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Abstract 

 

Iron oxide nanoparticles (IONPs) have received considerable attention owing to its various 

biomedical application, including magnetic resonance imaging contrast agent, cancer targeting, and 

drug delivery. For the in-vivo application, the IONPs are required to be highly stable and biocompatible. 

However, the IONPs initially synthesized in organic solvent have hydrophobic ligands and they are 

unstable and toxic in physiological conditions. Therefore, surface modification of the IONPs must be 

considered to change hydrophobic ligands into hydrophilic ligands for bio-application. After the surface 

modification, physical properties of the IONPs are modified such as size, shape, hydrophobicity, surface 

charge, and coating materials. Especially, the surface charge of the IONPs is one of the most important 

factors because it affects colloidal stability of the IONPs and interactions with biomolecule in 

physiological condition. In our study, we fabricated highly stable and non-toxic IONPs via surface 

modification and tested their biocompatibility and potential for bio-functionalization. To process the 

surface modification, we synthesized PEG-based three different charged ligands via reversible addition-

fragmentation chain transfer-mediated (RAFT) polymerization and conducted the toxicological 

evaluation in vitro and in vivo. All of the charged IONPs showed long-term colloidal stability during 

three months in aqueous solution without agglomeration and no significant cellular damage in the A549, 

Huh-7, and SH-SY5Y cells. The charged IONPs have no significant toxicity in balb/c mice. We further 

developed more stable multidentate catechol-based zwitterionic ligand (MCZ-ligand) compared to 

polyethylene glycol-based ligands via RAFT polymerization. The IONPs coated with MCZ-ligand 

showed superior colloidal stability in a wide ranges of pH and saline solution for 1 year and low 

nonspecific adsorption with bovine serum albumin proteins. Furthermore, we confirmed the potential 

for bio-functionalization of the MCZ-IONPs. Biomolecules, biotin and streptavidin were conjugated on 

the MCZ-IONPs via carbodiimide chemistry and the bio-functionalization was confirmed via strong 

interaction between biotin and streptavidin. Consequently, our charged IONPs and zwitterionic IONPs 

performed excellent colloidal stability and non-toxicity in physiological conditions. These results open 

a possibility for biomedical application of the IONPs. 
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I. Introduction 

 

1.1 Iron Oxide Nanoparticles and Basic Properties 

 

Nanomaterials are defined as materials with one, two, or three external dimensions ranging from 1 

to 100 nm-the nanoscale.1 The uniform nanomaterials show many attractive properties such as electrical, 

optical, magnetic, and chemical properties, which cannot be accomplished by their bulk counterparts.2 

Among nanomaterials, magnetic nanoparticles (MNPs) with unique superparamagnetism, 

biocompatibility, and good stability have been extensively studied in many biomedical fields such as 

drug delivery, hyperthermia, magnetic resonance imaging (MRI), catalysis, data storage, electronic 

communication, and environmental remediation etc.3 Superparamagnetic iron oxide nanoparticles 

(SPIONs) consist of iron oxide cores such as magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-

Fe2O3). Both maghemite and magnetite are traditionally ferromagnetic in nature with saturation 

magnetization reaching to 92 emu g-1. However, they lose their permanent magnetism and become 

superparamagnetic when they are decreased in size to 30 nm or smaller.1 Iron oxide nanoparticles 

(IONPs) also have various unique properties such as high surface-to-volume ratio or size dependent 

magnetic properties, low toxicity and easy modification. With these properties, the IONPs can be 

applied for bio-medical fields. 

There are many methods to synthesize IONPs such as co-precipitation method, hydrothermal 

reactions, thermal decomposition, microemulsion method, sol-gel reactions, aerosol/vapor phase 

method, and electrochemical method etc.4 Among them, thermal decomposition method has unique 

advantages of good control of size and shapes, and high yield. However, synthesized IONPs has 

hydrophobic ligands like oleic acid during the thermal decomposition process. Therefore, surface 

modification of the oleic acid-coated IONPs (OAc-IONPs) with a hydrophilic ligand must be required 

for bio-application (Figure 1). 
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Figure 1. Surface modification of OAc-IONPs. 

  



11 

 

1.2 Surface Modification of IONPs 

 

Surface medication of IONP is a crucial process because of following reasons: (1) Maintenance of 

the unique properties; (2) Enhancement of colloidal stability of IONPs without aggregation; (3) 

Improvement of the surface activity of IONPs for functionalization with useful molecule; (4) 

Biocompatibility, non-toxicity in biological condition, and stealth function from immune system; (5) 

Long-term circulation in physiological conditions. Through the surface modification, IONPs can be 

facilitated for biomedical application. 

For the surface modification of IONPs, there are three main methods; encapsulation and ligand 

exchange. First, encapsulation needs amphiphilic polymer which has both hydrophobic parts and 

hydrophilic parts. IONPs capped with hydrophobic ligands are coated with the amphiphilic polymers 

again. The inserted hydrophobic parts of amphiphilic polymers can interact with the hydrophobic 

ligands on IONPs. The hydrophilic parts of amphiphilic polymers render the IONPs water-dispersible 

in aqueous solution. The functional group of amphiphilic polymers also allows IONPs to be bio-

conjugated.5 Second, ligand exchange is one of the main methods for simply making IONPs soluble in 

aqueous solution by substituting the hydrophobic ligands with hydrophilic materials.6-7 The ligands are 

composed of anchoring group, hydrophilic group, and functional group. Anchoring group should have 

strong affinity to surface of IONPs because the ligands competitively substitute the hydrophobic ligands. 

An incomplete exchange or irreversible adsorption of the ligand can cause low colloidal stability in 

aqueous solution or biological conditions. To solve this problem, bidentate or multidentate anchoring 

groups can be introduced because they have high binding affinity onto IONPs. Compared to monomeric 

ligands, multidentate ligands can improve the colloidal stability. 

There are biocompatible inorganic or organic materials used for surface modification of IONPs. The 

functionalized IONPs have been utilized in various bio-application fields such as biolabeling, 

bioseparation, and catalysis.5 First, a variety of inorganic materials have been studied including silica, 

metal, metal oxides, sulfides, and nonmetals to provide IONPs biocompatibility. Silica-coated IONPs 

were colloidally stable, photostable, and water-stable.8 Gold shells enabled easy modification by thiol-

containing ligands and its gold-coated IONPs were quite stable because of their inertness. Second, 

organic compounds offering functional groups such as carboxylate, amine, hydroxyl, and aldehyde 

groups are easily able to bio-functionalize IONPs. Biomolecules such as DNA, protein, antibody, 

enzyme, and other nano-biomolecules can be linked to IONPs by introducing the organic functional 

groups, In addition, organic materials can provide IONPs biocompatibility from monomer to macro 

molecules such as citrate, phosphate, liposomes, proteins, and polymers. Many polymers have been 
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studied for biocompatible IONPs. For example, there are natural polymers like dextran and chitosan, 

and synthetic polymer like polyethylene glycol(PEG), polyethylenimine, polyacrylic acids and so on. 

When introducing organic compounds, we have to consider following subjects of IONPs such as 

controlling of shape, surface structure, stability, biocompatibility, and magnetic properties of IONPs.  
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1.3 Bio-Application and Toxicity Studies of IONPs 

 

Bio-functionalization of IONPs is one of the most important topics for the bio-application. There are 

two main strategies for bio-functionalization; one is non-covalent strategies and the other is covalent 

strategies. Non-covalent strategies use physical interactions between IONPs and bio-molecules for 

instance ionic coupling, hydrophobic coupling, biotin-avidin system and so on. Although these non-

covalent strategies have an advantage of easy functionalization, the conjugation is unstable and 

reproducibility is very low. On the contrary, the covalent coupling can make the IONPs obtain more 

stable and stronger conjugation with bio-molecules such as antibodies, enzymes, oligonucleotides, 

carbohydrates, peptides, or surface receptors by introducing amine, aldehydes, and epoxides groups. 

There are representative covalent coupling strategies including EDC coupling reaction, maleimide 

coupling, and click-chemistry reaction.9 Among them, EDC coupling reaction is the most widely 

introduced method because of its advantages. For the EDC coupling, carbodiimide is used to activate 

the reaction between carboxylate and amine for forming amide bond, which can be applicable to 

numerous molecules. EDC coupling can be conducted in various organic or hydrophilic solution and it 

also can easily eliminate by-product via dialysis or gel-filtration after the reaction. Maleimide coupling 

generally uses thiol reactive maleimide group for a conjugation with primary amine and thiols and the 

reaction is often introduced in the gold nanoparticles because of the strong affinity between thiol and 

gold nanoparticles.10 Click-chemistry reaction is easy, fast, and bio-orthogonal reaction, which can be 

effectively applied both in vitro and in vivo with specific interaction. Cupper (I)-catalyzed azide-alkyne 

cycloaddition (CuAAC) is one of the classic methods in the Click-chemistry reaction by using cupper 

catalyst for forming 5-membered heteroatom ring from azide and alkyne where cupper can cause 

cytotoxicity. To lower the toxicity, strain-promoted azide-alkyne cycloaddition (SPAAC) was developed 

without cupper by introducing a strained difluorooctyne and the SPAAC successfully utilized to prove 

for azide in living systems.11-12 Through these bio-functionalization, the IONPs can be applied in various 

biomedical fields e.g., diagnostic, cancer targeting, drug delivery, imaging, MRI contrast agent, 

magnetic hyperthermia, immunoassay, tissue repair, and cell tracking. 

However, prior to application of IONPs in the bio-medical fields, the toxicity studies on surface 

modified IONPs must be conducted because surface modification directly have an influence on 

cell/tissue biodistribution and clearance/metabolization.13 Generally plain IONPs pose a low health 

hazard because Fe is a naturally occurring metal in the human body. As the body is adapted to 

metabolizing the particles into its elements, IONPs can be utilized in the body via subsequent metabolic 

processes.14 However, surface functionalized IONPs can result in very different cellular responses as 

mentioned above. There are various factors influencing the cytotoxicity, e.g., size, shape, surface charge, 
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hydrophobicity, surface porosity, and roughness. In cells, NP-cell interaction can influence cellular 

uptake and internalization, and further affect cell morphology, proliferation, cytoskeleton, 

differentiation, and survival.13 In vivo, IONPs injected via intravenously injection can be almost cleared 

from the systemic circulation by macrophages residing in the reticuloendothelial.15 After being taken 

up into the cells via receptor-mediated endocytosis, the IONPs can be metabolized in the lysosomal 

compartments16 and free iron can be circulated in the body naturally. Therefore, the small quantities of 

injected IONPs do not cause toxicity issues although high amounts can lead to a toxicity in body. Figure 

2 shows drainage route of nanoparticles through different organs according to their size property.  
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Figure 2. Drainage route of nanoparticles through different organs.17 
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II. Synthesis of Different Charged Iron Oxide Nanoparticles via RAFT 

Polymerization for In Vitro and In Vivo Toxicity Evaluation 

 

2.1. Introduction 

 

IONPs have promising potential in various biomedical fields such as MRI contrast agents, biosensors, 

hyperthermia, drug delivery, cancer targeting, transfection, cell tracking, and tissue repair because of 

their low toxicity, magnetic properties, and easy surface-modification.18-23 In order to apply the IONPs 

to the bio-application, the IONPs should have excellent colloidal stability, ability of functionalization 

with biomolecules, and non-toxicity in physiological condition.24  

Through the surface modification process, the IONPs can be stable and biocompatible in the 

biological environment and have a useful functional groups capable of binding to various 

biomolecules.25-27 However, in the surface modification process, surface physi-co-chemical properties 

of IONPs could be changed inevitably during the surface modification process such as hydrodynamic 

diameter (H.D), shape, porosity, and surface charge of IONPs. Among these properties, it is well known 

that the change of the surface charge significantly influences cytotoxicity because it directly has an 

effect on the interaction between the charged IONPs and biological components.28 

Many research groups have studied the effect of the charged IONPs based on cytotoxicity, 

genotoxicity, and neurotoxicity.29-33 However, there has been a limitation of colloidal stability and 

chemical structure of surface ligand on the charged IONPs. For example, the charged IONPs can induce 

nonspecific interaction with proteins, and the phenomenon promotes another interaction between the 

charged IONPs and cells. This protein corona increasing H.D of particles induces the precipitation of 

nanoparticles and consequently causes the toxicity from particle uptake, pharmacokinetics, and bio-

distribution.34-35 Furthermore, almost studies on the charged IONPs involve variable in toxicity 

evaluation because of the different chemical structures of the ligand. Rivet et al.36 demonstrated that the 

charged IONPs were synthesized by using aminosilane, dextran, and poly-(dimethylamine-co-

epichlorhydrin-co-ethylendiamine for the cortical neuron cytotoxicity and showed a correlation 

between metabolic activity and surface charge. However, the other properties except for surface charge 

decorated with varieties of amine, alcohol, and zwitterion ligands, can also have another unpredictable 

effect on cytotoxicity. Therefore, for an accurate evaluation of cytotoxicity based on the surface charge 

by itself, the material must have high colloidal stability in a biological condition and minimize other 

variables in structure. 
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In this dissertation, we designed three different charged IONPs for enhancing the colloidal stability 

and minimizing the other variable in structure by using reversible addition-fragmentation chain transfer-

mediated (RAFT) polymerization method to systematically evaluate the in vitro and in vivo toxicity. 

The RAFT polymerization method has the advantage of controlling the ratio of the constituent materials, 

the molecular weight of the polymer, and polydispersity to exhibit uniform surface characteristics as 

desired.37 We synthesized three different charged polymeric ligands via RAFT polymerization; negative 

ligand ((-) ligand) used carboxyl group, neutral ligand ((n) ligand) based PEG moiety, and positive 

ligand ((+) ligand) used amine group. They had the same backbone and low polydispersity index (PDI) 

values. Subsequently, we made the three different charged IONPs (negatively charged IONPs ((-) 

IONPs), neutral IONPs ((n) IONPs), and positively charged IONPs ((+) IONPs)) by ligand exchange to 

evenly coat the surface of IONPs. The colloidal stability of the charged IONPs lasted for three months 

in deionized water (DIW) without changing their initial characteristics. We further evaluated the 

cytotoxicity of three IONPs in three different human cell lines; human lung cancer cell, human liver 

cancer cell, and human neural cancer cell by investigating viability change (MTT assay) and 

morphological alteration on the cells (confocal microscopy). In addition, in vivo toxicity study was 

performed by hematological analysis and histological analysis in mice. Notably all of our synthesized 

IONPs with superior colloidal stability showed excellent biocompatibility in vivo and in vitro test. 
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2.2 Materials and Experimental Section 

 

2.2.1 Materials. Iron(III) chloride hexahydrate, oleic acid, Dimethyl sulfoxide, Polyethylene glycol 

methyl ether acrylate (average Mn 480), acrylic acid, and Thiazolyl blue tetrazolium bromide were 

purchased from Sigma Aldrich (Korea). Sodium oleate, N-[3-Dimethylamino)propyl]acrylamide, and 

2-(2-Aminoethoxy)ethanol were purchased from TCI. 2,2’-Azobisisobutyronitrile was purchased from 

Samchun. N-[2-(3,4-Dihydroxyphenyl)ethyl]-2-methylprop-2-enamide (DMA), and dibenzyl 

trithiocarbonate were synthesized as previous reported method.38-39 A549, Huh-7, and SH-SY5Y were 

purchased from ATCC. RPMI 1640, Dulbecco’s modified Eagle’s medium (DMEM), Penicillin-

Streptomycin, and Trypsin/EDTA were purchased from Lonza. Fetal bovine serum was purchased from 

Gibco. DPBS was purchased from Welgene. 

2.2.2 Synthesis of OAc-IONPs. OAc-IONPs which have high crystallinity and uniform size 

distribution were synthesized by previously described thermal decomposition method.40 Briefly, 1 

mmol of iron oleate complex and 0.73 mmol of oleic acid were dissolved in 1.5 g 1-octadecene. The 

mixture was heated up to 320°C for 1 h 30 min, and kept at the temperature for 30 min. The 

nanoparticles were cooled to room temperature, and precipitated using 50 mL acetone and ethanol 

mixed solvent by centrifugation to obtain purified nanoparticles. The size and morphologies of 

nanoparticles were observed by transmission electron microscopy (TEM).  

2.2.3 Synthesis of Different Charged Polymer Ligands. We synthesized different charged 

polymeric ligands by RAFT polymerization method using different functional group to provide 

different charge on IONPs.37 For synthesis of the (n) ligand, (-) ligand, and (+) ligand, we used PEG, 

acrylic acid and tertiary amine as functional group respectively. All of the polymers were equally 

composed of 20% of DMA and 60% of PEG groups, 20% of functional groups. All monomers (1 mmol) 

were mixed in 1 mL N,N-Dimethylformamide and dibenzyl trithiocarbonate (RAFT reagent, 50 μmol) 

and 2,2’-Azobisisobutyronitrile were added in 5 mL ampule. Freeze-pump-thaw cycles were repeated 

4 times, and the ampule was sealed under vacuo using a torch gas. The ampule was heated up to 70°C 

for overnight and after reaction, the excess residues were washed with ethyl ether by centrifugation with 

three times. Solvent was removed in vacuum oven to obtain the polymer products.  

2.2.4 Synthesis of Different Charged IONPs. Ligand exchange method were used to modify OAc-

IONPs with synthesized polymer ligands. We mixed OAc-IONPs (5 mg), each polymer (30 mg) and 2-

(2-Aminoethoxy)ethanol (100 mg) in CHCl3, and react for 12 h at 60°C. After reaction, the solution 

was precipitated using diethyl ether by centrifugation (3 min, 3000 rpm) and dissolved in DIW. To 

remove the excess reagent, we used a centrifugal filter (MWCO 50 k) and washed out three times.  
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2.2.5 Characterization. TEM images were observed on JEM-2100F (JEOL) which was operated at 

200 kV. Polymers were analyzed by 1H nuclear magnetic resonance (NMR) using AVANCE III HD 

(Bruker) instrument at 400 MHz using deuterated chloroform solution. Molecular weight and molecular 

weight distribution were analyzed by gel permeation chromatography (GPC) (Shimadzu, RI detector). 

H.D, size distribution, and zeta-potentials of the IONPs in DIW and cell culture media were determined 

by dynamic laser scattering (DLS) particles size analyzer Nano-ZS90 (Malvern). All measurements 

were performed in 400 μL disposable cuvette using a 4 mW He-Ne laser operating at a wavelength of 

633 nm at 25°C and the scattering angle was fixed at 90°. Zeta-potentials were measured to confirm 

surface charge of the IONPs. Samples were prepared in DIW or cell culture media by diluting.  

2.2.6 Cell Lines and Cell Culture. The used cell lines are A549, Huh-7, and SH-SY5Y. Each cell 

was cultured in different suitable media and A549 and Huh-7 were cultured in RPMI 1640, SH-SY5Y 

in DMEM supplemented with 10% fetal bovine serum, 100 IU/mL penicillin, and 100 µg/mL 

streptomycin at 37°C under 5% CO2 in humidified incubator. 

2.2.7 MTT Assay. Cell viability was measured using MTT assay. For the test, the cells were seeded 

into 96-well flat-bottom plates at a starting density of 1 x 104 cells per well (A549 and Huh-7), and 4 x 

104 (SH-SY5Y) cells per well. All cells were cultured for 24 h, the IONPs were treated in each well and 

incubated for 24 h. After that IONPs were washed by DPBS three times and 10 μL (5 mg/mL) of 

thiazolyl blue tetrazolium bromide solution was added to each of 96 wells for 3 h at 37°C CO2 incubator. 

Cells were lysed with 150 μL of dimethyl sulfoxide and absorbance was measured by microplate reader 

(GloMax®  Discover, Promega) at 560 nm wavelength. 

2.2.8 Animal. Balb/c mice (male, 6 weeks) were purchased from the Orient-Bio Co. (Seongnam, 

Korea) and the mice were adapted for 7 day under environmentally controlled animal room conditions 

of a temperature (23±3C), relative humidity (50±20%), and air ventilation of 10–20 times/h with a 

12/12 h light/dark cycle.  

2.2.9 Hematological and Histological Analysis. The mice were randomly grouped and the IONPs 

were treated by intravenous injection of 2 mg Fe/kg (low dose, n = 3) and 10 mg Fe/kg (high dose, n = 

3) for 24 h once to observe acute toxicity. 1X PBS was used as negative control. Blood was collected 

from the caudal vena cava and serum was obtained by centrifugation at 3,000 rpm for 10 min at room 

temperature. Blood urea nitrogen (BUN), creatinine (CREA), alanine aminotransaminase (ALT), 

alkaline phosphatase (ALP), aspartate aminotransaminase (AST), total bilirubin (TBIL) were measured 

using a Dry Chem-3000 autoanalyzer (FujiFilm, Tokyo, Japan). Histological toxicity was rated from 

level 0 to level 5 in six organ; liver, kidney, lung, heart, spleen, and brain. 

 



20 

 

2.3 Results and Discussion 

 

2.3.1 Synthesis and Characterization of OAc-IONPs and Different Charged Ligands. For the 

clinical application of IONPs such as MRI contrast agents, it is important to synthesize homogeneous 

IONPs because magnetic properties and surface properties depend on the size of the IONPs,27 so we 

synthesized monodisperse OAc-IONPs by using a thermal decomposition method which can effectively 

control the size, polydispersity, and shape of the NPs with large quantities.40 As shown in Figure 3a, 

the uniform distribution of OAc-IONPs was observed (about 11.6 ± 0.7 nm) by TEM. The H.D of OAc-

IONPs was characterized by DLS measurement confirming that the size of Oac-IONP was about 14.58 

nm and PDI value was 0.046 (Figure 3b). Uniformity and reproducibility of OAc-IONPs are 

indispensable requirements for approval of FDA and we successfully synthesized homogeneous OAc-

IONPs that have small size variation in six different batches. 

It is necessary to go through the surface modification step of the initial OAc-IONPs with hydrophilic 

ligand in order to apply them to the biomedical environment because the OAc-IONPs are dispersed 

only in the organic solvent such as hexane or chloroform. Therefore, we designed and synthesized the 

surface coating materials via RAFT polymerization method which have multidentate anchoring groups 

and hydrophilic groups to improve colloidal stability and hydrophilic property of the OAc-IONPs. The 

RAFT polymerization method has the following advantages: (1) Easy introduction of various functional 

groups based on the same backbone moiety just depending on the type of monomers used in the 

polymerization. (2) Control of the composition and molecular weight of polymers as desired. (3) 

Synthesis of polymers with narrow polydispersity. 

The synthesized ligands were composed of three groups: anchoring group, hydrophilic group, and 

functional group. Catechol-derived dopamine was used as an anchoring group, which could coordinate 

with the surface of IONPs. The functional group was used to give different charges. Carboxyl group 

(acrylic acid) was used as a negative charge and tertiary amine group (N-[3-(Dimethylamino)propyl] 

acrylamide)) was used as the positive charge. As a hydrophilic group, a substance containing PEG was 

used because the hydrophilic property of PEG improves the dispersibility of IONPs in aqueous solution. 

In general, PEG has several advantages such as increasing biocompatibility, reducing immunogenicity, 

and providing stability between particles via steric repulsion.41 It also reduces the adsorption of various 

plasma proteins42 and enables the circulation in the body for a long time in vivo. Therefore, PEG is one 

of the ideal coating materials.43-44 Prior to synthesis of charged ligands, we tested whether RAFT 

polymerization system could work successfully in the synthesis of (n) ligand. Molecular weight of 

polymer was well controlled by using RAFT agent. In case of using the RAFT agent, the PDI value was 
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1.19 although the PDI was 1.79 without RAFT agent (Figure 4a). Also, degree of polymerization (DP) 

of the (n) ligand was increased as the [Monomer]:[RAFT] ratio increase, although there was a difference 

between the theoretical [Monomer]:[RAFT] ratio and the measured degree of polymerization (DP) of 

the (n) ligand analyzed by GPC (in Figure 4b). We presupposed that this result could be caused by 

catechol group which could be used as radical scavenger. Also, we confirmed that well controllable 

polymerization of (n) ligand. It was possible to control of the monomer ratio in polymer by RAFT 

polymerization method. [DMA]:[PEG] ratio in polymer were well controlled as desired. In Figure 5, 

calculated ratio of DMA to PEG in (n) ligand measured by 1H NMR was corresponded approximately 

to theoretical ratio as we desired. Based on these results, three charged ligand were synthesized. We 

designed the final polymer composition with 20% of anchoring groups (DMA), 50% of hydrophilic 

groups (PEG moieties), and 30% of neutral groups, negatively or positively charged functional groups 

for charged IONPs respectively (Figure 6a). The reason of the polymer design was that dispersity of 

the nanoparticles in the cell culture media was remarkably decreased in the case of the ligand composed 

of 20% of the anchoring group and 80% of the functional group without the PEG part although the 

nanoparticles were well dispersed in the aqueous solution (Figure 7). It was confirmed that each 

monomer was polymerized at a desired ratio by the 1H NMR spectra as shown in Figure 6b. Each 

proton peak of DMA, PEG, and tertiary amine was observed at 6.5~6.8 ppm, 3.64 ppm, and 2.25 ppm 

by 1H NMR spectroscopy, respectively. The (n) ligand was functionalized with 18% of the anchoring 

group and 82% of the hydrophilic group. In the case of the (+) ligand, the anchoring group was 18%, 

the hydrophilic group was 49% and the quaternary amine functional group was 31%. In the case of the 

(-) ligand, the ratio of anchoring and hydrophilic groups were identical to the (+) ligand so we expect 

the monomer ratio of (-) ligand. Molecular weight of (-) ligand, (n) ligand, (+) ligand was 6741 (PDI = 

1.28), 9122 (PDI = 1.29), 3144 (PDI = 1.25) respectively, and the PDI values of all the ligands were 

low (PDI < 1.3).  
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Figure 3. Synthesis of OAc-IONPs. (a) TEM image and (b) H.D of OAc-IONPs of dispersed in hexane 

measured by DLS. 
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Figure 4. RAFT polymerization of (n) ligand. (a) Result of GPC analysis of (n) ligand in THF, showing 

narrow PDI with a [Monomer]:[RAFT] ratio of 20:1 and [AIBN]:[RAFT] ratio of 1:1 (red line), and 

poor PDI without RAFT agent (black line). (b) Controllable polymer DP as a [Monomer] to [RAFT] 

ratio. 
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Figure 5. Control of monomer ratio in polymers. Result of 1H-NMR analysis. 
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Figure 6. RAFT polymerization reaction for synthesis of different charged polymer ligands. (a) Scheme 

of ligand synthesis, and (b) 1H-NMR analysis of charged ligands in CDCl3. 
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Figure 7. Stability test of 80% positively charged IONPs. (a) H.D of 80% positively charged IONP 

dispersed in DIW and RPMI 1640 media. (b) Camera image of the IONPs dispersed in DIW, and (c) 

agglomerated in RPMI 1640 media. 
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2.3.2 Ligand Exchange of IONPs for Dispersing in the Aqueous Solution. After the synthesis of 

ligands, we did a ligand exchange to convert the hydrophobic material initially synthesized in the 

organic solvent into a water-dispersible hydrophilic material as shown in Figure 8a. The ligand 

exchange has the advantage of simply compacting ligands without significantly increasing of H.D. It is 

very important to coat the surface uniformly and compactly for the accurate analysis of surface 

characteristics and reproducible synthesis of IONPs. We could also obtain a consistent toxicity 

evaluation value under the proposed ligand exchange method. As shown in Figure 8b, the uniform 

distribution of OAc-IONPs (about 11.6 ± 0.7 nm) and surface-modified three IONPs were observed by 

TEM. The H.D of OAc-IONPs was also uniformed about 14.58 nm and PDI value was 0.046. Also, 

synthesized compact and uniform IONPs showed no big change of the H.D between OAc-IONPs and 

three charged IONPs (Figure 8c). The PDI values of them were low (0.25-0.3). The surface charge of 

each charged IONPs was measured by zeta-potential as shown in Figure 8d. The surface charge of (-) 

IONPs, (n) IONPs, and (+) IONPs was -39 mV, -0.6 mV, and +32 mV, respectively. As a result, three 

different charged IONPs were successfully synthesized. 
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Figure 8. Characterization of IONPs after the ligand exchange. (a) Schematic illustration of ligand 

exchange of OAc-IONPs with charged ligands, (b) TEM images of OAc-IONPs dispersed in hexane 

and three charged IONPs dispersed in DIW. (c) H.D of OAc-IONPs and the three charged IONPs, and 

(d) zeta-potential of three charge IONPs. 
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2.3.3 Stability of IONP in DIW and Cell Culture Media. It is important to provide the stable 

nanoparticles with the properties of the material maintained in an aqueous condition. Although the 

synthesized nanoparticles have initial colloidal stability, they may become unstable due to the changes 

in physical properties depending on the storage period and the storage method, which affects the toxicity 

of IONPs. Therefore, we tested the stability of IONPs by storing IONPs in DIW at 4°C refrigerator for 

three months after sealing them with a parafilm and wrapping them in the foil and by measuring DLS 

and zeta-potential value of IONPs. In Figure 9a, the H.D of the (-) IONPs and the (n) IONPs shows a 

very subtle increase in the DIW. The change of H.D of the (-) IONPs and (n) IONPs was ± 5.36 nm and 

± 4.98 nm over the three months, respectively. Moreover, the (+) IONP remained constant at ± 1.57 nm 

with almost no change in size. In Figure 9b, the zeta-potential value of (-) IONPs, (n) IONPs, and (+) 

IONPs was ± 6.24 mV, ± 2.31 mV, and ± 4.77 mV respectively. Notably all the synthesized IONPs with 

polymer ligands show high stability in their size and surface charge. 

We further studied the stability of IONPs in the cell culture media where there are a lot of factors 

affecting the physi-co-chemical properties of nanomaterials such as proteins, salts, and various pH 

conditions. We used RPMI 1640 media and DMEM media to find out the stability of the IONPs for two 

days and then analyzed the H.D by DLS as shown in Figure 9c and Figure 9d. In general, charged 

substances tend to aggregate or form protein corona in media.45 However, all of our charged IONPs 

showed no change in their size for two days in both RPMI 1640 and DMEM media. This means that all 

of the differently charged IONPs were stable enough to conduct in vitro test to fulfill the requirements 

of the same condition as above. The origin of the high stability of IONPs is from robust binding affinity 

between catechol and iron ion owing to multi-anchor group. In addition, introducing the PEG moiety 

and adequate charged group to surface of IONPs also endow optimized NP stability via combination of 

steric hindrance and charge-charge repulsion. Therefore, we could make an accurate toxic evaluation 

system with three kinds of charged IONPs with minimizing the variable factors derived from material 

property which would be addressed in the next section.   
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Figure 9. Colloidal stability of three charged IONPs in DIW for three months and cell culture media 

for two days. (a) H.D and (b) zeta-potential of three charged IONPs in water for three months. H.D of 

three charged IONPs (c) in RPMI1640 media and (d) in DMEM media for two days. 
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2.3.4 Cell Viability and Morphological alteration on the Cells. To determine if the surface charge 

of IONPs influences the cytotoxicity of IONPs, we conducted an MTT assay in the three human cell 

lines.46 A549 (human lung cancer cell), Huh-7 (human liver cancer cell), and SH-SY5Y (human neural 

cancer cell) were used as the cell lines to confirm the cytotoxicity of different three target organs such 

as lung, liver, and nerve against external substances.47 After each cell was treated with various 

concentration (0, 2, 8, 31, 125, and 500 µg Fe/mL) of each differently charged IONPs for 24 h, the 

adsorption of formazan was measured at 560 nm as shown in Figure 10. In each cell line, all of the 

IONPs showed the similar tendency of cell viability. The viability showed a slightly decrease depending 

on concentration of IONPs. It is generally known that positively charged nanoparticles are more uptaken 

because of electronic interaction with the cell membrane, which consequently leads to a serious toxicity. 

However, in our study, all of the three IONPs showed low toxicity even if it was treated with 500 µg 

Fe/mL.  

To verify the effect of IONPs on cell morphology, we confirmed cell morphology with differently 

charged IONPs by microscopy in each cells at two concentration of 10 µg Fe /mL and 100 µg Fe/mL 

as shown in Figure 11. It was confirmed that morphology alteration in A549, Huh-7, and SH-SY5Y 

cells was not observed up to high concentration compared to the control group. Based on the MTT assay 

and observation of cell morphology, we could conclude that there was no cytotoxicity in our charged 

IONPs. 
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Figure 10. Effect of the three charged IONPs on the viability of three different cells; A549, Huh-7, 

SH-SY5Y cells. All cells were exposed for 24 h to increasing concentrations upon 500 µg Fe/mL. Cell 

viability was analyzed by MTT assay. 
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Figure 11. Cell morphological alteration in A549, Huh-7, and SHSY-5Y after treatment of three IONPs 

with 10 and 100 μg Fe/mL by microscopy. 
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2.3.5 Hematological and Histological Toxicity in Mice. To observe the in vivo toxicity of three 

different charged IONPs in mice, we conducted hematological and histological analysis. The three 

differently charged IONPs were treated in mice at 2 µg Fe/g and 10 µg Fe/g for 24 h via intravenous 

injection respectively. In the hematological analysis, we tested following parameter: BUN and CREA 

associated with the kidney function and ALT, ALP, AST, and TBIL associated with the liver function. 

All the three IONPs showed no significant changes in all blood parameters compared to negative control 

(Figure 12).  

A histological examination was also performed and six organs were observed; liver, kidney, lung, 

heart, spleen and brain which were rated from level 0 to level 5. The (-) IONPs and (+) IONPs showed 

weak toxicity equivalent to level 1 in kidney and heart, respectively. Although the (n) IONPs showed 

toxicity of level 1 and 2 depend on concentration in both liver and kidney, it was not a serious toxicity 

such as necrosis. The (n) IONPs showed higher toxicity level than (-) IONPs and (+) IONPs because 

the (n) IONPs has more PEG moiety than other two IONPs. These results are consistent with reported 

studies to be related side effects of the PEGylation.48 However, all the synthesized IONPs showed no 

significant toxicity in vivo test such as necrosis or accurate toxicity (Figure 13). These results indicate 

that charged IONPs can apply to various biomedical field as biocompatible materials by controlling the 

surface ligand and depending on usage. 
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Figure 12. Hematological analysis of balb/c mice following injection of three charged IONPs. The 

graphs show the concentration of BUN, CREA, AST, ALT, ALP, and TBIL of mice after intravenous 

injection with the charged IONPs (2 µg/g and 10 µg/g) for 24 h. (n = 3) 
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Figure 13. Histological analysis of balb/c mice after exposure of three charged IONPs (2 µg/g and 10 

µg/g) for 24 hr in six organs; kidney, liver, lung, heart, spleen, and brain. Toxicity level rated from 0 to 

5. (n = 3) 
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2.4 Conclusions 

 

We successfully developed the three differently charged IONPs for high colloidal stability and 

performed a systematic evaluation of cytotoxicity in the three human cell lines-A549, Huh-7, and SH-

SY5Y. Through RAFT polymerization and ligand exchange method, we prepared three differently 

charged IONPs with DMA as multiple anchoring groups, hydrophilic PEG polymer, negative carboxylic 

acid, and positive quaternary amine. All of the charged IONPs showed monodispersion with narrow 

size distribution in aqueous solution and high colloidal stability for up to three months in DIW and two 

days in RPMI 1640 and DMEM cell culture media without agglomeration. Depending on the 

concentration of IONPs, toxicity was assessed in vitro in three cell lines (lung, liver, and brain) by 

investigating cell viability test, morphology change. In MTT assay, all of the charged IONPs showed 

no significant toxicity in each cells up to the maximum concentration of 500 µg Fe/mL, and there was 

also no critical damage of cell morphology in all each cells. In vivo test, we performed hematological 

and histological analysis in mice and the results showed that the three differently charged IONPs are 

non-toxic and biocompatible materials. These results suggest that the charged IONPs with high stability 

and low toxicity in physiological conditions have potential for application at various bio-medical field. 
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III. Multidentate Catechol-Based Zwitterionic Ligand for Excellent Stability 

and Bio-Functionalization to Iron Oxide Nanoparticles 

 

3.1. Introduction 

 

IONPs have been studied in various bio-application such as MRI contrast agent,49 drug delivery,50 

and hyperthermia51 because they have unique properties such as superparamagnetism, low toxicity, and 

easy surface modification.52 High-quality IONPs synthesized by thermal decomposition method in hot 

surfactant solution are required for additional surface modification process to render the IONPs 

biocompatibility because initial IONPs have hydrophobic ligands. In general, surface of the IONPs 

should meet the following requirements for bio-application; i) high colloidal stability in wide pH ranges 

and saline solutions, ii) compact and uniform H.D, iii) reduced nonspecific binding with proteins of 

biological media, and iv) easy functionalization to biomolecules. 

For the various biomedical application, it is important to do surface engineering of IONP for the 

functionalization. There are two main reliable approaches for biocompatible and bio-functional surface 

of IONPs such as encapsulation and ligand exchange. Encapsulation can preserve the native ligands 

and maintain the physical properties, but it tends to increase the H.D of the final hydrophilic 

nanoparticles.53 Ligand exchange can replace the hydrophobic shell on IONPs with biocompatible 

ligands, which consist of anchoring groups, hydrophilic groups, and functional groups. Ligand can be 

composed of anchoring group for binding onto the surface of the IONPs, hydrophilic group for 

dispersity in water such as PEG and zwitters, and other functional groups for conjugation of bio-

molecules. Catechol has been used as anchoriong group for binding onto the IONPs because it exhibits 

strong affinity to metal oxide nanoparticles such as iron oxide, titanium oxide, alunium oxide.54 PEG 

has been well known for stealth materials as hydrophilic molecules because it has good water solubility, 

colloidal stability, and long-term circulation time in vivo. In addition, multidentate anchoring groups 

improve colloidal stability of the IONPs in biological media by enhancing the affinity of ligands with 

the surface of IONPs, while monodentate anchoring groups which have weak binding affinity with the 

IONPs surface. Therefore, multidentate catechol-based PEG ligand systems and have been studied for 

surface coating of IONPs for high stability and biocompatibility.55 However, previous PEG-based 

IONPs have had limitations such as increasing H.D of IONPs, and being unstable in acidic or high 

saline buffer resulting in aggregation. These limitations can prevent renal excretion and cause the 

accumulation in organs.56  
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Recently, several research groups have reported zwitterionic materials to overcome these limitations 

of PEG. Zwitterionic ligands containing both positive and negative charge groups in one molecule have 

zero net charge. They provide strong hydration that can capsulate the NPs and prevent aggregation and 

excellent resistance to nonspecific protein adsorption owing to their highly dense and zero net charge.57-

58 The IONPs coated with zwitterionic polymer with multiple anchoring groups have been little studied 

so far, as well as have been not applied to quntum dots,59-60 gold nanoparticles61 and silver nanoparticle62 

athough there have been studies about development of low-molecular weight zwitterionic coating 

materials including sulfobetaine,37 carboxybetaine,63 phosphorylcholine,64 and poly(acrylic) aicd.65 

In this study, we have developed a new multidentate catechol-based zwitterionic ligand (MCZ-ligand) 

system in order to increase the colloidal stability of IONPs. MCZ-ligand was synthesized by RAFT 

polymerization which offers the ability to control properties of polymer as desired by varying 

composition and ratio of monomers. Hydrophobic ligand of initally synthesized IONPs was replaced 

with the MCZ-ligand by simple coating method one step and the MCZ-ligand coated IONPs (MCZ-

IONPs) was well dispersed in water uniformly and compactly, and MCZ-IONPs showed excellent 

colloidal stability and was able to easily introduce bio-functional groups.  

  



40 

 

3.2 Materials and Experimental Section 

 

3.2.1 Materials. [3-(Methacryloylamino)propyl]dimethyl(3-sulfopropyl)ammonium hydroxide 

inner salt (ZMA), 2-Carboxyethyl acrylate, 2-Cyano-2-propyl benzodithioate, 4,4’-Azobis(4-

cyanovaleric acid), Bis(hexamethylene)triamine, N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDC) were purchased from Sigma Aldrich. 2,2,2-Trifluoroethanol were purchased from 

Alfa-Aesar and N-Hydroxysulfosuccinimide sodium salt (sulfo-NHS) were purchased from TCI. 1X 

PBS, 1 M MES buffer were purchased from Biosesang. DMA and biotinylated methacrylate were 

synthesized as above procedures.  

3.2.2 Synthesis of OAc-IONPs. 12 nm sized OAc-IONPs were synthesized by using a previously 

described thermal decomposition method in the high boiling solvent.40 Synthesized OAc-IONPs were 

analyzed by TEM (JEOL, JEM-2100F). 

3.2.3 Synthesis of MCZ-Ligand. We synthesized MCZ-ligand by RAFT polymerization method. 

Polymer was composed of 20% DMA as anchoring groups and 80% ZMA as hydrophilic groups. First, 

DMA (0.2 mmol), 2-Cyano-2-propyl benzodithioate (0.05 mmol), 4,4’-Azobis(4-cyanovaleric acid) 

(0.05 mmol) were dissolved in 250 μL methanol, and ZMA (0.8 mmol) was dissolved in 750 μL 2,2,2-

Trifluoroethanol. Two solutions were mixed and transferred to 5 mL ampule. After 4 cycles of freeze-

pump-thaw, the ampule was sealed by using a torch under vacuo. The mixture was heated to 70°C and 

reacted for overnight. After reaction, the excess residues were washed with 2,2,2-Trifluoroethanol and 

acetone by centrifugation. We repeated this washing process three times and solvent was removed in 

vacuo to obtain the final polymer products. Synthesized polymers were confirmed by 1H NMR using 

AVANCE III HD (Bruker) instrument at 400 MHz using deuterium oxide solution. Molecular weight 

and molecular weight distribution were determined by GPC (Agilent). 

3.2.4 Surface Modification of OAc-IONPs via Ligand Exchange Method. OAc-IONPs (10 mg) 

were dissolved in 400 μL CHCl3, MCZ-ligand (30 mg) was dissolved in 200 μL 2, 2, 2-Trifluoroethanol. 

Two solutions were mixed in 10 m L vial and added 200 μL DIW. The vial was heat to 60°C and reacted 

for 12 h. After the reaction, the solution was precipitated in acetone by centrifugation (3 min, 3000 rpm) 

and the precipitates were dissolved in DIW. To remove the excess reagent, we used a centrifugal filter 

(MWCO 50 k) and washed out in DIW and repeated three times. Final MCZ-IONPs were stored in DIW.  

3.2.5 Stability Test of IONPs in Various pH Solutions and Saline Solutions. Different pH buffer 

solutions (pH 3, 5, 7, 9, 11) and various concentration of sodium chloride solution (0.1 M, 1 M, 2 M) 

were prepared and 12 nm MCZ-IONPs were added to each buffer solution. Final concentration of the 
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IONPs sample was 3 mM. The H.D of the IONPs was measured using a DLS (Malvern Zetasizer Nano-

ZS90) equipped with a detection angle fixed at 90˚ degrees and laser wavelength providing at 633 nm. 

3.2.6 Protein Adsorption Test. 0.05 μM MCZ-IONPs were mixed with various concentration bovine 

serum albumin (BSA) in 1X PBS. After incubation for 30 min, we measured H.D of IONPs by DLS. 

3.2.7 Synthesis of Amine Linked Biotinylated IONPs. First, we synthesized carboxylated 

zwitterionic ligand according to the same way as described above except for the addition 2-carboxyethyl 

acrylate. Next, OAc-IONPs were coated with the carboxylated zwitterionic ligand as according to 

described method above. For synthesis of amine functionalized IONPs, we used diamine linker; 

Bis(hexamethylene)triamine. In carboxylated zwitterionic coated IONPs solution (0.1 nmol), EDC (1 

μmol) and sulfo-NHS (0.5 μmol) were added and the mixtures were reacted in 10 mM MES buffer (pH 

6). After for 30 min, Bis(hexamethylene)triamine (1.2 μmol) was added the solution which was pH 8 

solution made by 0.5 M sodium carbonate buffer. Final volume of mixtures was 500 μL. Finally, amine 

linked biotinylated IONPs (AB-IONPs) were synthesized. Biotin (1 μmol) was dissolved in DMSO, 

and the biotin solution, EDC (1.2 μmol), and sulfo-NHS (0.6 μmol) were added the biotin solution. 

After 30 min, amine functionalized IONPs were mixed with the biotin solution, and the mixture was 

reacted for 12 h in sodium phosphate buffer solution (pH 8). After reaction, excess reagents were 

removed by centrifugal filter (MWCO 50 k) with three times. Final AB-IONPs were stored in DIW.  

3.2.8 Synthesis of Direct Biotinylated IONPs. For synthesis of direct biotinylated IONPs (DB-

IONPs), first biotinylated methacrylate were synthesized as previously report.37 After that, biotinylated 

zwitterionic polymer was synthesized by using DMA, ZMA, and biotinylated methacrylate. OAc-

IONPs were coated with the biotinylated zwitterionic polymers via same ligand exchange method as 

described above. Then, final DB-IONPs were obtained.  

3.2.9 Interaction Between Biotinylated IONPs and Streptavidin Solution. After synthesis of AB-

IONPs and DB-IONPs, the 0.01 μM biotinylated IONPs were incubated with various concentration of 

streptavidin solution dispersed in 1X PBS for 30 min at room temperature. After incubation, the H.D 

of IONPs solution was measured by DLS.   

3.2.10 Streptavidin Conjugation on IONPs. In carboxylated zwitterionic IONPs solution (0.1 

nmol), EDC (1 μmol) and sulfo-NHS (0.5 μmol) were added and reacted in 10 mM MES buffer (pH 6). 

After for 30 min, streptavidin solution dispersed in 1X PBS (0.5 nmol) was added the IONPs solution 

which was pH 8 solution made by 0.5 M sodium carbonate buffer. Final volume of mixtures was 1500 

μL, and the mixtures were reacted for 12 h in pH 8 buffer solution. After reaction, excess reagents were 

removed by spin-down repeated 3 times at 15000 rpm for 30 min with 1X PBS. The final streptavidin 

conjugated IONPs (SA-IONPs) were stored at 1X PBS.  
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3.2.11 Interaction Between SA-IONPs and Biotin-Coated Silicon Glass. For specific interaction 

of SA-IONPs with biotinylated silicon glass, we prepared both the (3-Aminopropyl)trimethoxysilane 

(APTMS) coated silicon glass as control group and biotinylated silicon glass. First, the oxygen plasma 

was treated on both side of silicone materials, and put the silicone materials into the APTMS solution 

(0.5 % of APTMS in acetonitrile, v/v) for 1 h at room temperature. After that, the materials were washed 

with acetonitrile and methanol, and dried via nitrogen blowing. For coupling of biotin on to the APTMS 

coated silicon glass, the APTMS coated glass was placed in a mixture of 10 mM biotin, 10 mM HATU 

and 20 mM DIPEA in N,N-Dimethylformamide for 2 h, and excess biotin was washed with N,N-

Dimethylformamide and methanol. After that, the glass was dried using nitrogen gas. SA-IONPs were 

treated on the APTMS coated silicon glass and biotin coated silicon glass, and the glass were analyzed 

by scanning electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analysis. 
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3.3 Result and Discussion 

 

3.3.1 Synthesis and Characterization of MCZ-Ligand  

MCZ-ligand was synthesized by RAFT polymerization. The chemical synthetic scheme of MCZ-

ligand are showed in Figure 14a. The MCZ-ligands were composed of followed by three groups; 

anchoring groups, hydrophilic groups, and functional groups. Sulfobetaine group of zwitterionic 

monomer was introduced for reduce nonspecific protein adsorption.56 2-Cyano-2-propyl benzodithioate 

and 4,4'-Azobis(4-cyanovaleric Acid) were used as RAFT agent and inhibition with ratio of 1:1. To 

optimize polymerization condition, we varied some parameters such as solvent, polymerization time. 

First, we optimized solvents condition by using N, N-Dimethylformamide, methanol, water, and 2,2,2-

Trifluoroethanol to solve the problem of precipitation during the polymerization due to the different 

solubility of two monomers. The polymer was synthesized uniformly without precipitation in the 

combination of methanol and 2,2,2-Trifluoroethanol (no data). Next, polymer was synthesized 

depending on time; 3 h, 9h, and 18 h. The molecular weight was increased depending on time although 

there was a little difference at 9 h and 18 h. Therefore, polymerization time was optimized to 12 h.  

A ratio of 20% DMA and 80% ZMA was reacted and the final product was analyzed by 1H NMR 

analysis (Figure 14b). The calculated ratio was 17% of DMA and 83% of ZMA in polymer and it was 

similar to what we intended. GPC analysis showed a single peak and uniform molecular weight of 

23,400 (PDI = 1.26).  
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Figure 14. Synthesis and characterization of MCZ-ligand. (a) Scheme of MCZ-ligand synthesis, and 

(b)
 1
H NMR analysis of MCZ-ligand in D2O. 
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3.3.2 Surface Modification of IONPs and Characterization  

 

Many previous reports processed two step for surface ligand exchange of IONPs because MCZ-

ligand has strong hydrophilic properties and it is very difficult to modify.66 The first step is transferring 

particles to relative hydrophilic organic solvent and the second step is transferring them to aqueous 

solution, which is complex and cumbersome. Therefore, we optimized ligand exchange method for one 

step method. Figure 15a shows scheme of ligand exchange. There are two system, one is one-phase 

system which uses chloroform, TFE, and water combination, and the other is two-phage system which 

uses hexane and water. The one-phase system was able to compactly and homogeneously modify, while 

the heterogeneous H.D of the MCZ-IONPs was shown in two-phase system. It is considered that the 

IONPs and the MCZ-ligand could not be collided and well separated in the hexane and water solutions 

because the MCZ-ligand is strong hydrophilic. In the one-phase system, the OAc-IONPs were modified 

to MCZ-IONPs uniformly and compactly, and OAc-IONPs dispersed in hexane were transferred to 

DIW (Figure 15b). The H.D of MCZ-IONPs was about 20 nm and a little increased compared to OAc-

IONPs (Figure 15c). The zeta-potential of MCZ-IONPs was about -20 mV. We presumed that weakly 

negatively charged zeta-potential could be caused by terminal sulfone group of MCZ-ligand (Figure 

15d). PEGylated IONPs were prepared as a control group for comparing MCZ-IONPs in next colloidal 

stability and nonspecific binding test. 
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Figure 15. Surface modification of OAc-IONPs. (a) Scheme of IONPs ligand exchange. (b) TEM image 

of OAc-IONPs dispersed in hexane and camera images of OAc-IONPs, MCZ-IONPs, and PEGylated 

IONPs dispersed in hexane or water. (c) H.D and (d) zeta-potential of MCZ-IONPs and PEGylated 

IONPs measured by DLS. 
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3.3.3 Colloidal Stability and Nonspecific Binding Test 

 

It is very important that hydrophilic IONPs should have colloidal stability in physiological condition 

because the unstable IONPs are likely to be agglomerated or precipitated due to interaction with 

biomolecule in protein rich biological media. Therefore, the colloidal stability of the MCZ-IONPs was 

investigated in wide pH ranges (pH 3, 5, 7, 9, 11, 13) and various concentration of saline solutions 

(NaCl 0.1 M, 1 M, 2 M) depending on time (1 hour, 1 day, 1 week, 1 month) by measuring H.D via 

DLS. The MCZ-IONPs were well dispersed in DIW, wide pH buffer solutions and various concentration 

saline solutions compared to PEGylated IONPs. 

In the pH data, the MCZ-IONPs were well dispersed in all pH condition, from pH three to pH eleven 

solution for one month, without significant increase of H.D (Figure 16a). However, the PEGylated 

IONPs were aggregated after the one week in pH 3 and after one month in all the pH ranges except for 

pH 9. In the sodium chloride data, the MCZ-IONPs were well dispersed in various concentration of 

sodium chloride, while H.D of PEGylated IONPs was slightly increased in all solutions after one month 

(Figure 16b). Surprisingly, the MCZ-IONPs were stable in all conditions after one year, while the 

PEGylated IONPs were unstable in all pH ranges and precipitated in 2 M NaCl after 1 year (Figure 17). 

We presupposed that the zwitterion could interact with water molecules to form a hydration layer via 

swelling of structure, it could encapsulate the IONPs in saline solutions and prevent agglomeration even 

in severe conditions.57 These results indicate that the MCZ-IONPs have excellent colloidal stability in 

harsh condition. 

Furthermore, protein adsorption of the IONPs was investigated. In biological environment, there are 

various biomolecules and the biomolecules can interact with the IONPs. After the interaction, protein 

corona can be formed and it can directly influence colloidal stability and behavior of the IONPs in cell 

and in vivo. To analyze nonspecific protein adsorption of the MCZ-IONPs and PEGylated IONPs, each 

IONPs was incubated with BSA proteins for 30 min in 1X PBS. As a result, the both MCZ-IONPs and 

PEGylated IONPs were maintained the initial H.D without a size increase or aggregation after 

incubation with BSA (Figure 18). Because the synthesized MCZ-IONPs are bipolar and negative 

charges induce charge repulsion, they have good dispersibility in water and superior stability in 

interaction with protein. Non-ionic PEG also maintained colloidal stability without adsorption because 

of its stealth characteristics. 
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Figure 16. Stability test of MCZ-IONPs and PEGylated IONPs. (a) IONPs dispersed in wide pH 

buffer ranges and (b) dispersed in various concentration saline solutions for 1 month. The H.D 

measured by DLS.  
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Figure 17. Stability test of MCZ-IONPs and PEGylated IONPs dispersed in wide pH buffer ranges and 

various concentration of saline solutions. (a) IONPs dispersed in pH buffers, and (b) dispersed in saline 

solutions for 1 year. The H.D measured by DLS. 
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Figure 18. Nonspecific binding test of MCZ-IONPs and PEGylated IONPs with BSA proteins. 
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3.3.4 Bio-Functionalization 

 

Bio-functionalization of IONPs is essential for application in various biomedical fields such as drug 

delivery carrier, targeting and therapeutic agent, MRI contrast agent, and imaging probe. For bio-

functionalization, ligands of the IONPs need functional groups such as carboxyl group, amine group, 

thiol group and so on. Generally IONPs are functionalized with useful bio-molecule via carbodiimide 

chemistry which forms amid bond. To investigate the potential of bio-functionalization of our 

synthesized MCZ-IONPs, biotin and streptavidin were selected as a small molecule and large molecule 

respectively because biotin and streptavidin have extremely high binding affinity each other. If biotin-

functionalized IONPs are mixed with a streptavidin solution at an appropriate concentration, the biotin-

functionalized IONPs will be agglomerated because of the interaction between biotin and streptavidin. 

Conversely, if SA-IONPs are mixed with a biotin solution, the same phenomenon occurs. In this study, 

biotin was conjugated on surface of the MCZ-IONPs in two different methods. One is using diamine 

linker (Figure 19a). First, carboxylated zwitterionic ligand was synthesized via RAFT polymerization 

and the OAc-IONPs were coated with the carboxylated zwitterionic ligand. Next, the carboxylated 

zwitterionic IONPs were functionalized with amine groups by using diamine linker. After that, biotin 

was conjugated with amine group functionalized IONPs. Then, AB-IONPs were synthesized. The other 

method is direct functionalization biotin onto the IONPs (Figure 19b). First, biotinylated zwitterionic 

polymer was synthesized and the OAc-IONPs were coated with the biotinylated zwitterionic polymers. 

Then, DB-IONPs were synthesized. The former has the great advantage that we can utilize the carboxyl 

group or amine group of IONPs to functionalize various molecule such as drug or targeting moieties as 

we desired and the latter is possible of simple and reliable biotin functionalization. In the synthesis of 

ligand, we easily the controlled of the composition of polymers. The ratio of carboxyl group was 

controlled and it was analyzed by 1H NMR (Figure 20). In NMR data, the ratio of carboxyl group was 

increased as more as added in polymers.  

Biotinylated IONPs were aggregated in streptavidin solution because of the strong interaction 

(Figure 21a). Therefore, we confirmed interaction between biotin on the IONPs and streptavidin 

solution after synthesis of AB-IONPs and DB-IONPs. The H.D change of the AB-IONPs and DB-

IONPs was observed after incubation with streptavidin solution, respectively. After adding the AB-

IONPs to streptavidin solution, the H.D of IONPs was changed. The AB-IONPs were decreased and at 

the same time and the aggregated molecules were observed because of biotin-streptavidin interaction 

(Figure 21b). In case of DB-IONPs, same trend of biotin-streptavidin interaction was observed. These 

results indicate that both AB-IONPs and BD-IONPs were successfully functionalized with biotin 

molecules. 
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To synthesize of SA-IONPs, carbodiimide chemistry was introduced for forming amide bond between 

carboxyl groups of carboxylated zwitterionic IONPs and amine groups of streptavidin. The SA-IONPs 

were analyzed by SEM and EDX analysis. Two types silicon glass were prepared, one was treated only 

APTMS and the other was coated with biotin. Figure 22a shows scheme of interaction between SA-

IONPs and silicon glass. After treatment of the SA-IONPs on each silicon glass, streptavidin-biotin 

interaction was observed by SEM image (Figure 22b). Compared to control groups coated with only 

APTMS, the SA-IONPs were more observed on the biotin coated silicon glass. In Figure 22c, an 

increase of iron and carbon element derived from SA-IONPs was confirmed by EDX analysis. The 

number and area of the SA-IONPs binding on glass were calculated as shown in Figure 22d and they 

were larger about 20 times than that of on the APTMS coated glass. These results indicate that the 

MCZ-IONPs were successfully functionalized with streptavidin. This means that our synthesized MCZ-

IONPs have a potential of bio-functionalization with various macromolecules. 
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Figure 19. Synthesis of biotinylated IONPs. (a) AD-IONPs and (b) DB-IONPs. 
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Figure 20. Synthesis of carboxylated zwitterionic ligand and control of the ratio of carboxyl group in 

polymers. The polymer was characterized by 1H NMR analysis. 

  



54 

 

 

 

Figure 21. Biotin-streptavidin interaction. (a) Scheme of interaction between biotinylated IONPs and 

streptavidin in solution. (b) The H.D change of AB-IONPs and DB-IONPs after interaction with 

streptavidin. 
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Figure 22. (a) Scheme of interaction between APTMS coated silicon glass or (b) biotin coated silicon 

glass and SA-IONPs. (b) SEM images, (c) EDX analysis of APTMS coated silicon glass treated SA-

IONPs and biotin coated silicon glass treated SA-IONPs, and (d) summary table of IONPs number and 

area interaction with silicon glass. 
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3.4 Conclusions 

 

In this study, we developed the MCZ-ligand by RAFT polymerization for excellent colloidal stability 

and easy bio-functionalization of IONPs. The MCZ-IONPs showed excellent colloidal stability at wide 

pH ranges and various concentrations of sodium chloride solution for 1 month and it is superior stable 

than PEGylated IONPs. In addition, the MCZ-IONPs showed the least nonspecific adsorption with BSA 

proteins. By introducing the multidentate catechol-based anchoring group, we could enhance binding 

affinity to IONPs. The IONPs showed good colloidal stability owing to the advantages of zwitterion. 

Furthermore, the MCZ-IONPs had the potential of bio-functionalization with useful bio-molecules such 

as biotin and streptavidin. We performed bio-functionalization of IONPs with biotin or streptavidin via 

strong interaction between biotin and streptavidin. We could simply synthesize functionalized ligands 

which have carboxyl groups, or amine groups by RAFT polymerization and conjugated streptavidin 

and biotin on to the IONPs. These result indicate that our MCZ-ligand provides highly excellent 

colloidal stability to the IONPs and this promising ligand system of IONPs can extend its ability of bio-

functionalization for biomedical application.  
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