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Abstract 

The three-dimensional parallel code is developed for the lattice Boltzmann method. It is to simulate 

multiphase flows containing particles. The code is the combination of the two models, the Shan-Chan 

multiphase model for a viscous fluid, the pseudo-solid model for particles. The difficulties in 

implementing the methods and some possible optimization techniques are suggested. This code can be 

used to simulate the dynamics of the self-assembly driven by evaporation and any multiphase flow with 

different sizes of particles.  
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1. Introduction 

Matter consists of molecules. It is now an obvious statement, but things are somewhat different at 

Ludwig Boltzmann’s era. Even though Boltzmann established a foundation for kinetic theory and the 

statistical physics based on the concepts of molecules and atoms, the mainstream of respected physicist 

did not accept the atomic theory. The attack to his theory was severe enough for him to be suffered from 

depression. Now the atomic theory is a foundation of modern theory and provide a rigorous foundation 

of the simulation method such as the molecular dynamics and the lattice Boltzmann method (LBM). 

 The lattice Boltzmann equation can be derived from the Boltzmann transport equation [1], which 

describes the behavior of gas based on the molecular nature of fluid. It has been emerging as one of the 

promising computational fluid dynamic (CFD) method in the last few decades because of its simplicity, 

ability to handle the complex geometry and physics, and applicability on multicore computing systems. 

Although LBM is currently considered as a discretized numerical scheme for the Boltzmann transport 

equation [2], but it is worth to mention that it was originally from the lattice gas automata (LGA) [3-5], 

which stems from the cellular automata (CA) [6]. Knowledge on these subject is not essential to study 

the LBM, but a brief glance at Wolf-Gladrow’s book [7], which describes connection between the LGA 

and the LBM concisely, will be useful because some early papers on the LBM are not easy to follow 

without being familiar with the CA and the LGA. 

The continuum assumption is the most fundamental assumption of the conventional fluid mechanics. It 

enables us to describe the motion of fluid with a differential equation, the Navier-Stokes equation. 

Various discretization methods have been developed to efficiently solve it. It is inherently nonlocal 

because it deals with the gradients of quantities, which require information from adjacent nodes. On the 

other hand, the molecular dynamics is a microscopic description of the fluid behavior, so Newtonian 

dynamics can be used to describe the motion of each particle and its computation is local. However, the 

intermolecular forces need to be determined with the quantum mechanics, and it is impossible to track 

every single molecule in human-scale systems. The LBM is somewhere between them, and it is called 

mesoscopic description of fluid. Its fundamental quantity is the particle distribution functions, or the 

representative collection of molecules [8]. 

The LBM’s kinetic nature enables us to simulate multiphase fluid in a relatively straightforward way. 

Using conventional CFD approaches, the sharp gradients of fluid properties in the interface requires 

additional modeling. Furthermore, the tracking of phase interfaces and phase change are not simple 

tasks. Whereas, from a microscopic view, a multiphase flow is a simple phenomenon resulted from 

molecular interactions. Three most popular models in LBM are the color-gradient model [9], the Shan-

Chan model [10-14], and the free-energy model [15-16]. After they are first introduced, they have been 
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actively studied and improved. The recent improvement and theoretical basis of the three models are 

well organized in Huang’s recent work [17].  

Another the strength of LBM is its ability to handle particulate flow. Computation in LBM is local, so 

the LBM model can effectively calculate the interaction between fluid and particles. After Ladd [18-22] 

proposed a particle model, LBM has been widely used to study various phenomena such as emulsions 

[23], coffee ring effect [24], blood flow [25], and capillary force [26]. Meanwhile, Liang et al. [27] 

suggested a novel method called pseudo-solid model (PSM) to model solid particle without bounce-

back moving boundary condition. In this paper, the features of PSM is analyzed and discussed. 

Above all the advantage of the LBM, the scalability on parallel computers, is arguably the primary 

reason for the increasing interest of the LBM. Performance of a single microprocessor increased about 

50% annually from 1986 to 2002 [28]. However, the increasing rate has reduced to about 20% after 

2002 [29]. Therefore, high performance can be only achieved with multiple processors to successfully 

simulate the modern scientific and engineering problems such as combustion at high pressure, the 

weather forecast, and the turbulent flow. 

 Now the LBM has broadened its area to commercial software products. DASSAULT SYSTEMS takes 

over PowerFLOW, which was the first commercial software based on LBM, in 2017. NUMECA in 

2018 is merged with Palabos, which was the most popular and versatile open source software in LBM 

community. Although developing in-house code in a lab may look like an impractical task when there 

already exist reliable and powerful software, the LBM is still new methods that require elaborate 

improvements. Indeed a variety of new models specific to problems are suggested every. In-house codes 

will help one who wants to develop or adopt them for their own problems. Additionally, a simple in-

house code is easy to read without profound deep knowledge on programming technique, and useful to 

getting basic understanding about the method.  
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2. Simulation Method 

Lattice Boltzmann method is a relatively young branch of CFD, so different books use different 

notations and take different approaches. This has been one of the obstacles to beginners of the LBM. 

Fortunately, recently Kruger et al. (2017) [8] published a comprehensive, well organized textbook, and 

this paper follows the notations and the approach from it. They explain the LBM as a discretization 

scheme of the Boltzmann transport equation, and I briefly introduced the result here. Readers who are 

interested in how the LBM is originally grew out of CA and LGCA can refer Wolf-Gladrow (2006) [7] 

and Sukop and Thorne (2006) [30]. 

2.1 Lattice Boltzmann Equation. 

The Boltzmann transport equation describes behavior of gas using a mesoscopic variable, distribution 

function 𝑓(𝒙, 𝝃, 𝑡). It can be considered as generalized density whose value depends on not only space 

𝒙 but also microscopic particle velocity space 𝝃 [8]. Mass density 𝜌 can be obtained by integrating 

distribution function over velocity space as, 𝜌(𝒙, 𝑡) = ∫𝑓(𝒙, 𝝃, 𝑡) 𝑑3𝜉. If we take the derivative of the 

distribution function with respect to time t using the chain rule, 

𝑑

𝑑𝑡
𝑓(𝒙(𝑡), 𝝃(𝑡), 𝑡) =

𝜕𝑓

𝜕𝑡

𝑑𝑡

𝑑𝑡
+
𝜕𝑓

𝜕𝑥𝛽

𝑑𝑥𝛽

𝑑𝑡
+
𝜕𝑓

𝜕𝜉𝛽

𝑑𝜉𝛽

𝑑𝑡
 

where the index notation was used to denote each component of the position and velocity vector. The 

total derivative d𝑓/𝑑𝑡  is conventionally written as 𝛺(𝑓) . Using d𝑥𝛽/𝑑𝑡 =  𝜉𝛽  and d𝜉𝛽/𝑑𝑡 =

 𝐹𝛽/𝜌, where 𝐹𝛽 is the specific body force, we have the Boltzmann transport equation 

𝜕𝑓

𝜕𝑡
+ 𝜉𝛽

𝜕𝑓

𝜕𝑥𝛽
+
𝐹𝛽

𝜌

𝜕𝑓

𝜕𝜉𝛽
= 𝛺(𝑓). 

The left-hand side is a linear partial differential equation, because the non-linear nature of fluid is 

inherent in 𝛺(𝑓) on the right-hand side. It is called the collision integral and describe the effect of 

collisions of particles on the distribution function. Its original form is involved integral equation, but 

Bhatnagar, Gross, Krook suggested much simpler form [31] 

𝛺(𝑓) = −
1

𝜏
(𝑓 − 𝑓𝑒𝑞) 

(2.1) 

(2.2) 

(2.3) 
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where 𝜏  is called relaxation time or collision time, related to time between the collisions. This 

simplification may look immoderate considering complexity of original integral equation, but the fact 

that the detailed process of collision of molecules hardly have effects on the macroscopic properties of 

fluid makes it a reasonable assumption. A tremendous number of microstates correspond to one 

macrostate, so we can simply choose most manageable one. Additionally, the collisions tend to diffuse 

the momentums of each particle, and after a sufficient number of collisions occurs, system will settle 

down in an equilibrium state. Therefore, the time rate of change of distribution function is proportional 

to how fall it deviates from the equilibrium and inversely proportional time between the collisions. The 

equilibrium distribution was calculated by Maxwell and Boltzmann as 

𝑓𝑒𝑞(𝐱, |𝒗|, 𝑡) = 𝜌 (
1

2𝜋𝑅𝑇
)
3/2

𝑒−|𝒗|
2/(2𝑅𝑇) 

where 𝒗(𝒙, 𝑡) is the difference between the microscopic particle velocity and the macroscopic velocity 

of fluid. 

The actual discretization process requires some mathematical background on Hermite series expansion 

and is beyond the scope of this paper. The mathematically rigorous procedure is explained in detail on 

Shan et al. (2006) [2]. After discretizing and normalizing process [7], the Boltzmann transport equation 

without force term becomes  

𝑓𝑖(𝒙 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖(𝒙, 𝑡) = −
1

𝜏/Δ𝑡
(𝑓𝑖(𝒙, 𝑡) − 𝑓𝑖

𝑒𝑞(𝒙, 𝑡)) 

which is the lattice Boltzmann equation. Here 𝑓𝑖 means the distribution functions corresponding to the 

discretized finite velocity set, 𝒄𝑖. The normalized lattice spacing Δ𝑥 and time step Δ𝑡 are commonly 

set to both 1 lattice unit to simplicity. The LBM simulation and real system can be compared using 

dimensionless numbers such as Reynolds number, Bond number and Capillary number. In every 

simulations of this paper, 𝜏/Δ𝑡 is set to 1 for simplicity. Hence, 𝜏 is equal to Δ𝑡, which means the 

system is in equilibrium state at each time step because relaxation time is equal to time step. Then 

equation (2.5) becomes 

𝑓𝑖(𝒙 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖
𝑒𝑞(𝒙, 𝑡). 

There are a couple of the possible velocity set with the weight coefficient 𝑤𝑖. They are classified using 

notation DdQq, where d is the number of dimensions and q is the number of discretized velocities. 

D3Q19 is used in this paper and the numbering is shown in below figure. 

 

 

(2.4) 

(2.5) 
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Figure 1. D3Q19 velocity set 

The discretized equilibrium distribution function is given by 

𝑓𝑖
𝑒𝑞(𝒙, 𝑡) = 𝑤𝑖𝜌 [1 +

𝐮 ∙ 𝐜𝑖

𝑐𝑠
2 +

(𝐮 ∙ 𝐜𝑖)
2

2𝑐𝑠
4 −

𝐮 ∙ 𝐮

2𝑐𝑠
2 ] 

where 𝑐𝑠 is a constant determined by the velocity set used. For every velocity set used in this paper 

𝑐𝑠 has a value of 1/3. Its theoretical meaning can be found in discretization procedure [2].  

For implementation, it is convenient rewrite lattice Boltzmann equation as 

𝑓𝑖(𝒙 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖(𝒙, 𝑡) (1 −
1

𝜏/Δ𝑡
) + 𝑓𝑖

𝑒𝑞(𝒙, 𝑡)
1

𝜏/Δ𝑡
. 

Calculating the right-hand side is often called the collision step and denoted with 𝑓𝑖
∗(𝒙, 𝑡). The actual 

calculation step can be understood easily with the simplest velocity set, D1Q3. At some time t and at 

some point x, 

 

Figure 2. Distribution function at time t. 

We can find density 𝜌 and momentum density 𝜌𝒖 as 

𝜌(𝒙, 𝑡) =∑𝑓𝑖(𝒙, 𝑡)

𝑖

,                         𝜌𝒖(𝒙, 𝑡) =∑𝒄𝒊𝑓𝑖(𝒙, 𝑡)

𝑖

. 

(2.6) 

(2.7) 

(2.8) 
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Then the equilibrium distribution can be found with the density and the velocity. After evaluating the 

collision step, 

𝑓𝑖
∗(𝒙, 𝑡) = 𝑓𝑖(𝒙, 𝑡) (1 −

1

𝜏/Δ𝑡
) + 𝑓𝑖

𝑒𝑞(𝒙, 𝑡)
1

𝜏/Δ𝑡
 

 

Figure 3. Distribution function after collision at time t. 

Next step is called the streaming. 

𝑓𝑖(𝒙 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖
∗(𝒙, 𝑡) 

 

Figure 4. Distribution function after streaming. 

Now 𝜌 and 𝜌𝒖 at time 𝑡 + ∆𝑡 can be computed. 

2.2 Shan-Chan Two Component Model  

 The ideal gas equation of state is monotonic function, so no phase separation is expected theoretically. 

Whereas the van der Waals equation of state can explain the phase separation by taking account of the 

intermolecular forces and volumes of molecules. Based on this idea, Shan and Chen [10] proposed one 

of the most popular multiphase model in lattice Boltzmann method. In this paper, only two component 

model will be introduced, but extending to arbitrary number of components is straightforward. 

 In the two component Shan-Chan model (SC model), two layers of domain is implemented with two 

distinct distribution functions, each denoted as red 𝑓𝑖
𝑅 and blue 𝑓𝑖

𝐵 

𝑓𝑖
𝜎(𝒙 + 𝒄𝑖∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝑖

𝜎(𝒙, 𝑡) = −
1

𝜏𝜎

Δ𝑡

(𝑓𝑖
𝜎(𝒙, 𝑡) − 𝑓𝑖

𝜎,𝑒𝑞(𝒙, 𝑡)), 

𝑓𝑖
𝜎,𝑒𝑞(𝒙, 𝑡) = 𝑤𝑖𝜌

𝜎 [1 +
𝐮σ,𝑒𝑞 ∙ 𝐜𝑖

𝑐𝑠
2 +

(𝐮σ,𝑒𝑞 ∙ 𝐜𝑖)
2

2𝑐𝑠
4 −

𝐮σ,𝑒𝑞 ∙ 𝐮σ,𝑒𝑞

2𝑐𝑠
2 ], 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
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where 𝜎 denotes either R or B. The density and momentum density is given by 𝜌𝜎(𝒙, 𝑡) = ∑ 𝑓𝑖
𝜎(𝒙, 𝑡)𝑖  

and 𝜌𝜎𝒖𝝈(𝒙, 𝑡) = ∑ 𝒄𝒊𝑓𝑖
𝜎(𝒙, 𝑡)𝑖 . Without interaction force between two fluid components, this system 

can be regarded as an ideal gas mixture and have some the common equilibrium velocity, 𝐮𝑒𝑞[11]. 

Momentum conservation can be used to find appropriate expression for 𝐮𝑒𝑞. After multiplying 𝒄𝑖 to 

both side of above equation, and summing over the index i,   

∑[𝑓𝑖
𝜎𝒄𝑖(𝒙 + 𝒄𝑖, 𝑡 + 1) − 𝑓𝑖

𝜎𝒄𝑖(𝐱, 𝑡)]

𝑖

=∑[−
𝑓𝑖
𝜎𝒄𝑖(𝐱, 𝑡) − 𝑓𝑖

𝜎,𝑒𝑞
𝒄𝑖(𝐱, 𝑡)

𝜏𝜎/Δ𝑡
]

𝑖

 

which can be rewrite with definition of the momentum density as 

𝜌𝜎𝐮𝜎(𝐱 + 𝒆𝑖 , 𝑡 + 1) − 𝜌
𝜎𝐮𝜎(𝐱, 𝑡) = −

𝜌𝜎𝐮𝜎(𝐱, 𝑡) − 𝜌𝜎𝐮′(𝐱, 𝑡)

𝜏𝜎/Δ𝑡
= ∆𝑐𝐏

𝜎(𝐱, 𝑡) 

where ∆𝑐𝐏
𝜎(𝐱, 𝑡) is momentum change of fluid component by collision process. Since the collision 

step conserves total momentum [11], 

                    ∑∆𝑐𝐏
𝜎(𝐱, 𝑡)

𝜎

= ∆𝑐𝐏
𝑅(𝐱, 𝑡) + ∆𝑐𝐏

𝐵(𝐱, 𝑡) 

                                                 = −
𝜌𝑅𝐮𝑅(𝐱, 𝑡) − 𝜌𝑅𝐮′(𝐱, 𝑡)

𝜏𝑅

Δ𝑡

−
𝜌𝐵𝐮𝐵(𝐱, 𝑡) − 𝜌𝐵𝐮𝑒𝑞(𝐱, 𝑡)

𝜏𝐵

Δ𝑡

= 0 

Solve for 𝐮𝑖𝑑𝑒𝑎𝑙
𝑒𝑞 (𝐱, 𝑡) to get 

𝐮𝑖𝑑𝑒𝑎𝑙
𝑒𝑞 (𝐱, 𝑡) =

𝜌𝑅𝐮𝑅(𝐱, 𝑡)
𝜏𝑅/Δ𝑡

+
𝜌𝐵𝐮𝐵(𝐱, 𝑡)
𝜏𝐵/Δ𝑡

𝜌𝑅

𝜏𝑅/Δ𝑡
+

𝜌𝐵

𝜏𝐵/Δ𝑡

. 

If we set 𝜏𝑅/Δ𝑡 = 𝜏𝐵/Δ𝑡 = 1, we have simpler form of 

𝐮𝑖𝑑𝑒𝑎𝑙
𝑒𝑞 (𝐱, 𝑡) =

𝜌𝑅𝐮𝑅(𝐱, 𝑡) + 𝜌𝐵𝐮𝐵(𝐱, 𝑡)

𝜌𝑅 + 𝜌𝐵
. 

In order to simulate two immiscible fluid, Shan and Doolen introduced an interparticle force [11],  

𝑭𝑅𝐵(𝒙) = −𝜓𝑅(𝒙)𝐺𝑅𝐵∑𝑤𝑖𝜓
𝐵(𝒙 + 𝒄𝒊)𝒄𝒊

𝑖

 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 
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where 𝑭𝑅𝐵 means interparticle force on fluid red from fluid blue and 𝑭𝐵𝑅 can be found in the same 

way. 𝜓𝜎 = 𝜓𝜎(𝜌𝜎) is called effective mass whose specific form determines the equation of state, and 

G is a constant to adjust the strength of the forces. 𝐺𝑅𝐵 should be equal to 𝐺𝐵𝑅 to ensure physical 

behavior [9]. It also determines the density ratio and surface tension [16]. In this paper, 𝜓𝜎 is always 

set as 𝜓𝜎 = 𝜌𝜎. 

  To incorporate this force into lattice Boltzmann equation, several forcing schemes have been 

proposed []. Here the SC forcing scheme [10] is implemented as 

𝜌𝜎𝐮σ,𝑒𝑞(𝐱, 𝑡) = 𝜌𝜎𝐮ideal
𝑒𝑞

+ 𝜏𝜎𝐅𝝈. 

This 𝐮𝑒𝑞 will be used in collision step. 

2.3 Particle Model 

In the pseudo-solid model (PSM) [27], the force on a solid particle is calculated using Shan-Chan 

interaction force. In other words, the particles act like one of the Shan-Chan fluid components. The 

computation of fluid component is the same as SC model. Here the PSM is briefly summarized. 

2.3.1 Particle domain 

 

Figure 5. Three layers of domain for the PSM. 

 

The PSM add one more layer of domain for particles to the double layer of fluid domain in two 

component SC model. The density of undeformable rigid particles whose radius is R is given by 

 

(2.19) 
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𝑛𝑃(𝐱) =

{
 

 
  1.0                                                           (𝑟 < 𝑅 − 0.5𝜉) 
 0.0                                                           (𝑟 > 𝑅 + 0.5𝜉)

 1.0 +
(𝑅 − 0.5𝜉) − 𝑟

𝜉
      (𝑅 − 0.5𝜉 ≤ 𝑟 ≤ 𝑅 + 0.5𝜉 )

 

where 𝜉 is a parameter for the interface width, which will be set to 1. 

 

Figure 6. Particle density on the local domain. 

The center of particle 𝐗𝑐, translational velocity 𝐕𝑇 , angular velocity 𝛀 is updated by Newton’s Law. 

𝑑𝐗𝑐
𝑑𝑡

= 𝐕𝑇 , 

𝑀
𝑑𝐕𝑇
𝑑𝑡

= 𝐅 = 𝐅𝐺 + 𝐅𝐻 , 

𝐼
𝑑𝛀

𝑑𝑡
= 𝐓 = 𝐓𝐻 , 

where 𝐅𝐺 means gravitational force on a particle and 𝐅𝐻 is a hydrodynamic force from fluid on a 

solid particle. 

2.3.2 Particle-fluid interaction 

To compute the interaction between solid particle and fluid components, we consider the solid particle 

as a third fluid component – a particle component, which will be denoted with superscript P. At each 

grid point in a solid particle, local velocity of a particle component is determined by the particle’s 

translational velocity and angular velocity. 

𝐕𝑃 (𝐱) = 𝐕𝑇 + 𝐕𝑅 = 𝐕𝑇 +𝛀 × 𝐫. 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 
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The common velocity of SC model at each point can be found by taking account the effect of the particle 

component. 

𝐮𝑖𝑑𝑒𝑎𝑙
𝑒𝑞

 (𝐱) =
𝜌𝑃𝐕𝑃 + 𝜌𝑅𝐮𝑅 + 𝜌𝐵𝐮𝐵

𝜌𝑃 + 𝜌𝑅 + 𝜌𝐵
. 

Note that where particle’s density is zero, 𝐮𝑖𝑑𝑒𝑎𝑙
𝑒𝑞

 (𝐱) will contain only terms for the red and blue fluid. 

The force on a fluid component now include the force from particle.   

𝑭𝑡𝑜𝑡𝑎𝑙
𝑅 (𝒙) = −𝜓𝑅(𝒙)𝐺𝑅𝐵∑𝑤𝑖𝜓

𝐵(𝒙 + 𝒄𝒊)𝒄𝒊
𝑖

− 𝜓𝑅(𝒙)𝐺𝑅𝑆∑𝑤𝑖𝜓
𝑃(𝒙 + 𝒄𝒊)𝒄𝒊

𝑖

, 

where 𝜓𝑃(𝐱)=𝑛𝑃(𝐱). Similarly, the second term vanishes where the particle’s density is zero.  

Hydrodynamic force on the particle by each component of fluid is determined by calculating 

momentum change of fluid at each node. By the momentum conservation, momentum change of a 

particle is the negative of the sum of momentum change of two fluid. Hence, 

∆𝑷𝑆(𝒙, 𝑡) = −∆𝑃𝐹(𝒙, 𝑡) = −∑[𝜌𝜎𝒖𝜎(𝒙, 𝑡) − 𝜌𝜎𝒖𝑖𝑑𝑒𝑎𝑙
𝑒𝑞 (𝒙, 𝑡)]

𝜎

 

The total hydrodynamic force on the solid particle can be obtain by summing over the particle’s domain, 

the lattice grid points where 𝑛𝑃(𝐱) ≠ 0 

𝐅𝐻(𝑡) =∑∆𝑃𝑆(𝐱, 𝑡)

𝐱

, 

𝐓𝐻(𝑡) =∑𝐫 × ∆𝑃𝑆(𝐱, 𝑡)

𝐱

. 

2.3.3 Particle-particle interaction 

 

Figure 7. Relative position vector and force on a particle by the other particle. 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
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 To prevent particle overlapping, a repulsive spring force [21-22] is implemented. Its magnitude is 

given by 

𝐹𝑠𝑓 = {   

0,                                                (ℎ ≥ 𝛿)

−𝐹0 (1 −
ℎ

𝛿
) =

𝐹0
𝛿
ℎ − 𝐹0,    (ℎ < 𝛿)

 

where ℎ = 𝑟𝑖𝑗 − 2𝑅. When the value of h is smaller than some specified value 𝛿, 𝑭𝑠𝑓 starts to act as 

a repulsive force. Its component can be obtained from geometry, that is, 

𝐹𝑥
𝑠𝑓
= 𝐹𝑠𝑓

∆𝑥

𝑟𝑖𝑗
 

𝐹𝑦
𝑠𝑓
= 𝐹𝑠𝑓

∆𝑦

𝑟𝑖𝑗
. 

(2.30) 

(2.31) 
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3. Details of Program 

Understanding and modifying code written by others are not easy tasks. In order to help understand, the 

structures and functions of this program are explained in this section. Because detailed explanation on 

writing serial LBM code can be found in plenty of source, here I focus on the features related MPI 

programming and particle model. This code is rudimentary and there exist lots of possible 

improvements and optimizations. Some of the possible optimization are pointed out in this section. 

This code is written in C++, but its programming style is closer to C. Background on the advanced 

programing technique in C++ such as class or templet is not required to understand and use this code. 

It is parallelized with MPI library to be used both in shared-memory system and distributed memory 

system. Laminar incompressible flow, single component multiphase flow, multicomponent flow, 

nondeformable solid particle in fluid have been implemented. Following materials assume reader are 

familiar with C, C++, and MPI library and LBM programming. 

The first header file named input.h start with setting precision. 

 

Note that you should properly define the MPI datatype as well as C datatype. 

3.1 Velocity set 

 

Figure 8. D3Q19 velocity set. 
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There still is not a general rule to numbering lattice velocity vectors. The numbering used in this 

program is shown in fig.00. Components of velocity set and corresponding weight coefficients are 

defined in the headers/D3Q19.h.  

 

3.2 Domain decomposition    

Domain can be adjusted in Input/input.h file by defining the number of lattice nodes. The total 

number of processors and the number of processors along each coordinate should be specified before 

running the program. Using malloc() in C or new in C++ with MPI_Dims_create() functions, 

it is possible to write a program that can run with any number of processors, however, setting number 

of processors in compile time reduce a lot of programing time. The size of arrays in each processor is 

than determined using domain size I,J, and K with the number of processors P. The actual size of 

local array is [Ip+2][Jp+2] including boundaries. Actual boundaries of whole domain are denoted 

with darker color in Fig.0.  
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Figure 9. Domain decomposition. 

3.3 Defining FLUID datatype 

Structure is used to define fluid datatype as struct FLUID as shown in headers/D3Q19.h. This 

structure consists of relaxation time, macroscopic properties of fluid and its distribution functions. The 

concept of mass of a single particle is used in a number of literature on LBM, but the mass is simply set 

to one for simplicity in this program. Ueq is equilibrium velocity used in calculation for the equilibrium 

distribution function. Note that f_afterCollision can be omitted to save memory space if a more 

elaborated streaming process is implemented. 
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3.4 Finding neighboring processors   

 

Figure 10. Processor grid. Neigh 

With MPI_Cart_shift(), you can find the six neighboring processors along each coordinate. 

Neighbors along i direction are denoted by i_plus and i_minus as shown in fig.00. Neighbor along 

other axis are named in the similar way. Still, D3Q19 velocity set requires to identify the neighbors 

along the diagonal direction. For the particle simulation, every 26 neighboring processors need to be 

known to appropriately deal with particles which extend over more than two processors. Although it 

can be calculated using the number of processors along each axis, it becomes more complex when it 

comes to the processors at the corner with different boundary conditions. To deal with this issue, an 

array of p_grid[P][6] is introduced, whose first dimension implies the processor rank and the 

second dimension corresponds to the 6 neighboring processors which can be found with 

MPI_Cart_shift(). Additionally, it is required to name the neighboring processors properly and 

consistently. Consider a processor whose rank is set to 13 as shown in fig.00. For it, the processor 8 is 

named i_minus_j_plus_k_plus because to get the processor 8, it needs to move first in the 

negative direction, then positive j direction, finally positive k direction. The names for the other 

processors can be found in the first few lines of src/particle.cpp. To explain how 

p_grid[P][6] array is used, suppose again that we are on the processor whose rank is 13, and we 
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want to find who my i_minus_j_plus_k_plus neighbor is. First, its i_minus can be found 

using p_grid[13][i_minus]=4. Next, the processor 4’s j_minus is p_grid[4][j_plus]=7. 

Finally, the processors 7’s k_plus is p_grid[7][k_plus]=8. In short, p_grid 

[p_grid[p_grid[13][i_minus]][j_plus]][k_plus]=8. 

 

Figure 11. Values in the p_grid[P][6] array. 

3.5 Sequence of substeps 

 

Figure 12. Sequence of substeps. 

After initialized, the main loop might start with collision or streaming, or applying boundary condition. 

Even though it doesn’t affect to the result, one should be aware of that when writing code for 

initialization or boundary condition. With the sequence of substeps shown in fig 00, initialization have 

to specify the distribution function as well as the fluid properties. Boundary condition should be applied 

to the boundary node outside of the computation domain and the proper distribution function need to 

be provided. If the loop starts with collision, initialization doesn’t need to calculated distribution 

function, and if the boundary condition is applied after streaming process, extra boundary nodes are not 
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required, and the boundary condition will be applied to the missing distribution function of outermost 

node.  

The main loop consists of five substeps. It starts by applying boundary condition. After that, streaming 

occurs. Programing technique for streaming and collision has already been dealt with by several 

literature[8, 17], so codes for them is not explained this paper. Using updated distribution function, the 

properties of fluid are calculated and saved depending on the values of writingFrequency. Next, 

equilibrium velocity is calculated. The effect the external force is included in the equilibrium velocity 

with SC forcing scheme. Collision occurs after that, then one cycle is completed. --  
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3.6 Initialization 

 

Figure 13. Initial condition decomposition. 

Like any other method, LBM start with initialization. In this program, initialization consist of three sub-

steps. First, a temporary array of full-size domain is created, and a user can specify the value of density 

and velocity on that array. Even though this temporary array helps to initialize fluid with a surface or 

droplet, it takes a huge amount of memory, so an improved way can replace this initialization method 

later. Next, each processor takes their portion of the domain from the temporary array and save them in 

their local array. Then the values in boundaries are transferred to the neighboring processors using MPI. 

Finally, an equilibrium distribution function is calculated from the values of density and velocity 

including the boundary node. 

 Fig00 describe how the local array is set from the full-size domain. Set_local_array() is in 

charge of this task.  

 

Figure 13. rho_init[I][J] and the local array. 
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Now the initial condition is split to each processor, but the value for the boundary node are still empty 

as shown in Fig. 14. The first communication occurs here using MPI_update_fluid(). After 

specifying density and velocity of the fluid, the distribution function needs to be determined. However, 

there are infinite number of possibilities because infinite number of microstate corresponding to one 

macrostate. The most common scheme is setting initial distribution function as equilibrium distribution. 

 

Figure 14. Local array. Boundary values are transferred to neighboring processors. 
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3.7 Boundary conditions 

There are two ways to apply boundary condition. First, boundary conditions can be applied directly to 

the missing distribution function at the outermost part of computation domain. For example, 𝑓4, 𝑓6, 𝑓7 

is missing for the upper boundary nodes as shown in fig00 (a). According to the applied boundary 

condition, proper value will be assigned to the missing distribution function. In this case, the boundary 

condition should be applied after streaming is finished. Alternatively, boundary nodes can be attached, 

and boundary condition is assigned in those node. In this program, boundary conditions are applied by 

specifying proper distribution function on those boundary nodes after collision process, before 

streaming occurs.  

 

Figure 15. Two different scheme for applying boundary condition. (a) (b) 

 

3.8 Communication 

When writing LBM program with MPI, you need to choose the data that will be exchanged between 

processors. You can either pass the distribution functions or fluid properties. When the distribution 

functions are used, the communication occurs after the collision. Every point has 27 distribution 

functions, but only 5 of them are needed to be passed. However, packing and unpacking process for the 

distribution function will look rather tangled. Alternatively, the fluid properties can be exchanged. In 

this case, the communication occurs before collision because collision requires the updated fluid 

properties and the collision process in each node should include the boundary nodes. Each message 

carries four floating numbers; density of fluid and three components of fluid velocity.  
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Figure 16. Sequence of substeps. Communication occurs before collision. 

 

Figure 17. Local array after communication completed. 
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Communication process consist of three substeps: packing, passing and unpacking. Because the data to 

be passed on the boundary are not continuously saved in memory, we need to pack the data to be sent 

in an array and create an array to save the incoming message. After communication completed, 

unpacking process is required. The continuous data on the temporary array are written on the 

appropriate boundary node on the local array. 

 

Figure 18. Substeps in communication. 
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3.9 Two component model 

In order to calculated interaction force of SC model, the updated density is required. So, communication 

for density should be done before the interaction force is calculated. Since the value of interaction force 

is needed to calculate equilibrium velocity with the SC forcing scheme, communication for density 

should be carried out before calculating equilibrium velocity. Therefore, the resulting sequence of 

substeps called communication function twice. When the communication time is significant, it can 

cause the program to be slow down. Depending on the forcing scheme used, the sequence of substeps 

can be changed. 

 

Figure 19. Sequence of substeps for the SC two component model. 
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3.10 Particle model 

For the particle model, another layer of domain called particle_domain is added to the two layer 

of fluidRED and fluidBLUE. After the particle density is calculated for all the point on the particle 

domain, it acts like another SC fluid component, maintaining its shape.  

 

Figure 20. Three layers in the particle model. 

 

 

In order to set particle density on the particle_domain, the information in PARTICLE_SET 

structure is used. PARTICLE_SET contains the properties of particle (radius, interface width, mass and 

inertia) and position of the particle (processor to which it belongs, coordinate in the local array),  

velocity of the particle (translational velocity and angular velocity) and force on the particle 

(hydrodynamic force and torque due to fluid, body force and repulsive force from other particles). 

3.10.1 Density 

 On the particle_domain, density field of particles is calculated with Eq 2.20. r is magnitude of a 

relative position vector r of a point on the particle with respect to the center of the particle. 
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Figure 21. Particle domain. Nodes that are not occupied by the particle is set to zero. 
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When more than two processors are used for a simulation, it is possible that a particle can extend over 

the neighboring processors, as described in Fig. 22.  

 

Figure 22. Particles on the whole domain. 

For this task, find_neighbor() and calc_X_center() functions are implemented. First, 

find_neighbor() checks the particles position in the neighboring processors and to which 
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processor it belongs in order to determine if the particle will span over to its local domain. If so, it 

returns the processors relative position with respect to it using the naming rule described in Fig. 9. If 

the particle has no effect on it, it returns -2, and if the particle belongs to it, return -1. Using the return 

value of find_neighbor() and the particles position in the local domain of that processor,  

calc_X_center() adjust the position. For example, in the case of Fig. 23, calc_X_center() 

adjust the coordinate to (11,3). Then it can be used to set the particle domain in its domain in the ordinary 

way. 

 

Figure 23. Particle which extends over the neighboring processors. 

 

 

This process is repeated with every particle, and the result is summed up. When the particles position 

is like in Fig. 22, the resulting particle_domain.density[Ip][Jp] looks like Fig. 24. 
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Figure 24. Particle domain. (a) When the loop index np = 0. (b) np = 1. Density of particle 2 is 

added. (c) np = 3.After the loop is finished, setting local particle density domain is completed. 

 

 

3.10.2 Local velocity 

In the PSM, local velocity means the velocity of a point on a particle. For example, if the particle is 

rotating with respect to a stationary axis, the local velocity field looks like Fig. 25. Even though its 

translational velocity is zero, the local velocity could not be zero if the particle has an angular velocity. 

Fig. 26 describe how to incorporate the effect of angular velocity into the calculations of local velocity. 

The effect of angular velocity along other axis can be calculated in the similar way. 
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Figure 25. Particle velocity field when the particle is rotating with respect to a stationary axis. 

 

Figure 26. Local velocity of a particle. 

 

3.10.3 Force gathering 

Once local particle domain and velocity field are constructed on every processor properly, calculation 

of force become ordinary serial programing. However, when a particle extends over more than two 

processors, each processors calculate only part of the force, as described in Fig 27. Therefore, after 

force is calculated by PARTICLE::calc_force_single(), the partial forces distributed over the 

several processors have to be collected to the processor that is in charge of the particle using 

PARTICLE::MPI_reduce_force().For example, to get an appropriate value of the force on the 

particle in Fig. 27, we need to summed up the forces and torque calculated at the processor 0 and 

processor 1. 
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Figure 27. Fixed particle in shear flow. 

 

Figure 28. Values in the particle_set[0] 
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3.10.4 Position update 

 

Figure 29. Particle moving across the boundary between two processors. 

Particles position updated in every time step by the Eq 2.20. If the updated position is out of range of a 

local domain, that means the particle moves into a neighboring processor. After that, the neighboring 

processor become to be in charge of that particle, and the processor should know that the particle has 
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moved to its domain. This process is carried out with two functions, Particle:: 

update_position() and Particle::MPI_communication(), as described in Fig. 30. 

 

Figure 30. Values in particle_set[0] on each processor. 
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4. Examples 

 

Fig 31. Simulation of 3D spinodal decomposition. Boundary of two component is shown here. They 

are mixed together at initial time, and separated as time goes.  
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Figure 32. Isosurface of a density of a first fluid component at 0.5. Different contact angles can be 

simulated with SC model by adjusting the strength of interaction force between the fluid and the wall. 

Domain size is 40 × 20 × 40 . Initial condition is 12 × 6 × 12  rectangle shape of the first fluid 

component surrounded by the other fluid component.   
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5. Conclusions 

The lattice Boltzmann methods is a relatively new method, but numerous models have been proposed 

to deal with the dynamics of particles in a viscous fluid that are consistent to the conventional methods. 

The pseudo-solid model is one of the recent lattice Boltzmann method for colloidal particles. Although 

it has not gained a lot of attention, its basic ideal is creative, and I think that idea have a potential to be 

applied to the other models. Therefore, it is important to study its own characteristics before use it to 

solve a physical problem. The method is installed in this code, so lots of numerical experiment and 

validation can be conducted with this code to improve the model. The code also considers the parallel 

computation, which is one of the main advantages compared with the conventional methods of the 

computational fluid dynamics. This code is carefully verified in the simple examples to avoid the 

unphysical behaviors of particle motions and thus can be further extended to study more complex 

problems. This code is not optimized and possibly has several mistake. I hope this paper will be used 

to understand the code for further development. Some possible application includes simulations of 

droplet, evaporation, capillary force and self-assembly. 
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