

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

1

Master's Thesis

Development of Three-Dimensional Parallel Code

to Study the Motions of Particles in a Fluid Using

Lattice Boltzmann Method

Jeong-Gi Park

Department of Mechanical Engineering

Graduate School of UNIST

2019

[UCI]I804:31001-200000225312[UCI]I804:31001-200000225312

2

Development of Three-Dimensional Parallel Code

to Study the Motions of Particles in a Fluid Using

Lattice Boltzmann Method

Jeong-Gi Park

Department of Mechanical Engineering

Graduate School of UNIST

3

Development of Three-Dimensional Parallel Code

to Study the Motions of Particles in a Fluid Using

Lattice Boltzmann Method

A thesis/dissertation

submitted to the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Master of Science

Jeong-Gi Park

Month/Day/Year of submission

Approved by

Advisor

Chun Sang Yoo

4

Development of Three-Dimensional Parallel Code

to Study the Motions of Particles in a Fluid Using

Lattice Boltzmann Method

Jeong-Gi Park

This certifies that the thesis/dissertation of Jeong-Gi Park is

approved.

June/14/2019

 signature

 Advisor: Chun Sang Yoo

 signature

 Hyungson Ki

 signature

 Jaesung Jang

5

Abstract

The three-dimensional parallel code is developed for the lattice Boltzmann method. It is to simulate

multiphase flows containing particles. The code is the combination of the two models, the Shan-Chan

multiphase model for a viscous fluid, the pseudo-solid model for particles. The difficulties in

implementing the methods and some possible optimization techniques are suggested. This code can be

used to simulate the dynamics of the self-assembly driven by evaporation and any multiphase flow with

different sizes of particles.

6

7

Contents

1. Introduction-- 9

2. Simulation methods -- 11

2.1 Lattice Boltzmann Equation --- 11

2.2 Shan-Chan Two Component Model -- 14

2.3 Particle Model -- 16

2.3.1 Particle domain --16

2.3.2 Particle-fluid interaction --18

2.3.3 Particle-particle interaction ---18

3. Details of the Program -- 20

3.1 Velocity Set -- 21

3.2 Domain Decomposition --- 22

3.3 FLUID Datatype --- 22

3.4 Neighboring Processors --- 23

3.5 Sequence of Substeps --- 24

3.6 Initialization --- 26

3.7 Boundary Conditions -- 28

3.8 Communications --- 28

3.9 Two Component Model --- 31

3.10 Particle Model --- 32

3.10.1 Density --- 32

3.10.2 Local velocity -- 36

3.10.3 Force gathering --- 37

3.10.4 Position update --- 39

8

4. Examples --- 41

5. Conclusions -- 43

9

1. Introduction

Matter consists of molecules. It is now an obvious statement, but things are somewhat different at

Ludwig Boltzmann’s era. Even though Boltzmann established a foundation for kinetic theory and the

statistical physics based on the concepts of molecules and atoms, the mainstream of respected physicist

did not accept the atomic theory. The attack to his theory was severe enough for him to be suffered from

depression. Now the atomic theory is a foundation of modern theory and provide a rigorous foundation

of the simulation method such as the molecular dynamics and the lattice Boltzmann method (LBM).

 The lattice Boltzmann equation can be derived from the Boltzmann transport equation [1], which

describes the behavior of gas based on the molecular nature of fluid. It has been emerging as one of the

promising computational fluid dynamic (CFD) method in the last few decades because of its simplicity,

ability to handle the complex geometry and physics, and applicability on multicore computing systems.

Although LBM is currently considered as a discretized numerical scheme for the Boltzmann transport

equation [2], but it is worth to mention that it was originally from the lattice gas automata (LGA) [3-5],

which stems from the cellular automata (CA) [6]. Knowledge on these subject is not essential to study

the LBM, but a brief glance at Wolf-Gladrow’s book [7], which describes connection between the LGA

and the LBM concisely, will be useful because some early papers on the LBM are not easy to follow

without being familiar with the CA and the LGA.

The continuum assumption is the most fundamental assumption of the conventional fluid mechanics. It

enables us to describe the motion of fluid with a differential equation, the Navier-Stokes equation.

Various discretization methods have been developed to efficiently solve it. It is inherently nonlocal

because it deals with the gradients of quantities, which require information from adjacent nodes. On the

other hand, the molecular dynamics is a microscopic description of the fluid behavior, so Newtonian

dynamics can be used to describe the motion of each particle and its computation is local. However, the

intermolecular forces need to be determined with the quantum mechanics, and it is impossible to track

every single molecule in human-scale systems. The LBM is somewhere between them, and it is called

mesoscopic description of fluid. Its fundamental quantity is the particle distribution functions, or the

representative collection of molecules [8].

The LBM’s kinetic nature enables us to simulate multiphase fluid in a relatively straightforward way.

Using conventional CFD approaches, the sharp gradients of fluid properties in the interface requires

additional modeling. Furthermore, the tracking of phase interfaces and phase change are not simple

tasks. Whereas, from a microscopic view, a multiphase flow is a simple phenomenon resulted from

molecular interactions. Three most popular models in LBM are the color-gradient model [9], the Shan-

Chan model [10-14], and the free-energy model [15-16]. After they are first introduced, they have been

10

actively studied and improved. The recent improvement and theoretical basis of the three models are

well organized in Huang’s recent work [17].

Another the strength of LBM is its ability to handle particulate flow. Computation in LBM is local, so

the LBM model can effectively calculate the interaction between fluid and particles. After Ladd [18-22]

proposed a particle model, LBM has been widely used to study various phenomena such as emulsions

[23], coffee ring effect [24], blood flow [25], and capillary force [26]. Meanwhile, Liang et al. [27]

suggested a novel method called pseudo-solid model (PSM) to model solid particle without bounce-

back moving boundary condition. In this paper, the features of PSM is analyzed and discussed.

Above all the advantage of the LBM, the scalability on parallel computers, is arguably the primary

reason for the increasing interest of the LBM. Performance of a single microprocessor increased about

50% annually from 1986 to 2002 [28]. However, the increasing rate has reduced to about 20% after

2002 [29]. Therefore, high performance can be only achieved with multiple processors to successfully

simulate the modern scientific and engineering problems such as combustion at high pressure, the

weather forecast, and the turbulent flow.

 Now the LBM has broadened its area to commercial software products. DASSAULT SYSTEMS takes

over PowerFLOW, which was the first commercial software based on LBM, in 2017. NUMECA in

2018 is merged with Palabos, which was the most popular and versatile open source software in LBM

community. Although developing in-house code in a lab may look like an impractical task when there

already exist reliable and powerful software, the LBM is still new methods that require elaborate

improvements. Indeed a variety of new models specific to problems are suggested every. In-house codes

will help one who wants to develop or adopt them for their own problems. Additionally, a simple in-

house code is easy to read without profound deep knowledge on programming technique, and useful to

getting basic understanding about the method.

11

2. Simulation Method

Lattice Boltzmann method is a relatively young branch of CFD, so different books use different

notations and take different approaches. This has been one of the obstacles to beginners of the LBM.

Fortunately, recently Kruger et al. (2017) [8] published a comprehensive, well organized textbook, and

this paper follows the notations and the approach from it. They explain the LBM as a discretization

scheme of the Boltzmann transport equation, and I briefly introduced the result here. Readers who are

interested in how the LBM is originally grew out of CA and LGCA can refer Wolf-Gladrow (2006) [7]

and Sukop and Thorne (2006) [30].

2.1 Lattice Boltzmann Equation.

The Boltzmann transport equation describes behavior of gas using a mesoscopic variable, distribution

function 𝑓(𝒙, 𝝃, 𝑡). It can be considered as generalized density whose value depends on not only space

𝒙 but also microscopic particle velocity space 𝝃 [8]. Mass density 𝜌 can be obtained by integrating

distribution function over velocity space as, 𝜌(𝒙, 𝑡) = ∫𝑓(𝒙, 𝝃, 𝑡) 𝑑3𝜉. If we take the derivative of the

distribution function with respect to time t using the chain rule,

𝑑

𝑑𝑡
𝑓(𝒙(𝑡), 𝝃(𝑡), 𝑡) =

𝜕𝑓

𝜕𝑡

𝑑𝑡

𝑑𝑡
+
𝜕𝑓

𝜕𝑥𝛽

𝑑𝑥𝛽

𝑑𝑡
+
𝜕𝑓

𝜕𝜉𝛽

𝑑𝜉𝛽

𝑑𝑡

where the index notation was used to denote each component of the position and velocity vector. The

total derivative d𝑓/𝑑𝑡 is conventionally written as 𝛺(𝑓) . Using d𝑥𝛽/𝑑𝑡 = 𝜉𝛽 and d𝜉𝛽/𝑑𝑡 =

 𝐹𝛽/𝜌, where 𝐹𝛽 is the specific body force, we have the Boltzmann transport equation

𝜕𝑓

𝜕𝑡
+ 𝜉𝛽

𝜕𝑓

𝜕𝑥𝛽
+
𝐹𝛽

𝜌

𝜕𝑓

𝜕𝜉𝛽
= 𝛺(𝑓).

The left-hand side is a linear partial differential equation, because the non-linear nature of fluid is

inherent in 𝛺(𝑓) on the right-hand side. It is called the collision integral and describe the effect of

collisions of particles on the distribution function. Its original form is involved integral equation, but

Bhatnagar, Gross, Krook suggested much simpler form [31]

𝛺(𝑓) = −
1

𝜏
(𝑓 − 𝑓𝑒𝑞)

(2.1)

(2.2)

(2.3)

12

where 𝜏 is called relaxation time or collision time, related to time between the collisions. This

simplification may look immoderate considering complexity of original integral equation, but the fact

that the detailed process of collision of molecules hardly have effects on the macroscopic properties of

fluid makes it a reasonable assumption. A tremendous number of microstates correspond to one

macrostate, so we can simply choose most manageable one. Additionally, the collisions tend to diffuse

the momentums of each particle, and after a sufficient number of collisions occurs, system will settle

down in an equilibrium state. Therefore, the time rate of change of distribution function is proportional

to how fall it deviates from the equilibrium and inversely proportional time between the collisions. The

equilibrium distribution was calculated by Maxwell and Boltzmann as

𝑓𝑒𝑞(𝐱, |𝒗|, 𝑡) = 𝜌 (
1

2𝜋𝑅𝑇
)
3/2

𝑒−|𝒗|
2/(2𝑅𝑇)

where 𝒗(𝒙, 𝑡) is the difference between the microscopic particle velocity and the macroscopic velocity

of fluid.

The actual discretization process requires some mathematical background on Hermite series expansion

and is beyond the scope of this paper. The mathematically rigorous procedure is explained in detail on

Shan et al. (2006) [2]. After discretizing and normalizing process [7], the Boltzmann transport equation

without force term becomes

𝑓𝑖(𝒙 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖(𝒙, 𝑡) = −
1

𝜏/Δ𝑡
(𝑓𝑖(𝒙, 𝑡) − 𝑓𝑖

𝑒𝑞(𝒙, 𝑡))

which is the lattice Boltzmann equation. Here 𝑓𝑖 means the distribution functions corresponding to the

discretized finite velocity set, 𝒄𝑖. The normalized lattice spacing Δ𝑥 and time step Δ𝑡 are commonly

set to both 1 lattice unit to simplicity. The LBM simulation and real system can be compared using

dimensionless numbers such as Reynolds number, Bond number and Capillary number. In every

simulations of this paper, 𝜏/Δ𝑡 is set to 1 for simplicity. Hence, 𝜏 is equal to Δ𝑡, which means the

system is in equilibrium state at each time step because relaxation time is equal to time step. Then

equation (2.5) becomes

𝑓𝑖(𝒙 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖
𝑒𝑞(𝒙, 𝑡).

There are a couple of the possible velocity set with the weight coefficient 𝑤𝑖. They are classified using

notation DdQq, where d is the number of dimensions and q is the number of discretized velocities.

D3Q19 is used in this paper and the numbering is shown in below figure.

(2.4)

(2.5)

13

Figure 1. D3Q19 velocity set

The discretized equilibrium distribution function is given by

𝑓𝑖
𝑒𝑞(𝒙, 𝑡) = 𝑤𝑖𝜌 [1 +

𝐮 ∙ 𝐜𝑖

𝑐𝑠
2 +

(𝐮 ∙ 𝐜𝑖)
2

2𝑐𝑠
4 −

𝐮 ∙ 𝐮

2𝑐𝑠
2]

where 𝑐𝑠 is a constant determined by the velocity set used. For every velocity set used in this paper

𝑐𝑠 has a value of 1/3. Its theoretical meaning can be found in discretization procedure [2].

For implementation, it is convenient rewrite lattice Boltzmann equation as

𝑓𝑖(𝒙 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖(𝒙, 𝑡) (1 −
1

𝜏/Δ𝑡
) + 𝑓𝑖

𝑒𝑞(𝒙, 𝑡)
1

𝜏/Δ𝑡
.

Calculating the right-hand side is often called the collision step and denoted with 𝑓𝑖
∗(𝒙, 𝑡). The actual

calculation step can be understood easily with the simplest velocity set, D1Q3. At some time t and at

some point x,

Figure 2. Distribution function at time t.

We can find density 𝜌 and momentum density 𝜌𝒖 as

𝜌(𝒙, 𝑡) =∑𝑓𝑖(𝒙, 𝑡)

𝑖

, 𝜌𝒖(𝒙, 𝑡) =∑𝒄𝒊𝑓𝑖(𝒙, 𝑡)

𝑖

.

(2.6)

(2.7)

(2.8)

14

Then the equilibrium distribution can be found with the density and the velocity. After evaluating the

collision step,

𝑓𝑖
∗(𝒙, 𝑡) = 𝑓𝑖(𝒙, 𝑡) (1 −

1

𝜏/Δ𝑡
) + 𝑓𝑖

𝑒𝑞(𝒙, 𝑡)
1

𝜏/Δ𝑡

Figure 3. Distribution function after collision at time t.

Next step is called the streaming.

𝑓𝑖(𝒙 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖
∗(𝒙, 𝑡)

Figure 4. Distribution function after streaming.

Now 𝜌 and 𝜌𝒖 at time 𝑡 + ∆𝑡 can be computed.

2.2 Shan-Chan Two Component Model

 The ideal gas equation of state is monotonic function, so no phase separation is expected theoretically.

Whereas the van der Waals equation of state can explain the phase separation by taking account of the

intermolecular forces and volumes of molecules. Based on this idea, Shan and Chen [10] proposed one

of the most popular multiphase model in lattice Boltzmann method. In this paper, only two component

model will be introduced, but extending to arbitrary number of components is straightforward.

 In the two component Shan-Chan model (SC model), two layers of domain is implemented with two

distinct distribution functions, each denoted as red 𝑓𝑖
𝑅 and blue 𝑓𝑖

𝐵

𝑓𝑖
𝜎(𝒙 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖

𝜎(𝒙, 𝑡) = −
1

𝜏𝜎

Δ𝑡

(𝑓𝑖
𝜎(𝒙, 𝑡) − 𝑓𝑖

𝜎,𝑒𝑞(𝒙, 𝑡)),

𝑓𝑖
𝜎,𝑒𝑞(𝒙, 𝑡) = 𝑤𝑖𝜌

𝜎 [1 +
𝐮σ,𝑒𝑞 ∙ 𝐜𝑖

𝑐𝑠
2 +

(𝐮σ,𝑒𝑞 ∙ 𝐜𝑖)
2

2𝑐𝑠
4 −

𝐮σ,𝑒𝑞 ∙ 𝐮σ,𝑒𝑞

2𝑐𝑠
2],

(2.9)

(2.10)

(2.11)

(2.12)

15

where 𝜎 denotes either R or B. The density and momentum density is given by 𝜌𝜎(𝒙, 𝑡) = ∑ 𝑓𝑖
𝜎(𝒙, 𝑡)𝑖

and 𝜌𝜎𝒖𝝈(𝒙, 𝑡) = ∑ 𝒄𝒊𝑓𝑖
𝜎(𝒙, 𝑡)𝑖 . Without interaction force between two fluid components, this system

can be regarded as an ideal gas mixture and have some the common equilibrium velocity, 𝐮𝑒𝑞[11].

Momentum conservation can be used to find appropriate expression for 𝐮𝑒𝑞. After multiplying 𝒄𝑖 to

both side of above equation, and summing over the index i,

∑[𝑓𝑖
𝜎𝒄𝑖(𝒙 + 𝒄𝑖, 𝑡 + 1) − 𝑓𝑖

𝜎𝒄𝑖(𝐱, 𝑡)]

𝑖

=∑[−
𝑓𝑖
𝜎𝒄𝑖(𝐱, 𝑡) − 𝑓𝑖

𝜎,𝑒𝑞
𝒄𝑖(𝐱, 𝑡)

𝜏𝜎/Δ𝑡
]

𝑖

which can be rewrite with definition of the momentum density as

𝜌𝜎𝐮𝜎(𝐱 + 𝒆𝑖 , 𝑡 + 1) − 𝜌
𝜎𝐮𝜎(𝐱, 𝑡) = −

𝜌𝜎𝐮𝜎(𝐱, 𝑡) − 𝜌𝜎𝐮′(𝐱, 𝑡)

𝜏𝜎/Δ𝑡
= ∆𝑐𝐏

𝜎(𝐱, 𝑡)

where ∆𝑐𝐏
𝜎(𝐱, 𝑡) is momentum change of fluid component by collision process. Since the collision

step conserves total momentum [11],

 ∑∆𝑐𝐏
𝜎(𝐱, 𝑡)

𝜎

= ∆𝑐𝐏
𝑅(𝐱, 𝑡) + ∆𝑐𝐏

𝐵(𝐱, 𝑡)

 = −
𝜌𝑅𝐮𝑅(𝐱, 𝑡) − 𝜌𝑅𝐮′(𝐱, 𝑡)

𝜏𝑅

Δ𝑡

−
𝜌𝐵𝐮𝐵(𝐱, 𝑡) − 𝜌𝐵𝐮𝑒𝑞(𝐱, 𝑡)

𝜏𝐵

Δ𝑡

= 0

Solve for 𝐮𝑖𝑑𝑒𝑎𝑙
𝑒𝑞 (𝐱, 𝑡) to get

𝐮𝑖𝑑𝑒𝑎𝑙
𝑒𝑞 (𝐱, 𝑡) =

𝜌𝑅𝐮𝑅(𝐱, 𝑡)
𝜏𝑅/Δ𝑡

+
𝜌𝐵𝐮𝐵(𝐱, 𝑡)
𝜏𝐵/Δ𝑡

𝜌𝑅

𝜏𝑅/Δ𝑡
+

𝜌𝐵

𝜏𝐵/Δ𝑡

.

If we set 𝜏𝑅/Δ𝑡 = 𝜏𝐵/Δ𝑡 = 1, we have simpler form of

𝐮𝑖𝑑𝑒𝑎𝑙
𝑒𝑞 (𝐱, 𝑡) =

𝜌𝑅𝐮𝑅(𝐱, 𝑡) + 𝜌𝐵𝐮𝐵(𝐱, 𝑡)

𝜌𝑅 + 𝜌𝐵
.

In order to simulate two immiscible fluid, Shan and Doolen introduced an interparticle force [11],

𝑭𝑅𝐵(𝒙) = −𝜓𝑅(𝒙)𝐺𝑅𝐵∑𝑤𝑖𝜓
𝐵(𝒙 + 𝒄𝒊)𝒄𝒊

𝑖

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

16

where 𝑭𝑅𝐵 means interparticle force on fluid red from fluid blue and 𝑭𝐵𝑅 can be found in the same

way. 𝜓𝜎 = 𝜓𝜎(𝜌𝜎) is called effective mass whose specific form determines the equation of state, and

G is a constant to adjust the strength of the forces. 𝐺𝑅𝐵 should be equal to 𝐺𝐵𝑅 to ensure physical

behavior [9]. It also determines the density ratio and surface tension [16]. In this paper, 𝜓𝜎 is always

set as 𝜓𝜎 = 𝜌𝜎.

 To incorporate this force into lattice Boltzmann equation, several forcing schemes have been

proposed []. Here the SC forcing scheme [10] is implemented as

𝜌𝜎𝐮σ,𝑒𝑞(𝐱, 𝑡) = 𝜌𝜎𝐮ideal
𝑒𝑞

+ 𝜏𝜎𝐅𝝈.

This 𝐮𝑒𝑞 will be used in collision step.

2.3 Particle Model

In the pseudo-solid model (PSM) [27], the force on a solid particle is calculated using Shan-Chan

interaction force. In other words, the particles act like one of the Shan-Chan fluid components. The

computation of fluid component is the same as SC model. Here the PSM is briefly summarized.

2.3.1 Particle domain

Figure 5. Three layers of domain for the PSM.

The PSM add one more layer of domain for particles to the double layer of fluid domain in two

component SC model. The density of undeformable rigid particles whose radius is R is given by

(2.19)

17

𝑛𝑃(𝐱) =

{

 1.0 (𝑟 < 𝑅 − 0.5𝜉)
 0.0 (𝑟 > 𝑅 + 0.5𝜉)

 1.0 +
(𝑅 − 0.5𝜉) − 𝑟

𝜉
 (𝑅 − 0.5𝜉 ≤ 𝑟 ≤ 𝑅 + 0.5𝜉)

where 𝜉 is a parameter for the interface width, which will be set to 1.

Figure 6. Particle density on the local domain.

The center of particle 𝐗𝑐, translational velocity 𝐕𝑇 , angular velocity 𝛀 is updated by Newton’s Law.

𝑑𝐗𝑐
𝑑𝑡

= 𝐕𝑇 ,

𝑀
𝑑𝐕𝑇
𝑑𝑡

= 𝐅 = 𝐅𝐺 + 𝐅𝐻 ,

𝐼
𝑑𝛀

𝑑𝑡
= 𝐓 = 𝐓𝐻 ,

where 𝐅𝐺 means gravitational force on a particle and 𝐅𝐻 is a hydrodynamic force from fluid on a

solid particle.

2.3.2 Particle-fluid interaction

To compute the interaction between solid particle and fluid components, we consider the solid particle

as a third fluid component – a particle component, which will be denoted with superscript P. At each

grid point in a solid particle, local velocity of a particle component is determined by the particle’s

translational velocity and angular velocity.

𝐕𝑃 (𝐱) = 𝐕𝑇 + 𝐕𝑅 = 𝐕𝑇 +𝛀 × 𝐫.

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

18

The common velocity of SC model at each point can be found by taking account the effect of the particle

component.

𝐮𝑖𝑑𝑒𝑎𝑙
𝑒𝑞

 (𝐱) =
𝜌𝑃𝐕𝑃 + 𝜌𝑅𝐮𝑅 + 𝜌𝐵𝐮𝐵

𝜌𝑃 + 𝜌𝑅 + 𝜌𝐵
.

Note that where particle’s density is zero, 𝐮𝑖𝑑𝑒𝑎𝑙
𝑒𝑞

 (𝐱) will contain only terms for the red and blue fluid.

The force on a fluid component now include the force from particle.

𝑭𝑡𝑜𝑡𝑎𝑙
𝑅 (𝒙) = −𝜓𝑅(𝒙)𝐺𝑅𝐵∑𝑤𝑖𝜓

𝐵(𝒙 + 𝒄𝒊)𝒄𝒊
𝑖

− 𝜓𝑅(𝒙)𝐺𝑅𝑆∑𝑤𝑖𝜓
𝑃(𝒙 + 𝒄𝒊)𝒄𝒊

𝑖

,

where 𝜓𝑃(𝐱)=𝑛𝑃(𝐱). Similarly, the second term vanishes where the particle’s density is zero.

Hydrodynamic force on the particle by each component of fluid is determined by calculating

momentum change of fluid at each node. By the momentum conservation, momentum change of a

particle is the negative of the sum of momentum change of two fluid. Hence,

∆𝑷𝑆(𝒙, 𝑡) = −∆𝑃𝐹(𝒙, 𝑡) = −∑[𝜌𝜎𝒖𝜎(𝒙, 𝑡) − 𝜌𝜎𝒖𝑖𝑑𝑒𝑎𝑙
𝑒𝑞 (𝒙, 𝑡)]

𝜎

The total hydrodynamic force on the solid particle can be obtain by summing over the particle’s domain,

the lattice grid points where 𝑛𝑃(𝐱) ≠ 0

𝐅𝐻(𝑡) =∑∆𝑃𝑆(𝐱, 𝑡)

𝐱

,

𝐓𝐻(𝑡) =∑𝐫 × ∆𝑃𝑆(𝐱, 𝑡)

𝐱

.

2.3.3 Particle-particle interaction

Figure 7. Relative position vector and force on a particle by the other particle.

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

19

 To prevent particle overlapping, a repulsive spring force [21-22] is implemented. Its magnitude is

given by

𝐹𝑠𝑓 = {

0, (ℎ ≥ 𝛿)

−𝐹0 (1 −
ℎ

𝛿
) =

𝐹0
𝛿
ℎ − 𝐹0, (ℎ < 𝛿)

where ℎ = 𝑟𝑖𝑗 − 2𝑅. When the value of h is smaller than some specified value 𝛿, 𝑭𝑠𝑓 starts to act as

a repulsive force. Its component can be obtained from geometry, that is,

𝐹𝑥
𝑠𝑓
= 𝐹𝑠𝑓

∆𝑥

𝑟𝑖𝑗

𝐹𝑦
𝑠𝑓
= 𝐹𝑠𝑓

∆𝑦

𝑟𝑖𝑗
.

(2.30)

(2.31)

20

3. Details of Program

Understanding and modifying code written by others are not easy tasks. In order to help understand, the

structures and functions of this program are explained in this section. Because detailed explanation on

writing serial LBM code can be found in plenty of source, here I focus on the features related MPI

programming and particle model. This code is rudimentary and there exist lots of possible

improvements and optimizations. Some of the possible optimization are pointed out in this section.

This code is written in C++, but its programming style is closer to C. Background on the advanced

programing technique in C++ such as class or templet is not required to understand and use this code.

It is parallelized with MPI library to be used both in shared-memory system and distributed memory

system. Laminar incompressible flow, single component multiphase flow, multicomponent flow,

nondeformable solid particle in fluid have been implemented. Following materials assume reader are

familiar with C, C++, and MPI library and LBM programming.

The first header file named input.h start with setting precision.

Note that you should properly define the MPI datatype as well as C datatype.

3.1 Velocity set

Figure 8. D3Q19 velocity set.

21

There still is not a general rule to numbering lattice velocity vectors. The numbering used in this

program is shown in fig.00. Components of velocity set and corresponding weight coefficients are

defined in the headers/D3Q19.h.

3.2 Domain decomposition

Domain can be adjusted in Input/input.h file by defining the number of lattice nodes. The total

number of processors and the number of processors along each coordinate should be specified before

running the program. Using malloc() in C or new in C++ with MPI_Dims_create() functions,

it is possible to write a program that can run with any number of processors, however, setting number

of processors in compile time reduce a lot of programing time. The size of arrays in each processor is

than determined using domain size I,J, and K with the number of processors P. The actual size of

local array is [Ip+2][Jp+2] including boundaries. Actual boundaries of whole domain are denoted

with darker color in Fig.0.

22

Figure 9. Domain decomposition.

3.3 Defining FLUID datatype

Structure is used to define fluid datatype as struct FLUID as shown in headers/D3Q19.h. This

structure consists of relaxation time, macroscopic properties of fluid and its distribution functions. The

concept of mass of a single particle is used in a number of literature on LBM, but the mass is simply set

to one for simplicity in this program. Ueq is equilibrium velocity used in calculation for the equilibrium

distribution function. Note that f_afterCollision can be omitted to save memory space if a more

elaborated streaming process is implemented.

23

3.4 Finding neighboring processors

Figure 10. Processor grid. Neigh

With MPI_Cart_shift(), you can find the six neighboring processors along each coordinate.

Neighbors along i direction are denoted by i_plus and i_minus as shown in fig.00. Neighbor along

other axis are named in the similar way. Still, D3Q19 velocity set requires to identify the neighbors

along the diagonal direction. For the particle simulation, every 26 neighboring processors need to be

known to appropriately deal with particles which extend over more than two processors. Although it

can be calculated using the number of processors along each axis, it becomes more complex when it

comes to the processors at the corner with different boundary conditions. To deal with this issue, an

array of p_grid[P][6] is introduced, whose first dimension implies the processor rank and the

second dimension corresponds to the 6 neighboring processors which can be found with

MPI_Cart_shift(). Additionally, it is required to name the neighboring processors properly and

consistently. Consider a processor whose rank is set to 13 as shown in fig.00. For it, the processor 8 is

named i_minus_j_plus_k_plus because to get the processor 8, it needs to move first in the

negative direction, then positive j direction, finally positive k direction. The names for the other

processors can be found in the first few lines of src/particle.cpp. To explain how

p_grid[P][6] array is used, suppose again that we are on the processor whose rank is 13, and we

24

want to find who my i_minus_j_plus_k_plus neighbor is. First, its i_minus can be found

using p_grid[13][i_minus]=4. Next, the processor 4’s j_minus is p_grid[4][j_plus]=7.

Finally, the processors 7’s k_plus is p_grid[7][k_plus]=8. In short, p_grid

[p_grid[p_grid[13][i_minus]][j_plus]][k_plus]=8.

Figure 11. Values in the p_grid[P][6] array.

3.5 Sequence of substeps

Figure 12. Sequence of substeps.

After initialized, the main loop might start with collision or streaming, or applying boundary condition.

Even though it doesn’t affect to the result, one should be aware of that when writing code for

initialization or boundary condition. With the sequence of substeps shown in fig 00, initialization have

to specify the distribution function as well as the fluid properties. Boundary condition should be applied

to the boundary node outside of the computation domain and the proper distribution function need to

be provided. If the loop starts with collision, initialization doesn’t need to calculated distribution

function, and if the boundary condition is applied after streaming process, extra boundary nodes are not

25

required, and the boundary condition will be applied to the missing distribution function of outermost

node.

The main loop consists of five substeps. It starts by applying boundary condition. After that, streaming

occurs. Programing technique for streaming and collision has already been dealt with by several

literature[8, 17], so codes for them is not explained this paper. Using updated distribution function, the

properties of fluid are calculated and saved depending on the values of writingFrequency. Next,

equilibrium velocity is calculated. The effect the external force is included in the equilibrium velocity

with SC forcing scheme. Collision occurs after that, then one cycle is completed. --

26

3.6 Initialization

Figure 13. Initial condition decomposition.

Like any other method, LBM start with initialization. In this program, initialization consist of three sub-

steps. First, a temporary array of full-size domain is created, and a user can specify the value of density

and velocity on that array. Even though this temporary array helps to initialize fluid with a surface or

droplet, it takes a huge amount of memory, so an improved way can replace this initialization method

later. Next, each processor takes their portion of the domain from the temporary array and save them in

their local array. Then the values in boundaries are transferred to the neighboring processors using MPI.

Finally, an equilibrium distribution function is calculated from the values of density and velocity

including the boundary node.

 Fig00 describe how the local array is set from the full-size domain. Set_local_array() is in

charge of this task.

Figure 13. rho_init[I][J] and the local array.

27

Now the initial condition is split to each processor, but the value for the boundary node are still empty

as shown in Fig. 14. The first communication occurs here using MPI_update_fluid(). After

specifying density and velocity of the fluid, the distribution function needs to be determined. However,

there are infinite number of possibilities because infinite number of microstate corresponding to one

macrostate. The most common scheme is setting initial distribution function as equilibrium distribution.

Figure 14. Local array. Boundary values are transferred to neighboring processors.

28

3.7 Boundary conditions

There are two ways to apply boundary condition. First, boundary conditions can be applied directly to

the missing distribution function at the outermost part of computation domain. For example, 𝑓4, 𝑓6, 𝑓7

is missing for the upper boundary nodes as shown in fig00 (a). According to the applied boundary

condition, proper value will be assigned to the missing distribution function. In this case, the boundary

condition should be applied after streaming is finished. Alternatively, boundary nodes can be attached,

and boundary condition is assigned in those node. In this program, boundary conditions are applied by

specifying proper distribution function on those boundary nodes after collision process, before

streaming occurs.

Figure 15. Two different scheme for applying boundary condition. (a) (b)

3.8 Communication

When writing LBM program with MPI, you need to choose the data that will be exchanged between

processors. You can either pass the distribution functions or fluid properties. When the distribution

functions are used, the communication occurs after the collision. Every point has 27 distribution

functions, but only 5 of them are needed to be passed. However, packing and unpacking process for the

distribution function will look rather tangled. Alternatively, the fluid properties can be exchanged. In

this case, the communication occurs before collision because collision requires the updated fluid

properties and the collision process in each node should include the boundary nodes. Each message

carries four floating numbers; density of fluid and three components of fluid velocity.

29

Figure 16. Sequence of substeps. Communication occurs before collision.

Figure 17. Local array after communication completed.

30

Communication process consist of three substeps: packing, passing and unpacking. Because the data to

be passed on the boundary are not continuously saved in memory, we need to pack the data to be sent

in an array and create an array to save the incoming message. After communication completed,

unpacking process is required. The continuous data on the temporary array are written on the

appropriate boundary node on the local array.

Figure 18. Substeps in communication.

31

3.9 Two component model

In order to calculated interaction force of SC model, the updated density is required. So, communication

for density should be done before the interaction force is calculated. Since the value of interaction force

is needed to calculate equilibrium velocity with the SC forcing scheme, communication for density

should be carried out before calculating equilibrium velocity. Therefore, the resulting sequence of

substeps called communication function twice. When the communication time is significant, it can

cause the program to be slow down. Depending on the forcing scheme used, the sequence of substeps

can be changed.

Figure 19. Sequence of substeps for the SC two component model.

32

3.10 Particle model

For the particle model, another layer of domain called particle_domain is added to the two layer

of fluidRED and fluidBLUE. After the particle density is calculated for all the point on the particle

domain, it acts like another SC fluid component, maintaining its shape.

Figure 20. Three layers in the particle model.

In order to set particle density on the particle_domain, the information in PARTICLE_SET

structure is used. PARTICLE_SET contains the properties of particle (radius, interface width, mass and

inertia) and position of the particle (processor to which it belongs, coordinate in the local array),

velocity of the particle (translational velocity and angular velocity) and force on the particle

(hydrodynamic force and torque due to fluid, body force and repulsive force from other particles).

3.10.1 Density

 On the particle_domain, density field of particles is calculated with Eq 2.20. r is magnitude of a

relative position vector r of a point on the particle with respect to the center of the particle.

33

Figure 21. Particle domain. Nodes that are not occupied by the particle is set to zero.

34

When more than two processors are used for a simulation, it is possible that a particle can extend over

the neighboring processors, as described in Fig. 22.

Figure 22. Particles on the whole domain.

For this task, find_neighbor() and calc_X_center() functions are implemented. First,

find_neighbor() checks the particles position in the neighboring processors and to which

35

processor it belongs in order to determine if the particle will span over to its local domain. If so, it

returns the processors relative position with respect to it using the naming rule described in Fig. 9. If

the particle has no effect on it, it returns -2, and if the particle belongs to it, return -1. Using the return

value of find_neighbor() and the particles position in the local domain of that processor,

calc_X_center() adjust the position. For example, in the case of Fig. 23, calc_X_center()

adjust the coordinate to (11,3). Then it can be used to set the particle domain in its domain in the ordinary

way.

Figure 23. Particle which extends over the neighboring processors.

This process is repeated with every particle, and the result is summed up. When the particles position

is like in Fig. 22, the resulting particle_domain.density[Ip][Jp] looks like Fig. 24.

36

Figure 24. Particle domain. (a) When the loop index np = 0. (b) np = 1. Density of particle 2 is

added. (c) np = 3.After the loop is finished, setting local particle density domain is completed.

3.10.2 Local velocity

In the PSM, local velocity means the velocity of a point on a particle. For example, if the particle is

rotating with respect to a stationary axis, the local velocity field looks like Fig. 25. Even though its

translational velocity is zero, the local velocity could not be zero if the particle has an angular velocity.

Fig. 26 describe how to incorporate the effect of angular velocity into the calculations of local velocity.

The effect of angular velocity along other axis can be calculated in the similar way.

37

Figure 25. Particle velocity field when the particle is rotating with respect to a stationary axis.

Figure 26. Local velocity of a particle.

3.10.3 Force gathering

Once local particle domain and velocity field are constructed on every processor properly, calculation

of force become ordinary serial programing. However, when a particle extends over more than two

processors, each processors calculate only part of the force, as described in Fig 27. Therefore, after

force is calculated by PARTICLE::calc_force_single(), the partial forces distributed over the

several processors have to be collected to the processor that is in charge of the particle using

PARTICLE::MPI_reduce_force().For example, to get an appropriate value of the force on the

particle in Fig. 27, we need to summed up the forces and torque calculated at the processor 0 and

processor 1.

38

Figure 27. Fixed particle in shear flow.

Figure 28. Values in the particle_set[0]

39

3.10.4 Position update

Figure 29. Particle moving across the boundary between two processors.

Particles position updated in every time step by the Eq 2.20. If the updated position is out of range of a

local domain, that means the particle moves into a neighboring processor. After that, the neighboring

processor become to be in charge of that particle, and the processor should know that the particle has

40

moved to its domain. This process is carried out with two functions, Particle::

update_position() and Particle::MPI_communication(), as described in Fig. 30.

Figure 30. Values in particle_set[0] on each processor.

41

4. Examples

Fig 31. Simulation of 3D spinodal decomposition. Boundary of two component is shown here. They

are mixed together at initial time, and separated as time goes.

42

Figure 32. Isosurface of a density of a first fluid component at 0.5. Different contact angles can be

simulated with SC model by adjusting the strength of interaction force between the fluid and the wall.

Domain size is 40 × 20 × 40 . Initial condition is 12 × 6 × 12 rectangle shape of the first fluid

component surrounded by the other fluid component.

43

5. Conclusions

The lattice Boltzmann methods is a relatively new method, but numerous models have been proposed

to deal with the dynamics of particles in a viscous fluid that are consistent to the conventional methods.

The pseudo-solid model is one of the recent lattice Boltzmann method for colloidal particles. Although

it has not gained a lot of attention, its basic ideal is creative, and I think that idea have a potential to be

applied to the other models. Therefore, it is important to study its own characteristics before use it to

solve a physical problem. The method is installed in this code, so lots of numerical experiment and

validation can be conducted with this code to improve the model. The code also considers the parallel

computation, which is one of the main advantages compared with the conventional methods of the

computational fluid dynamics. This code is carefully verified in the simple examples to avoid the

unphysical behaviors of particle motions and thus can be further extended to study more complex

problems. This code is not optimized and possibly has several mistake. I hope this paper will be used

to understand the code for further development. Some possible application includes simulations of

droplet, evaporation, capillary force and self-assembly.

44

References

[1] X. He, L.S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice

Boltzmann equation, Phys. Rev. E 56(6), 6811 (1997)

[2] X. Shan, X Yuan, H. Chen, Kinetic theory representation of hydrodynamics: a way beyond the

Navier–Stokes equation. J. Fluid Mech. 550 (2006)

[3] U. Frisch, B. Hasslacher, Y. Pomeau, Lattice-Gas Automata for the Navier-Stokes Equation, Phys.

Rev. Lett. 56(14), 1505 (1986)

[4] G. R. McNamara, G. Zanett, Use of the Boltzmann Equation to Simulate Lattice-Gas Automata,

Phys. Rev. Lett. 61, 2332 (1988)

[5] F. J. Higuera, S. Succi, R. Benzi, Lattice Gas Dynamics with Enhanced Collisions, Europhys. Lett.

61, 2332 (1988)

[6] S. Wolfram. Statistical mechanics of cellular automata, Rev. Mod. Phys. 55 (1983)

[7] D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models (Springer,

New York, 2005)

[8] T. Kruger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, E.M Viggen, The Lattice Boltzmann

Method: Principles and Practice (Springer, Switzerland, 2017)

[9] A.K. Gunstensen, D. H. Rothman, S. Zaleski, G. Zanetti, Lattice Boltzmann model of immiscible

fluids, Phys. Rev. A 43, 4320 (1991)

[10] X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and

components, Phys. Rev. E 47, 1815 (1993)

[11] X. Shan, H. Chen, Simulation of nonideal gases and liquid-gas phase transitions by the lattice

Boltzmann equation, Phys. Rev. E 49, 2941 (1994)

[12] X. Shan, G. Doolen, Multicomponent lattice-Boltzmann model with interparticle interaction, J.

Stat. Phys. 81, 379 (1995)

[13] N. S. Martys, H. Chan, Simulation of multicomponent fluids in complex three-dimensional

geometries by the lattice Boltzmann method, Phys. Rev. E 53, 743 (1996)

[14] X. Shan, G. Doolen, Diffusion in a multicomponent lattice Boltzmann equation model, Phys. Rev.

E 54, 3614 (1996)

[15] M. R. Swift, W. R. Osborn, J. M. Yeomans, Lattice Boltzmann Simulation of Nonideal Fluids, Phys.

Rev. Lett. 75, 830 (1995)

[16] M. R. Swift, E. Orlandini, W. R. Osborn, J. M. Yeomans, Lattice Boltzmann simulations of liquid-

gas and binary fluid systems, Phys. Rev. E 54, 5041 (1996)

[17] H. Huang, M. Sukop, X. Lu, Multiphase Lattice Boltzmann Methods: Theory and Application,

(John Wiley & Sons, Oxford, 2015)

45

[18] A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann

equation. Part 1. Theoretical foundation. Part 1. Theoretical foundation, J. Fluid Mech., 271 (1994)

[19] A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann

equation. Part 2. Numerical results, J. Fluid Mech., 271 (1994)

[20] A. J. C. Ladd, Sedimentation of homogeneous suspensions of non-Brownian spheres, Phys. Fluids

9 (1997)

[21] A. J. C. Ladd and R. Verberg, Lattice-Boltzmann simulations of particle-fluid suspensions, J. Stat.

Phys. 104, 1191 (2001)

[22] N. Q. Nguyen, A. J. C. Ladd, Lubrication corrections for lattice-Boltzmann simulations of particle

suspensions, Phys. Rev. E 66, 046708 (2002)

[23] F. Jansen, J. Harting, From bijels to Pickering emulsions: A lattice Boltzmann study, Phys. Rev. E

83, 046707 (2011)

[24] Q. Xie, J. Harting, From Dot to Ring: The role of friction in the deposition pattern of a drying

colloidal suspension droplet, Langmuir 34, 5303 (2018)

[25] C. Sun, L. L. Munn, Lattice-Boltzmann simulation of blood flow in digitized vessel networks,

Comput. Math. Appl. 55, 1594 (2008)

[26] H, Shinto, D. Komiyama, K. Higashitani, Lattice Boltzmann study of capillary forces between

cylindrical particles, Adv. Powder Technol. 18 (6), 643. (2007)

[27] G. Y. Liang, Z. Zeng, Y. Chen, J. Onishi, H. Ohashi, and S. Y. Chen, Simulation of self-assemblies

of colloidal particles on the substrate using a lattice Boltzmann pseudo-solid model, J. Comput. Phys.

248 323 (2013)

[28] M. Herlihy, N. Shavit, The Art of Multiprocessor Programming (Morgan Kaufmann, Boston, 2008)

[29] P. Pacheco, An Introduction to Parallel Programming (Elsevier, New York, 2011)

[30] M.C. Sukop, D.T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and

Engineers. (Springer, New York, 2006)

[31] P. L. Bhatnagar, E. P. Gross, M. Krook, A Model for Collision Processes in Gases. I. Small

Amplitude Processes in Charged and Neutral One-Component Systems, Phys. Rev. 94, 511 (1954)

	1. Introduction
	2. Simulation methods
	2.1 Lattice Boltzmann Equation
	2.2 Shan-Chan Two Component Model
	2.3 Particle Model
	2.3.1 Particle domain
	2.3.2 Particle-fluid interaction
	2.3.3 Particle-particle interaction

	3. Details of the Program
	3.1 Velocity Set
	3.2 Domain Decomposition
	3.3 FLUID Datatype
	3.4 Neighboring Processors
	3.5 Sequence of Substeps
	3.6 Initialization
	3.7 Boundary Conditions
	3.8 Communications
	3.9 Two Component Model
	3.10 Particle Model
	3.10.1 Density
	3.10.2 Local velocity
	3.10.3 Force gathering
	3.10.4 Position update

	4. Examples
	5. Conclusions

<startpage>2
1. Introduction 9
2. Simulation methods 11
 2.1 Lattice Boltzmann Equation 11
 2.2 Shan-Chan Two Component Model 14
 2.3 Particle Model 16
 2.3.1 Particle domain 16
 2.3.2 Particle-fluid interaction 18
 2.3.3 Particle-particle interaction 18
3. Details of the Program 20
 3.1 Velocity Set 20
 3.2 Domain Decomposition 21
 3.3 FLUID Datatype 22
 3.4 Neighboring Processors 23
 3.5 Sequence of Substeps 24
 3.6 Initialization 26
 3.7 Boundary Conditions 28
 3.8 Communications 28
 3.9 Two Component Model 31
 3.10 Particle Model 32
 3.10.1 Density 32
 3.10.2 Local velocity 36
 3.10.3 Force gathering 37
 3.10.4 Position update 39
4. Examples 41
5. Conclusions 43
</body>

