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 Abstract  
 

A comparison of the results from the finite element method (FEM) and fast Fourier transform-based 

(FFT) method, was carried out in the context of the thermoelasticity. In order to validate and compare 

each numerical method, the thermoelastic response of heterogeneous materials system, the Eshelby’s 

inclusion problem was adopted. Both similarity and discrepancy of the thermoelastic responses between 

two methods were examined. It was found that both methods showed similar trends in predicting 

average values of mechanical response, however, produced quite a big discrepancy at the particle-matrix 

boundary regions. This result will raise the question that which method predicts better response of 

thermoelasticity for a three-dimensional polycrystalline material under thermal loading, where, 

especially, the extreme values (i.e., hot spots in stress) are preferentially located around the grain 

boundary regions and eventually cause the failure of rather brittle polycrystalline materials. 

Keywords: Thermoelasticity; Finite element method; fast Fourier transform-based method; Polycrystal 
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Ⅰ. Introduction 
 In polycrystalline materials under varied temperatures, are induced thermal stresses due to the 

crystallographic anisotropy and spatial distribution of grains and grain boundary network. At the 

microstructural scale, localization of such stress can be the source of failures such as cracking [1, 2]. 

For this reason, the investigation of extreme values of local distribution of mechanical fields is of a 

great interest in predicting life time and evaluating the safety of many engineering materials and its 

applications [3]. Robust modeling and simulation techniques have been extensively used to quantify 

the mechanical behavior of the materials systems in that regard [4]. Such numerical methods are 

categorized as mean-field models and full-field models [3, 4]. The mean-field models employ 

homogenization schemes such as Sachs [5] and Taylor [6], in which, equal stress and strain in the 

constituents are assumed, respectively [7]. Likewise, Eshelby [8] proposed stress and strain equilibrium 

of an ellipsoidal inclusion in a matrix with respect to the homogeneous far-field of stress and strain. 

More recently, self-consistent models are used to find a solution, e.g. Molinari et al [9], Lebensohn and 

Tomé [10]. The mean-field method is known to be more efficient compared to the full-field method in 

the aspect of computational time. However, most of the models above mentioned have shortcomings, 

which is the overestimation of the texture and anisotropy [4].  

 The first study of full-field method was presented in terms of crystal plasticity finite element 

simulation (CPFEM) by Peirce et al [11]. The full-field method indicates consideration of short- and 

long-range grain interactions as well as a resolution of micromechanical properties on discretized grid 

[12]. Thereby, full-field simulation can provide a more accurate description of micromechanical fields 

in polycrystals and can give information upon stress and strain distribution inside the grains or in the 

vicinity of grain boundaries [3, 4]. For complex and anisotropic polycrystals, more realistic modeling 

of geometry and finely discretized elements are needed, and, finite element method (FEM) has widely 

been adopted to compute this type of problems. However, it is difficult to obtain appropriate mesh for 

FEM simulation and needs large number of degrees of freedom as well, which in turn leads to the 

limitation of modeling size and considerable computational time [13]. From this point of view, fast 

Fourier transform (FFT) can be suggested as an alternative method by virtue of finely discretized mesh 

free elements [14, 15]. The full-field method based on FFT was originally developed by Moulinec and 

Suquet to solve micromechanical properties for linear elastic response of composite materials and then 

expanded to inelastic region [15-18]. This FFT-based approach has been successfully applied to the 

field of elastic [19], thermoelastic [20], viscoplastic [14] and elasto-viscoplastic [3] models. As the FFT 

algorithm is a mesh free method, meshing problem can be avoided, and the memory for solving the 

computation can be reduced [4, 21]. The limitation of FFT method is the boundary conditions, as it is 

restricted to have periodic boundary conditions only.  

 Recently, full-field methods based on FEM and FFT approaches has been compared for elastic, 

viscoplastic and elasto-viscoplastic models [4, 12, 14]. Previous studies indicated that predictions by 
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both methods exhibit similar trends in macroscopic response and show little difference between two 

methods in average stress/strain distribution. While fundamental comparisons have been provided in 

previous work, substantial statistical information regarding thermoelasticity is not yet discussed, hence, 

one has to give efforts on studying statistical information to understand and compare the response of 

the momentous extreme values, i.e. extremely high values of local responses (or hot spots). Hot spot 

stress or elastic strain energy density (EED) existing in the upper tail of the distribution are the main 

areas of our interest, because of their significant role in creep and fatigue characteristics under 

temperature variation. In this respect, differences between FEM and FFT in predicting elastic response 

under thermal loading were investigated with respect to the upper tail, by reference to the extreme value 

theory, so as to verify the similarities and distinctiveness of both methods.  

The proposed research is conducted as follows. First, stress distributions resulting from FE and 

FFT methods are validated by comparing against analytical solution of Eshelby’s problem for a 

spherical inclusion embedded in an infinite matrix [8]. Then, elastic local fields of polycrystal under 

thermal loading with properties of cubic/HCP material were explored. Since the input microstructure is 

configured as individual grains with different size and shape, heterogeneous stiffness tensor and 

coefficient of thermal expansion (CTE) give rise to inhomogeneous elastic fields distribution inside the 

grains and near the grain boundaries. For isotropic case with cubic crystal structure, differences are 

analyzed with respect to the extreme value theory. For anisotropic case with HCP crystal structure, 

Eshelby’s problem is applied to investigate the effect of anisotropy in more detail. By doing so, 

similarities and distinctiveness in elastic response between FEM and FFT are quantified.  

 

Ⅱ. Theoretical Background 
 

2.1 Thermoelasticity 

 The theory of thermoelasticity dealt with strain in an elastic body with thermal expansion. The 

relationship between stress and strain in terms of temperature variation is described by the generalized 

Hooke’s law including tensor-valued quantities of stiffness and CTE, which implies the effect of 

crystallographic anisotropy on thermoelastic properties [22]. Anisotropy, particularly the thermal 

expansion anisotropy can lead to the development of heterogeneous thermal stress, strain, and strain 

energy density distributions, which are related to the mechanical properties directly.  

 

2.1.1 Moduli of Thermoelasticity 

 When thermal loading is imposed to a solid body, the majority of the bodies increase in their  

volume, and such characteristics are known as thermal expansion. In order to define thermoelastic 

deformation, the CTE tensor, 𝛼)*, and thermal loading, ∆Τ appear in the equation [23] as: 
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 𝜀)*./01234 = 𝛼)*ΔΤ (1) 

 

The above equation describes the relationship between the small temperature change and the thermal 

eigenstrain in the solid. As the CTE tensor (𝛼)*) connects the symmetric second rank tensor (𝜀)*) and 

scalar quantity (ΔΤ), it is understandably symmetric second rank tensor. For cubic crystals, CTE has 

only the single coefficient (𝛼77) which signifies the expansion or contraction of material occurs in all 

crystallographic directions at the same rate. On the other hand, for hexagonal crystals with anisotropic 

CTE, two principal axial coefficients (𝛼77, 𝛼99) are necessary. The CTE tensors of Cubic and hexagonal 

crystals are represented in the form [23]: 

 

 Cubic = :
𝛼77 0 0
0 𝛼77 0
0 0 𝛼77

<,  Hexagonal = :
𝛼77 0 0
0 𝛼77 0
0 0 𝛼99	

< (2) 

 

In the above expression, 𝛼77 coefficient indicates a-axis thermal expansion coefficient (𝛼3) implying 

the expansion in basal plane, and 𝛼99 coefficient represents c-axis thermal expansion coefficient (𝛼?) 

designating expansion in axial direction. The anisotropy of thermal expansion (𝛼3A)BC) can be 

described by the equation below [24]: 

 

 𝛼3A)BC =
𝛼?

𝛼3
 (3) 

 

A basic formula of material property is described as generalized Hooke’s law. Assume that 

tensile load 𝐹 is applied to a bar of an isotropic material, consisting of initial area and length as 𝐴F and 

𝑙F, respectively. The elongation ∆𝑙 can be expressed as ∆𝑙 = 𝐹𝑙F/𝐸𝐴F, where E is the elastic modulus 

(also known as stiffness constant, 𝐶). Stress, the force per unit area on a body can be designated as 𝜎 =

𝐹/𝐴F, and, corresponding elastic longitudinal strain is 𝜀 = 𝑙/𝑙F. By considering these equations, a basic 

formula of elastic deformation can be expressed as Hooke’s law [22].  

 

 𝜎 = 𝐶𝜀 (4) 

 

For an anisotropic case, this relation of stress and strain is generalized as: 

 

 𝜎)* = 𝐶)*M4𝜀M4043B.)? (5) 
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In above equation, 𝐶)*M4 is a fourth rank stiffness tensor of material properties having 81 (3×3×3×3) 

components which relates two symmetric second rank tensor, 𝜎)* and 𝜀M4043B.)?. As the symmetry of the 

stress tensor reduces the number of such components, we can obtain:  

 

 
𝜎)* = 𝜎*) ,  

𝜎)* = 𝐶)*M4𝜀M4 = 𝐶*)M4𝜀M4 
(6) 

 

Similarly, the symmetry of the strain tensor also reduces the number of components as follows:  

 

 
𝜀M4 = 𝜀4M ,  

𝜎)* = 𝐶)*M4𝜀M4 = 𝐶)*4M𝜀4M 
(7) 

 

By means of eqs.(6) and (7), following form can be obtained: 

 

 𝐶)*M4 = 	𝐶*)M4 = 𝐶)*4M (8) 

 

Consequently, by exploiting the above relationship and imposing crystal symmetries, the number of 

reduced components is 36, and its matrix form can be written as:  

 

 

⎝

⎜⎜
⎛

𝜎7
𝜎Q
𝜎9
𝜎R
𝜎S
𝜎T⎠

⎟⎟
⎞
=

⎝

⎜
⎜
⎛

𝐶77 𝐶7Q 𝐶79 𝐶7R 𝐶7S 𝐶7T
𝐶77 𝐶QQ 𝐶Q9 𝐶QR 𝐶QS 𝐶QT
𝐶79 𝐶Q9 𝐶99 𝐶9R 𝐶9S 𝐶9T
𝐶7R 𝐶QR 𝐶9R 𝐶RR 𝐶RS 𝐶RT
𝐶7S 𝐶QS 𝐶9S 𝐶RS 𝐶SS 𝐶ST
𝐶7T 𝐶QT 𝐶9T 𝐶RT 𝐶ST 𝐶TT⎠

⎟
⎟
⎞

⎝

⎜⎜
⎛

𝜀7
𝜀Q
𝜀9
𝜀R
𝜀S
𝜀T⎠

⎟⎟
⎞

 (9) 

 

Meanwhile, the total strain induced by the stress 𝜎 and temperature variation is expressed as the sum 

of the elastic strains and thermal eigenstrains as: 

 

 𝜀.C.34 = 𝜀043B.)? + 𝜀./01234 = 𝜀043B.)? + 𝛼ΔΤ (10) 

 

Hence, the anisotropic elasticity can be expressed as: 

 

 
𝜎)* = 𝐶)*M4𝜀M4043B.)? 

= 𝐶)*M4(𝜀M4.C.34 − 𝜀./01234) = 𝐶)*M4(𝜀M4.C.34 − 𝛼M4ΔT) 
(11) 
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2.2 Thermoelastic FEM 

The FEM approach is recognized as one of the powerful numerical methods that can be applied 

to numerous engineering analyses [25, 26]. Generally, it is not a simple task to solve an analytical 

solution satisfying the variational equations. For this reason, the FEM uses an approximation solution. 

As its name suggests, the FEM discretizes a domain (i.e. microstructure) into a number of simple-shaped 

finite elements. The domain integral of the weak field equation is then decomposed into integrals over 

each element, and, the solution is approximated by means of a simple polynomial form in the element. 

Thereby, the governing equations of the entire domain can be derived. Since the elements are connected 

with adjacent elements by sharing their nodes, adjacent elements have the same solution value at the 

shared nodes. 

In using the FEM, formulation of a linear or nonlinear system is considered and can be 

expressed as a matrix form, implying the forces acting on the elements are product of stiffness matrix 

and nodal displacement vector as [27]:  

 

 𝐾)*𝑢* = 𝐹)  or  𝑲𝒖 = 𝑭   (12) 

 

where 𝐾)* is global stiffness matrix, 𝑢* is the deflection at 𝑗./ node and 𝐹) is the force at the 𝑖./ node. 

The corresponding boldface denotes the matrix quantities for the system. As eq.(12) is similar to the 

linear relationship between stress and strain in eq.(11), adjustment can be made at the element level: 

 

 b𝑓̅(0)e = f𝑘h(0)ib𝑞h(0)e − {𝑓l̅
(0)}   (13) 

 

The element thermal force vector 𝑓l̅
(0) can be expressed as: 

 

 n𝑓l̅
(0)o = 𝐴𝐸𝛼Δ𝑇 q

−1
0
+1
0

r

𝑢h)
𝑣̅)
𝑢h*
𝑣̅)

   (14) 

 

In eq.(14), row addresses on the right-hand indicate the degrees of the freedom(DOF) corresponding to 

each force. The relationship between local and global displacements can be expressed by introducing 

the transformation matrix, [𝑇]:  

 

 {𝑞h} = [𝑇]{𝑞} (15) 
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Using the transpose of the transformation matrix [𝑇]l yields  

 

 {𝑓} = [𝑘]{𝑞} − {𝑓l} (16) 

 

And, the global equations at the structural level is obtained as: 

 

 [𝐾B]{𝑄B} = {𝐹B} + {𝐹lB} (17) 

 

Here, {𝐹lB} is the thermal load vector determined by assembling {𝑓l} in the elements. By substituting 

and striking out equations with zero DOFs, the global equations are obtained as: 

 

 [𝐾]{𝑄} = {𝐹} + {𝐹l} (18) 

 

In using the FEM for thermoelasticity, finding the numerical approximation to the analytical solution 

can be stated as solving unknown displacement {𝑄}, maintaining the momentum of thermoelasticity.  

 

2.3 Thermoelastic FFT 

 The fundamental framework of FFT was supposed by Moulinec and Suquet [15-17] giving us 

guidance for introducing the solution of the local problem of an inhomogeneous elastic medium. For 

the FFT-based method, on the contrary to FEM, a periodic unit cell (i.e. microstructure) is introduced, 

which are discretized into Fourier points, on behalf of a regular grid {𝐱}. By considering a homogeneous 

reference medium with stiffness 𝐶)*M4F  subject to a periodic polarization field 𝜏)*(𝐱) , the linear 

elasticity relationship in eq.(11) can be transformed into: 

 

 𝜎)*(𝐱) = 𝐶)*M4F(𝐱)𝜀M4(𝐱) + 𝜏)*(𝐱) (19) 

 

In the above equation, the polarization field is given by: 

 

 τ)*(𝐱) = z𝐶)*M4(𝐱) − 𝐶)*M4F {εM4(𝐱) − 𝐶)*M4(𝐱)εM4∗ (𝐱) (20) 

 

where εM4(𝐱) and εM4∗ (𝐱) is total strain (𝜀M4.C.34) and thermal eigen strain (𝜀./01234), respectively. Since 

the strain field is related to the displacement field 𝑢M(𝐱) as: 
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 εM4(𝐱) =
~𝑢M,4(𝐱) + 𝑢4,M(𝐱)�

𝟐
 (21) 

 

and 𝜎)*,*(𝐱) is equal to zero for equilibrium, eq.(19) is transformed into: 

 

 𝐶)*M4F 𝑢M,4*(𝐱) + 𝜏)*,*(𝐱) = 0 (22) 

 

By means of the Green’s function 𝐺M2(𝐱 − 𝐱′), following equation can be obtained.  

 

 𝐶)*M4F 𝐺M2,4*(𝐱 − 𝐱′) + 𝛿)2𝛿(𝐱 − 𝐱′) = 0 (23) 

 

If 𝐺M2(𝐱) is known, eq.(22) can be rewritten with respect to the local fluctuation of the displacement 

field as: 

 

 𝑢M = ∫ 𝐺M)(𝐱 − 𝐱′)� 𝜏)*,*(𝐱′)d𝐱′  (24) 

 

In Fourier space {k}, the convolution integral in eq.(24) can be simplified by using Γ)*M4=sym(𝐺)M,*4): 

 

 𝑢�),*(𝐤) = Γ�)*M4(𝐤)𝜏̂M4(𝐤) for 𝐤 ≠ 0, and 𝑢�),*(𝟎) = 𝐸)* (25) 

 

where “^” signifies the Fourier transform and 𝐸)* represents the macroscopic strain applied to the unit 

cell. By means of Eqs. (24) and (25), operators can be calculated as: 

 

 
𝐺�)*(𝐤) = 𝐴)*�7(𝐤), where 𝐴)*(𝐤) = 𝑘*𝑘)𝐶)*M4F ,   

and Γ�)*M4(𝐤) = −𝑘*𝑘)𝐺�)*(𝐤) 
(26) 

 

Since the polarization field in real space 𝜏)*(𝐱)  is unknown, 𝜀)*(𝐱)  is guessed by using anti-

transformation and symmetrization of eq.(25), and then applied to eq.(20) to determine a new guess of 

the polarization field. Iterations for thermoelastic problem in terms of macroscopic strain is given 

according to [14, 28]:  

 

 𝐸)*
()) = 〈𝜀)*

())(𝐱)〉 − 𝐶)*M4F�� 〈𝜎M4
())(𝐱)〉 (27) 

   

where 〈∙〉 denotes average over the entire grid in Cartesian space. Such iterative procedure is converged 
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when the total strain field fulfil the appropriate tolerance of the output field. The error criterion for 

convergence test is:  

 

 𝑒𝑟𝑟()�7) =
〈∥ 𝜀)*

()�7)(𝐱) − 𝜀)*
())(𝐱) ∥〉

∥ 𝐸)*
()�7) ∥

 (28) 

 

If error is smaller than tolerance (i.e., equilibrium condition is fulfilled), simulation is completed. 

In summary, the algorithm begins by initialization as: 

 

1. Computation: 𝐸)*
(F) = 〈𝜀)*∗ (𝐱)〉 

2. Allocation: 𝜀)*
(F)(𝐱) = 𝐸)*

(F) 

3. Computation: sym(Γ�)*M4(𝐤))∀𝐤 

 

when 𝐸)*
()) and 𝜀)*

())(x) are known, iteration (𝑖+1) begins: 

 

1. Calculate the polarization field at (i+1): τ)*)�7(𝐱) = z𝐶)*M4(𝐱) − 𝐶)*M4F {εM4
())(𝐱) − 𝐶)*M4(𝐱)εM4∗ (𝐱) 

2. Fourier transformation of polarization field: τ�)�7(𝐱) = FFT(τ)�7(𝐱)) 

3. Compute strain field: 𝜀)*
()�7)(𝐱) = 𝐸)*

())+FFT�7(sym(Γ�)*M4(𝐤))	𝜏̂M4
()�7)(𝐤))(𝐱) 

4. Compute constitutive equation: 𝜎)*
()�7)(𝐱) = 𝐶)*M4(𝐱)(εM4

()�7)(𝐱) − εM4∗ (𝐱)) 

5. Applying boundary condition: 𝐸)*
()�7) = 〈𝜀)*

()�7)(𝐱)〉 − 𝐶)*M4F�� 〈𝜎M4
()�7)(𝐱)〉 

6. Finally, convergence test is performed using error criterion: 

 

2.4 Extreme Value Analysis  

 In this work, we focused on a method of data analysis by reference to the statistical extreme 

value analysis. Conventionally, prediction of mechanical response using numerical simulation usually 

relied on the incomplete descriptions, such as histogram, or concentrated on the average and standard 

deviation of data, ignoring the extreme values existing in the upper/lower tail of the distribution. Even 

though such descriptions provide the fundamental information of the stress and strain range from 

simulations, one has to give efforts on studying substantial statistical information to understand the 

momentous upper tail values, for instance, hot spot stress. As tail values have significant influences on 

material’s behavior, for instance, creep and fatigue damage, it is required to analyze the extreme values 

when modelling the materials [29-31].  
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2.4.1 Introduction to Extreme Value Analysis 

In the extreme value analysis, most commonly used approaches to define extreme values are 

the block maxima and the peaks-over-threshold (POT) approach [32]. The first method, in the block 

maxima approach, data sets are divided into bins of equal size, and extreme values are defined as the 

maximum of each predefined interval (such as regional annual maxima of rainfall) as illustrated in Fig.1 

(a). The second method, so called the POT approach, the extreme events are determined as all data sets 

exceeding threshold value as depicted in Fig.1 (b). The extreme events selected by means of these 

methods are expressed as full red circle. By using the POT analysis, many of authors have estimated 

large natural catastrophes such as extreme wind, wave, rainfall and earthquake events [33-36]. Since 

our areas of interests, the extreme values (hot spot ) of stress are not a time series, and, our main concern 

is to examine the single data sets above the threshold, the POT approach is chosen for this study. 

 

 

 Suppose 𝑋7, 𝑋Q, … , 𝑋A  are independent and identically distributed random variables, having 

marginal distribution function 𝐹. First of all, choose a sufficiently high threshold 𝑢 to determine the 

extreme values 𝑋) which exceed the threshold call. The idea of the POT method is that the stochastic 

behavior of distribution tail can be described as a conditional probability function [29, 37]:  

 

 𝐹�(𝑥) = 𝑃(𝑋 − 𝑢 ≤ 𝑥	|	𝑋 > 𝑢) = 	
𝐹(𝑢 + 𝑥) − 𝐹(𝑢)

1 − 𝐹(𝑢)
 (29) 

 

 The framework for the POT approach is provided by Pickands-Balkema-de Haan theorem 

which states that the distribution 𝐹� in eq.(29) converges to the generalized Pareto distribution (GPD) 

as threshold 𝑢 approaches right end point, simplified as: 

 

 𝐹�(𝑥) → 𝐺¤,¥(𝑥) as 𝑢 → ∞ (30) 

 

where 𝐺¤,¥ implies the GPD, 𝑢, 𝜎 and 𝜉 are the location, scale, and shape parameters, respectively. The 

(a) (b) 

Figure 1. Two widely used methodology in extreme value analysis. (a) the Block maxima and (b) the 
Peaks-over-threshold (POT). 
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GPD, a family of continuous probability distribution being used to statistical assessment of the 

distribution tail can be formulated as [29]: 

 

 𝐺¤,¨,¥(𝑥) =

⎩
⎪
⎨

⎪
⎧
1 − ­1 +

𝜉(𝑥 − 𝜇)
𝜎 ¯

�7¤
					𝑖𝑓		𝜉 ≠ 0

1 − exp ~−
𝑥 − 𝜇
𝜎 � 													𝑖𝑓	𝜉 = 0

 (31) 

 

The associated three parameters of the GPD has significant role, where shape (𝜉) parameter 

indicates spread, scale (𝜎) parameter implies length, and location (𝑢) parameter signifies the threshold 

of tail distribution. It is notable that 𝜎 and 𝜉 are functions of the threshold (𝜇), so that the properties of 

these estimators significantly depend on the behavior of distribution tail. The methodology is based on 

the assumption that excesses over high threshold can be approximated by the GPD. By fitting the data 

to the GPD, the threshold exceedances (i.e., extreme values) of data are characterized. Description in 

more detail can be found in [29].  

 

2.4.2 Tail Fitting using Extreme Value Analysis 

To discriminate extreme values as well as to choose a threshold, two useful graphical tools, 

the threshold choice plot and mean residual life plot were used [38].  

The threshold choice plot gave us a guidance for selecting excesses, regarding the stability 

property of the GPD. If the GPD is appropriate for excesses over the threshold 𝑢F , then it is also 

reasonable for another threshold 𝑢 > 𝑢F. The parameterization of updated value can be expressed as: 

 

 𝜎7 = 𝜎F + 𝜉F(𝜇7 − 𝜇F) and 𝜉F = 	 𝜉7 (32) 

 

By introducing a new parameter 𝜎∗ as: 

 

 𝜎∗ = 𝜎7 − 𝜉7𝜇7 (33) 

 

then, 𝜎∗ is independent of 𝜇F, and accordingly, 𝜎∗ and 𝜉7 are constant above 𝜇F. It implies that resulting 

threshold choice plot will be stable with reasonable threshold call.  

 In the mean residual plot, the expected value of excesses can be represented as: 

 

 𝐸[𝑋 − 𝜇|𝑋 > 𝜇] =
𝜎 ² + 𝜉𝜇
1 − 𝜉

 (34) 
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Where 𝜎�F  is the shape parameter of the GPD for excesses over threshold 𝜇F . From eq.(34), 

𝐸[𝑋 − 𝜇|𝑋 > 𝜇]  is a linear function of 𝜇 , which yields a graphical identification for appropriate 

threshold in modelling extreme values via the GPD. The above tools comprehensively dealt with the 

stability, flatness and linearity. For the interpretation subject to threshold selection, the POT package 

implemented in R was used [39].  

 

Ⅲ. Eshelby’s Inclusion Problem 
 

3.1 Introduction  

 Eshelby’s problem [8, 40] for the elastic fields in an ellipsoidal inclusion embedded within an 

infinite matrix is used as a benchmark to verify the TE-FEM and TE-FFT prediction. The well-known 

explicit formulae were derived by Eshelby that involve the elegant tensor named Eshelby tensor which 

links the strain in an inclusion to the eigenstrain. With this, elastic stress and strain fields inside the 

inclusion appeared to have uniform and homogeneous distribution. In micromechanics of materials, this 

solution has been cornerstone to estimate the effective properties, especially for the matrix-inclusion 

composites [41, 42]. The comprehensive description concerning Eshelby’s problem can be found in the 

book of Mura [43]. 

 Recently, B.S. Anglin et al. [20] used the Eshelby’s analytical solution for spherical and 

cylindrical inclusion geometries to verify the numerical method based on the FFT. It was found that the 

micromechanical behavior for simple geometries, i.e. spherical and cylindrical inclusion configurations, 

are in reasonably good agreement with the analytical solutions of the Eshelby. With reference to this 

well demonstrated results, spherical homogeneous inclusion configuration is adopted to verify two 

simulation methods as well as to investigate the discrepancy between two methods in predicting 

thermoelasticity. 

 

3.2 Simulation parameters 

 We began by assuming the isotropic elasticity for the composite of matrix-inclusion type. 

Material properties were determined refer to the previous work of B.S. Anglin et al [20] where the effect 

of stress in whisker formation of	𝛽-tin is considered. The relevant stiffness tensor of inclusion and 

matrix were calculated from isotropic elastic properties of 𝛽-tin (Young’s modulus and Poisson’s ratio 

are 65.4GPa and 0.42, respectively). The CTE tensor of inclusion and matrix was also calculated from 

the coefficients of linear thermal expansion, which are 15 × 10�T and 10 × 10�T for inclusion and 

matrix, respectively. Thermal loading of 1000 K is applied to impose temperature gradient, thereby 

producing misfit strain of 0.005 between inclusion and matrix.  

 Input microstructures with spherical inclusion (red) embedded in an infinite matrix (white in 

left, gray in right) are discretized on a regular voxel grid as shown in Fig.2. To investigate the effect of 
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resolution on thermoelastic simulation, microstructure with size (a),(b) 32×32×32 and (c),(d) 64×64×64 

are generated, where the left figures represent three-dimensional views, and, right figures show its 

corresponding cross-sectional views. Here, a volume fraction of spherical inclusion is maintained as 

0.8%, so the radius of voxelized sphere is roughly determined to be 4 and 8 voxel elements for 

dimension 32×32×32 and 64×64×64. The structural elements of eight-node linear 3D brick element 

with one Gauss points (C3D8R) are used for the FEM-based simulation, corresponding to a periodic 

unit cell of the one-point FFT-based simulations.  

 
 

 

3.3 Results & Discussion 

As a result of simulation for the Eshelby problem, stress distribution, especially diagonal 

components (𝜎77, 𝜎QQ) of the stress tensor were used for visualization and analysis of the results. The 

profile of each distribution was also compared to the Eshelby’s analytical solution line to verify both 

simulation methods.  

 

 

(a) (b) 

(c) (d) 

 
Figure 2. 3D digital microstructure with spherical inclusion (red) embedded in an infinite matrix is 
discretized on a regular voxel grid (a),(b) 32×32×32 and (c),(d) 64×64×64.  
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3.3.1. Stress distribution 

 Stress distribution on the cross section (the section in the middle of z-axis with x-axis horizontal, 

y-axis vertical) predicted from TE-FEM and TE-FFT are shown in Figs.3 and 4, where Fig.3 shows the 

results corresponding to the microstructure with size 32×32×32 and fig.4 shows its higher resolution, 

with size 64×64×64. In both Figs 3 and 4, 𝜎77 distribution resulting from (a) TE-FEM and (b) TE-FFT 

are represented, and, differences between two methods, defined by results of TE-FFT subtracted from 

TE-FEM, are depicted in (c). Corresponding results of 𝜎QQ are depicted in (d)-(f) in the same manner. 

Both predictions indicate a similar trend that diagonal stress values (𝜎77 and 𝜎QQ) approach zero at the 

edges, demonstrating that periodic boundary conditions of input microstructure are well applied in terms 

of infinite matrix of Eshelby’s case. In Fig.3, each diagonal stress predicted from (a), (d) TE-FEM shows 

large oscillation like mosaic pattern, especially near inclusion-matrix interfaces, while (b), (d) TE-FFT 

represents monotonically changing distribution. The differences between two methods are presented in 

(c) and (f). The region where TE-FEM calculates higher stress than TE-FFT is expressed as red while 

its opposite case is represented as blue. Such differences also appeared as mosaic pattern at local 

interfaces, which may be affected by TE-FEM prediction. It is also found that the variations observed 

in TE-FEM prediction mitigated with increasing resolution from 32×32×32 to 64×64×64 as shown in 

Fig.3 (a), (d) and Fig.4 (a), (d). Moreover, local differences between each calculation also decreased 

with increasing resolution. 

 

3.3.2 Stress profiles 

 In order to verify the elastic response calculated from each method, 𝜎77 and 𝜎QQ components 

along x-axis through the center of the microstructure were measured and compared to the Eshelby’s 

analytical solution. The corresponding stress profile for 32×32×32 and 64×64×64 resolutions are 

shown in Figs.5 and 6, respectively. As has previously been explained, stress values are observed to be 

closer to zero as the distance from the center of microstructure approaches to both edges. Stress profiles 

predicted from TE-FEM and TE-FFT for 32×32×32 resolution is overlaid on calculated Eshelby’s 

stress profile (black solid line), respectively. Here, stress value resulting from TE-FEM is represented 

as red open square, and of TE-FFT is depicted as blue open circle. It is notable that in both Figs.5 and 

6, (a) 𝜎77 and (b) 𝜎QQ profiles follow the Eshelby’s analytical line roughly, while most of deviations are 

observed near inclusion-matrix interfaces as shown in magnified graph in the right of each figure.  

According to the Eshelby’s solution, theoretical homogeneous stress inside the inclusion is -

376.05 MPa and corresponding average 𝜎77 predicted from TE-FEM and TE-FFT are -370.99 and -

375.93 MPa, respectively. The relative differences between Eshelby and each method is 1.35% for TE-

FEM prediction and 0.03% for TE-FFT prediction. It implies that prediction of TE-FFT is much closer 

to the analytical solution of Eshelby.  
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(a) (b) (c) 

(d) (e) (f) 

Figure 3. Stress fields on cross section (the section in the middle of z-axis with x-axis 
horizontal, y-axis vertical) predicted by TE-FEM and TE-FFT for a 32×32×32 resolution. 𝜎77 
distribution resulting from (a) TE-FEM, (b) TE-FFT, and (c) differences between each method 
are shown. (d)-(e) are corresponding distribution of 𝜎QQ. 

(a) (b) (c) 

(d) (e) (f) 

Figure 4. Stress fields on cross section predicted with TE-FEM and TE-FFT for a 64×64×64 
resolution. 𝜎77 distribution resulting from (a) TE-FEM, (b) TE-FFT, and (c) differences between 
each method are shown. (d)-(e) are corresponding distribution of 𝜎QQ. 
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In Fig.5 (a), 𝜎77 profile calculated from TE-FFT shows comparatively monotonic distribution 

as observed in previous section while a certain amount of fluctuation is observed in TE-FEM prediction. 

(b) Average 𝜎QQ inside the inclusion computed from TE-FEM and TE-FFT are -373.08 and -371.01 MPa, 

respectively. As with 𝜎77 profile, TE-FEM prediction shows relatively severe variation than TE-FFT 

prediction in calculating 𝜎QQ profile. Similarly, each stress profile for 64×64×64 resolution is presented 

in Fig.6. It is observed that variations performed in 32×32×32 resolution became weaker with 

increasing resolution, which implies that 64×64×64 resolution is much reasonable to approximate 

Eshelby’s solution. Average and standard deviation of stress within the inclusion depending on each 

resolution is given in Table 1. It is also found that the difference and standard deviation with respect to 

Eshelby’s analytical solution were decreased with refined, higher resolution.  

In terms of computation time, FFT-based simulation for a homogeneous Eshelby case with 

size 32×32×32 and 64×64×64 only took less than a minute in apple iMac (3.2GHz quad-core Intel 

Core i5). In the meantime, for an FEM simulation, a dual core processor desktop machine (Intel Xeon 

2.3 GHz CPU) is used. 232sec. and 2,103sec. was required to implement Eshelby’s case with resolution 

32×32×32 and 64×64×64, respectively, as shown in Table 2. 

 

Table 1. 
The average and standard deviation of 𝜎77 and 𝜎QQ distribution inside the inclusion. The analytical 
value measured by Eshelby’s theory is 376.05 MPa 

Resolution 
Analytical 

value 

Average (Standard deviation) 

𝜎77 (MPa) 𝜎QQ (MPa) 

FEM FFT FEM FFT 

32×32×32 
-376.05 

-370.99 (24.45) -375.93 (7.74) -373.08 (10.40) -371.01 (3.88) 

64×64×64 -372.92 (7.10) -373.81 (5.10) -372.26 (4.02) -372.21 (2.55) 

 
Table 2. 
The simulation time for computing Eshelby problem.  

Resolution 
Computation Time (sec.) 

FEM FFT 

32×32×32 232 2 

64×64×64 2,103 17 
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(a) 

(b) 

Figure 5. Profiles resulting from TE-FEM (red open circle) and TE-FFT (blue open circle) for 
32×32×32 resolution on stress profile calculated from Eshelby (black solid line).  

Figure 6. Profiles resulting from TE-FEM (red open circle) and TE-FFT (blue open circle) for 
64×64×64 resolution on stress profile calculated from Eshelby (black solid line). 

(a) 

(b) 
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Ⅳ. Thermoelastic Response of a Polycrystalline Material 
 

4.1 Introduction 

 In order to investigate the elastic local fields of polycrystalline material under thermal loading, 

a voxellated, three-dimensional hypothetical polycrystal is generated as an input microstructure. In this 

study, materials with isotropic and anisotropic case were considered. For the simulation of isotropic 

case, material properties of Al7075, having FCC crystal structure, were used to examine the elastic 

response resulting from isotropic CTE and anisotropic nature of stiffness tensor. For the anisotropic 

case, material properties of Ti-5Al-2.5Sn 𝛼-Ti alloy were used to analyze the effect of anisotropy in 

stiffness and CTE tensor.  

 

 

4.2 Model description 

 As an input microstructure (RVE) for TE-FEM and TE-FFT simulations, a 3D hypothetical 

polycrystalline microstructure was generated by means of Monte Carlo grain growth method. The 

process of grain growth was carried out while being forced to have a periodic grain structure in every 

three direction, so that the periodic boundary conditions for the FEM and FFT simulations could be 

optimized. Fig.7 shows (a) the generated hypothetical microstructure and (b) corresponding distribution 

of normalized grain size, with respect to the radius of grain. Dimension of the synthetic microstructure 

was 64×64×64 and average grain radius distributed in the microstructure was 5.06. As shown in Fig.8 

(b), grain size does not exhibit in small value (< 0.3), implying that grains with small size were 

(a) (b) 

Figure 7. (a) A generated hypothetical 3D microstructure with size 64×64×64 and (b) its 
corresponding normalized grain size distribution. 
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purposely removed to avoid complexity of elements for simulation, due to the small element size with 

different orientation. The generated polycrystalline microstructure consists of 337 grains, and, 

individual color scale in Fig.7 (a) indicates that different orientation (spin number) is assigned to each 

grain.  

Both the isotropic and anisotropic case were taken into account to investigate the discrepancy 

in elastic response between TE-FEM and TE-FFT predictions as well as to explore the effects of 

isotropy and anisotropy on thermoelastic response of polycrystal according to the simulation methods. 

In order to impose thermal loading, temperature of the system was increased from 0K through 300K for 

both simulations.  

 

4.3 Isotropic Case 

 

4.3.1 Material Selection 

For the isotropic case, material properties of Al7075 is used. Both the effect of texture and 

anisotropic nature of cubic material are assured by assigning relevant tensor to corresponding grains, 

which are rotated beforehand on the basis of their crystallographic orientations. In this regard, 5 sets of 

random orientations are generated, and, used to compensate the influence of randomness. The elastic 

stiffness coefficients used for the simulations are as follows, which are calculated from the young’s 

modulus and Poisson’s ratio of Al7075 given in Refs [44].  

 

 𝐶77 = 105.2𝐺𝑃𝑎, 	𝐶7Q = 51.8𝐺𝑃𝑎, 	𝐶RR = 26.9𝐺𝑃𝑎 (35) 

 

The CTE tensors are in accordance with the linear CTE given by:  

 

 𝛼77, 𝛼QQ, 𝛼99 =	21.6∙ 10�T/Κ (36) 

 

4.3.2 Comparison of local response: von Mises equivalent stress distribution 

In this section, the field variable used is von Mises equivalent stress and is referred to as ‘stress’ 

without further qualification. In Fig.8, stress distribution on the exterior surfaces of the microstructure 

is visualized where (a) represents results from TE-FEM approach for orientation set 1 to 5, respectively, 

and (b) displays corresponding results from TE-FFT approach. The high level of stress is indicated as 

red, while low level is represented as blue. The pattern in stress distribution resulting from both methods 

are visually consistent, where high stress is appeared in the grain boundaries, which implies that the 

variations in stress are affected by the grain structure.  

Fig.9 (a) shows calculated differences (Subtraction of TE-FFT prediction from TE-FEM 

prediction) in stress between two predictions. When TE-FEM prediction is higher than TEFFT 
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prediction, stress field is identified as red, and, represented as blue for the opposite case. A few 

differences between two predictions are depicted as green in the spectrum. Large differences are 

observed in the grain boundaries, junctions, and small grains, consistent with the characteristic of 

localized high stress. Fig.9 (b) shows corresponding percent error which are calculated from absolute 

value of differences divided by stress values from FFT prediction multiplied by 100. The distributions 

of estimated percent error again display similar trend that observed in differences, as in (a). It is inferred 

that such behavior is involved in extreme values of high stress (hot spots) other than average value of 

stress.  

To observe the relationship between stress distribution and grain structure, plots of stress 

versus grain size (i.e. normalized radius of grain) are derived as shown in Fig.10. Here, the 

microstructure with orientation set 1 is used as a representative. (a) In the scatter plot, results from both 

methods yield similar response that stress values are inversely proportional to the grain size. (b) In box 

plot, data sets with respect to the normalized grain size are divided into 0.5 and displayed with error bar 

(i.e. standard deviation). These results indicated a more definite conclusion that average and standard 

deviation of stress are increased with decreasing grain size. In both plots, results from TE-FEM and TE-

FFT were indicated as red and blue symbols, respectively. In addition, the ratio of stress resulting from 

two methods (stress from TEFEM / stress from TEFFT) versus grain size is compared as shown in 

Fig.11, where (a) shows the plot with wider range of stress ratio (from 0 to 1.2) and (b) limited its stress 

range as from 0.96 to 1.06 so as to obtain more precise information. The variations in the stress ratio 

(i.e. differences in calculated stress between TE-FEM and TE-FFT) are observed to have relatively 

wider range (0.975 ~ 1.05) in small grains, while it is narrow, approximately 1.0 in large grains (at the 

right end point in the plot).  

In what follows, probability density functions of stress resulting from TE-FEM and TE-FFT 

for 1 to 5 sets of test microstructure are overlaid as shown in Fig.12. The histogram of stress data sets 

calculated from TE-FEM and TE-FFT is represented as red and blue, respectively. However, it is hard 

to distinguish the distinctiveness between each result due to the strong resemblance in both distributions. 

Otherwise, these graphs can be indicative of normal shape and long upper tails of distributions, 

consistent with the appearance of hot spots shown in Fig.9. 

 Table 3. summarizes the descriptive statistics for stress for all five sets of test microstructure. 

It is notable that average, maximum, and standard deviation of stress resulting from TE-FEM is higher 

than TE-FFT for every five case, denoting the potential distinction between two methods are engaged 

in extreme values of the stress distribution. 
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(a) (b) 

Set 1 

Set 2 

Set 3 

Set 4 

Set 5 

Figure 8. Stress field (von Mises equivalent stress) on the cross section of the microstructure. (a) 
prediction from TE-FEM for random orientation set 1 to 5, respectively, and (b) displays 
relative results from TE-FFT.  



 21 

 

(a) (b) 

Set 1 

Set 2 

Set 3 

Set 4 

Set 5 

Figure 9. (a) Calculated differences in stress between two methods. When TEFEM prediction is 
higher than TEFFT prediction, stress field is identified as red, and, represented as blue for the 
opposite case. (b) Percent error calculated from absolute value of differences divided by stress 
values from FFT prediction times 100.  
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Table 3. 
Descrptive statistics for stress for all five sets of test microstructure for isotropic case.    

Set 1 Set 2 Set 3 Set 4 Set 5 

FEM FFT FEM FFT FEM FFT FEM FFT FEM FFT 

Mean 21.50 21.40 21.25 21.16 21.36 21.28 21.74 21.63 21.54 21.43 

Min. 1.13 1.10 1.19 1.28 1.59 1.57 1.32 1.08 1.75 1.44 

Max. 85.79 80.74 78.51 77.35 82.21 79.27 73.98 64.33 82.12 77.54 

Std.dev. 8.20 8.05 8.08 7.94 8.56 8.42 8.00 7.85 8.23 8.09 

 

Set 1 Set 2 Set 3 Set 4 Set 5 

(a) (b) 

Figure 11. The ratio of stress resulting from two methods versus grain size 

Figure 12. Probability density functions for stress resulting from TE-FEM (red) and TE-FFT (blue) 

(a) (b) 

Figure 10. (a) Scatter plot and (b) box plot of stress versus normalized grain size   
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4.3.3 Statistical Extreme Value Techniques 

In order to quantitatively compare the extremely high stress between TE-FEM and TE-FFT in 

terms of upper tail in distribution, extreme value analysis is applied [45]. In this case, probability plot 

is useful for testing lognormality of data set, depicting straight diagonal line if the data converges to 

truly lognormal distribution [46]. In this section, stress values of all five test microstructures have been 

combined into one data set for a comprehensive analysis, and, each value is normalized by its means 

for the direct comparison and quantification.   

Probability plots of comprehensive stress data sets resulting from both methods are plotted on 

the same graph as shown in Fig.13, where red open circle represents the stress from TE-FEM prediction 

and blue open circle indicates stress from TE-FFT prediction. A reference line is based on the theoretical 

probabilities estimated from both predictions. As mentioned above, a data close to unit diagonal implies 

reasonable model for lognormal distribution. In the meantime, substantial tail departures from linearity 

were appeared in both results.  

The upper tails of data sets from two methods were analyzed using extreme value tail fitting. 

Fig.14 shows the threshold choice plots and mean residual life plots for the data sets from (a) TE-FEM 

prediction and (b) TE-FFT prediction, respectively. As explained above, appropriate threshold calls 

were determined, subject to the stability and flatness of data plots (i.e., modified scale and shape 

parameters are constant above threshold call, once the GPD approximates an adequate tail). Therefore, 

appropriate threshold call could be selected in the range of 1.4 to 1.6 in both results. In terms of mean 

residual plot, graph is known to became linear above threshold level. In mean residual plots for both 

approaches, there is some evidence for linearity above 1.5. However, as the interpretation of threshold 

choice plot and mean residual life plot is not simple, POT package implemented in R is used to select 

threshold [39]. Statistics containing threshold call and the number of points above threshold call for the 

selected data sets of stress distribution are shown in Table 3. In this work, selected threshold calls are 

same for both methods, but, data sets from TE-FEM prediction appeared to have relatively large 

exceedances than from TE-FFT prediction.  

In what follows, the exceedances above threshold, i.e., the upper tails of the distribution were 

fitted to the GPD. For implementing fitting procedure, we also used POT packages in R. Scale (𝜎) and 

shape (𝜉) parameters were found to be 0.26836, -0.03446 for TE-FEM predictions and 0.26009, -

0.04899 for TE-FFT prediction, respectively. Resulting diagnostic plots for the fitted GPD are shown 

in Fig.15. As discussed in section 2.4, scale parameter denotes the spread of the fitted GPD while shape 

parameter governs length of the GPD tail. As the TE-FEM data set had larger scale parameter than the 

(a) TE-FFT data sets, indicating larger spread. As smaller shape parameter indicates a shorter tail, (b) 

TE-FFT has much shorter tail than TE-FEM. By quantifying spread and length of the GPD tail based 

on the parameters, distinctiveness between two methods could be stated that TE-FEM predicts much 

higher hot spots (extreme values) than TE-FFT as well as bring out much more hot spots.  
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(a) (b) 

Figure 12. Threshold choice plots and mean residual life plots for the stress resulting from (a) TE-
FEM and TE-FFT. 

Figure 11. Probability plots of normalized stress resulting from TE-FEM (red) and TE-FFT (blue) 

(a) (b) 

Figure 13. Diagnostic plots for the fitted GPD 



 25 

Table 4.  
Statistics for the stress data sets from TE-FEM and TE-FFT 

 Points above threshold (Proportion) Threshold call 

TE-FEM 134,355 (0.1025) 1.5 

TE-FFT 128,847 (0.0983) 1.5 

 

4.4 Anisotropic Case 

 

4.4.1 Material Selection 

 To examine the influence of the anisotropy on thermoelasticity, material properties of 𝛼-Ti alloy 

with hcp crystal structure were applied owing to its inherent anisotropy in stiffness and CTE. The 

coefficients of elastic stiffness are as follows, which are obtained from the literature [47]. 

 

 
𝐶77 = 160𝐺𝑃𝑎, 𝐶7Q = 90𝐺𝑃𝑎, 𝐶99 = 181𝐺𝑃𝑎,	 

	𝐶RR = 46.5𝐺𝑃𝑎, 𝐶TT = 35𝐺𝑃𝑎 
(35) 

 

CTE is significantly dependent on temperature, and highly correlated with crystallographic 

orientations. Contrary to the isotropic case of Al alloy, two principal axial coefficients are necessary to 

discuss the thermal expansion of anisotropic material. The CTE of 𝛼-Ti alloy were found to be [47]: 

 

 𝛼77, 𝛼QQ = 17.8 and	𝛼99 = 10.4 (36) 

 

By using eq.(3), the calculated anisotropy ratio in 𝛼-Ti alloy was 0.58, represents its high level of 

thermal expansion anisotropy.  

 

4.4.2 von Mises equivalent stress distribution 

 Anisotropic material properties of 𝛼-Ti alloy are rotated by random orientation sets 1 to 5, and, 

assigned to individual grains. Stress distribution on the microstructure were visualized in Fig.16. Like 

as Isotropic case, high stresses are locally distributed in the grain boundaries. By the way, on the 

contrary to the isotropic case, remarkable differences between each method are observed, especially in 

grain boundaries and small grains. Fig.17 shows (a) difference and (b) error percent distributions, which 

allows a more significant assessment of the distinctiveness between two methods. Since same 

hypothetical microstructure was used for simulation of both the isotropic and anisotropic cases, the only 

difference in input is material properties. Therefore, it can be concluded that anisotropy of materials 

affects the thermoelastic response of each method. Indeed, heterogeneous stiffness tensor and CTE give 

rise to inhomogeneous stress distribution near boundaries, and such responses are appeared to be 
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different depending on the simulation methods. With respect to the maximum error percent, result of 

anisotropic case shows much higher maximum error percent than isotropic case.  

 Probability density function for TE-FEM and TE-FFT calculations with 1 to 5 set is represented 

in Fig.19. Again, in contrast with isotropic case, different trend of distribution is clearly verified in mean 

and shape of each distribution. Moreover, as shown in descriptive statistics summarized in Table 4, the 

average, maximum, and standard deviation of stress resulting from TE-FFT were larger than TE-FEM. 

It is inferred that anisotropic behavior can be influenced by the calculation methods, where FEM 

adopted local equilibrium and FFT applied full field equilibrium.  

 

4.4.3 Application of Eshelby problem to anisotropic case 

 During verification process using Eshelby’s solution, only isotropic case was considered. Here, 

in order to figure out the discrepancy between isotropic and anisotropic case, the Eshelby problem is 

applied for the simulations of anisotropic case. At this time, von Mises equivalent stress was 

investigated for an analysis, consistent with the thermoelastic analysis of polycrystalline microstructure.  

 Isotropic material properties of 𝛽-tin is applied and its stress (von Mises equivalents tress) 

distribution is analyzed for a direct comparison. As shown in Fig.19, orientation of inclusion is rotated 

by Bunge Euler angle, increasing 30 degree from 0 to 90 degree. In (a)~(d), left two figures represent 

stress fields in cross-section resulting from TE-FEM and TE-FFT. Despite it was hard to distinguish 

differences between each method in terms of diagonal stress in section 3.3.1, notable variations are 

appeared inside the inclusion and near the interface, in terms of von Mises equivalent stress. Meanwhile, 

stress profiles resulting from both methods approximately follow the Eshelby’s analytical line as shown 

in the right. By the way, no particular trend was observed according to the changing rotation.  

 As an anisotropic material property, 𝛼-Ti alloy is selected and the orientation of inclusion is 

also rotated. Stress distributions and profiles with changing orientation are shown in Fig.20. (a) Before 

the rotation (i.e., the orientation angle set of inclusion is 0°, 0°, 0°), deviation is not large. When (b) the 

x-axis angle is rotated from 0° to 30° (i.e., the orientation angle set of inclusion is 0°, 30°, 0°), stress 

inside the inclusion predicted from TE-FFT is significantly increased relative to the TE-FEM prediction. 

In this case, both stress distribution and profile show significant differences between two responses. 

Such tendency is still noticeable when (c) the x-axis angle is rotated from 30° to 60°. Consequently, it 

is assumed that TE-FEM approach is less sensitive to anisotropic effect than TE-FFT approach. In other 

words, the sensitivity to anisotropy is different according to the simulation methods. 
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(a) (b) 

Set 1 

Set 2 

Set 3 

Set 4 

Set 5 

Figure 14. Stress fields on the cross section of the microstructure. (a) prediction from TE-FEM for 
random orientation set 1 to 5, respectively, and (b) displays relative results from TE-FFT.  
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(a) (b) 

Set 1 

Set 2 

Set 3 

Set 4 

Set 5 

Figure 15. Calculated differences (Subtraction of TE-FFT results from TE-FEM prediction) in stress 
between two methods. (b) shows corresponding percent error which are calculated from absolute va
lue of differences divided by stress values from FFT prediction times 100.  
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Set 1 Set 2 Set 3 Set 4 Set 5 

Figure 17. Probability distribution function for stress from TE-FEM (red) and TE-FFT (blue).  
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Figure 16. Stress field on cross section resulting from TE-FEM, TE-FFT (left) and relative profiles 
compared to Eshelby case for isotropic case. 

Figure 18. Stress field on cross section resulting from TE-FEM, TE-FFT (left) and relative profiles 
compared to Eshelby case for anisotropic case.  
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Table 5. 
Descrptive statistics for stress for all five sets of test microstructure for anisotropic case.   

 

Ver 1 Ver 2 Ver 3 Ver 4 Ver 5 

FEM FFT FEM FFT FEM FFT FEM FFT FEM FFT 

Mean 85.52 93.28 85.91 98.84 95.41 109.86 88.42 102.6 86 99 

Min. 6.09 4.2 4.84 6.63 3.26 7.34 5.18 6.03 3.23 6.08 

Max. 312.64 321.61 279.8 319.92 311.03 343.83 311.27 330.81 249.87 302.74 

Std.dev. 32.54 33.72 31.87 36.89 34.68 38.85 29.36 34.18 30.19 35.9 

 

 

Ⅴ. Conclusion 
 In this research, thermoelastic response of isotropic and anisotropic polycrystalline materials 

between FEM and FFT were compared qualitatively and quantitatively. At first, thermoelastic responses 

calculated from both methods are verified by using well known analytical solution known as Eshelby 

problem. The accuracy of both methods improved well with increasing resolution, and such effect was 

much significantly appeared in FEM approach. From both calculations, stress profiles follow the 

Eshelby’s analytical line roughly, however, deviations are still observed near interfaces between 

inclusion and matrix.   

 With respect to polycrystalline materials, both isotropic and anisotropic case were investigated. 

For isotropic case, stress predicted from both methods exhibit similar average value, but show 

differences in extreme values. Especially, large differences and errors are usually appeared in the grain 

boundaries and junctions. As a results of extreme value analysis, it is observed that TE-FEM predicts 

more and high hot spots stress than TE-FFT. 

 For an anisotropic case, each method exhibits different trends in mean value as well as shape 

of distribution. On the contrary to isotropic case, TE-FFT predicts more high stress than TE-FEM. 

Consequently, it is found that sensitivity to anisotropy is different according to the methods.  
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