

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master's Thesis

An Extremely Low-latency Congestion Control

for Mobile Cellular Networks

Shinik Park

Department of Computer Science and Engineering

Graduate School of UNIST

2019

[UCI]I804:31001-200000223915[UCI]I804:31001-200000223915

An Extremely Low-latency Congestion Control

for Mobile Cellular Networks

Shinik Park

Department of Computer Science and Engineering

Graduate School of UNIST

An Extremely Low-latency Congestion Control

for Mobile Cellular Networks

A thesis/dissertation

submitted to the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Master of Science

Shinik Park

 06/25/2019

Approved by

Advisor

Kyunghan Lee

An Extremely Low-latency Congestion Control

for Mobile Cellular Networks

Shinik Park

This certifies that the thesis/dissertation of Shinik Park is approved.

06/25/2019

 signature

 Kyunghan Lee

 signature

 Changhee Joo

 signature

 Hyoil Kim

Abstract

Since the diagnosis of severe bufferbloat in mobile cellular networks, a number of low-latency

congestion control algorithms have been proposed. However, due to the need for continuous

bandwidth probing in dynamic cellular channels, existing mechanisms are designed to cyclically

overload the network. As a result, it is inevitable that their latency deviates from the smallest possible

level (i.e., minimum RTT). To tackle this problem, we propose a new low-latency congestion control,

ExLL, which can adapt to dynamic cellular channels without overloading the network. To do so, we

develop two novel techniques that run on the cellular receiver: 1) cellular bandwidth inference from

the downlink packet reception pattern and 2) minimum RTT calibration from the inference on the

uplink scheduling interval. Furthermore, we incorporate the control framework of FAST into ExLL’s

cellular specific inference techniques. Hence, ExLL can precisely control its congestion window to

not overload the network unnecessarily. Our implementation of ExLL on Android smartphones

demonstrates that ExLL reduces latency much closer to the minimum RTT compared to other low-

latency congestion control algorithms in both static and dynamic channels of LTE networks.

Table of Contents

1. Introduction ... 1

1.1 Exploiting Cellular Network Characteristics for Protocol Design ... 1

1.2 Gap from Ideal Latency: Existing Latency Optimized Protocols ... 2

1.3 ExLL Contribution .. 3

2. Observations .. 4

2.1 Measurement Setup... 4

2.2 Cellular Network Characteristics ... 4

3. ExLL’s Network Inference .. 7

3.1 Cellular Downlink ... 7

3.2 Cellular Uplink ... 10

4. ExLL Design .. 13

4.1 Control Algorithm .. 13

4.2 State Transition ... 14

4.3 𝑀𝑇𝐸 Calculation ... 15

4.4 𝑚𝑅𝐸 Calculation ... 17

4.5 Exit from Observation to Control ... 18

4.6 Recovery from Loss or Timeout ... 18

5. Evaluation ... 20

5.1 Receiver- vs. Sender-side ExLL ... 20

5.2 Performance in Static Channel .. 20

5.3 Performance in Mobile Channel ... 23

5.4 Performance with Multiple Flows .. 23

5.5 Non-Cellular Bottleneck Adaptation ... 26

6. Application Performance ... 29

7. Related Work ... 31

8. Conclusion .. 33

List of Figures

1 Mean and 95-th percentile RTT against the average throughput of various congestion control

algorithms compared with that of sending a static congestion window around BDP over a

real LTE network..…………………………………………………………………………… 2

2 (a) RTT, throughput, and RSSI from three test runs in a mobile scenario, (b) RTT statistics

(with average and 100% confidence interval) from channels with different RSSI values..…. 5

3 Throughput and RTT when (a) two cellular receivers in the same eNB download data with

Cubic each, (b) one receiver downloads with Cubic and another downloads with Cubic

cropped by BDP..…………………………………………………………………………….. 6

4 Snapshot of received packets over time when downloading data with Cubic at the UE and the

detailed packet receptions mapped onto allocated subframes (colored) in radio frames for the

UE..…………………………………………………………………………………………... 8

5 Sample calculation of 𝐹(𝑓𝑖) and 𝐶(𝑓𝑖) from packet receptions in a given radio frame 𝑓𝑖.. 9

6 Comparison of measured throughput with Cubic and bandwidth estimations from 𝐹(⋅) and

𝐶(⋅) over time……………………………………………………………………………… 10

7 Concept of SR periodicity for cellular uplink scheduling in comparison with downlink

scheduling…………………………………………………………………………………... 11

8 Snapshot of received packets and Acks over time and the distribution of RTT values observed at

UE……………………………………………………………………………………………... 11

9 State transition diagrams of the receiver-side ExLL and the sender-side ExLL…………… 16

10 𝑀𝑇𝐸 shows the fastest response in detecting bandwidth changes that are reflected in the

measured throughput later. 𝑀𝑇𝐸𝑆 is slightly slower than 𝑀𝑇𝐸 but is faster than the measured

throughput…………………………………………………………………………………….. 16

11 A sample run of 𝑎𝑝𝑅𝑇𝑇 and 𝑚𝑝𝑅𝑇𝑇 measured at a cellular receiver during the

observation mode. 𝑇̂SR estimates 10 ms SR periodicity for the connected eNB………… 17

12 Congestion control behaviors and performance of receiver-side and sender-side ExLL

compared in real LTE networks while the tested cellular receiver is (a) stationary or (c)

mobile. (b) and (d) summarize the comparison of throughput and RTT between two

implementations of ExLL…………………………………………………………………... 22

13 (a) A comparison between ExLL and BBR in a stationary LTE channel, (b) RTT and

throughput performance comparison between ExLL and other protocols. ExLL outperforms

other low-latency protocols and operates very closely to the ideal performance characterized

by sending 1.0 × BDP of the network……………………………………………………... 23

14 (a) A comparison between ExLL and BBR in the same mobile channel generated by in-lab LTE

testbed, (b) RTT and throughput performance comparison between ExLL and other protocols in a

mobile channel. ExLL shows nearly 20 ms less RTT compared to BBR while getting throughput

as much as Cubic……………………………………………………………………………… 24

15 ExLL (a) persistently maintains lower latency while giving throughput fairness to second and

third flows compared to BBR (b)…………………………………………………………... 25

16 (a) ExLL takes control or hands it over to Cubic adaptively under cellular or non-cellular

bottleneck for coexistence with Cubic. (b) ExLL runs as Cubic and achieves fairness when

competing with Cubic flows under non-cellular bottleneck. (c) An ExLL flow experiencing

non-cellular bottleneck coexists with two ExLL flows with no non-cellular bottleneck in a

cellular link…………………………………………………………………………………. 28

17 (a) Average PLT and (b) Speed Index with 95% confidence interval measured from three

popular web sites with or without application updates. ExLL substantially improves PLT and

Speed Index especially when application updates coexist…………………………………. 30

18 Video channel switching time. ExLL switches to a new video much faster than TCP Cubic

when background traffic exists……………………………………………………………... 30

List of Tables

1 Server and Android device specification…………………..………………………………… 4

2 SR periodicity estimation in a real LTE network and from our in-lab LTE testbed………... 18

3 Jain’s Fairness Index from Multi-flow Scenarios.………………………………………….. 26

1

1. Introduction

Recent observations in the Internet revealed that TCP sessions often suffer from exceptionally long

packet delay even in a small bandwidth delay product (BDP) network. Gettys et al. termed this

phenomenon as bufferbloat [13] and diagnosed it as an over-buffering problem at the bottleneck link,

mostly caused by TCP’s loss-based congestion control mechanism that keeps pushing packets to the

network until the bottleneck queue becomes full. Follow-up measurement studies [14, 18, 21]

confirmed that the bufferbloat problem is often severe in cellular networks. They diagnosed that

Cubic [15], the default TCP congestion control algorithm in Linux (hence, the default in most Android

devices) and in Windows [7], is aggressive enough to quickly fill up cellular network buffers,

resulting in up to several hundred milliseconds of additional packet latency.

1.1 Exploiting Cellular Network Characteristics for Protocol Design

In order to tackle such a latency problem in cellular networks, there have been various research

proposals on designing a low-latency congestion control algorithm [10, 21, 23, 24, 33, 36]. These

approaches, however, have not fully leveraged cellular network specific characteristics.

For example, for the downlink scheduling the base station (BS) schedules downlink packets

towards multiple user equipments (UEs) at 1 ms granularity (a.k.a. transmission time interval, TTI),

based on both the signal strength reported by each UE and the current traffic load [9]. This indicates

that we can instantly infer the cellular link bandwidth by observing packet reception patterns in a very

short time window instead of explicitly probing the bandwidth or measuring throughput for a

relatively long period of time (e.g., a few RTTs). For the uplink scheduling, the BS needs to grant

uplink transmission eligibility for each UE, which happens at a regular interval known as SR

(scheduling request) periodicity [3]. We find that ignoring such a scheduling pattern often

underestimates the minimum RTT and leads congestion control algorithms to run in unrealistic

operating points.

Furthermore, the minimum RTT value is not generally affected by the channel condition between

UE and BS due to adaptive MCS (modulation and coding scheme) selection used in LTE systems,

which approximately eliminates MAC-layer retransmissions, but also not affected by other UEs

connected to the same BS since per-UE queue is isolated.

The understanding of the aforementioned factors has important implications on the design of an

extremely low-latency congestion control and its best performance in throughput and delay. In

particular, to cope with highly dynamic channel conditions in cellular networks, it is vital to obtain

both achievable maximum throughput and minimum RTT as quickly and accurately as possible, so

that the congestion control algorithm can always exploit up-to-date BDP for low-latency control.

2

1.2 Gap from Ideal Latency: Existing Latency Optimized Protocols

In order to check the latency performance of existing low latency congestion control algorithms

including Cubic, we perform our own measurement with an Android smartphone over a static LTE

channel as shown in Figure 1. We compare the performance (mean and 95-th percentile) of existing

latency optimized congestion control protocols along with a simple protocol that sends at a constant

rate (β×BDP). The minimum RTT and maximum throughput achievable for the tested channel are

about 47 ms and 90 Mbps, respectively. While Cubic suffers from long packet latency of 230 ms,

BBR [10], PropRate [23] and Verus [36] achieve 104 ms, 71 ms, and 76 ms, respectively, with similar

or much lower throughput1. Low-latency algorithms show significant RTT suppression compared to

Cubic, but their latency performance is still far from the ideal one characterized by sending the BDP

variants (β = 0.9,1.0,1.1), which is to achieve about 68 ms at 90 Mbps throughput. It is intriguing that

BBR and PropRate that are designed to track and utilize the BDP of the network are performing not as

good as sending the BDP. However, considering the overhead from cycling several modes of

operation to probe bandwidth and RTT, the existence of the performance gap is not surprising.

Figure 1: Mean and 95-th percentile RTT against the average throughput of various congestion control

algorithms compared with that of sending a static congestion window around BDP over a real LTE

network.

1 We test protocols based on the source code provided by the authors. Tuning them to operate more aggressively to achieve

maximum throughput is possible, which may, however, lead to significant increase in latency. Thus, we do not modify or

tune them.

3

1.3 ExLL Contribution

To bridge the gap, we propose a new low-latency congestion control for mobile cellular networks,

namely ExLL (Extremely Low Latency) that reduces latency as close to the minimum RTT while

retaining the same level of throughput that Cubic achieves. To obtain such performance, instead of

probing the network, ExLL estimates the bandwidth of cellular channels by analyzing the packet

reception pattern at an LTE subframe granularity in the downlink and also estimates the minimum

RTT more realistically by incorporating SR periodicity in the uplink. As these estimations can be done

reliably at each UE, ExLL takes the receiver-side design as its first choice. With the bandwidth and

latency estimations, ExLL adopts the control feedback in FAST [32] to compute its receive window

(RWND). This receiver-side ExLL design is immediately deployable to cellular UEs without

compromising servers as it makes the congestion control protocol running on the servers set its

congestion window (CWND) based on the RWND from ExLL receiver. Furthermore, ExLL can be

implemented as sender-side as well. We later demonstrate that both implementations have a minor

performance gap in practice.

Our comprehensive experiments carried out over commercial LTE networks confirm that ExLL can

always achieve shorter RTT which is much closer to the minimum RTT while retaining similar

throughput of Cubic. More specifically, in a stationary scenario where an Android smartphone is

stably connected to an LTE network with 50 ms of its minimum RTT and 75 Mbps of its maximum

throughput, ExLL attains on average 66 ms RTT while maintaining throughput of 72 Mbps; BBR and

Cubic attain about 110 ms and 261 ms RTT with about 70 Mbps and 75 Mbps. PropRate and Verus

show lower throughput about 59 Mbps and 39 Mbps and attain around 61 ms and 92 ms RTT. In a

mobile scenario where a smartphone user moves between good (-95 dBm) and bad channels (-125

dBm), ExLL retains around 61 ms and 45 Mbps while BBR and Cubic stay around 78 ms and 395 ms

with about 40 Mbps and 46 Mbps. PropRate and Verus shows 53 ms and 63 ms but is with only 23

Mbps and 34 Mbps.

In summary, our contributions are three-fold.

 We develop novel techniques that can estimate the cellular link bandwidth and realistic minimum

RTT without explicit probing, which can be easily extended to next-generation cellular

technologies such as 5G.

 We incorporate the control logic of FAST into ExLL to minimize the latency even in dynamic

cellular channel conditions.

 We implement ExLL in both receiver- and sender-side versions that give wider deployment

opportunities. The receiver-side ExLL can provide an immediate solution for untouched

commodity servers while the sender-side ExLL can provide a fundamental solution for 5G

URLLC (Ultra Reliability and Low Latency Communication) services [28].

4

2. Observations

In this section, we present several observations from both commercial LTE networks and our

controlled LTE tested. In Section 3, we introduce ExLL’s cellular specific inference techniques to

achieve low latency without sacrificing throughput.

2.1 Measurement Setup

We conduct measurements in commercial LTE networks and in our in-Lab LTE testbed. Software

settings represented by kernel and Android OS versions and hardware specifications such as LTE

chipsets equipped in cellular devices are summarized in Table 1. Our in-lab LTE testbed consists of

indoor small cell base stations (i.e., eNBs) and EPC (Evolved Packet Core) software implementing

MME (Mobility Management Entity) and S/P-GW (Serving/Packet Gateway) [1]. We put Android

phones inside a shield box, so that the phones can communicate with the eNB via a pair of antennas

inside the box. The signal attenuator installed between the shield box and the eNB can emulate a

variety of RF conditions. For EPC, we use the open source NextEPC [26] that implements features up

to 3GPP LTE Release 14.

Table 1. Server and Android device specification

Real LTE Processor LTE Modem Kernel OS

Server i7-6700K - Linux 4.13 Ubuntu 16.04

Client MSM8992 X10 LTE Linux 3.10 Android 8.1.0

in-lab LTE Processor LTE Modem Kernel OS

Server i5-7200U - Linux 4.13 Ubuntu 16.04

Client MSM8992 X10 LTE Linux 3.10 Android 8.1.0

2.2 Cellular Network Characteristics

Max throughput and min RTT in the cellular network: We first test throughput and RTT in a

commercial LTE network by physically moving two cellular devices from a certain location where the

received signal strength indication (RSSI) is about -75 dBm to another location with -105 dBm. We

measure the throughput of one device by downloading a large file from our in-lab server running

Cubic. At the same time, we also measure the instantaneous RTTs by repeating ping tests in another

device. Note that both devices are connected to the same LTE eNB. Figure 2 (a) shows RTT from ping

tests, throughput from downloading, and RSSI over time from the three test runs. We can see that RTT

5

stays nearly at the same level even when the RSSI varies widely, but achievable throughput fluctuates

accordingly.

(a) RTT, throughput, and RSSI from three test runs in a mobile scenario

(b) RTT statistics (with average and 100% confidence interval) from channels with different

RSSI values

Figure 2: (a) RTT and throughput measurements in a commercial LTE network while moving cellular

devices from a location with strong signal strength to a location with weak signal strength, (b) RTT

statistics measured by ping tests over a commercial LTE network with different RSSI values.

Min RTT over different RSSI values: The minimum RTT observed from a network has been one of

the most important component in delay-based congestion controls, as it indicates the RTT with nearly

zero queueing delay. In the cellular network, however, it is unclear if the physical channel condition

largely affects this. To demonstrate the impact of RSSI on the minimum RTT, we average 100 ping

measurements for different levels of RSSI. As shown in Figure 2 (b), the minimum RTT (the lower

6

end of a confidence interval) is not much affected by RSSI. We conjecture that this is because of MCS

adaption to a different channel quality for reliable packet transmissions in the MAC layer, which

limits additional delay from retransmissions. Another interesting observation is that RTT variation is

also very stable over different RSSI values. We find the rationale behind this stable RTT variation

from the implementation of SR periodicity of LTE networks, which we investigate the details in

Section 3.2.

Per-UE queueing2 in LTE networks: To see if the LTE network employs a per-UE queue, we run

two Cubic flows on two cellphones (one flow on each cellphone). Then, we replace one Cubic flow

with a Cubic flow whose CWND is cropped by BDP. Figure 3 confirms that each UE has its own

queue, not affecting the other competing UE’s RTT while achieving the same throughput even by

capping the CWND.

As discussed in [33], the per-UE queue in cellular networks is an important factor in designing a

low-latency congestion control algorithm because the delay in the queue is only affected by its own

control, not by other congestion control algorithms running on other cellular devices in the same BS.

This motivates us to focus more on a receiver-side design that can turn Cubic flows from any servers

to the receiver into low-latency flows.

(a) Both receivers download data with Cubic (b) One receives data with Cubic while

 another does with Cubic cropped by BDP

Figure 3: Throughput and RTT when (a) two cellular receivers in the same eNB download data with

Cubic each, (b) one receiver downloads with Cubic and another downloads with Cubic cropped by BDP.

2 Each UE is given a default bearer that serves all best-effort traffic. For simplicity, we denote the queue of the default

bearer as per-UE queue here.

7

3. ExLL’s Network Inference

ExLL leverages downlink and uplink scheduling mechanisms of cellular system to inform the design of

an extremely low latency protocol without having throughput degradation.

3.1 Cellular Downlink

In mobile cellular networks that experience frequent bandwidth fluctuations, an efficient probing

becomes more important, as explored by recently proposed low-latency congestion control algorithms

such as Verus, BBR, and PropRate. Although how to probe optimally is still an open question, we can

postulate that probing in a way that injects packets excessively to the network even for short duration

such that the network becomes temporarily overbuffered is far from optimum in terms of latency. To

overcome this challenge, we can borrow recent proposals that enables the estimation of available

cellular network bandwidth either from 1) extracting PHY-layer parameters [24, 34, 35] or 2) running a

machine learning [17]. However, they also bring new practical issues such as extracting PHY-level

information is only supported by specific chipset vendors (e.g., Qualcomm) with additional software

tools (e.g., QXDM) that need rooting a device. A machine learning based approach [17] eliminates the

need for such complications. However, learning parameters takes time, and thus momentary changes in

cellular networks such as traffic load and channel condition are hard to be tracked in real time. To this

end, ExLL takes a relatively simpler yet effective approach. ExLL observes packet receiving patterns in

a cellular device and finds clues to estimate the available bandwidth from the scheduling behaviors of

cellular networks without explicitly probing the network.

Downlink scheduling pattern: LTE systems are designed to schedule downlink packets by the unit of

subframe whose duration is 1 ms [1]. Also, ten subframes are grouped to form a radio frame of length 10

ms. Each subframe consists of two slots of 0.5 ms duration and one slot contains multiple resource

blocks (RBs) with 180 kHz bandwidth each [2]. The RB is the smallest resource unit allocatable to an

LTE UE and the number of RBs in a slot is determined by the total bandwidth. For example, 10 MHz

which is a typical bandwidth of commercial LTE networks has 50 RBs. According to [22], the physical-

layer specification from 3GPP defines that an LTE network with 10 MHz bandwidth, 256 QAM for

modulation, and 2x2 MIMO antennas can reach up to 100.8 Mbps. Therefore, the network can deliver

12,600 bytes during one subframe, thus each RB carries about 252 bytes. Provided that most

commercial networks set their MTU sizes between 1,428 and 1,500 bytes [27], such an LTE network

can carry at most 8.4 to 8.8 packets per subframe. When carrier aggregation in the LTE-Advanced

networks [1, 30] is activated, multiple frequency bands (e.g., 2 or 3 bands) can add up and the total

bandwidth increases to 20, 30, 40, or 50 MHz. Then, the data rate and the number of packets

downloadable in a subframe increase accordingly.

8

(a) Downlink packet reception patterns in the beginning of a new flow

(b) Downlink packet reception patterns after a few seconds

Figure 4: Snapshot of received packets over time when downloading data with Cubic at the UE and the

detailed packet receptions mapped onto allocated subframes (colored) in radio frames for the UE.

In Figure 4, we count the number of downlink packets received by a cellphone from a server running

Cubic in the 45 ms RTT network. The cellular bandwidth is 50 MHz from carrier aggregation. As

depicted, at every 1 ms, a group of packets are received while the group size varies from 2 to 44 by

subframes. This is well aligned with the aforementioned description of LTE downlink. Furthermore, we

present the packet counts by the unit of subframe (1 ms) and radio frame (10 ms) in the same figure. In

particular, the colored subframes indicate allocated subframes during which packet receptions are made

9

by allocated RBs, and the numbers on the colored subframes denote the number of received packets

during each subframe while 𝑁(𝑓) denotes the total number of packet receptions during one radio

frame (10 ms). Figure 4 (a) showing the initial stage of the download implies that the number of

received packets in a radio frame increases rapidly as CWND increases. Thus, in the initial stage, the

downlink behavior temporarily depends on CWND growth. However, in a few seconds as Figure 4 (b)

shows, the patterns of allocated subframes change, but the total number of packet receptions per radio

frame becomes stable. This is because subframe allocations are averaged out in a radio frame, and the

averaged packet reception is governed by the chosen MCS and the scheduling quota for each receiver.

We define metrics for ExLL’s bandwidth estimation below.

Cellular downlink bandwidth estimation: : We let 𝑓𝑖 and 𝐹(⋅) denote the 𝑖-th radio frame for a

given UE and a bandwidth estimation function that converts 𝑓𝑖 into a value in Mbps, respectively.

The operation of 𝐹(𝑓𝑖) is as simple as counting the received bytes during one radio frame divided by

10 ms. In a special case where 𝑓𝑖 does not include any allocated subframe, such 𝑓𝑖 is ignored. We

also define a microscopic bandwidth estimation function, 𝐶(⋅), which focuses more on average

packet reception intervals within a subframe to estimate the maximum channel bandwidth as follows:

𝐶(𝑓𝑖) =
∑ 𝑏𝑖𝑗𝑗∈𝑆(𝑓𝑖) /∆𝑡𝑖𝑗

|𝑆(𝑓𝑖)|
,

where 𝑏𝑖𝑗 , ∆𝑡𝑖𝑗, and 𝑆(𝑓𝑖) denote the amount of received bytes within 𝑗-th subframe (sij) of 𝑖-th

radio frame, the time gap between the first packet and the last packet reception within sij and the

index set of allocated subframes in 𝑓𝑖, respectively. By definition, 𝐶(⋅) captures the total channel

bandwidth before it is split to multiple users. Therefore, in case when a BS is occupied by a single UE,

𝐶(⋅) is close to 𝐹(⋅). But in case with the BS serving multiple UEs, 𝐶(⋅) is much larger than 𝐹(⋅).

Figure 5 illustrates how 𝐹(⋅) and 𝐶(⋅) are computed for a sample radio frame.

Figure 5: Sample calculation of 𝐹(𝑓𝑖) and 𝐶(𝑓𝑖) from packet receptions in a given radio frame 𝑓𝑖.

𝑭 and 𝑪 over dynamic channels: Figure 6 (a) and (b) present 𝐹(⋅), 𝐶(⋅), and the measured

throughput on the UE in the carrier-aggregated channels of 30 MHz and 40 MHz, respectively, when

(1)

10

the UE downloads data for 30 seconds from a server running Cubic. Two interesting observations are

found from these figures: 1) 𝐹(⋅) very precisely tracks the achievable network bandwidth before it

measures the actual throughput, 2) 𝐶(⋅) estimates the channel bandwidth of 300 Mbps or 400 Mbps

from 30 MHz or 40 MHz channel very precisely and quickly. When the MCS is degraded due to a

poor channel condition, 𝐹(⋅) and 𝐶(⋅) instantly detect it as shown in the figures. 𝐶(⋅) estimates the

best case performance for a single UE, but even when eNB serves only one UE, the achievable

throughput can be lower than 𝐶(⋅) due to QoS settings of eNB such as UE-AMBR (aggregate

maximum bitrate)3,4 [3]. We find both metrics 𝐹(⋅) and 𝐶(⋅) are useful for different purposes. In

Section 4.3 and 4.5, we detail the usage of them.

(a) Measurements from a real LTE network (b) Measurements from a real LTE network with

with 30 MHz channel 40 MHz channel

Figure 6: Comparison of measured throughput with Cubic and bandwidth estimations from 𝐹(⋅) and

𝐶(⋅) over time.

3.2 Cellular Uplink

LTE uplink scheduling is different from that of downlink. The biggest difference is that before obtaining

an uplink scheduling grant from the BS, a UE needs to send its scheduling request by following the SR

periodicity as depicted in Figure 7. Commercial LTE eNBs typically use SR periodicity chosen either

from 5, 10, 20, 40, or 80 ms [29, 37]. While ExLL implements the SR periodicity inference algorithm in

4.4. we experimentally show such uplink scheduling patterns below.

Uplink scheduling patterns: Figure 8 (a) shows the receiving packet counts in a UE downloading data

from a server and Figure 8 (b) shows the receiving Ack counts in the server. The time lines are adjusted

3 This is defined to limit total throughput for each UE.
4 In general, QoS settings in eNB are invisible to UEs. However, as specified in the LTE attach procedure of UE [4], some

QoS settings can be shared from eNB to UE through ESM (EPS session management) messages. The purpose of this sharing

is to let the UE give optional intelligence to applications that need better traffic control. Provided such QoS settings, fine

tuning of 𝐶(⋅) can be further made.

11

to start from zero by the moment of receiving the first packet. As shown in Figure 8 (a) and (b), the

granularity of Ack reception in the server is about 10 ms whereas the granularity of packet reception in

the UE is about 1 ms. This implies that SR periodicity in the connected eNB for uplink is set as 10 ms.

Figure 7: Concept of SR periodicity for cellular uplink scheduling in comparison with downlink

scheduling.

(a) The number of received packets at UE

(b) The number of received Acks at sender

(c) CDF of RTTs collected at UE

Figure 8: Snapshot of received packets and Acks over time and the distribution of RTT values observed at UE.

12

RTT variation and min RTT: Figure 8 (c) shows the CDF (Cumulative Density Function) of per-

packet RTT measured in the UE by pinging the server. We find that the RTTs from the ping test vary

from 37 ms to 47 ms whose average is about 42ms. The gap between the maximum and minimum is

about 10 ms that matches with SR periodicity. An important lesson is drawn here. If a low-latency

congestion control simply takes the observed minimum RTT as its measure or target for controlling

CWND, the control becomes overly conservative and loses throughput. To avoid such a problem, we

develop a realistic estimation technique for the minimum RTT that takes SR periodicity into

consideration5, which will be detailed in Section 4.4.

5 Note that a major cellular chipset vendor, Qualcomm, is reflecting this aspect in assessing their latency performance in

LTE networks [25].

13

4. ExLL Design

ExLL aims at controlling its sending rate (i.e., CWND) so as to minimize latency while achieving

throughput comparable with that of Cubic. Realizing this goal requires us to address two important

challenges: 1) given a dynamic cellular channel whose achievable throughput and RTT vary, how do we

track them precisely without explicitly probing the network?; 2) once achievable throughput and RTT

become known, how do we use them to tightly control the CWND so as not to deviate from the desired

operating point? In this section, we answer these questions and propose ExLL.

4.1 Control Algorithm

The well-known dilemma that every low-latency congestion control has is that the queuing in the

bottleneck link should be minimized for latency, but it should be always non-empty for throughput. This

dilemma becomes more challenging in dynamic networks. When the bottleneck bandwidth increases or

decreases, the sending rate should quickly change accordingly, otherwise throughput loss or RTT

increase occurs. We tackle this dilemma by revisiting the following control equation of FAST:

𝑤i+1 = (1 − 𝛾)𝑤𝑖 + 𝛾 (
𝑚𝑅𝐸𝑖

𝑅𝑖
𝑤𝑖 + 𝛼),

where 𝛾 ∈ (0,1], 𝛼 > 0 and 𝑤𝑖, 𝑅𝑖, and 𝑚𝑅𝐸𝑖 denote CWND at time slot 𝑖, RTT measured at 𝑖,

and the minimum RTT estimate at timeslot 𝑖, respectively.

The equation of FAST reduces CWND as the measured RTT deviates from the minimum RTT

estimate (mRE) while persistently pushing CWND to grow by a constant incremental factor, 𝛼.

This control equation lets a flow (say flow 𝑗) converge to the equilibrium data rate 𝑥(𝑗) = 𝛼(𝑗)/𝑞(𝑗),

where 𝑞(𝑗) denotes the round-trip queueing delay of the flow (i.e., summation of all queueing delays

on its routing path), which is dominated by the queueing delay at its bottleneck link. This equilibrium

rate is known as the unique maximizer of a network utility maximization problem:

max
𝑥≥0

∑ 𝛼(𝑗)𝑙𝑜𝑔𝑥(𝑗) [32]. FAST probes and tracks the network bandwidth as fast as Cubic, provides

weighted proportional fairness that does not penalize flows with large propagation delays, and

suppresses queueing in the bottleneck link compared to Cubic. Nonetheless, it is hard to classify

FAST as a low-latency congestion control because of α, the tuning parameter. In FAST, 𝛼 plays

many roles. It determines the amount of queueing in the bottleneck of a flow, which accumulates

when having multiple flows, the agility of bandwidth adaptation, and the robustness in maintaining

high throughput. Small 𝛼 may give restrained queueing that is desirable for a low-latency congestion

control, but it slows down the speed of adaptation. More seriously, small 𝛼 loses its guarantee to

achieve maximum throughput in a network in which RTT can fluctuate heavily. In such a network,

(2)

14

CWND can sometimes be overly reduced from RTT fluctuation leading to failures in always keeping

the queueing non-empty.

ExLL is designed to provide a solution to the problems related to 𝛼 by using our inference

techniques in the UE, while retaining all the merits of FAST. Our solution is simple and does not

complicate the control logic of FAST. It replaces α with 𝛼(1 − 𝑇𝑖/ 𝑀𝑇𝐸𝑖), where 𝑇𝑖 and 𝑀𝑇𝐸𝑖

denote the measured throughput at time 𝑖 and the maximum throughput estimate at time 𝑖 ,

respectively. ExLL can obtain 𝑀𝑇𝐸𝑖 at the UE using cellular downlink characteristics. Thus, the

control equation of ExLL is given as follows:

𝑤i+1 = (1 − 𝛾)𝑤𝑖 + 𝛾 (
𝑚𝑅𝐸𝑖

𝑅𝑖
𝑤𝑖 + 𝛼(1 −

𝑇𝑖

𝑀𝑇𝐸𝑖
)),

Unlike FAST, 𝑤𝑖 updates in ExLL is basically done by the receiver (UE), so 𝑤𝑖 for the receiver-

side ExLL means RWND; in the sender-side ExLL, the same equation updates CWND.

If 𝑀𝑇𝐸𝑖 can be obtained precisely, the revised equation has a critical benefit over FAST. Even if

𝛼 is chosen arbitrarily large for agile and robust bandwidth probing, ExLL does not to over-buffer the

bottleneck link. This is because the increment given to congestion window from 𝛼 diminishes to zero

as the actual throughput 𝑇𝑖 approaches the maximum throughput6. The equilibrium data rate of ExLL

flow 𝑗 is given as 𝑥(𝑗) = 𝛼(𝑗)/(𝑞(𝑗) + 𝛼(𝑗)/𝑀𝑇𝐸𝑖
(𝑗)

), where 𝑀𝑇𝐸𝑖
(𝑗)

 denotes MTE measured by

flow 𝑗 at time 𝑖. Similar to FAST, ExLL provides fairness to flows without any penalty in large

propagation delays.

4.2 State Transition

ExLL can be implemented either at the receiver or at the sender. The receiver-side ExLL

implementation has a significant advantage over the sender-side one as it can work with any server

running Cubic as in Figure 9 (a). In order for ExLL receiver to take control by its RWND, the CWND

of Cubic at the server should grow sufficiently so that min(cwnd, rwnd) is governed by RWND.

Therefore, until Cubic increases its CWND by slow start beyond the cellular link bandwidth estimated

by ExLL, ExLL stays in observation mode. As soon as the CWND grows sufficiently, ExLL receiver

exits to control mode and starts to report RWND, computed from Eq. 3, back to the server. If Cubic

experiences a packet loss and reduces its CWND below RWND, a recovery logic of ExLL receiver,

which will be explained in Section 4.6, detects such an event by checking the difference between its

RWND and CWND measured in the receiver. Upon detection, the recovery logic temporarily stores

that RWND value and stops updating RWND until CWND of Cubic increases again to exceed that

6 We use 𝛼 = 200, 𝛾 = 0.5 by default. They work reliably in all experiments.

(3)

15

RWND. When Cubic resets by a timeout, the recovery logic also detects it and lets ExLL restart from

observation mode.

On the other hand, sender-side ExLL can have two design choices. We can let it work by itself

similarly to FAST or let it be a plug-in module of Cubic. The former may operate efficiently in the

network where all the flows rely on ExLL, but the latter would be preferable if there are cases for

ExLL to coexist with Cubic flows. Here, we present the latter option that may give better deployment

opportunity. As a plug-in, sender-side ExLL runs Cubic in the background as shown in Figure 9 (b).

When a session is initiated, ExLL relies on Cubic to increase the CWND, 𝑐𝑤𝑛𝑑𝐶, quickly by slow

start. If 𝑐𝑤𝑛𝑑𝐶 is determined to grow enough to achieve estimated cellular bandwidth from checking

𝑐𝑤𝑛𝑑𝐶/𝑚𝑅𝐸𝑆 > 𝑀𝑇𝐸𝑆 , the CWND of ExLL 𝑐𝑤𝑛𝑑𝐸 starts to be computed, where 𝑚𝑅𝐸𝑆 and

𝑀𝑇𝐸𝑆 denote 𝑚𝑅𝐸 and 𝑀𝑇𝐸 obtained at the sender, respectively. From then on, ExLL overrides

Cubic when 𝑐𝑤𝑛𝑑𝐸 is smaller than 𝑐𝑤𝑛𝑑𝐶 and vice versa. We explain the detailed computations of

𝑚𝑅𝐸 and 𝑀𝑇𝐸 below.

4.3 𝑀𝑇𝐸 Calculation

As UEs are scheduled by the BS, changes in the bandwidth of cellular link can be observed more

precisely by the UEs than the servers. For the receiver-side ExLL implementation, we obtain 𝑀𝑇𝐸

from the moving average of 𝐹(⋅), the estimated cellular bandwidth by observing the packet reception

during the duration of one radio frame. Because 𝐹(⋅) is calculated at every radio frame except for the

radio frames that have no allocated subframes, in most cases the moving average is updated at every

10 ms. In the cellular network with RTT of a few tens of milliseconds, ExLL receiver refreshes 𝑀𝑇𝐸

several times during one RTT and uses the up-to-date 𝑀𝑇𝐸 for the RWND computation. As analyzed

in Section 3, 𝐹(⋅) is capable of figuring out cellular bandwidth changes much faster than the

throughput measurement done by the sender.

For the sender-side ExLL implementation, we estimate the UE’s receiving rate by calculating

𝑀𝑇𝐸𝑆 from Acks received at the sender as 𝑀𝑇𝐸𝑆 = 𝑐𝑤𝑛𝑑/∆𝑡, where ∆𝑡 denote the time difference

between the first Ack arrival and the last Ack arrival for the group of packets sent as CWND. 𝑀𝑇𝐸𝑆

estimates how the packets sent as CWND are received in the receiver.

To see the difference in throughput estimation between the receiver-side and sender-side ExLL

implementations, Figure 10 compares 𝑀𝑇𝐸, 𝑀𝑇𝐸𝑆, and the measured throughput between the server

and the UE. 𝑀𝑇𝐸 estimated in the receiver-side ExLL shows the fastest response in detecting

bandwidth changes that are reflected in the measured throughput later. 𝑀𝑇𝐸𝑆, on the other hand,

detects the changes faster than the measured throughput, but it is a bit slower than 𝑀𝑇𝐸 while the

difference is marginal.

16

(a) State transition diagram of Receiver-side ExLL

(b) State transition diagram of Sender-side ExLL

Figure 9: State transition diagrams of the receiver-side ExLL and the sender-side ExLL.

Figure 10: 𝑀𝑇𝐸 shows the fastest response in detecting bandwidth changes that are reflected in the

measured throughput later. 𝑀𝑇𝐸𝑆 is slightly slower than 𝑀𝑇𝐸 but is faster than the measured throughput.

17

4.4 𝑚𝑅𝐸 Calculation

Our finding in Section 3 confirms that setting the minimum RTT, by taking the minimum value

among the observed RTT values can mislead the protocol control due to SR periodicity. For the

receiver-side ExLL implementation, the minimum and the average per-packet RTT are tracked during

observation mode, which are denoted by 𝑚𝑝𝑅𝑇𝑇 and 𝑎𝑝𝑅𝑇𝑇, respectively. When the ExLL receiver

switches to control mode, it first sets 𝑚𝑅𝐸 as 𝑚𝑅𝐸 = 𝑚𝑝𝑅𝑇𝑇 + 𝐷(2 × (𝑎𝑝𝑅𝑇𝑇 − 𝑚𝑝𝑅𝑇𝑇)),

where 𝐷(⋅) is the function that finds the most matching SR periodicity value either among 5, 10, 20,

40, and 80 ms from the observation of 𝑇̂𝑆𝑅 = 2 × (𝑎𝑝𝑅𝑇𝑇 − 𝑚𝑝𝑅𝑇𝑇).

ExLL receiver measures per-packet RTT by the time interval between the reception of a packet

whose sequence number is n and the reception of a packet that is brought by the Ack for the packet 𝑛

(typically from two consecutive packets sent from the sender).

We show a sample run of 𝑚𝑝𝑅𝑇𝑇 and 𝑎𝑝𝑅𝑇𝑇 during the observation mode of the ExLL receiver

in Figure 11. As the figure confirms, for the eNB that use SR periodicity of 10 ms, our

estimation 𝑇̂𝑆𝑅 suggests a very close value to 10 ms, and thus 𝐷(𝑇̂𝑆𝑅) becomes 10 ms. Table 2

shows the results of multiple SR periodicity estimations done over a commercial LTE network of 10

ms SR periodicity and over our in-lab LTE testbed with SR periodicity settings of 20 and 40 ms. In all

cases, ExLL calculates 𝑇̂𝑆𝑅 that correctly converts to the ground truth SR periodicity. We also test

the reliability of SR periodicity estimation in a multi-flow scenario in which an ExLL receiver

initiates three download sessions, each lasting 30 seconds, sequentially with the interval of 10 seconds

(as depicted in Figure 15). Even with such co-existing flows, we find that all three flows correctly

estimate 10 ms as their SR periodicity.

In the sender-side ExLL implementation, the same logic runs with per-packet RTT measurement at

the sender.

Figure 11: A sample run of 𝑎𝑝𝑅𝑇𝑇 and 𝑚𝑝𝑅𝑇𝑇 measured at a cellular receiver during the

observation mode. 𝑇̂SR estimates 10 ms SR periodicity for the connected eNB.

18

Table 2: SR periodicity estimation in a real LTE network and from our in-lab LTE testbed

Real LTE Network In-lab LTE Testbed

SR periodicity: 10 ms SR periodicity: 20 ms SR periodicity: 40 ms

𝑚𝑝𝑅𝑇𝑇 𝑎𝑝𝑅𝑇𝑇 𝑇̂𝑆𝑅 𝑚𝑝𝑅𝑇𝑇 𝑎𝑝𝑅𝑇𝑇 𝑇̂𝑆𝑅 𝑚𝑝𝑅𝑇𝑇 𝑎𝑝𝑅𝑇𝑇 𝑇̂𝑆𝑅

37.65 42.55 9.8 24.98 34.18 18.4 23.74 40.69 33.9

38.61 42.58 7.9 23.78 35.29 23.0 22.82 40.47 35.3

38.59 43.04 8.9 25.17 37.96 25.6 24.01 41.15 34.3

36.85 41.90 10.1 24.85 33.16 16.6 22.99 41.60 37.2

39.16 42.89 7.5 24.52 36.73 24.4 23.67 41.25 35.2

4.5 Exit from Observation to Control

In order to exit from observation mode, ExLL receiver needs confirmation that the current CWND at

the server exceeds the required size to fully exploit the cellular link bandwidth. If the CWND fails to

grow that much, it means that the downlink flow has its bottleneck in a non-cellular link. In such a

case, ExLL receiver stays in observation mode and lets Cubic running at the server control the flow to

be compatible with other competing Cubic flows. It is known by BBR and Copa [6] that when

competing with Cubic flows in the shared FIFO queue of a non-cellular bottleneck, a low-latency

congestion control flow mostly loses its throughput. Thus, compatibility with Cubic is an important

merit of ExLL.

For the cellular bottleneck case, the exact condition to exit from observation mode is as follows:

𝑐𝑤𝑛𝑑𝑖/𝑚𝑅𝐸𝑖 >UE-AMBR. If CWND measured at receiver divided by its minimum RTT estimate,

𝑚𝑅𝐸𝑖, is larger than the maximum allowed cellular bandwidth for the receiver, RWND can safely

govern CWND with no potential throughput loss. Unfortunately, UE-AMBR is hardly known at the

receiver since it is one of operator-configured parameters. Thus, we conservatively use 𝐶𝑖, the

estimated channel bandwidth which is the moving average of 𝐶(⋅) at the moment as the substitute of

UE-AMBR. Using 𝐶𝑖 guarantees no throughput loss.

4.6 Recovery from Loss or Timeout

The role of recovery mechanism is two-fold: 1) when the CWND of Cubic at the sender becomes smaller

than the RWND provided by ExLL receiver, which happens mostly due to packet losses, recovery lets

19

ExLL receiver stop computing and updating RWND until the CWND exceeds the RWND again, 2) when

Cubic at the sender initiates a new slow start due to timeout, recovery lets ExLL restart for fresh

measurements. Below we describe in more detail.

In most LTE networks where packet losses are nearly perfectly concealed from transport layer thanks to

mild MCS selection [9, 18], the measured CWND in ExLL receiver from counting received packets during

one RTT matches with its computed RWND as long as RWND is governing the CWND of Cubic at the

sender. However, when a packet loss or a timeout occurs, Cubic’s CWND at the sender temporarily

shrinks, so ExLL receiver can observe the measured CWND is lower than its RWND. Upon this

observation, recovery focuses on the size of the measured CWND – 1) if it is equal to the initial CWND

of Cubic, recovery determines that a timeout happened and restarts ExLL from its observation mode;

2) otherwise, recovery determines that packet losses occur. It reserves RWND as RWNDρ and stops

updating RWND until the measured CWND recovers. During this waiting period, Cubic’s control

temporarily governs ExLL. As soon as the measured CWND exceeds RWNDρ, RWND computation

as in ExLL control equation restarts and ExLL takes the control back. By doing so, we remove

potential confusion of ExLL in controlling its RWND. We omit the recovery logic for sender-side

ExLL due to similarity.

20

5. Evaluation

In this section, we first provide a comparison between receiver-side and sender-side ExLL. Then,

using receiver-side ExLL, we extensively evaluate ExLL in comparison with other protocols in

stationary and mobile LTE networks. We then further examine the performance ExLL in multi-flow

and non-cellular bottleneck scenarios. We implement receiver-side ExLL on Android smartphones

(Nexus 5X) by patching the kernel. The number of lines added to or modified in the kernel 3.10 of

Android 8.1.0 is 327 in total. The modifications are made in two files: tcp_ipv4.c, and tcp_input.c.

Sender-side ExLL is implemented by modifying tcp_input.c in Linux kernel 4.13. The number of lines

modified is 114. We use TCP Probe installed in the server to monitor and throughput, CWND, and

RTT for both of sender-side and receiver-side ExLL.

5.1 Receiver- vs. Sender-side ExLL

We first compare the behaviors of receiver-side ExLL and sender-side ExLL in Figure 12 (a) from a real

LTE network whose RSSI is stable at -90 dBm and minimum RTT and maximum throughput are about 50

ms and 150 Mbps. Both ExLL implementations have similar basic operations except for calculations of

𝑀𝑇𝐸, so similar behaviors are indeed observed. They both exit from Cubic at the similar moment and

show similar CWND control resulted from Eq. 3. Unlike BBR or PropRate, CWND fluctuation from

intentional overbuffering and queue draining does not exist, and thus RTT stays very closely at around

its minimum value. Figure 12 (b) summarizes RTT against throughput for both ExLL implementations

tested with an eNB with different RTT and throughput variation. It confirms that both

implementations perform comparably, though receiver-side ExLL performs a little better as expected.

Figure 12 (c) shows another comparison made in a mobile channel whose bandwidth swings between

100 Mbps to 50 Mbps. Thanks to its responsive cellular bandwidth estimation, receiver-side ExLL

adapts to the channel very smoothly, hence it shows highly suppressed RTT close to its minimum RTT.

Sender-side ExLL also performs quite closely to receiver-side ExLL. Figure 12 (d) summarizes the

performance of both ExLL implementations in mobile channels with an eNB with different mobility

scenarios, and it confirms they are comparable. For brevity, we only present receiver-side ExLL in the

remaining evaluations.

5.2 Performance in Static Channel

In a static LTE network with 90 Mbps bandwidth and 50 ms minimum RTT, we compare CWND, RTT,

and throughput recorded while downloading data from a UE with ExLL and BBR in Figure 13 (a). ExLL

21

(a) CWND, RTT, and throughput measured in a stationary cellular receiver in a real LTE

network

(b) ExLL comparison in a stationary cellular receiver from three LTE eNBs that give different

latency and throughput

(c) CWND, RTT, and throughput measured in a mobile cellular receiver in a real LTE network

22

(d) ExLL comparison in a mobile cellular receiver from an LTE eNB with three different

mobility scenarios

Figure 12: Congestion control behaviors and performance of receiver-side and sender-side ExLL

compared in real LTE networks while the tested cellular receiver is (a) stationary or (c) mobile. (b)

and (d) summarize the comparison of throughput and RTT between two implementations of ExLL.

shows much lower average RTT as well as much lower RTT variance compared to BBR. We repeat the

same experiment multiple times with other protocols and summarize the throughput and latency

performance in a scatter plot, Figure 13 (b). Each protocol has a marking in the graph that represents its

average throughput and RTT and another marking connected by a dotted line, which presents the average

throughput and the 95-th percentile RTT. As Figure 13 (b) tells, ExLL outperforms others. It provides full

throughput as well as a lower and more constrained RTT than other protocols. Also, the result from

sending static amounts of congestion window as 1.0 ×BDP that characterizes the ideal performance

boundary confirms that ExLL operates nearly ideally in a static LTE channel.

(a) CWND, RTT, and throughput of ExLL and BBR measured in a stationary UE in a real LTE

network

23

(b) Mean and 95-th percentile RTT against the average throughput from ExLL and other

congestion controls in a real LTE network

Figure 13: (a) A comparison between ExLL and BBR in a stationary LTE channel, (b) RTT and

throughput performance comparison between ExLL and other protocols. ExLL outperforms other low-

latency protocols and operates very closely to the ideal performance characterized by sending

1.0 × BDP of the network.

5.3 Performance in Mobile Channel

We then conduct similar experiment over a mobile LTE network whose bandwidth bounces between

65 Mbps and 15 Mbps while the minimum RTT stays at around 45 ms. For fair comparison, instead of

testing over real LTE networks, we program the signal attenuator of our in-lab LTE testbed and apply

exactly the same mobile channel to all protocols. Figure 14 (a), capturing CWND, RTT, and

throughput of ExLL and BBR, demonstrates that ExLL has smaller RTT compared to BBR. Especially

whenever the channel gets worse, ExLL shows extremely efficient adaptation to the dynamic channel

by suppressing RTT significantly better than BBR while not losing throughput. A scatter plot

summarizing the statistics from repeated runs in the same mobile scenario with various protocols,

Figure 14 (b), evidences that ExLL outperforms other low-latency protocols by non-negligible

margins in all aspects: average RTT, 95-th percentile RTT, and throughput.

5.4 Performance with Multiple Flows

In section 2, we show that cellular devices in LTE networks are served by separate bearers. To see the

impact of self-inflicted delay (i.e., queueing made in its own bearer), we evaluate the performance of

24

(a) CWND, RTT, and throughput of ExLL and BBR measured in a UE in a mobile channel

(b) Mean and 95-th percentile RTT against the average throughput from ExLL and other

congestion controls in mobile channels

Figure 14: (a) A comparison between ExLL and BBR in the same mobile channel generated by in-lab LTE

testbed, (b) RTT and throughput performance comparison between ExLL and other protocols in a mobile

channel. ExLL shows nearly 20 ms less RTT compared to BBR while getting throughput as much as Cubic.

multiple flows running between a server and a cellular device over an LTE network of 90 Mbps and

50 ms. Note that BBR is controlled by the server while ExLL here is controlled by the receiver. Since

receiver-side ExLL can turn Cubic flows from any servers into ExLL-controlled ones, it guarantees

that the receiver has only ExLL-controlled flows in its corresponding bearer. Therefore, based on the

25

equilibrium data rate of ExLL provided in section 4.1, we can expect throughput fairness between

ExLL-controlled flows. Figure 15 shows how ExLL and BBR behave when running three flows that

start from different moments. As shown in the figure, ExLL shows much fairer throughput sharing

than BBR. Also, ExLL shows much more constrained RTT compared to BBR especially when three

flows coexist. ExLL shows about 93 ms while BBR exhibits around 137 ms. We further experiment

multi-flow scenarios with different number of flows (𝑛) ranging from 2 to 4 under the same LTE

network. We configure that flows start together and last for either 30 or 3000 seconds. Table 3

summarizes the result of throughput fairness between flows by calculating Jain’s fairness index [20]

that ranges from 1/𝑛 (unfairest) to 1 (fairest). The fairness of ExLL outperforms Cubic and BBR for

short flows. For long flows, ExLL shows comparable fairness performance with Cubic and

outperforms BBR.

(a) ExLL: 3 Flow Fairness

(b) BBR: 3 Flow Fairness

Figure 15: ExLL (a) persistently maintains lower latency while giving throughput fairness to second

and third flows compared to BBR (b).

26

Table 3. Jain’s Fairness Index from Multi-flow Scenarios

Flow duration: 30 seconds Flow duration: 3000 seconds

of flows ExLL Cubic BBR # of flows ExLL Cubic BBR

2 0.992 0.919 0.809 2 0.990 0.997 0.846

3 0.985 0.891 0.799 3 0.979 0.988 0.882

4 0.979 0.836 0.807 4 0.978 0.976 0.833

5.5 Non-Cellular Bottleneck Adaptation

We first demonstrate the adaptability of ExLL to non-cellular bottleneck via the following experiment:

we throttle the bandwidth of access link from our server to the Internet by 𝑅𝑎 Mbps for 30 seconds,

500 Mbps for 30 seconds, and 𝑅𝑎 Mbps again for 30 seconds via netem [16] and let a cellular

receiver connected to 60 Mbps channel download data with ExLL. We present CWND, RTT, and

throughput from the experiment in Figure 16 (a) with 𝑅𝑎 of 10 Mbps and 30 Mbps. The figure shows

that for the first 30 seconds where non-cellular bottleneck exists, ExLL does not exit from its

observation mode and lets Cubic in the server govern the control. For the next 30 seconds where the

bottleneck moves to cellular link, ExLL takes control over Cubic. Then, for the last 30 seconds where

the bottleneck moves back to the non-cellular link from which packet drops occur, ExLL stops

controlling (i.e., stops updating RWND) and lets Cubic take control as explained in Section 4.6.

Figure 16 (a) confirms that ExLL adapts well to non-cellular or cellular bottleneck irrespective of 𝑅𝑎

values.

We then test the adaptability of ExLL in more complicated scenarios in which 1) a cellular receiver

downloads from our server using ExLL via a non-cellular bottleneck link (40 Mbps) that is shared

with two Cubic flows (say Cubic 1 and 2) connecting different wired servers and via a cellular link

(100 Mbps) and the non-cellular bottleneck later disappears, and 2) a cellular receiver downloads one

ExLL flow (say ExLL 1) from our server which experiences a non-cellular bottleneck (40 Mbps) and

downloads two more ExLL flows (say ExLL 2 and 3) from another server whose bottleneck forms at

the cellular link (100 Mbps). In both scenarios, we let flows start sequentially with the interval of 30

seconds and last commonly for 90 seconds as shown in Figure 16 (b) and Figure 16 (c), respectively

with CWND, RTT, and throughput information. Figure 16 (b) shows that when the ExLL flow joins

the non-cellular bottleneck which was already occupied by two Cubic flows, it runs as Cubic to keep

the fairness, and as soon as the bottleneck disappears, it turns into ExLL and fully exploits the cellular

27

link with low latency. Figure 16 (c) shows that the ExLL flow experiencing a non-cellular bottleneck

(ExLL 1) runs as Cubic, but it does not starve by other ExLL flows (ExLL 2 and 3) competing with

ExLL 1 in the cellular link as well as it does not make those ExLL flows (ExLL 2 and 3) to starve.

(a) One ExLL flow adapting to non-cellular or cellular bottleneck over time

(b) One ExLL flow and two Cubic flows competing in a non-cellular bottleneck link

28

(c) One ExLL flow experiencing non-cellular bottleneck competing with two ExLL flows, with

no non-cellular bottleneck, in a cellular link

Figure 16: (a) ExLL takes control or hands it over to Cubic adaptively under cellular or non-cellular

bottleneck for coexistence with Cubic. (b) ExLL runs as Cubic and achieves fairness when competing

with Cubic flows under non-cellular bottleneck. (c) An ExLL flow experiencing non-cellular

bottleneck coexists with two ExLL flows with no non-cellular bottleneck in a cellular link.

29

6. Application Performance

In this section, we evaluate the improvement in quality of experience (QoE) from adopting ExLL in

web browsing scenario through QoE metrics: page loading time (PLT) and Speed Index [31]. Unlike

other low-latency congestion controls, thanks to its receiver-side design, ExLL allows us to

immediately test such improvement from commercial servers running Cubic without touching the

servers. In order to measure PLT in a systematic way, we extract the event timing information from

Android Chrome browser using Chrome developer tool [11].We define PLT by the time interval from

the moment of requesting a new page, 𝑇𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑟𝑡, to the moment of receiving the last byte of

the requested page, 𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐸𝑛𝑑 . Speed Index is a popular page load performance metric that

quantifies how fast contents of a page are visibly populated over time. Speed Index can also be

obtained from Android Chrome browser using Chrome developer tool [11].

In a similar manner, using the Youtube player library of Android, we develop an Android

application that measures the time interval between the moment that a new video is requested by a

user while playing another video and the moment that the requested video starts to play after

satisfying its required buffering. For the precise measurement of video CST, we record the time stamp

from the Android Youtube player API’s state change listener, onVideoStarted() capturing the first

moment of playing the requested video and compare it with the moment of requesting a new video in

our test application. We divide types of videos to test as (i) videos with low accessibility (i.e.,

overseas videos with very low view counts) and (ii) videos with high accessibility (i.e., popular videos

on domestic contents with high view counts).

It is known that low-latency congestion controls do not reduce the download duration of a given

data because the duration depends more on throughput rather than latency [21]. However, low-latency

congestion control can still demonstrate its benefit when the bottleneck experiences bufferbloat. To

capture such benefit, in Figure 17 (a), we compare PLT in an Android device for loading three popular

web sites with and without ExLL while updating or not updating applications from Google Play Store.

When browsing runs only, improvement in PLT with ExLL is minor. But when update coexists, ExLL

manages PLT nearly the same as that with no concurrent update. In such a case, ExLL reduces PLT

significantly by about 54%, 71%, and 74% from three websites respectively. As shown in Figure

17(b), we can also observe the improvement of ExLL with Speed Index, which is by about 15%, 42%,

and 46% from three websites, respectively.

Figure 18 shows the average video CST with and without ExLL. ExLL records 37% and 25%

shorter CST for the videos of low and high accessibility. It is impressive to observe that ExLL with a

background download session experiences virtually no performance degradation in the CST compared

30

to the scenario with no background session. This is because ExLL resolves bufferbloat in the network

and makes a new video delivered much more quickly to the user device.

(a) PLT as 𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐸𝑛𝑑 − 𝑇𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑟𝑡

(b) Speed Index

Figure 17: (a) Average PLT and (b) Speed Index with 95% confidence interval measured from three

popular web sites with or without application updates. ExLL substantially improves PLT and Speed

Index especially when application updates coexist.

Figure 18: Video channel switching time. ExLL switches to a new video much faster than TCP Cubic

when background traffic exists.

31

7. Related Work

There have been many proposals aiming at achieving low latency and high throughput together.

Below we categorize them into three groups by their targeting networks: 1) the Internet, 2) datacenter,

and 3) cellular networks.

Low latency for the Internet: There have been delay-based congestion control protocols such as

Vegas [8] and FAST [32], and they shed light on designing a protocol that achieves low latency.

However, the difficulty involved in tuning parameters across different networks as well as their

coexistence issue with loss-based congestion controls have limited their wide deployment. One of the

most recent proposals, BBR [10] implements the adaptability by introducing four modes of operation:

start-up, drain, probe-bandwidth, and probe-RTT, to estimate time-varying network bandwidth. By

controlling its CWND to be close around the estimated BDP, BBR gets substantial improvement in

the packet latency. Recently proposed Copa [6] adjusts its CWND towards the target rate which is

based on the observed queueing delay under Markovian packet arrival assumption for a range of

networks. Its throughput, however, is shown to be much lower than those of both CUBIC and BBR in

cellular networks.

Low latency for datacenter networks: In datacenter networks, pHost [12] uses pull-based packet

scheduling using token packets generated from receivers in order to minimize the flow completion

time. However, it assumes that the congestion in the core is free and the size of flows activated is

known in advance. ExpressPass [19] proposes a receiver-driven congestion control in which a sender

explicitly controls packet transmission depending on credit packets sent by a receiver. This requires

not only network switches with a specific function to adjust the credit packets to be transmitted to the

available bandwidth but also additional overhead for sending the credit packets.

Low latency for cellular networks: DRWA [21] proposes a receiver-based congestion control for

cellular devices, which roughly controls RWND inversely proportional to the ratio between the

current RTT and minimum RTT so that the CWND of TCP sender is cropped by the RWND of TCP

receiver. CQIC [24] presents a cross-layer congestion control by directly estimating the channel

capacity based on physical layer information (i.e., channel quality indication (CQI) and discontinuous

transmission ratio) of the cellular device. Sprout [33] models the cellular network bandwidth as

random walk and performs a short-term prediction on the number of packets that can be transferred by

the network without incurring additional queueing delays. Verus [36] devises a curve fitting-based

delay profiling which maps resulting RTT values into the corresponding CWNDs. Verus finds a

relationship between RTT increase and its CWND changes to decide operating points of achieving

lower RTTs. CLAW [34] harnesses limited PHY-layer statistics available from LTE smartphones with

an analytical model to estimate the achievable cellular bandwidth and uses it to reduce Web loading

32

time rather than minimizing transport-layer latency. PropRate [23] proposes to directly monitor the

bottleneck buffer size in cellular networks by referring to the increase of one-way delay. PropRate

also utilizes two modes of operation like BBR which fill up and drain the bottleneck queue to balance

latency and throughput.

33

8. Conclusion

In this work, we proposed ExLL, a new low-latency congestion control tailored for cellular networks,

that closely achieves minimum possible latency even in dynamic cellular channels while retaining

throughput as much as Cubic. ExLL not only leverages cellular network characteristics such as RB

allocation patterns in downlink scheduling and SR periodicity in uplink scheduling but also suggests a

refined equation-based congestion control from FAST. Our implementation using Android

smartphones shows that ExLL outperforms existing low-latency congestion control algorithms in both

static and dynamic channels of LTE networks.

34

REFERENCES

[1] 3GPP. 2017. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal

Terrestrial Radio Access Network (E-UTRAN); Overall description (TS 36.300 v14.6.0 Release 14).

http://www.3gpp.org/dynareport/36300.htm.

[2] 3GPP. 2017. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and

modulation (TS 36.211 v14.6.0 Release 14). http://www.3gpp.org/dynareport/36211.htm.

[3] 3GPP. 2017. Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures

(TS 36.213 v14.6.0 Release 14). http://www.3gpp.org/dynareport/36213.htm.

[4] 3GPP. 2017. General Packet Radio Service (GPRS) enhancements for Evolved Universal

Terrestrial Radio Access Network (E-UTRAN) access (TS 23.401 v14.7.0 Release 14).

http://www.3gpp.org/dynareport/23401.htm.

[5] N. A. Ali, A. E. M. Taha, and H. S. Hassanein. 2013. Quality of Service in 3GPP R12 LTE-

Advanced. IEEE Communications Magazine 51, 8 (2013), 103–109.

[6] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-Based Congestion Control for

the Internet. In Proc. of USENIX NSDI.

[7] Praveen Balasubramanian. 2017. Updates on Windows TCP. https://datatracker.ietf.org/meeting/

100/materials/slides-100-tcpm-updates-on-windows-tcp.

[8] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. 1994. TCP Vegas: New

Techniques for Congestion Detection and Avoidance. In Proc. of ACM SIGCOMM.

[9] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda. 2013. Downlink Packet Scheduling

in LTE Cellular Networks: Key Design Issues and a Survey. IEEE Communications Surveys Tutorials

15, 2 (2013), 678–700.

[10] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson.

2016. BBR: Congestion-Based Congestion Control. ACM Queue 14, 5 (2016), 50.

[11] Google Developers. 2017. Chrome DevTools. https://developers.google.com/web/tools/chrome-

devtools/.

[12] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Ratnasamy, and Scott

Shenker. 2015. pHost: Distributed Near-Optimal Datacenter Transport Over Commodity Network

Fabric. In Proc. of ACM CoNEXT.

[13] J. Gettys. 2011. Bufferbloat: Dark Buffers in the Internet. IEEE Internet Computing 15, 3 (May-

June 2011), 96.

[14] Yihua Guo, Feng Qian, Qi Alfred Chen, Zhuoqing Morley Mao, and Subhabrata Sen. 2016.

Understanding On-device Bufferbloat for Cellular Upload. In Proc. of ACM IMC.

35

[15] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a New TCP-friendly High-speed TCP

Variant. ACM SIGOPS Operating Systems Review 42 (July 2008), 64–74. Issue 5.

[16] S. Hemminger. 2005. Netem - emulating real networks in the lab. In Proc. of the Linux

Conference.

[17] Ravi Netravali Hongzi Mao and Mohammad Alizadeh. 2005. Netem - emulating real networks in

the lab. In Proc. of the Linux Conference.

[18] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. Morley Mao, Subhabrata

Sen, and Oliver Spatscheck. 2013. An In-depth Study of LTE: Effect of Network Protocol and

Application Behavior on Performance. In Proc. of ACM SIGCOMM.

[19] Keon Jang Inho Cho and Dongsu Han. 2017. Credit-Scheduled Delay-Bounded Congestion

Control for Datacenters. In Proc. of ACM SIGCOMM.

[20] Raj Jain. 1990. The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling. John Wiley and Sons.

[21] Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and Injong Rhee. 2012. Tackling bufferbloat in

3G/4G networks. In Proc. of ACM IMC.

[22] Chris Johnson. 2012. Long Term Evolution In Bullets. CreateSpace Independent Publishing

Platform.

[23] Wai Kay Leong, Zixiao Wang, and Ben Leong. 2017. TCP Congestion Control Beyond

Bandwidth-Delay Product for Mobile Cellular Networks. In Proc. of ACM CoNEXT.

[24] Feng Lu, Hao Du, Ankur Jain, Geoffrey M. Voelker, Alex C. Snoeren, and Andreas Terzis. 2015.

CQIC: Revisiting Cross-Layer Congestion Control for Cellular Networks. In Proc. of ACM

HotMobile.

[25] S. Mohan, R. Kapoor, and B. Mohanty. 2011. Latency in HSPA Data Networks. Technical Report.

Qualcomm. https://goo.gl/kiEQrJ

[26] NextEPC. 2017. Open source implementation of EPC. https://www.nextepc.org.

[27] Afif Osseiran, Jose F. Monserrat, and Werner Mohr. 2011. Mobile and Wireless Communications

for IMT-Advanced and Beyond. Wiley, West Sussex, United Kingdom.

[28] M. Simsek, A. Aijaz, M. Dohler, J. Sachs, and G. Fettweis. 2016. 5G-Enabled Tactile Internet.

IEEE Journal on Selected Areas in Communications 34, 3 (March 2016), 460–473.

[29] Zhaowei Tan, Yuanjie Li, Qianru Li, Zhehui Zhang, Zhehan Li, and Songwu Lu. 2018.

Supporting Mobile VR in LTE Networks: How Close Are We? Proc. ACM Meas. Anal. Comput. Syst.

2, 1 (April 2018), 8:1–8:31.

[30] Jeanette Wannstrom. 2013. Carrier Aggregation explained. http://www.3gpp.org/technologies/

keywords-acronyms/101-carrier-aggregation-explained.

[31] WebPagetest. 2018. WebPagetest Documentation. https://sites.google.com/a/webpagetest.org/docs/.

36

[32] David X. Wei, Cheng Jin, Steven H. Low, and Sanjay Hegde. 2006. FAST TCP: Motivation,

Architecture, Algorithms, Performance. IEEE/ACM Transactions on Networking 14 (December 2006),

1246–1259. Issue 6.

[33] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. 2013. Stochastic forecasts achieve

high throughput and low delay over cellular networks. In Proc. of USENIX NSDI.

[34] Xiufeng Xie, Xinyu Zhang, and Shilin Zhu. 2017. Accelerating Mobile Web Loading Using

Cellular Link Information. In Proc. of ACM MobiSys.

[35] Swarun Kumar Xiufeng Xie, Xinyu Zhang and Li Erran Li. 2015. piStream: Physical Layer

Informed Adaptive Video Streaming Over LTE. In Proc. of ACM MobiCom.

[36] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and Carmelita Görg.

2015. Adaptive Congestion Control for Unpredictable Cellular Networks. In Proc. of ACM

SIGCOMM.

[37] Xincheng Zhang. 2018. LTE Optimization Engineering Handbook. Wiley, West Sussex, United

Kingdom.

	1. Introduction
	1.1 Exploiting Cellular Network Characteristics for Protocol Design
	1.2 Gap from Ideal Latency: Existing Latency Optimized Protocols
	1.3 ExLL Contribution

	2. Observations
	2.1 Measurement Setup
	2.2 Cellular Network Characteristics

	3. ExLL's Network Inference
	3.1 Cellular Downlink
	3.2 Cellular Uplink

	4. ExLL Design
	4.1 Control Algorithm
	4.2 State Transition
	4.3 MTE Calculation
	4.4 mRE Calculation
	4.5 Exit from Observation to Control
	4.6 Recovery from Loss or Timeout

	5. Evaluation
	5.1 Receiver- vs. Sender-side ExLL
	5.2 Performance in Static Channel
	5.3 Performance in Mobile Channel
	5.4 Performance with Multiple Flows
	5.5 Non-Cellular Bottleneck Adaptation

	6. Application Performance
	7. Related Work
	8. Conclusion

<startpage>12
1. Introduction 1
 1.1 Exploiting Cellular Network Characteristics for Protocol Design 1
 1.2 Gap from Ideal Latency: Existing Latency Optimized Protocols 2
 1.3 ExLL Contribution 3
2. Observations 4
 2.1 Measurement Setup 4
 2.2 Cellular Network Characteristics 4
3. ExLL's Network Inference 7
 3.1 Cellular Downlink 7
 3.2 Cellular Uplink 10
4. ExLL Design 13
 4.1 Control Algorithm 13
 4.2 State Transition 14
 4.3 MTE Calculation 15
 4.4 mRE Calculation 17
 4.5 Exit from Observation to Control 18
 4.6 Recovery from Loss or Timeout 18
5. Evaluation 20
 5.1 Receiver- vs. Sender-side ExLL 20
 5.2 Performance in Static Channel 20
 5.3 Performance in Mobile Channel 23
 5.4 Performance with Multiple Flows 23
 5.5 Non-Cellular Bottleneck Adaptation 26
6. Application Performance 29
7. Related Work 31
8. Conclusion 33
</body>

