

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master's Thesis

Deep Neural Networks to Learn Basis Functions

with a Temporal Covariance Loss

Janghoon Ju

Department of Computer Science and Engineering

Graduate School of UNIST

2019

[UCI]I804:31001-200000224785[UCI]I804:31001-200000224785[UCI]I804:31001-200000224785[UCI]I804:31001-200000224785

Deep Neural Networks to Learn Basis Functions

with a Temporal Covariance Loss

Janghoon Ju

Department of Computer Science and Engineering

Graduate School of UNIST

Abstract

Deep Neural Networks (DNNs) and Gaussian Processes (GPs) are commonly used prediction models

to solve regression problems on time series data. A GP can approximate a smooth function arbitrarily

well. When the function satisfies some conditions. We adopt the principles of GP learning to DNN

learning on time series data. While previous approaches need to change the architecture of DNNs or be

explicitly derived from the GPs algorithm, we concentrate on the learning scheme of DNNs to leverage

the important principles of GPs by proposing the Temporal Covariance loss function. Whereas the con-

ventional loss function of DNNs only captures the mean of the target values, Temporal Covariance loss

function further captures the covariance of the target values where covariance function is the other factor

to define GPs along with the mean function. We show that learning DNNs and Convolutional Neural

Networks (CNNs) with the Temporal Covariance loss function can obtain more accurate models for sets

of regression problems with US groundwater data and NASDAQ 100 stock data.

Contents

1 Introduction 1

2 Background 2

2.1 Regression . 2

2.2 Linear Regression . 2

2.3 Gaussian Processes . 3

2.3.1 Smooth Functions . 4

2.3.2 Positive Semidefinite Kernels . 4

2.3.3 Reproducing Kernel Hilbert Space . 5

2.3.4 Eigenfunctions of Kernels . 6

2.4 Deep Neural Networks . 7

2.4.1 Convolutional Neural Networks . 8

2.4.2 Long Short-Term Memory Networks . 8

3 Related Work 10

4 Temporal Covariance Loss 11

4.1 Learning the Basis Functions in Deep Neural Networks 11

4.2 Temporal Covariance Loss . 13

4.3 Principles of a Temporal Covariance Loss Based Neural Networks 14

5 Experimental Results 16

5.1 Experimental Setup . 16

5.2 Groundwater Dataset . 17

5.2.1 Quantitative Analysis . 19

5.2.2 Quantitative Analysis with Fully Connected Neural Networks 20

5.2.3 Quantitative Analysis with Convolutional Neural Networks 22

5.3 Stock Market Dataset . 24

5.3.1 Quantitative Analysis . 25

5.3.2 Quantitative Analysis with Fully Connected Neural Networks 26

5.3.3 Quantitative Analysis with Convolutional Neural Networks 28

6 Conclusion 30

List of Figures

4.1 An architecture of a DNN model for regression tasks. There are various types of layers

such as convolutional or fully-connected layers in the DNNs (grayed line in the figure).

When we consider the blue colored layer as the last layer of DNN, the relation between

the last hidden and output layer can be represented by the linear regression. 12

4.2 The proposed structure of DNN with the Temporal Covariance loss function. The DNN

is trained to reduce the mean squared error (MSE) loss between the Temporal Covariance

and the outer product of the basis function matrix. 13

5.1 The details of experiments setting on the groundwater dataset with DNNs. Where target y

is chosen in given dataset {x1, x2, ...x88}. The purpose of the experiments is findingF (·)

by DNNs. The function F (·) represents the relationship between y and {x1, x2, ...x88}

with given 10 days delayed. 17

5.2 Comparisons the root mean square error (RMSE) of proposed models with four base-

line approach models. The y-axis is RMSE of each model and the linear regression as

“Linear” and the horizontal red line, the baseline approach models are denoted as yellow

color, the proposed models with hyper-parameter 0.1 are labeled by “DNN Cov” and

“CNN Cov” with green color. 19

5.3 Comparisons the RMSEbetween the linear regression, the baseline approachDNNmodel

and the proposedmodel on the number of 10 randomly selected groundwater dataset. The

y-axis is RMSE of each model and the linear regression as “Linear reg” and the horizon-

tal red line, the baseline approach DNN model is denoted “Baseline” and the color is

yellow, the proposed model with hyper-parameter 0.1 is labeled by “Lambda 0.1” with

green color. 20

5.4 Comparisons the RMSEof the proposedDNNmodel with three different hyper-parameters

on the number of 10 randomly selected groundwater dataset. The y-axis is RMSE of each

model and the linear regression as “Linear reg” and the red horizontal line, the baseline

approach model as “Baseline” and the color is yellow, and the proposed model with

different hyper-parameters {0.1, 1, 10} as “Lambda {0.1, 1, 10}” with green color. . . . 21

5.5 Comparisons the RMSEbetween the linear regression, the baseline approachCNNmodel

and the proposedmodel on the number of 10 randomly selected groundwater dataset. The

y-axis is RMSE of each model and the linear regression as “Linear reg” and the horizon-

tal red line, the baseline approach CNN model is denoted “Baseline” and the color is

yellow, the proposed model with hyper-parameter 0.1 is labeled by “Lambda 0.1” with

green color. 22

5.6 Comparisons the RMSEof the proposedCNNmodel with three different hyper-parameters

on the number of 10 randomly selected groundwater dataset. The y-axis is RMSE of each

model and the linear regression as “Linear reg” and the red horizontal line, the baseline

approach model as “Baseline” and the color is yellow, and the proposed model with

different hyper-parameters {0.1, 1, 10} as “Lambda {0.1, 1, 10}” with green color. . . . 23

5.7 Comparisons the RMSE of proposed models with four baseline approach models. The

y-axis is RMSE of each model and the linear regression as “Linear” and the horizontal

red line, the baseline approach models are denoted as yellow color, the proposed models

with hyper-parameter 0.1 are labeled by “DNN Cov” and “CNN Cov” with green color. . 25

5.8 Comparisons the RMSEbetween the linear regression, the baseline approachDNNmodel

and the proposedmodel on the number of 10 randomly selected stockmarket dataset. The

y-axis is RMSE of each model and the linear regression as “Linear reg” and the horizon-

tal red line, the baseline approach DNN model is denoted “Baseline” and the color is

yellow, the proposed model with hyper-parameter 0.1 is labeled by “Lambda 0.1” with

green color. 26

5.9 Comparisons the RMSEof the proposedDNNmodel with three different hyper-parameters

on the number of 10 randomly selected stockmarket dataset. The y-axis is RMSE of each

model and the linear regression as “Linear reg” and the red horizontal line, the baseline

approach model as “Baseline” and the color is yellow, and the proposed model with

different hyper-parameters {0.1, 1, 10} as “Lambda {0.1, 1, 10}” with green color. . . . 27

5.10 Comparisons the RMSEbetween the linear regression, the baseline approachCNNmodel

and the proposedmodel on the number of 10 randomly selected stockmarket dataset. The

y-axis is RMSE of each model and the linear regression as “Linear reg” and the horizon-

tal red line, the baseline approach CNN model is denoted “Baseline” and the color is

yellow, the proposed model with hyper-parameter 0.1 is labeled by “Lambda 0.1” with

green color. 28

5.11 Comparisons the RMSE for the proposedCNNmodel with three different hyper-parameters

on the number of 10 randomly selected stockmarket dataset. The y-axis is RMSE of each

model and the linear regression as “Linear reg” and the red horizontal line, the baseline

approach model as “Baseline” and the color is yellow, and the proposed model with

different hyper-parameters {0.1, 1, 10} as “Lambda {0.1, 1, 10}” with green color. . . . 29

List of Tables

5.1 Comparisons the mean of RMSE between the linear regression, the Long short-term

memory (LSTM) model, the baseline approach DNN, CNN model and the proposed

models on the number of 10 randomly selected groundwater dataset. The baseline ap-

proach DNN, CNN model does not contain the Temporal Covariance loss and the pro-

posedmodels with hyper-parameter 0.1 are denoted as “ProposedDNNmodel” and “Pro-

posed CNN model”. A bold font indicates the best result obtained. 19

5.2 Comparisons the mean of RMSE between the linear regression, the baseline approach

DNNmodel and the proposedmodel on the number of 10 randomly selected groundwater

dataset. The baseline approach DNN model does not contain the Temporal Covariance

loss and the proposed model with hyper-parameter 0.1 is denoted as “Proposed with λ

0.1”. A bold font indicates the best result obtained. 20

5.3 Comparisons themean of RMSE for the proposedDNNmodel with three different hyper-

parameters λ on the number of 10 randomly selected groundwater dataset. The proposed

DNN model with different hyper-parameters {0.1, 1, 10} is denoted as “Proposed with

λ {0.1, 1, 10}”. A bold font indicates the best result obtained. 21

5.4 Comparisons the mean of RMSE between the linear regression, the baseline approach

CNNmodel and the proposedmodel on the number of 10 randomly selected groundwater

dataset. The baseline approach CNN model does not contain the Temporal Covariance

loss and the proposed model with hyper-parameter 0.1 is denoted as “Proposed with λ

0.1”. A bold font indicates the best result obtained. 22

5.5 Comparisons themean of RMSE for the proposed CNNmodel with three different hyper-

parameters λ on the number of 10 randomly selected groundwater dataset. The proposed

CNN model with different hyper-parameters {0.1, 1, 10} is denoted as “Proposed with

λ {0.1, 1, 10}”. A bold font indicates the best result obtained. 23

5.6 Comparisons the mean of RMSE between the linear regression, the LSTM model, the

baseline approach DNN, CNN model and the proposed models on the number of 10

randomly selected stock market dataset. The baseline approach DNN, CNN model does

not contain the Temporal Covariance loss and the proposedmodels with hyper-parameter

0.1 are denoted as “Proposed DNN model” and “Proposed CNN model”. A bold font

indicates the best result obtained or the best result among Neural Networks (NNs). . . . 25

5.7 Comparisons the mean of RMSE between the linear regression, the baseline approach

DNNmodel and the proposedmodel on the number of 10 randomly selected stockmarket

dataset. The baseline approach DNN model does not contain the Temporal Covariance

loss and the proposed model with hyper-parameter 0.1 is denoted as “Proposed with λ

0.1”. A bold font indicates the best result obtained. 26

5.8 Comparisons themean of RMSE for the proposedDNNmodel with three different hyper-

parameters λ on the number of 10 randomly selected stock market dataset. The proposed

DNN model with different hyper-parameters {0.1, 1, 10} is denoted as “Proposed with

λ {0.1, 1, 10}”. A bold font indicates the best result obtained. 27

5.9 Comparisons the mean of RMSE between the linear regression, the baseline approach

CNNmodel and the proposedmodel on the number of 10 randomly selected stockmarket

dataset. The baseline approach CNN model does not contain the Temporal Covariance

loss and the proposed model with hyper-parameter 0.1 is denoted as “Proposed with λ

0.1”. A bold font indicates the best result obtained. 28

5.10 Comparisons themean of RMSE for the proposed CNNmodel with three different hyper-

parameters λ on the number of 10 randomly selected stock market dataset. The proposed

CNN model with different hyper-parameters {0.1, 1, 10} is denoted as “Proposed with

λ {0.1, 1, 10}”. A bold font indicates the best result obtained. 29

List of Abbreviations

CNN Convolutional Neural Network. 1, 8, 15, 16, 18, 19, 22–25, 28, 29

DNN Deep Neural Network. 1, 7, 8, 10–21, 24–27, 30

ELU exponential linear unit. 18, 24

GP Gaussian Process. 1, 3, 6, 10–12, 14, 15

LSTM Long short-term memory. 9, 18, 19, 24, 25, 30

MSE mean squared error. 13–15

NN Neural Network. 1, 8, 10, 15, 16, 18, 20, 24–26

ReLU rectified linear unit. 7

RKHS reproducing kernel Hilbert space. 5, 6, 10, 14

RMSE root mean square error. 17, 19–29

RNN Recurrent Neural Network. 8, 30

SE squared exponential. 3, 4

Chapter 1

Introduction

The regression problems are a set of problems finding relationships or functions among given input data

and the continuous outcome, such as stock price prediction or weather forecasting. There are various

machine learning models to solve regression problems. GPs [Rasmussen, 2003] or DNNs are com-

monly adopted to solve regression problems. Theoretically, the GPs can represent smooth functions

which satisfy mean square continuity and the differentiability [Williams and Rasmussen, 2006]. Also,

[Neal, 1995] explains that GPs can have the NNs as a kernel and the NNs can represent GPs with infinite

numbers of hidden units.

The purpose of this work is to train a DNN with the principles of a GP learning. To guide the

training procedure in our objective, we propose the novel loss function, Temporal Covariance loss, to

train covariance information into the DNN for regression problems. More precisely, we aim to train

the output of the last hidden layer of the DNN, which is the basis function of the DNN, to have its inner

product approximate the covariance function via Temporal Covariance loss. Accordingly, the DNN learn

the basis function which is more likely to be explained by GPs.

This paper is composed of the following chapters. Chapter 2 revisits basic concepts of the Linear

regression, GPs, DNNs and CNNs. In Chapter 3 we introduce related work and the theoretical connection

between GPs and DNNs. In Chapter 4, we explain the proposed model and its implementation in detail.

Chapter 5 explains the settings of experiments, two real-world datasets, and the results. Finally, Chapter

6 wraps up with the conclusion of the thesis.

1

Chapter 2

Background

2.1 Regression

A regression task is one of the supervised machine learning tasks for continuous data pairs {y|x}. The

goal of the regression problem is to approximate function F (·) which represents a relationship between

a dependent variable y and one or multiple independent variables x along a residual ϵ,

y = F (x) + ϵ. (2.1)

2.2 Linear Regression

Linear regression models relation between a single dependent variable and one (or multiple) independent

variable(s). The linear regression is one of the widely studied regression methods. With a dependent

variable y, independent variables x and a weight vector w, the following Equation represents the general

vector form of the linear regression with ϵ, Gaussian noise,

f(x) = xTw, y = f(x) + ϵ. (2.2)

If we replace x with ϕ(x) which denotes a non-linear function of inputs, Equation (2.2) can be

rephrased as

y = ϕ(x)Tw+ ϵ. (2.3)

2

Acknowledged as basis function expansion [Murphy, 2012]. With ϵ ∼ N (0, σ2), the linear regres-

sion equation becomes as follows,

p(y|x,w) = N (y|ϕ(x)Tw, σ2). (2.4)

We call it as the Bayesian linear regression model [Williams and Rasmussen, 2006].

2.3 Gaussian Processes

Here, we will introduce the definition of GP.

Definition 2.3.1. GP is a collection of random variables, any finite number of which have a joint Gaus-

sian distribution [Williams and Rasmussen, 2006].

A GP is effectively expressed by its mean function and covariance function.

m(x) = E[f(x)],

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))],
(2.5)

where we define mean functionm(x) and the covariance function k(x, x′) of a real process f(x).

f(x) ∼ GP(m(x), k(x, x′)). (2.6)

Whenever we select a subset from the collection of random variables fromGP, the subset distribution

is again Gaussian. When a GP is specified, we can calculate the marginal likelihood of given data or can

derive predictive distribution for new points given existing data.

We can obtain an example of GP from our Bayesian linear regression model f(x) = ϕTw with

prior w ∼ N (0,Σp). Mean and covariance are as below.

E[f(x)] = ϕ(x)T E[w] = 0,

E[f(x)f(x′)] = ϕ(x)T E[wwT]ϕ(x′) = ϕ(x)TΣpϕ(x′),
(2.7)

f(x) and f(x′) therefore are jointly Gaussian with the zeromean and covariance given byϕ(x)TΣpϕ(x′).

Function values f(x1), ..., f(xn) corresponding to any number of input points n are in fact, jointly Gaus-

sian.

In GP, we typically represent the covariance with a kernel function. A kernel function can depict

some distinctive characteristics of functions, such as variance, length scales, and periodicity. For in-

stance, the squared exponential (SE) covariance function is a typical example of covariance function.

3

The SE covariance function specifies the covariance between pairs of random variables with two hyper-

parameters, σ and l where the length scale hyper-parameter l controls the smoothness of the functions.

covSE(f(xp), f(xq)) = kSE(xp, xq) = σ2 exp
(
− |xp − xq|2

2l

)
. (2.8)

Note that the covariance between outputs is described as a function of inputs. For this particular

covariance function, the covariance is almost unity between variables when corresponding inputs are

very close each other and it decreases as the distance of the input space expands.

Indeed, for every positive definite covariance function k(·, ·), there exists a (possibly infinite) ex-

pansion in terms of basis functions (see Mercer’s theorem in section 2.3.4)

2.3.1 Smooth Functions

Smooth functions can be described in terms of themean square continuity and differentiability of stochas-

tic processes, following [Adler, 2010].

Suppose that a sequence of points x1, x2, ... and x∗ are inRD such that limk→∞ |xk−x∗| = 0. Then

a process f(x) is continuous in the mean square at x∗ if E[|f(xk)−f(x∗)|2] → 0 as k → ∞. If this can

apply to all x∗ ∈ A where A is a subset of RD, f(x) is continuous in the mean square over A.

A random field is continuous in the mean square at x∗ if and only if its covariance function k(x, x′)

is continuous at the point x = x′ = x∗. For stationary covariance functions this reduces to checking

continuity at k(0).

The mean square derivative of f(x) in the ith direction is defined as

∂f(x)
∂xi

= l.i.m
h→∞

f(x+ hei)− f(x)
h

, (2.9)

when the limit exists, where l.i.m denotes the limit in mean square and ei is the unit vector in the ith

direction. The covariance function of ∂f(x)/∂xi is given by ∂2k(x, x′)/∂xi∂x′i.

2.3.2 Positive Semidefinite Kernels

A kernel is a function k of two arguments mapping a pair of inputs x ∈ X , x′ ∈ X into R. This general

term arises in the theory of integral operators, where the operator Tk is defined as

(Tkf)(x) =
∫
X
k(x, x′)f(x)dµ(x′), (2.10)

4

where µ denotes a measure. A real kernel is assumed to be symmetric if k(x, x′) = k(x′, x); covariance

functions then must be symmetric as in the definition.

We can compute the Gram matrix K whose entries are Kij = k(xi, xj) given a set of input points

{xi|i = 1, ..., n} for some kernel function k. When k is a covariance function the matrix K is defined

as the covariance matrix.

A real n×n matrix K which satisfies Q(v) = vTKv ≥ 0 for all vectors v ∈ Rn refers to positive

semidefinite. IfQ(v) = 0 only when v = 0, the matrix is positive definite. Q(v) is termed as a quadratic

form associated with K. A symmetric matrix is positive semidefinite if and only if all of its eigenvalues

are non-negative. A Gram matrix corresponding to a general kernel function is not necessarily positive

semidefinite while that corresponds to a covariance function should be positive semidefinite.

A positive semidefinite kernel is stated as∫
k(x, x′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0, (2.11)

for all f ∈ L2(X , µ). For any choice ofn ∈ N andD, a kernel function is thus positive semidefinite when

it generates positive semidefinite Grammatrices which can be observed by letting f be the weighted sum

of delta functions at each xi. The fact that those are limit functions in L2(X , µ) allows Equation (2.11)

indicate that the Gram matrix of any D is supposed to be positive semidefinite.

2.3.3 Reproducing Kernel Hilbert Space

Wenow introduce reproducing kernel Hilbert space (RKHS). The theorywas developed by [Aronszajn, 1950].

Definition 2.3.2 (RKHS). LetH be a Hilbert space of real functions f defined on an index set X . Then

H is called a RKHS endowed with an inner product ⟨·, ·⟩H (and norm ||f ||H =
√
⟨f, f⟩H) if there exists

a function k : X × X → R with the following properties:

1. for every x, k(x, x′) as a function of x′ belongs toH, and

2. k has the reproducing property ⟨f(·), k(·, x)⟩H = f(x).

Note also that as k(x, ·) and k(x′, ·) are inHwe have that ⟨k(x, ·), k(x′, ·)⟩H = k(x, x′) by following

[Schölkopf et al., 2002] and [Wegman, 2014]. The RKHS uniquely determines k, and vice versa, as

stated in the following

5

Theorem 2.3.1 (Moore-Aronszajn theorem, [Aronszajn, 1950]). Let X be an index set. Then for every

positive definite function k(·, ·) on X × X there exists a unique RKHS, and vice versa.

Consider a real positive semidefinite kernel k(x, x′) with an eigenfunction expansion k(x, x′) =∑N
i=1 λiϕi(x)ϕi(x′) relative to a measure µ. From Mercer’s theorem in section 2.3.4 that the eigenfunc-

tions are orthonormal w.r.t. µ, i.e. we have
∫
ϕi(x)ϕj(x)dµ(x) = δij . We now consider a Hilbert space

comprised of linear combinations of eigenfunctions, i.e. f(x) =
∑N

i=1 fiϕi(x) with
∑N

i=1 f
2
i /λi < ∞.

The inner product ⟨f, g⟩H between functions f(x) and g(x) =
∑N

i=1 giϕi(x) in the Hilbert space is

alleged to be defined as

⟨f, g⟩H =
N∑
i=1

figi
λi

, (2.12)

this Hilbert space is therefore equipped with a norm ||f ||H where ||f ||2H = ⟨f, f⟩H =
∑N

i=1 f
2
i /λi.

This Hilbert space should be proven to be the RKHS corresponding to the kernel k, i.e. whether it

has aspect of reproducing. It is readily attained as

⟨f(·), k(·, x)⟩H =
N∑
i=1

fiλiϕi(x)
λi

= f(x). (2.13)

Similarly, ⟨
k(x, ·), k(x′, ·)

⟩
H =

N∑
i=1

λiϕi(x)λiϕi(x′)
λi

= k(x, x′). (2.14)

Note that k(x, ·) is in the RKHS in that it has the norm
∑N

i=1(λiϕi(x))2/λi = k(x, x) < ∞. We

have now ascertained that the Hilbert space consists of linear combinations of the eigenfunctions under∑N
i=1 f

2
i /λi < ∞ accomplished two conditions presumed in Definition 2.3.2. This Hilbert space is

undoubtedly that RKHS by the fact that RKHS is to be unique with k(·, ·).

2.3.4 Eigenfunctions of Kernels

Bayesian linear regression bearing infinite number of basis functions can be considered as GP regression.

Eigenfunctions of the covariance function is one of possible basis sets. A function ϕ(·) that complies the

integral equation ∫
k(x, x′)ϕ(x)dµ(x) = λϕ(x′), (2.15)

is specified as an eigenfunction of kernel k with eigenvalue λ with respect to measure µ. The two

particular measures of our interest will be (i) Lebesgue measure over a compact subset C of RD, or (ii)

when there is a density p(x) so that dµ(x) can be written p(x)dx.

6

It would not be uncommon if we would label infinite number of eigenfunctions as ϕ1(x), ϕ2(x), ...

of which the order is determined in accordance with condition such that λ1 ≥ λ2 ≥ These eigen-

functions are orthogonal with respect to µ. Eigenfunctions can be chosen to be normalized so that∫
ϕi(x)ϕj(x)dµ(x) = δij where δij is the Kronecker delta.

Mercer’s theorem (see, e.g. [König, 1986]) allows us to express the kernel k in terms of the eigen-

values and eigenfunctions.

Theorem 2.3.2 (Mercer’s theorem). Let (X , µ) be a finite measure space and k ∈ L∞(X 2, µ2) be a

kernel such that Tk : L2(X , µ) → L2(X , µ) is positive definite (see Equation (2.11)). Let ϕi ∈ L2(X , µ)

be the normalized eigenfunctions of Tk associated with the eigenvalues λi > 0. Then:

1. the eigenvalues {λi}∞i=1 are absolutely summable

2.

k(x, x′) =
∞∑
i=1

λiϕi(x)ϕ∗
i (x′), (2.16)

holds µ2 almost everywhere, where the series converges absolutely and uniformly µ2 almost ev-

erywhere.

This decomposition is just the infinite-dimensional analogue of the diagonalization of a Hermitian

matrix. The sum may either be infinite or terminate at some value N ∈ N (i.e. the eigenvalues beyond

N are zero).

2.4 Deep Neural Networks

A DNN is the stacked transformation functions as follows.

F (x) = fL(fL−1(...f1(x))), (2.17)

where x represents inputs of given data {y, x}, fi represents of transformation by ith layer. F stands for

the DNN which is an approximation of y that we want to find as y ≈ F (x).

Typically, ith layer containsWi matrix as a weight matrix and bi as a bias term. g(·) represents an

activation function. Conventionally, the activation function can be chosen among the logistic sigmoid

(1
1+e−x), the tanh, and the rectified linear unit (ReLU) (max(0, x)) [Glorot et al., 2011]. Then we can

7

represent equations of layers; from the first layer to the output layer as follows,

f1(x) = g(W1x+ b1),

fi(x) = g(Wi(fi−1(...f1(x)) + bi),

ϕ(x) = g(WL−1(fL−2(...f1(x)) + bL−1),

F (x) = ϕ(x)TwL + bL.

(2.18)

The hidden layers fi(·) are the layers between the first layer f1(·) and output F (·). Thus, ϕ(x) is

the output of the last hidden layer. In this paper, we called given DNN as the fully-connected NNs. Since

each of i-th layers contains a weight matrixWi and it denotes the matrix multiplication.

Solving regression problems, the activation function of the output layer F (·) is a linear activation

function g(x) = x. Therefore, there is a linear relationship between the last hidden layer and the output

as F (x) = ϕ(x)TwL + bL.

2.4.1 Convolutional Neural Networks

The CNNs are commonly composed with the convolutional layer, pooling layer and fully-connected

layer. The main difference between the convolutional layer and fully-connected layer is the receptive

field. The receptive field has restriction in terms of the filter (or kernel) size. Only the local regions of

the input computed a dot product with the filters of convolutional layer. Then the filters are shared along

the width or height of the input volume. The number of channels in output from the convolutional layer

is depend on the number of kernels which are included in the convolutional layer.

Conventional CNNs are composed with the convolutional layer and the pooling layer. The pool-

ing layer reduces the dimension of output from the convolutional layer. The max pooling is often used

recently, which has been shown to work better in practice. The largest activated value from the convo-

lutional layer is selected from the max pooling operation. Finally, the fully-connected layer (same with

DNNs) is connected between the output value of model and extracted features from previous hidden

layers of CNN.

2.4.2 Long Short-Term Memory Networks

Recurrent Neural Networks (RNNs) are not capable of handling long-term dependencies in practice

[Bengio et al., 1994]. To overcome the difficulty of learning long-term dependencies with gradient de-

8

scent, LSTM networks were introduced by [Hochreiter and Schmidhuber, 1997].

A common LSTM unit is composed of a cell, an input gate, an output gate and a forget gate. The

forget gate ft decides what information to remember or remove from hidden state ht−1 and input xt,

ft = σ(Wf · [ht−1, xt] + bf). (2.19)

The next step is to decide what new information to be stored in cell state. The input gate it decides

which values be updated by a sigmoid layer output from previous hidden state and input value. A tanh

layer creates a new candidate value C̃t from hidden state and input.

it = σ(Wi · [ht−1, xt] + bi),

C̃t = tanh(WC · [ht−1, xt] + bC).
(2.20)

The output from input gate and the tanh layer are multiplied before cell state will be updated. Then,

to update the old cell state Ct−1, the old cell state is multiplied with output of forget gate ft and added

into the multiplication of the output from input gate it and the tanh layer C̃t,

Ct = ft ∗ Ct−1 + it ∗ C̃t. (2.21)

After update the cell state Ct, the output gate ot will generate the new hidden state (or output) ht of

LSTM. First, output from hidden state and input go through a sigmoid layer to make a decision of output

value ot. Then, output from a tanh layer of the new cell state is multiplied with the decision from the

sigmoid layer,

ot = σ(Wo · [ht−1, xt] + bo),

ht = ot ∗ tanh(Ct).
(2.22)

9

Chapter 3

Related Work

Relationship between GPs and DNNs are introduced by [Neal, 1995]. If a fully-connected NN is con-

sisted of a single-layer which are the infinite number of hidden units with an i.i.d. prior over its param-

eters, then the DNN is equivalent to a GP. He proved that a one-hidden layer NN equipped with infinite

number of hidden units becomes a nonparametric GP model by placing independent zero-mean Gaussian

priors to all the weights of the network and integrating them out.

[Neal, 1995] further suggested that a similar correspondence might hold for deeper networks. Thus,

[Lee et al., 2017] derive the exact equivalence between infinitely wide deep networks andGPs. They also

derive the GP kernel for multi-hidden-layer NN with general non linearity based on signal propagation

theory [Cho and Saul, 2009], called as NNGP

Similar approach with our proposed model, [Huang et al., 2015] proposed a scalable GP model for

regression by applying a DNN as the feature-mapping function. The DNN is pre-trained as a stacked

denoising auto-encoder in an unsupervised way. Then, a Bayesian linear regression is performed with

the last hidden layer of the pre-trained deep network. The resulting model, Deep-Neural-Network-based

Gaussian Process (DNN-GP), can learn much more meaningful representation of the data by the finite-

dimensional but deep-layered feature-mapping function. Unlike standard GPs, their proposed model

scales well with the size of the training set due to the avoidance of kernel matrix inversion. Also, as re-

search done by recently, the kernel perspective can be adopted for regularizingDNNs [Bietti et al., 2019].

They propose a new point of view for regularizing DNNs by using the norm of a RKHS.

10

Chapter 4

Temporal Covariance Loss

In Chapter 2, we have introduced the relationship between the GPs and DNNs briefly. GP can model

smooth functions, including smooth time series, well [Williams and Rasmussen, 2006]. We will exploit

the fundamental principles of GP, by representing the empirical covariance of the target by the feature

map, the second last layer, of DNNs. We regard the feature map as basis functions in the GP kernel.

In this chapter, we will show our proposed model, Temporal Covariance loss function. To solve a

regression problem {y|x}, a conventional DNN is trained to predict target data y. However, our goal is

to provide the opportunity to the DNN model to reflect the covariance of the target cov(y, y′) during the

training procedure.

4.1 Learning the Basis Functions in Deep Neural Networks

During the training of a DNN, the network receives a batch of input data from the input dataset. Then,

the loss function obtains the gradient of batch data and employs back-propagation algorithm to update

the weight of networks. In DNNs, there are various types of layers which are stacked with activation

functions such as sigmoid. Although there are many variations of network design, in the regression

problem, the last hidden layer (before the output layer) is mainly constructed by fully-connected layers

in the DNNs as described in section 2.4. The relation between the last hidden layer and output ŷ can be

represented by the linear regression problem. Figure 4.1 shows the general structure of a DNN.

11

In the linear relation between the last hidden and the output layer, the last hidden layer can be

considered as the encoded vector of input data from the DNNs. Thus, we are able to utilize the properties

of linear regression.

Deep Neural Network Linear Regression

𝑤

Input

Layer

Last hidden

Layer

Output

Layer

Figure 4.1: An architecture of a DNN model for regression tasks. There are various types of layers such

as convolutional or fully-connected layers in the DNNs (grayed line in the figure). When we consider

the blue colored layer as the last layer of DNN, the relation between the last hidden and output layer can

be represented by the linear regression.

Definition 4.1.1 (Basis function). Let the output of the last hidden layer be ϕ(x). Then the relation

between ϕ(x) and output f(x) is represented as linear regression form f(x) = ϕ(x)Tw. We can say that

the output of the last hidden layer ϕ(x) is same as the basis function expansion for the linear regression.

Assuming the targets of DNNs follow a GP, we have the mean and covariance with prior w ∼

N (0, σI) as,

E[f(x)] = ϕ(x)T E[w] = 0,

E[f(x)f(x′)] = ϕ(x)T E[wwT]ϕ(x′) = σϕ(x)Tϕ(x′).
(4.1)

12

Thus f(x) and f(x′) are jointly Gaussian with the zero mean and covariance matrix given by

σϕ(x)Tϕ(x′). Indeed, the function values f(x1), ..., f(xn) corresponding to any number of input points

n are jointly Gaussian. The covariance matrix is the kernel matrix where the basis functions are trained

by the DNN.

4.2 Temporal Covariance Loss

Definition 4.2.1 (Temporal Covariance). Where the length of time series data is N . The number of m

data points (x1, y1), ..., (xm, ym) are selected as a batch (xi, yi) is the ei-th data point in the time series

data for randomly selected ei ∈ [1, N]. Then the Temporal Covariance Σ̃y is defined as

Σ̃y = c̃ov[y] =
1

m
(y− ȳ)(y− ȳ)T . (4.2)

𝑿

𝚽(𝑿)

𝑓(𝑿)

Deep Neural Network Linear Regression

𝑤

1

𝑚2
(෨Σ𝒚−𝚽𝚽

T)2

The Temporal Covariance Loss

The Mean Squared Error Loss

1

𝑚
(𝐲 − ෝ𝒚)2

Figure 4.2: The proposed structure of DNN with the Temporal Covariance loss function. The DNN

is trained to reduce the MSE loss between the Temporal Covariance and the outer product of the basis

function matrix.

To utilize the Temporal Covariance of target data while training the DNNs, we propose a loss func-

tion which is calculated from the residual between a kernel matrix of the DNNs and the temporal co-

variance matrix. The networks utilize the MSE loss function which is defined as Equation 4.3. After

calculating the MSE, the error is back-propagated to the networks.

MSE =
1

k

k∑
i=1

(ak − bk)
2, (4.3)

13

when it comes to matrices A,B ∈ Rm×n to compute the MSE where ak, bk are the elements of them, the

MSE loss compares the given matrices element-wise.

Each of the basis functions ϕk(x) is one of the nodes in the last hidden layer of networks. A set of

basis functions ϕ(x) = [ϕ1(x), ϕ2(x), · · · , ϕh(x)]T is composed of a vector with the number of nodes

h in the last hidden layer (the number of basis functions that DNN learns during training phase). Then

the inner product of basis functions can be written as ϕ(xi)ϕ(xj) =
∑h

k=1 ϕk(xi)ϕk(xj). We further

denote the basis function matrix which is stacked with the evaluated basis functions in a batch of sizem

as Φ(X) = [ϕ(x1),ϕ(x2), · · · ,ϕ(xm)]T . Then we have the Temporal Covariance loss as:

Definition 4.2.2. (Temporal Covariance Loss) With data (X, y) as defined in the Definition 4.2.1, we

define the Temporal Covariance loss as follows,

MSE(Σ̃y,ΦΦT) =
1

m2
(c̃ov[y]−Φ(X)Φ(X)T)2

=
1

m2

m∑
i=1

m∑
j=1

(
1

m
(yi − ȳ)(yj − ȳ)− ϕ(xi)ϕ(xj))2.

(4.4)

Finally, we add the Temporal Covariance loss into the general MSE loss of the DNN with the

hyper-parameter λ which can regulate the importance of the Temporal Covariance loss. Where ŷ is the

prediction output from the model. Therefore, the total loss function of the proposed DNN is as follows,

1

m
(y− ŷ)2 + λ

(1

m2
(Σ̃y −ΦΦT)2

)
. (4.5)

4.3 Principles of a Temporal Covariance Loss Based Neural Networks

The Temporal Covariance loss function proposed earlier aims to find the basis functions which have

similar properties with functions in RKHS of the covariance kernel function of the target y. Therefore,

we wish to guide the basis functions of DNNs with the following principles.

If we assume that the given target vector as y ∼ GP(µ,Σ) and training DNNs with that given data,

then the MSE loss can be regarded as guiding ŷ to µ during the training phase as it reduces 1
m(y− ŷ)2.

By contrast, we expect that the basis functions can represent the variance and covariance of y with

our proposed loss which measures the difference between the Temporal Covariance Σ̃y and regenerated

kernel ΦΦT .

The advantages of our proposed model are twofold. The first advantage of our proposed loss func-

tion is that it is straightforward in implementation. There had been research which try to connect GP with

14

DNNs. For example, [Lee et al., 2017] (NNGP) shows that the exact equivalence between infinitely wide

deep networks and GPs. Unlike previous studies, our proposed loss function operates on the Networks

and no need to the derivation from the covariance functions or matrices of the GP. Also note that we do

not set prior of the given data pair {y, x} to find the basis functions. Rather than changing DNNs archi-

tecture or model itself, the covariance loss function can be attached to the conventional loss functions

with the hyper-parameter during training phase.

Second, the DNN parts of our proposed model can be replaced by other NNs architecture (e.g.

CNNs). If the last hidden layer of replaced NNs architecture is in a vector form, then we can derive the

regenerated kernel to get the Temporal Covariance loss.

In principle, our Temporal Covariance loss based learning impose the DNN trains on top of MSE

loss of the target y. That is, whenever two outputs yi and yj of data points xi and xj have high positive

(negative) covariance value, wemake the inner product of featuremapsϕ(xi) andϕ(xj) has high positive

(negative) value. When they are uncorrelated (covariance is set to zero), the inner product of feature map

ϕ(xi) andϕ(xj) becomes zero (i.e. orthogonal). In this way, our model includes the important principles

of GP, although our model does not explicitly model and implement GP.

15

Chapter 5

Experimental Results

In this section, our proposed loss function is merged with a conventional loss function of DNN. Two

DNN models are chosen to compare the prediction accuracy for the two real-world datasets. The first

model is fully-connected NN and the second baseline approach model is CNN. Both of DNNmodels can

adopt our proposed loss function because of that we can design the last hidden layer as a vector form.

Therefore, The difference between a baseline approach model and a proposed model is the existence

of the Temporal Covariance loss function. The first real-world dataset is groundwater dataset which is

collected from US territory and second real-world dataset is NASDAQ 100 stock dataset which is the

collection of stock prices of corporations under NASDAQ 100.

5.1 Experimental Setup

The objective for experiment is a multivariate regression problem which is defined as Equation 5.1.

yt = xat , for some a ∈ {1, 2, · · · , n} at time t

ŷt = F (yt−1, ..., x1t−l, x
2
t−l, ..., x

n
t−l),

(5.1)

where yt is a target data, a is a randomly selected number from 1 to the number of columns (features)

from given data, n as an input dataset. ŷt is a prediction by function F which is approximated from our

model. The model predict a target value as l times afterward from the input data.

16

The evaluationmetric that is used to compare regression performance is the RMSE, which is defined

as Equation 5.2,

RMSE =
√

E[(y− ŷ)2] =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (5.2)

We divide the given dataset into training set, validation set and testing set taking 80%, 10% and 10%

of the original data, respectively. During the training phase of the DNNs, we select the best performance

in terms of the RMSE in the validation set. Accordingly, the best performance model is compared with

other models in the testing set.

5.2 Groundwater Dataset

The groundwater dataset [Yi et al., 2017] provided by the United States Geological Survey (USGS).

The dataset is daily collected from the US territories. We select the depth of groundwater levels for 28

years (1987-2015). If data sequences are not recorded longer than two months, then it were excluded

from dataset. Also, empty records shorter than two months were filled using linear interpolation. After

refined, The dataset contains 88 numbers of monitoring sensor values for 10,228 days. A model predicts

after 10 days groundwater level of one station from the whole dataset.

Deep Neural Network Linear Regression

𝑤

𝑦𝑡 = 𝑥𝑡
𝑎, for some 𝑎 ∈ 1,2,⋯ , 88 at time 𝑡

ො𝑦𝑡 = 𝐹 𝑦𝑡−10, 𝑥𝑡−10
1 , 𝑥𝑡−10

2 , ⋯ , 𝑥𝑡−10
88

ො𝑦𝑡𝑥1

𝑦𝑡

𝑥2

𝑥87

𝑥88

From time (𝑡 − 10)

Predict the value at time 𝑡

Figure 5.1: The details of experiments setting on the groundwater dataset with DNNs. Where target y is

chosen in given dataset {x1, x2, ...x88}. The purpose of the experiments is finding F (·) by DNNs. The

function F (·) represents the relationship between y and {x1, x2, ...x88} with given 10 days delayed.

While training a model, we select the best performance in terms of the RMSE for the validation set.

The model with the best performance was compared with other models by given testing set.

17

Three different models are chosen to compare the performance with the proposed model; first one

is a linear regression model, the second model is LSTM model and baseline approach fully-connected

NNwithout the Temporal Covariance loss. For a fair comparison, the architecture of the proposed model

is same as the DNN baseline model, but varying in the loss function containing the Temporal Covari-

ance loss function. The number of nodes in each fully-connected layer is (88, 100, 100, 100, 1), three

hidden layers consisted of 100 nodes. The activation function is exponential linear unit (ELU) activation

[Clevert et al., 2015] except the output layer. Dropout [Srivastava et al., 2014] is applied on the first two

hidden layers. The optimizer is Adam optimizer [Kingma and Ba, 2014] with learning rate as 1e − 5.

The model is trained with 10000 epochs. Each epoch contains randomly permuted training set with batch

size 1024.

For the case of comparisonswith CNNmodels, also three differentmodels are chosen to compare the

performance with the proposed model; first one is a linear regression model, the second model is LSTM

model and the baseline approach CNN without the Temporal Covariance loss. For a fair comparison, the

architecture of the proposed model is same as the CNN baseline model, but varying in the loss function

containing the Temporal Covariance loss function. The length of input time series are 10 and the number

of channels output of each convolutional layer is (100, 100, 100) with kernel size as 4. Without padding

0 values each input of layer, the output length of the final convolutional layer is 1. Accordingly, the

number of nodes (or channel) in the last hidden layer is 100, same as DNN experiments. The activation

function is ELU activation except the output layer. Dropout is applied on the first two convolutional

layers. The optimizer is Adam optimizer with learning rate as 1e− 6. The model is trained with 10000

epochs. Each epoch contains randomly permuted training set with batch size 2048.

18

5.2.1 Quantitative Analysis

We design experiments for comparing our proposed model with four baseline approach models. We

randomly select 10 numbers for target data among {0, 1, ..., 87}. The experiments repeated 30 times for

each of the models. The quantitative results shown as Table 5.1 and Figure 5.2 (box-plot).

Table 5.1: Comparisons the mean of RMSE between the linear regression, the LSTMmodel, the baseline

approach DNN, CNNmodel and the proposed models on the number of 10 randomly selected groundwa-

ter dataset. The baseline approach DNN, CNNmodel does not contain the Temporal Covariance loss and

the proposed models with hyper-parameter 0.1 are denoted as “Proposed DNN model” and “Proposed

CNN model”. A bold font indicates the best result obtained.

Target number 0 17 23 64 66 70 75 78 83 84

Linear Regression 0.3692 0.6413 0.7802 0.9927 0.7993 0.8232 0.7743 0.3995 0.9387 0.4431

LSTM model 0.5459 0.6309 0.8330 1.0228 1.3467 0.6536 0.7892 0.8332 0.9414 0.5293

Baseline DNN model 0.4511 0.3287 0.7038 0.9476 0.8351 0.5007 0.7707 0.5007 0.5449 0.2622

Baseline CNN model 0.4362 0.3629 0.7367 0.8879 0.8927 0.6011 0.7398 0.5323 0.6608 0.2997

Proposed DNN model 0.3234 0.2666 0.5930 0.7865 0.6614 0.4814 0.7092 0.3882 0.4487 0.2636

Proposed CNN model 0.4083 0.3475 0.6593 0.7803 0.8041 0.5573 0.7029 0.4720 0.6067 0.3946

Figure 5.2: Comparisons the RMSE of proposed models with four baseline approach models. The y-axis

is RMSE of each model and the linear regression as “Linear” and the horizontal red line, the baseline

approach models are denoted as yellow color, the proposed models with hyper-parameter 0.1 are labeled

by “DNN Cov” and “CNN Cov” with green color.

19

5.2.2 Quantitative Analysis with Fully Connected Neural Networks

We design experiments for comparing our proposed model with the baseline approach DNN model. We

randomly select 10 numbers for target data among {0, 1, ..., 87}. The first baseline model is the fully-

connected NN. The experiments repeated 30 times for each of the models. The quantitative results shown

as Table 5.2 and Figure 5.3 (box-plot).

Table 5.2: Comparisons the mean of RMSE between the linear regression, the baseline approach DNN

model and the proposed model on the number of 10 randomly selected groundwater dataset. The baseline

approachDNNmodel does not contain the Temporal Covariance loss and the proposedmodel with hyper-

parameter 0.1 is denoted as “Proposed with λ 0.1”. A bold font indicates the best result obtained.

Target number 0 17 23 64 66 70 75 78 83 84

Linear Regression 0.3692 0.6413 0.7802 0.9927 0.7993 0.8232 0.7743 0.3995 0.9387 0.4431

Baseline DNN model 0.4511 0.3287 0.7038 0.9476 0.8351 0.5007 0.7707 0.5007 0.5449 0.2622

Proposed with λ 0.1 0.3234 0.2666 0.5930 0.7865 0.6614 0.4814 0.7092 0.3882 0.4487 0.2636

Figure 5.3: Comparisons the RMSE between the linear regression, the baseline approachDNNmodel and

the proposed model on the number of 10 randomly selected groundwater dataset. The y-axis is RMSE

of each model and the linear regression as “Linear reg” and the horizontal red line, the baseline approach

DNNmodel is denoted “Baseline” and the color is yellow, the proposed model with hyper-parameter 0.1

is labeled by “Lambda 0.1” with green color.

20

Also,We design experiments for comparing our proposedmodel with three different hyper-parameters

λ as {0.1, 1, 10} for randomly select 10 numbers for target data among {0, 1, ..., 87}. The experiments

repeated 30 times for each of the models. The quantitative results shown as Table 5.3 and Figure 5.4

(box-plot).

Table 5.3: Comparisons the mean of RMSE for the proposed DNN model with three different hyper-

parameters λ on the number of 10 randomly selected groundwater dataset. The proposed DNN model

with different hyper-parameters {0.1, 1, 10} is denoted as “Proposed with λ {0.1, 1, 10}”. A bold font

indicates the best result obtained.

Target number 0 17 23 64 66 70 75 78 83 84

Proposed with λ 0.1 0.3234 0.2666 0.5930 0.7865 0.6614 0.4814 0.7092 0.3882 0.4487 0.2636

Proposed with λ 1 0.3222 0.2674 0.6452 0.7574 0.6705 0.4777 0.6646 0.3486 0.4566 0.2992

Proposed with λ 10 0.3154 0.3206 0.6297 0.7503 0.7028 0.4803 0.6613 0.3075 0.4744 0.3379

Figure 5.4: Comparisons the RMSE of the proposed DNN model with three different hyper-parameters

on the number of 10 randomly selected groundwater dataset. The y-axis is RMSE of each model and the

linear regression as “Linear reg” and the red horizontal line, the baseline approach model as “Baseline”

and the color is yellow, and the proposed model with different hyper-parameters {0.1, 1, 10} as “Lambda

{0.1, 1, 10}” with green color.

21

5.2.3 Quantitative Analysis with Convolutional Neural Networks

We design experiments for comparing our proposed model with the baseline approach CNN model. We

randomly select 10 numbers for target data among {0, 1, ..., 87}. The second baseline model is CNN.

The experiments repeated 30 times for each of the models. The quantitative results shown as Table 5.4

and Figure 5.5 (box-plot).

Table 5.4: Comparisons the mean of RMSE between the linear regression, the baseline approach CNN

model and the proposed model on the number of 10 randomly selected groundwater dataset. The baseline

approach CNNmodel does not contain the Temporal Covariance loss and the proposedmodel with hyper-

parameter 0.1 is denoted as “Proposed with λ 0.1”. A bold font indicates the best result obtained.

Target number 0 17 23 64 66 70 75 78 83 84

Linear Regression 0.3692 0.6413 0.7802 0.9927 0.7993 0.8232 0.7743 0.3995 0.9387 0.4431

Baseline CNN model 0.4362 0.3629 0.7367 0.8879 0.8927 0.6011 0.7398 0.5323 0.6608 0.2997

Proposed with λ 0.1 0.4083 0.3475 0.6593 0.7803 0.8041 0.5573 0.7029 0.4720 0.6067 0.3946

Figure 5.5: Comparisons the RMSE between the linear regression, the baseline approach CNNmodel and

the proposed model on the number of 10 randomly selected groundwater dataset. The y-axis is RMSE

of each model and the linear regression as “Linear reg” and the horizontal red line, the baseline approach

CNNmodel is denoted “Baseline” and the color is yellow, the proposed model with hyper-parameter 0.1

is labeled by “Lambda 0.1” with green color.

22

Also,We design experiments for comparing our proposedmodel with three different hyper-parameters

λ as {0.1, 1, 10} for randomly select 10 numbers for target data among {0, 1, ..., 87}. The experiments

repeated 30 times for each of the models. The quantitative results shown as Table 5.5 and Figure 5.6

(box-plot).

Table 5.5: Comparisons the mean of RMSE for the proposed CNN model with three different hyper-

parameters λ on the number of 10 randomly selected groundwater dataset. The proposed CNN model

with different hyper-parameters {0.1, 1, 10} is denoted as “Proposed with λ {0.1, 1, 10}”. A bold font

indicates the best result obtained.

Target number 0 17 23 64 66 70 75 78 83 84

Proposed with λ 0.1 0.4083 0.3475 0.6593 0.7803 0.8041 0.5573 0.7029 0.4720 0.6067 0.3946

Proposed with λ 1 0.4200 0.3830 0.7207 0.7751 0.8389 0.5788 0.7239 0.4664 0.6080 0.3938

Proposed with λ 10 0.4117 0.4097 0.6820 0.8058 0.8737 0.5626 0.6929 0.4817 0.6434 0.3766

Figure 5.6: Comparisons the RMSE of the proposed CNN model with three different hyper-parameters

on the number of 10 randomly selected groundwater dataset. The y-axis is RMSE of each model and the

linear regression as “Linear reg” and the red horizontal line, the baseline approach model as “Baseline”

and the color is yellow, and the proposed model with different hyper-parameters {0.1, 1, 10} as “Lambda

{0.1, 1, 10}” with green color.

23

5.3 Stock Market Dataset

The stock market dataset [Qin et al., 2017] is collected the stock prices of 81 companies are included in

NASDAQ 100. The frequency of the time series is minute-by-minute. Stock prices are selected 105 days

in total, from July 26, 2016 to December 22, 2016. The dataset contains 81 numbers of stock prices for

40,560 minutes. Each day contains 390 minutes from the opening to the closing of the market. A model

predicts after 1 hour (60 minutes) stock price of one corporation from the whole dataset. While training

a model, we select the best performance in terms of the RMSE for the validation set. The model with the

best performance was compared with other models by given testing set.

Three different models are chosen to compare the performance with the proposed model; first one is

a linear regression model, the second model is LSTM model and baseline approach fully-connected NN

without the Temporal Covariance loss. For a fair comparison, the architecture of the proposed model is

same as the DNN baseline model, but varying in the loss function containing the Temporal Covariance

loss function. The number of nodes in each fully-connected layer is (81, 100, 100, 100, 1), three hidden

layers consisted of 100 nodes. The activation function is ELU activation [Clevert et al., 2015] except the

output layer. Dropout [Srivastava et al., 2014] is applied on the first two hidden layers. The optimizer is

Adam optimizer [Kingma and Ba, 2014] with learning rate as 1e − 6. The model is trained with 10000

epochs. Each epoch contains randomly permuted training set with batch size 2048.

For the case of comparisonswith CNNmodels, also three differentmodels are chosen to compare the

performance with the proposed model; first one is a linear regression model, the second model is LSTM

model and the baseline approach CNN without the Temporal Covariance loss. For a fair comparison, the

architecture of the proposed model is same as the CNN baseline model, but varying in the loss function

containing the Temporal Covariance loss function. The length of input time series are 10 and the number

of channels output of each convolutional layer is (100, 100, 100) with kernel size as 4. Without padding

0 values each input of layer, the output length of the final convolutional layer is 1. Accordingly, the

number of nodes (or channel) in the last hidden layer is 100, same as DNN experiments. The activation

function is ELU activation except the output layer. Dropout is applied on the first two convolutional

layers. The optimizer is Adam optimizer with learning rate as 1e− 6. The model is trained with 10000

epochs. Each epoch contains randomly permuted training set with batch size 2048.

24

5.3.1 Quantitative Analysis

We design experiments for comparing our proposed model with four baseline approach models. We

randomly select 10 numbers for target data among {0, 1, ..., 80}. The experiments repeated 30 times for

each of the models. The quantitative results shown as Table 5.6 and Figure 5.7 (box-plot).

Table 5.6: Comparisons the mean of RMSE between the linear regression, the LSTMmodel, the baseline

approach DNN, CNN model and the proposed models on the number of 10 randomly selected stock

market dataset. The baseline approach DNN, CNN model does not contain the Temporal Covariance

loss and the proposed models with hyper-parameter 0.1 are denoted as “Proposed DNN model” and

“Proposed CNN model”. A bold font indicates the best result obtained or the best result among NNs.

Target number 1 2 21 28 29 33 37 48 60 72

Linear Regression 0.5806 0.4507 0.5447 1.0298 0.3065 0.6369 0.5755 0.5756 0.2560 0.6290

LSTM model 1.1771 0.5259 0.9783 0.6275 0.4974 0.5680 1.7285 2.3761 0.6123 1.0957

Baseline DNN model 1.0456 0.4022 0.4824 0.5872 0.5518 0.3548 1.3726 1.8978 0.5004 0.7580

Baseline CNN model 1.1184 0.6348 0.8305 0.6379 0.4722 0.3368 1.0778 1.7003 0.4818 0.8638

Proposed DNN model 1.0111 0.3386 0.3758 0.4736 0.4612 0.3534 1.2810 1.4763 0.4367 0.6493

Proposed CNN model 1.0642 0.6121 0.5138 0.5271 0.4768 0.3641 1.1861 1.6525 0.5634 0.6675

Figure 5.7: Comparisons the RMSE of proposed models with four baseline approach models. The y-axis

is RMSE of each model and the linear regression as “Linear” and the horizontal red line, the baseline

approach models are denoted as yellow color, the proposed models with hyper-parameter 0.1 are labeled

by “DNN Cov” and “CNN Cov” with green color.

25

5.3.2 Quantitative Analysis with Fully Connected Neural Networks

We design experiments for comparing our proposed model with the baseline approach DNN model.

We randomly select 10 numbers for target data among {0, 1, ..., 80}. First baseline model is the fully-

connected NN. The experiments repeated 30 times for each of the models. The quantitative results shown

as Table 5.7 and Figure 5.8 (box-plot).

Table 5.7: Comparisons the mean of RMSE between the linear regression, the baseline approach DNN

model and the proposed model on the number of 10 randomly selected stock market dataset. The baseline

approachDNNmodel does not contain the Temporal Covariance loss and the proposedmodel with hyper-

parameter 0.1 is denoted as “Proposed with λ 0.1”. A bold font indicates the best result obtained.

Target number 1 2 21 28 29 33 37 48 60 72

Linear Regression 0.5806 0.4507 0.5447 1.0298 0.3065 0.6369 0.5755 0.5756 0.2560 0.6290

Baseline DNN model 1.0456 0.4022 0.4824 0.5872 0.5518 0.3548 1.3726 1.8978 0.5004 0.7580

Proposed with λ 0.1 1.0111 0.3386 0.3758 0.4736 0.4612 0.3534 1.2810 1.4763 0.4367 0.6493

Figure 5.8: Comparisons the RMSE between the linear regression, the baseline approachDNNmodel and

the proposed model on the number of 10 randomly selected stock market dataset. The y-axis is RMSE

of each model and the linear regression as “Linear reg” and the horizontal red line, the baseline approach

DNNmodel is denoted “Baseline” and the color is yellow, the proposed model with hyper-parameter 0.1

is labeled by “Lambda 0.1” with green color.

26

Also,We design experiments for comparing our proposedmodel with three different hyper-parameters

λ as {0.1, 1, 10} for randomly select 10 numbers for target data among {0, 1, ..., 80}. The experiments

repeated 30 times for each of models. The quantitative results shown as Table 5.8 and Figure 5.9 (box-

plot).

Table 5.8: Comparisons the mean of RMSE for the proposed DNN model with three different hyper-

parameters λ on the number of 10 randomly selected stock market dataset. The proposed DNN model

with different hyper-parameters {0.1, 1, 10} is denoted as “Proposed with λ {0.1, 1, 10}”. A bold font

indicates the best result obtained.

Target number 1 2 21 28 29 33 37 48 60 72

Proposed with λ 0.1 1.0111 0.3386 0.3758 0.4736 0.4612 0.3534 1.2810 1.4763 0.4367 0.6493

Proposed with λ 1 1.0276 0.4224 0.3840 0.4815 0.3869 0.3183 1.0749 1.5207 0.4962 0.6438

Proposed with λ 10 1.1166 0.3961 0.4034 0.4612 0.4785 0.3521 1.1573 1.5685 0.4364 0.6328

Figure 5.9: Comparisons the RMSE of the proposed DNN model with three different hyper-parameters

on the number of 10 randomly selected stock market dataset. The y-axis is RMSE of each model and the

linear regression as “Linear reg” and the red horizontal line, the baseline approach model as “Baseline”

and the color is yellow, and the proposed model with different hyper-parameters {0.1, 1, 10} as “Lambda

{0.1, 1, 10}” with green color.

27

5.3.3 Quantitative Analysis with Convolutional Neural Networks

We design experiments for comparing our proposed model with the baseline approach CNN model. We

randomly select 10 numbers for target data among {0, 1, ..., 80}. The second baseline model is CNN.

The experiments repeated 30 times for each of the models. The quantitative results shown as Table 5.9

and Figure 5.10 (box-plot).

Table 5.9: Comparisons the mean of RMSE between the linear regression, the baseline approach CNN

model and the proposed model on the number of 10 randomly selected stock market dataset. The baseline

approach CNNmodel does not contain the Temporal Covariance loss and the proposedmodel with hyper-

parameter 0.1 is denoted as “Proposed with λ 0.1”. A bold font indicates the best result obtained.

Target number 1 2 21 28 29 33 37 48 60 72

Linear Regression 0.5806 0.4507 0.5447 1.0298 0.3065 0.6369 0.5755 0.5756 0.2560 0.6290

Baseline CNN model 1.1184 0.6348 0.8305 0.6379 0.4722 0.3368 1.0778 1.7003 0.4818 0.8638

Proposed with λ 0.1 1.0642 0.6121 0.5138 0.5271 0.4768 0.3641 1.1861 1.6525 0.5634 0.6675

Figure 5.10: Comparisons the RMSE between the linear regression, the baseline approach CNN model

and the proposedmodel on the number of 10 randomly selected stockmarket dataset. The y-axis is RMSE

of each model and the linear regression as “Linear reg” and the horizontal red line, the baseline approach

CNNmodel is denoted “Baseline” and the color is yellow, the proposed model with hyper-parameter 0.1

is labeled by “Lambda 0.1” with green color.

28

Also,We design experiments for comparing our proposedmodel with three different hyper-parameters

λ as {0.1, 1, 10} for randomly select 10 numbers for target data among {0, 1, ..., 80}. The experiments

repeated 30 times for each of the models. The quantitative results shown as Table 5.10 and Figure 5.11

(box-plot).

Table 5.10: Comparisons the mean of RMSE for the proposed CNN model with three different hyper-

parameters λ on the number of 10 randomly selected stock market dataset. The proposed CNN model

with different hyper-parameters {0.1, 1, 10} is denoted as “Proposed with λ {0.1, 1, 10}”. A bold font

indicates the best result obtained.

Target number 1 2 21 28 29 33 37 48 60 72

Proposed with λ 0.1 1.0642 0.6121 0.5138 0.5271 0.4768 0.3641 1.1861 1.6525 0.5634 0.6675

Proposed with λ 1 1.1047 0.6086 0.5555 0.6631 0.5720 0.3711 1.0234 1.5970 0.5852 0.8881

Proposed with λ 10 1.0877 0.5775 0.6107 0.6600 0.4605 0.5214 0.8879 1.9327 0.9202 1.3151

Figure 5.11: Comparisons the RMSE for the proposed CNNmodel with three different hyper-parameters

on the number of 10 randomly selected stock market dataset. The y-axis is RMSE of each model and the

linear regression as “Linear reg” and the red horizontal line, the baseline approach model as “Baseline”

and the color is yellow, and the proposed model with different hyper-parameters {0.1, 1, 10} as “Lambda

{0.1, 1, 10}” with green color.

29

Chapter 6

Conclusion

Time series data is one of the most commonly used data that we can obtain from nature and given systems

from temperature sensor data to stockmarket price. The characteristic of time series data can be described

by not only sampled values but also covariance of themselves.

Rather than changing the architecture of DNNs or model itself, we proposed the Temporal Covari-

ance loss function to learn the basis functions utilizing Temporal Covariance of target data. Also, the

results of experiments have shown that our approach yields more accurate results in terms of prediction

for real-world time series dataset. Yet, there are more possibilities to apply our approach to other kinds

of DNNs which have the final hidden layer in a vector form. For example, RNNs or LSTM models also

can apply our Temporal Covariance loss function.

30

Bibliography

[Adler, 2010] Adler, R. J. (2010). The geometry of random fields. SIAM.

[Aronszajn, 1950] Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American

mathematical society, 68(3):337–404.

[Bengio et al., 1994] Bengio, Y., Simard, P., Frasconi, P., et al. (1994). Learning long-term dependencies

with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166.

[Bietti et al., 2019] Bietti, A., Mialon, G., Chen, D., and Mairal, J. (2019). A kernel perspective for

regularizing deep neural networks. In International Conference on Machine Learning, pages 664–

674.

[Cho and Saul, 2009] Cho, Y. and Saul, L. K. (2009). Kernel methods for deep learning. In Advances

in neural information processing systems, pages 342–350.

[Clevert et al., 2015] Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate deep

network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289.

[Glorot et al., 2011] Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural net-

works. In Proceedings of the fourteenth international conference on artificial intelligence and statis-

tics, pages 315–323.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term mem-

ory. Neural computation, 9(8):1735–1780.

[Huang et al., 2015] Huang, W., Zhao, D., Sun, F., Liu, H., and Chang, E. (2015). Scalable gaussian

process regression using deep neural networks. In Twenty-Fourth International Joint Conference on

Artificial Intelligence.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

31

[König, 1986] König, H. (1986). Eigenvalue distribution of compact operators.

[Lee et al., 2017] Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J., and Sohl-Dickstein,

J. (2017). Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165.

[Murphy, 2012] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

[Neal, 1995] Neal, R. M. (1995). Bayesian learning for neural networks. PhD thesis, Citeseer.

[Qin et al., 2017] Qin, Y., Song, D., Chen, H., Cheng,W., Jiang, G., and Cottrell, G. (2017). A dual-stage

attention-based recurrent neural network for time series prediction. arXiv preprint arXiv:1704.02971.

[Rasmussen, 2003] Rasmussen, C. E. (2003). Gaussian processes in machine learning. In Summer

School on Machine Learning, pages 63–71. Springer.

[Schölkopf et al., 2002] Schölkopf, B., Smola, A. J., Bach, F., et al. (2002). Learning with kernels:

support vector machines, regularization, optimization, and beyond. MIT press.

[Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine

Learning Research, 15(1):1929–1958.

[Wegman, 2014] Wegman, E. J. (2014). Reproducing kernel hilbert spaces. Wiley StatsRef: Statistics

Reference Online.

[Williams and Rasmussen, 2006] Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for

machine learning, volume 2. MIT Press Cambridge, MA.

[Yi et al., 2017] Yi, S., Ju, J., Yoon, M.-K., and Choi, J. (2017). Grouped convolutional neural networks

for multivariate time series. arXiv preprint arXiv:1703.09938.

32

Acknowledgements

My deepest debts of gratitude to my advisor, Jaesik Choi. He has been guiding me for more than two

years and showing me the path of a good researcher by being one. I’m sure his advice and what I’ve

learned have influenced my life a lot.

I am also grateful to everyone of Statistical Artificial Intelligence Lab for their unconditional sup-

port. They are helpful and encouraging. It was luck to have them as academic colleagues for the past

few years of my studying and research.

I owe thanks most of all to my family and my wife for helping me focus on research in every way

for a not short period of time. There were many setbacks and difficulties that I would have not been able

to work through without their support and patience.

Ulsan National Institute of Science and Technology gave me lots of opportunities and advantages.

I wish my friends and researchers in UNIST success in all their future endeavors.

33

	1 Introduction
	2 Background
	2.1 Regression
	2.2 Linear Regression
	2.3 Gaussian Processes
	2.3.1 Smooth Functions
	2.3.2 Positive Semidefinite Kernels
	2.3.3 Reproducing Kernel Hilbert Space
	2.3.4 Eigenfunctions of Kernels

	2.4 Deep Neural Networks
	2.4.1 Convolutional Neural Networks
	2.4.2 Long Short-Term Memory Networks

	3 Related Work
	4 Temporal Covariance Loss
	4.1 Learning the Basis Functions in Deep Neural Networks
	4.2 Temporal Covariance Loss
	4.3 Principles of a Temporal Covariance Loss Based Neural Networks

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Groundwater Dataset
	5.2.1 Quantitative Analysis
	5.2.2 Quantitative Analysis with Fully Connected Neural Networks
	5.2.3 Quantitative Analysis with Convolutional Neural Networks

	5.3 Stock Market Dataset
	5.3.1 Quantitative Analysis
	5.3.2 Quantitative Analysis with Fully Connected Neural Networks
	5.3.3 Quantitative Analysis with Convolutional Neural Networks

	6 Conclusion

<startpage>16
1 Introduction 1
2 Background 2
 2.1 Regression 2
 2.2 Linear Regression 2
 2.3 Gaussian Processes 3
 2.3.1 Smooth Functions 4
 2.3.2 Positive Semidefinite Kernels 4
 2.3.3 Reproducing Kernel Hilbert Space 5
 2.3.4 Eigenfunctions of Kernels 6
 2.4 Deep Neural Networks 7
 2.4.1 Convolutional Neural Networks 8
 2.4.2 Long Short-Term Memory Networks 8
3 Related Work 10
4 Temporal Covariance Loss 11
 4.1 Learning the Basis Functions in Deep Neural Networks 11
 4.2 Temporal Covariance Loss 13
 4.3 Principles of a Temporal Covariance Loss Based Neural Networks 14
5 Experimental Results 16
 5.1 Experimental Setup 16
 5.2 Groundwater Dataset 17
 5.2.1 Quantitative Analysis 19
 5.2.2 Quantitative Analysis with Fully Connected Neural Networks 20
 5.2.3 Quantitative Analysis with Convolutional Neural Networks 22
 5.3 Stock Market Dataset 24
 5.3.1 Quantitative Analysis 25
 5.3.2 Quantitative Analysis with Fully Connected Neural Networks 26
 5.3.3 Quantitative Analysis with Convolutional Neural Networks 28
6 Conclusion 3
</body>

