.37 98.41 98.06 97.88 98

mask validation97.94 98.22 98.2 37.1 96.8 97.23 21.73 95.34 95.84

PL-retraining 98.39 98.37 98.44 98.19 98.31 98.13 97.72 97.87 97.62

PL-validation 98.31 98.28 98.32 97.8 97.87 97.99 85.47 97.35 97.46

SCN 98.22 98.25 98.26 97.71 97.76 97.89 96.92 97.47 97.57

baseline 98.41 98.41 98.41 98.41 98.41 98.41 98.41 98.41 98.41

(0.1, 1) (0.1, 9) (0.1, 15) (1, 1) (1, 9) (1, 15) (2, 1) (2, 9) (2, 15)

before retraining 10 10.69 9.76 10 10 10 10 10 10

mask-retraining81.77 84.04 82.96 84.29 83.79 83.68 82.2 82.18 82.94

mask validation 4.8 82.56 80.68 10 56.32 68.74 10 18.43 40.43

parallel linear retraining84.1 83.75 85.85 79.96 85.42 84.47 67.81 79.06 81.21

parallel linear validation82.4 83.31 85.18 65.07 82.35 79.1 38.19 44.59 63

SCN 83.87 84.77 82.75 82.22 84.33 83.4 71.97 83.33 82.06

baseline 88.62 88.62 88.62 88.62 88.62 88.62 88.62 88.62 88.62

(0.1, 1) (0.1, 9) (0.1, 15) (1, 1) (1, 9) (1, 15) (2, 1) (2, 9) (2, 15)

before retraining9.16 11.36 9.68 19.59 9.69 9.69 19.59 7.76 7.76

mask-retraining97.07 97.1 96.92 96.72 96.72 96.48 95.72 95.93 95.69

mask-validation12.43 96.44 96.45 7.59 69.89 88.96 19.59 20.03 44.68

PL-retraining 97.1 97.07 97.02 96.19 96.73 96.73 95.02 95.63 95.56

PL-validation 96.78 96.99 97.09 92.48 95.54 95.89 25.94 94.33 92.19

SCN 96.5 96.65 96.62 95.62 96.04 96.59 89.37 95.79 95.78

baseline 97.18 97.18 97.18 97.18 97.18 97.18 97.18 97.18 97.18

80 epochs

(0.1, 1) (0.1, 9) (0.1, 15) (1, 1) (1, 9) (1, 15) (2, 1) (2, 9) (2, 15)

before retrainingref1 ref9 ref15 ref1 ref9 ref15 ref1 ref9 ref15

mask-retraining

mask-validation13.78 96.6 96.39 7.59 73.64 85.78 19.59 15.5 43.84

PL-retraining

PL-validation 97.06 97.11 97.07 94.05 95.77 96.03 20.34 94.85 92.89

0

20

40

60

80

100

(0.1, 1) (0.1, 5) (0.1, 9) (1, 1) (1, 5) (1, 9) (2, 1) (2, 5) (2, 9)

A
cc

u
ra

cy
 (

%
)

0

20

40

60

80

100

(0.1, 1) (0.1, 9) (0.1, 15) (1, 1) (1, 9) (1, 15) (2, 1) (2, 9) (2, 15)

A
cc

u
ra

cy
 (

%
)

0

20

40

60

80

100

(0.1, 1) (0.1, 9) (0.1, 15) (1, 1) (1, 9) (1, 15) (2, 1) (2, 9) (2, 15)

A
cc

u
ra

cy
 (

%
)

(c) SVHN

Figure 6.2: Test validation accuracy under different RRAM conditions.

14

0

400

800

1200

1600

2000

MNIST CIFAR10 SVHN

T
ra

in
in

g
 T

im
e

(m
s

/
it

er
) Baseline

Mask

PLN

SCN

Figure 6.3: Training time comparison (per iteration).

Table 6.4: Area and latency comparison between 1T1R and 0T1R architectures for image classification;
1T1R is serial implementation, 0T1R full parallel implementation.

MNIST CIFAR10 SVHN

Area (µm2)
1T1R 2.54e+3 1.47e+4 1.06e+4
0T1R 2.41e+3 1.36e+4 1.03e+4

Latency (ns)
1T1R 9.23e+3 6.91e+5 5.44e+5
0T1R 3.00e+0 4.04e+3 4.04e+3

further area saving of up to 50% is possible if CMOS circuit is placed under the RCAs, which is not
possible in 1T1R. At the same time, 0T1R is 3000×, 170× and 134.7× faster compared to 1T1R-based
implementation for MNIST, CIFAR10 and SVHN networks, respectively, which is due to the serial
processing of 1T1R scheme.

15

Chapter VII

Conclusion

In this paper we presented novel methods to incorporate the sneak path problem during BNN training
with a negligible overhead. Compared to hardware methods (e.g., new device/selector material, error
compensating circuitry), our training method is essentially free, and applicable on top of any hardware
methods. Our experimental results demonstrate that while the sneak path problem renders many RRAM
crossbar configurations unsuitable for DNN inference, our proposed methods can extend the range of
usable configurations significantly, achieving near-baseline level test validation accuracy with MNIST
and SVHN BNNs, and significant boost with CIFAR10 BNN.

We see many paths for future work. While our experiments in this paper are conducted assuming
SPICE simulation as the ground truth, it could be extended to using real measurement data. Using two
crossbar arrays instead of reference columns could be another way to improve accuracy, in exchange
for more area and power dissipation. We can explore various neural network models for the prediction
model, surely including fully-connected and convolutional neural networks, which would take a lot of
exploration to find the best set of hyperparameters.

16

References

[1] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams,
and V. Srikumar, “Isaac: A convolutional neural network accelerator with in-situ analog arithmetic
in crossbars,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26, 2016.

[2] S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, and D. Ielmini, “Understanding
switching variability and random telegraph noise in resistive ram,” in 2013 IEEE International
Electron Devices Meeting. IEEE, 2013, pp. 31–5.

[3] L. Wilson, “International technology roadmap for semiconductors (itrs),” Semiconductor Industry
Association, 2013.

[4] M. Fouda, A. Eltawil, and F. Kurdahi, “Modeling and analysis of passive switching crossbar ar-
rays,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 65, no. 1, pp. 270–282, 2018.

[5] F. Merrikh-Bayat, X. Guo, M. Klachko, M. Prezioso, K. K. Likharev, and D. B. Strukov, “High-
performance mixed-signal neurocomputing with nanoscale floating-gate memory cell arrays,”
IEEE transactions on neural networks and learning systems, no. 99, pp. 1–9, 2017.

[6] Z. Wang, M. Rao, J.-W. Han, J. Zhang, P. Lin, Y. Li, C. Li, W. Song, S. Asapu, R. Midya et al.,
“Capacitive neural network with neuro-transistors,” Nature communications, vol. 9, no. 1, p. 3208,
2018.

[7] M. Azzaz, E. Vianello, B. Sklenard, P. Blaise, A. Roule, C. Sabbione, S. Bernasconi, C. Charpin,
C. Cagli, E. Jalaguier et al., “Endurance/retention trade off in hfox and taox based rram,” in 2016
IEEE 8th International Memory Workshop (IMW). IEEE, 2016, pp. 1–4.

[8] Y. Yang, P. Sheridan, and W. Lu, “Complementary resistive switching in tantalum oxide-based
resistive memory devices,” Applied Physics Letters, vol. 100, no. 20, p. 203112, 2012.

[9] C.-C. C. et al., “Mitigating asymmetric nonlinear weight update effects in hardware neural network
based on analog resistive synapse,” IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 2017.

[10] Z. Wang, C. Li, W. Song, M. Rao, D. Belkin, Y. Li, P. Yan, H. Jiang, P. Lin, M. Hu et al., “Rein-
forcement learning with analogue memristor arrays,” Nature Electronics, p. 1, 2019.

[11] C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, and W. D. Lu, “Reservoir computing using dynamic
memristors for temporal information processing,” Nature communications, vol. 8, no. 1, p. 2204,
2017.

[12] M. Prezioso, M. Mahmoodi, F. M. Bayat, H. Nili, H. Kim, A. Vincent, and D. Strukov, “Spike-
timing-dependent plasticity learning of coincidence detection with passively integrated memristive
circuits,” Nature communications, vol. 9, no. 1, p. 5311, 2018.

17

[13] S. Yu, “Neuro-inspired computing with emerging nonvolatile memorys,” Proceedings of the IEEE,
vol. 106, no. 2, pp. 260–285, 2018.

[14] M. Fouda, E. Neftci, A. Eltawil, and F. Kurdahi, “Independent component analysis using rrams,”
Nanotechnology, IEEE Transactions on, 2018.

[15] S. Yu, Z. Li, P. Chen, H. Wu, B. Gao, D. Wang, W. Wu, and H. Qian, “Binary neural network with
16 mb rram macro chip for classification and online training,” in 2016 IEEE International Electron
Devices Meeting (IEDM), Dec 2016, pp. 16.2.1–16.2.4.

[16] X. Sun, X. Peng, P.-Y. Chen, R. Liu, J.-s. Seo, and S. Yu, “Fully parallel rram synaptic array for
implementing binary neural network with (+ 1,- 1) weights and (+ 1, 0) neurons,” in Proceedings of
the 23rd Asia and South Pacific Design Automation Conference. IEEE Press, 2018, pp. 574–579.

[17] L. Ni, Z. Liu, H. Yu, and R. V. Joshi, “An energy-efficient digital reram-crossbar-based cnn with
bitwise parallelism,” IEEE Journal on Exploratory Solid-State Computational Devices and Cir-
cuits, vol. 3, pp. 37–46, Dec 2017.

[18] T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang, “Binary convolutional neural network on rram,” in
Design Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific. IEEE, 2017, pp.
782–787.

[19] E. Giacomin, T. Greenberg-Toledo, S. Kvatinsky, and P.-E. Gaillardon, “A robust digital rram-
based convolutional block for low-power image processing and learning applications,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp. 643–654, 2019.

[20] M. E. Fouda, J. Lee, A. M. Eltawil, and F. Kurdahi, “Overcoming crossbar nonidealities in binary
neural networks through learning,” in 2018 IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH). IEEE, 2018, pp. 1–3.

[21] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural networks,”
in Proceedings of the 30th International Conference on Neural Information Processing Systems,
ser. NIPS’16. Curran Associates Inc., 2016, pp. 4114–4122.

[22] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams,
J. J. Yang et al., “Memristor-based analog computation and neural network classification with a
dot product engine,” Advanced Materials, vol. 30, no. 9, p. 1705914, 2018.

18

	I. Introduction
	II. Background and RelatedWork
	2.1 RRAM Crossbar Array
	2.2 Binary Weight Realization
	2.3 DNN on RRAM Array

	III. Problem Description
	3.1 Sneak Path Problem
	3.2 DNN Application

	IV. Prediction of Effective Weights
	4.1 Mask Method
	4.2 Row-wise Linear Regression
	4.3 Parallel Linear Network
	4.4 Convolutional Layers
	4.5 Scaled Convolutional Network

	V. Sneak Path-aware Training Rule
	5.1 HW-Accurate BNN Inference for Validation
	5.2 Modification for Training

	VI. Experiments
	6.1 Experimental Setup
	6.2 Comparison Among Regression Models
	6.3 Results on Various RRAM Conditions
	6.4 Time Overhead Comparison
	6.5 Comparison with 1T1R Scheme

	VII. Conclusion

<startpage>10
I. Introduction 1
II. Background and RelatedWork 3
 2.1 RRAM Crossbar Array 3
 2.2 Binary Weight Realization 3
 2.3 DNN on RRAM Array 3
III. Problem Description 5
 3.1 Sneak Path Problem 5
 3.2 DNN Application 6
IV. Prediction of Effective Weights 7
 4.1 Mask Method 7
 4.2 Row-wise Linear Regression 7
 4.3 Parallel Linear Network 8
 4.4 Convolutional Layers 8
 4.5 Scaled Convolutional Network 9
V. Sneak Path-aware Training Rule 10
 5.1 HW-Accurate BNN Inference for Validation 10
 5.2 Modification for Training 10
VI. Experiments 11
 6.1 Experimental Setup 11
 6.2 Comparison Among Regression Models 11
 6.3 Results on Various RRAM Conditions 12
 6.4 Time Overhead Comparison 13
 6.5 Comparison with 1T1R Scheme 13
VII. Conclusion 16
</body>

