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Abstract 

 
Since the diagnosis of severe bufferbloat in mobile cellular networks, a number of low-latency 

congestion control algorithms have been proposed. However, due to the need for continuous 

bandwidth probing in dynamic cellular channels, existing mechanisms are designed to cyclically 

overload the network. As a result, it is inevitable that their latency deviates from the smallest possible 

level (i.e., minimum RTT). To tackle this problem, we propose a new low-latency congestion control, 

ExLL, which can adapt to dynamic cellular channels without overloading the network. To do so, we 

develop two novel techniques that run on the cellular receiver: 1) cellular bandwidth inference from 

the downlink packet reception pattern and 2) minimum RTT calibration from the inference on the 

uplink scheduling interval. Furthermore, we incorporate the control framework of FAST into ExLL’s 

cellular specific inference techniques. Hence, ExLL can precisely control its congestion window to 

not overload the network unnecessarily. Our implementation of ExLL on Android smartphones 

demonstrates that ExLL reduces latency much closer to the minimum RTT compared to other low-

latency congestion control algorithms in both static and dynamic channels of LTE networks. 
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1. Introduction 
 

Recent observations in the Internet revealed that TCP sessions often suffer from exceptionally long 

packet delay even in a small bandwidth delay product (BDP) network. Gettys et al. termed this 

phenomenon as bufferbloat [13] and diagnosed it as an over-buffering problem at the bottleneck link, 

mostly caused by TCP’s loss-based congestion control mechanism that keeps pushing packets to the 

network until the bottleneck queue becomes full. Follow-up measurement studies [14, 18, 21] 

confirmed that the bufferbloat problem is often severe in cellular networks. They diagnosed that 

Cubic [15], the default TCP congestion control algorithm in Linux (hence, the default in most Android 

devices) and in Windows [7], is aggressive enough to quickly fill up cellular network buffers, 

resulting in up to several hundred milliseconds of additional packet latency. 

 

1.1 Exploiting Cellular Network Characteristics for Protocol Design 
 

In order to tackle such a latency problem in cellular networks, there have been various research 

proposals on designing a low-latency congestion control algorithm [10, 21, 23, 24, 33, 36]. These 

approaches, however, have not fully leveraged cellular network specific characteristics. 

For example, for the downlink scheduling the base station (BS) schedules downlink packets 

towards multiple user equipments (UEs) at 1 ms granularity (a.k.a. transmission time interval, TTI), 

based on both the signal strength reported by each UE and the current traffic load [9]. This indicates 

that we can instantly infer the cellular link bandwidth by observing packet reception patterns in a very 

short time window instead of explicitly probing the bandwidth or measuring throughput for a 

relatively long period of time (e.g., a few RTTs). For the uplink scheduling, the BS needs to grant 

uplink transmission eligibility for each UE, which happens at a regular interval known as SR 

(scheduling request) periodicity [3]. We find that ignoring such a scheduling pattern often 

underestimates the minimum RTT and leads congestion control algorithms to run in unrealistic 

operating points. 

Furthermore, the minimum RTT value is not generally affected by the channel condition between 

UE and BS due to adaptive MCS (modulation and coding scheme) selection used in LTE systems, 

which approximately eliminates MAC-layer retransmissions, but also not affected by other UEs 

connected to the same BS since per-UE queue is isolated. 

The understanding of the aforementioned factors has important implications on the design of an 

extremely low-latency congestion control and its best performance in throughput and delay. In 

particular, to cope with highly dynamic channel conditions in cellular networks, it is vital to obtain 

both achievable maximum throughput and minimum RTT as quickly and accurately as possible, so 

that the congestion control algorithm can always exploit up-to-date BDP for low-latency control. 
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1.2 Gap from Ideal Latency: Existing Latency Optimized Protocols 
 

In order to check the latency performance of existing low latency congestion control algorithms 

including Cubic, we perform our own measurement with an Android smartphone over a static LTE 

channel as shown in Figure 1. We compare the performance (mean and 95-th percentile) of existing 

latency optimized congestion control protocols along with a simple protocol that sends at a constant 

rate (β×BDP). The minimum RTT and maximum throughput achievable for the tested channel are 

about 47 ms and 90 Mbps, respectively. While Cubic suffers from long packet latency of 230 ms, 

BBR [10], PropRate [23] and Verus [36] achieve 104 ms, 71 ms, and 76 ms, respectively, with similar 

or much lower throughput1. Low-latency algorithms show significant RTT suppression compared to 

Cubic, but their latency performance is still far from the ideal one characterized by sending the BDP 

variants (β = 0.9,1.0,1.1), which is to achieve about 68 ms at 90 Mbps throughput. It is intriguing that 

BBR and PropRate that are designed to track and utilize the BDP of the network are performing not as 

good as sending the BDP. However, considering the overhead from cycling several modes of 

operation to probe bandwidth and RTT, the existence of the performance gap is not surprising. 

 

 

Figure 1: Mean and 95-th percentile RTT against the average throughput of various congestion control 

algorithms compared with that of sending a static congestion window around BDP over a real LTE 

network. 

 

                                           
1 We test protocols based on the source code provided by the authors. Tuning them to operate more aggressively to achieve 

maximum throughput is possible, which may, however, lead to significant increase in latency. Thus, we do not modify or 

tune them. 
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1.3 ExLL Contribution 
 

To bridge the gap, we propose a new low-latency congestion control for mobile cellular networks, 

namely ExLL (Extremely Low Latency) that reduces latency as close to the minimum RTT while 

retaining the same level of throughput that Cubic achieves. To obtain such performance, instead of 

probing the network, ExLL estimates the bandwidth of cellular channels by analyzing the packet 

reception pattern at an LTE subframe granularity in the downlink and also estimates the minimum 

RTT more realistically by incorporating SR periodicity in the uplink. As these estimations can be done 

reliably at each UE, ExLL takes the receiver-side design as its first choice. With the bandwidth and 

latency estimations, ExLL adopts the control feedback in FAST [32] to compute its receive window 

(RWND). This receiver-side ExLL design is immediately deployable to cellular UEs without 

compromising servers as it makes the congestion control protocol running on the servers set its 

congestion window (CWND) based on the RWND from ExLL receiver. Furthermore, ExLL can be 

implemented as sender-side as well. We later demonstrate that both implementations have a minor 

performance gap in practice. 

Our comprehensive experiments carried out over commercial LTE networks confirm that ExLL can 

always achieve shorter RTT which is much closer to the minimum RTT while retaining similar 

throughput of Cubic. More specifically, in a stationary scenario where an Android smartphone is 

stably connected to an LTE network with 50 ms of its minimum RTT and 75 Mbps of its maximum 

throughput, ExLL attains on average 66 ms RTT while maintaining throughput of 72 Mbps; BBR and 

Cubic attain about 110 ms and 261 ms RTT with about 70 Mbps and 75 Mbps. PropRate and Verus 

show lower throughput about 59 Mbps and 39 Mbps and attain around 61 ms and 92 ms RTT. In a 

mobile scenario where a smartphone user moves between good (-95 dBm) and bad channels (-125 

dBm), ExLL retains around 61 ms and 45 Mbps while BBR and Cubic stay around 78 ms and 395 ms 

with about 40 Mbps and 46 Mbps. PropRate and Verus shows 53 ms and 63 ms but is with only 23 

Mbps and 34 Mbps. 

In summary, our contributions are three-fold. 

 We develop novel techniques that can estimate the cellular link bandwidth and realistic minimum 

RTT without explicit probing, which can be easily extended to next-generation cellular 

technologies such as 5G. 

 We incorporate the control logic of FAST into ExLL to minimize the latency even in dynamic 

cellular channel conditions. 

 We implement ExLL in both receiver- and sender-side versions that give wider deployment 

opportunities. The receiver-side ExLL can provide an immediate solution for untouched 

commodity servers while the sender-side ExLL can provide a fundamental solution for 5G 

URLLC (Ultra Reliability and Low Latency Communication) services [28]. 
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2. Observations 
 

In this section, we present several observations from both commercial LTE networks and our 

controlled LTE tested. In Section 3, we introduce ExLL’s cellular specific inference techniques to 

achieve low latency without sacrificing throughput. 

 

2.1 Measurement Setup 
 

We conduct measurements in commercial LTE networks and in our in-Lab LTE testbed. Software 

settings represented by kernel and Android OS versions and hardware specifications such as LTE 

chipsets equipped in cellular devices are summarized in Table 1. Our in-lab LTE testbed consists of 

indoor small cell base stations (i.e., eNBs) and EPC (Evolved Packet Core) software implementing 

MME (Mobility Management Entity) and S/P-GW (Serving/Packet Gateway) [1]. We put Android 

phones inside a shield box, so that the phones can communicate with the eNB via a pair of antennas 

inside the box. The signal attenuator installed between the shield box and the eNB can emulate a 

variety of RF conditions. For EPC, we use the open source NextEPC [26] that implements features up 

to 3GPP LTE Release 14. 

 

Table 1. Server and Android device specification 
 

Real LTE Processor LTE Modem Kernel OS 

Server i7-6700K - Linux 4.13 Ubuntu 16.04 

Client MSM8992 X10 LTE Linux 3.10 Android 8.1.0 

     

in-lab LTE Processor LTE Modem Kernel OS 

Server i5-7200U - Linux 4.13 Ubuntu 16.04 

Client MSM8992 X10 LTE Linux 3.10 Android 8.1.0 

 

2.2 Cellular Network Characteristics 
 

Max throughput and min RTT in the cellular network: We first test throughput and RTT in a 

commercial LTE network by physically moving two cellular devices from a certain location where the 

received signal strength indication (RSSI) is about -75 dBm to another location with -105 dBm. We 

measure the throughput of one device by downloading a large file from our in-lab server running 

Cubic. At the same time, we also measure the instantaneous RTTs by repeating ping tests in another 

device. Note that both devices are connected to the same LTE eNB. Figure 2 (a) shows RTT from ping 

tests, throughput from downloading, and RSSI over time from the three test runs. We can see that RTT 
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stays nearly at the same level even when the RSSI varies widely, but achievable throughput fluctuates 

accordingly. 

 

 

(a) RTT, throughput, and RSSI from three test runs in a mobile scenario 

 

(b) RTT statistics (with average and 100% confidence interval) from channels with different 

RSSI values 
 

Figure 2: (a) RTT and throughput measurements in a commercial LTE network while moving cellular 

devices from a location with strong signal strength to a location with weak signal strength, (b) RTT 

statistics measured by ping tests over a commercial LTE network with different RSSI values. 

 

Min RTT over different RSSI values: The minimum RTT observed from a network has been one of 

the most important component in delay-based congestion controls, as it indicates the RTT with nearly 

zero queueing delay. In the cellular network, however, it is unclear if the physical channel condition 

largely affects this. To demonstrate the impact of RSSI on the minimum RTT, we average 100 ping 

measurements for different levels of RSSI. As shown in Figure 2 (b), the minimum RTT (the lower 
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end of a confidence interval) is not much affected by RSSI. We conjecture that this is because of MCS 

adaption to a different channel quality for reliable packet transmissions in the MAC layer, which 

limits additional delay from retransmissions. Another interesting observation is that RTT variation is 

also very stable over different RSSI values. We find the rationale behind this stable RTT variation 

from the implementation of SR periodicity of LTE networks, which we investigate the details in 

Section 3.2. 

Per-UE queueing2 in LTE networks: To see if the LTE network employs a per-UE queue, we run 

two Cubic flows on two cellphones (one flow on each cellphone). Then, we replace one Cubic flow 

with a Cubic flow whose CWND is cropped by BDP. Figure 3 confirms that each UE has its own 

queue, not affecting the other competing UE’s RTT while achieving the same throughput even by 

capping the CWND. 

As discussed in [33], the per-UE queue in cellular networks is an important factor in designing a 

low-latency congestion control algorithm because the delay in the queue is only affected by its own 

control, not by other congestion control algorithms running on other cellular devices in the same BS. 

This motivates us to focus more on a receiver-side design that can turn Cubic flows from any servers 

to the receiver into low-latency flows. 

 

(a) Both receivers download data with Cubic     (b) One receives data with Cubic while  

                                         another does with Cubic cropped by BDP 
 

Figure 3: Throughput and RTT when (a) two cellular receivers in the same eNB download data with 

Cubic each, (b) one receiver downloads with Cubic and another downloads with Cubic cropped by BDP. 

                                           
2 Each UE is given a default bearer that serves all best-effort traffic. For simplicity, we denote the queue of the default 

bearer as per-UE queue here. 
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3. ExLL’s Network Inference 
 

ExLL leverages downlink and uplink scheduling mechanisms of cellular system to inform the design of 

an extremely low latency protocol without having throughput degradation. 

 

3.1 Cellular Downlink 
 

In mobile cellular networks that experience frequent bandwidth fluctuations, an efficient probing 

becomes more important, as explored by recently proposed low-latency congestion control algorithms 

such as Verus, BBR, and PropRate. Although how to probe optimally is still an open question, we can 

postulate that probing in a way that injects packets excessively to the network even for short duration 

such that the network becomes temporarily overbuffered is far from optimum in terms of latency. To 

overcome this challenge, we can borrow recent proposals that enables the estimation of available 

cellular network bandwidth either from 1) extracting PHY-layer parameters [24, 34, 35] or 2) running a 

machine learning [17]. However, they also bring new practical issues such as extracting PHY-level 

information is only supported by specific chipset vendors (e.g., Qualcomm) with additional software 

tools (e.g., QXDM) that need rooting a device. A machine learning based approach [17] eliminates the 

need for such complications. However, learning parameters takes time, and thus momentary changes in 

cellular networks such as traffic load and channel condition are hard to be tracked in real time. To this 

end, ExLL takes a relatively simpler yet effective approach. ExLL observes packet receiving patterns in 

a cellular device and finds clues to estimate the available bandwidth from the scheduling behaviors of 

cellular networks without explicitly probing the network. 

Downlink scheduling pattern: LTE systems are designed to schedule downlink packets by the unit of 

subframe whose duration is 1 ms [1]. Also, ten subframes are grouped to form a radio frame of length 10 

ms. Each subframe consists of two slots of 0.5 ms duration and one slot contains multiple resource 

blocks (RBs) with 180 kHz bandwidth each [2]. The RB is the smallest resource unit allocatable to an 

LTE UE and the number of RBs in a slot is determined by the total bandwidth. For example, 10 MHz 

which is a typical bandwidth of commercial LTE networks has 50 RBs. According to [22], the physical-

layer specification from 3GPP defines that an LTE network with 10 MHz bandwidth, 256 QAM for 

modulation, and 2x2 MIMO antennas can reach up to 100.8 Mbps. Therefore, the network can deliver 

12,600 bytes during one subframe, thus each RB carries about 252 bytes. Provided that most 

commercial networks set their MTU sizes between 1,428 and 1,500 bytes [27], such an LTE network 

can carry at most 8.4 to 8.8 packets per subframe. When carrier aggregation in the LTE-Advanced 

networks [1, 30] is activated, multiple frequency bands (e.g., 2 or 3 bands) can add up and the total 

bandwidth increases to 20, 30, 40, or 50 MHz. Then, the data rate and the number of packets 

downloadable in a subframe increase accordingly. 
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(a) Downlink packet reception patterns in the beginning of a new flow 

 

(b) Downlink packet reception patterns after a few seconds 
 

Figure 4: Snapshot of received packets over time when downloading data with Cubic at the UE and the 

detailed packet receptions mapped onto allocated subframes (colored) in radio frames for the UE. 

 

In Figure 4, we count the number of downlink packets received by a cellphone from a server running 

Cubic in the 45 ms RTT network. The cellular bandwidth is 50 MHz from carrier aggregation. As 

depicted, at every 1 ms, a group of packets are received while the group size varies from 2 to 44 by 

subframes. This is well aligned with the aforementioned description of LTE downlink. Furthermore, we 

present the packet counts by the unit of subframe (1 ms) and radio frame (10 ms) in the same figure. In 

particular, the colored subframes indicate allocated subframes during which packet receptions are made 



9 

 

by allocated RBs, and the numbers on the colored subframes denote the number of received packets 

during each subframe while 𝑁(𝑓) denotes the total number of packet receptions during one radio 

frame (10 ms). Figure 4 (a) showing the initial stage of the download implies that the number of 

received packets in a radio frame increases rapidly as CWND increases. Thus, in the initial stage, the 

downlink behavior temporarily depends on CWND growth. However, in a few seconds as Figure 4 (b) 

shows, the patterns of allocated subframes change, but the total number of packet receptions per radio 

frame becomes stable. This is because subframe allocations are averaged out in a radio frame, and the 

averaged packet reception is governed by the chosen MCS and the scheduling quota for each receiver. 

We define metrics for ExLL’s bandwidth estimation below. 

Cellular downlink bandwidth estimation: : We let 𝑓𝑖 and 𝐹(⋅) denote the 𝑖-th radio frame for a 

given UE and a bandwidth estimation function that converts 𝑓𝑖 into a value in Mbps, respectively. 

The operation of 𝐹(𝑓𝑖) is as simple as counting the received bytes during one radio frame divided by 

10 ms. In a special case where 𝑓𝑖 does not include any allocated subframe, such 𝑓𝑖 is ignored. We 

also define a microscopic bandwidth estimation function, 𝐶(⋅), which focuses more on average 

packet reception intervals within a subframe to estimate the maximum channel bandwidth as follows: 

𝐶(𝑓𝑖) =  
∑ 𝑏𝑖𝑗𝑗∈𝑆(𝑓𝑖) /∆𝑡𝑖𝑗

|𝑆(𝑓𝑖)|
, 

 

where 𝑏𝑖𝑗 , ∆𝑡𝑖𝑗, and 𝑆(𝑓𝑖) denote the amount of received bytes within 𝑗-th subframe (sij) of 𝑖-th 

radio frame, the time gap between the first packet and the last packet reception within sij and the 

index set of allocated subframes in 𝑓𝑖, respectively. By definition, 𝐶(⋅) captures the total channel 

bandwidth before it is split to multiple users. Therefore, in case when a BS is occupied by a single UE, 

𝐶(⋅) is close to 𝐹(⋅). But in case with the BS serving multiple UEs, 𝐶(⋅) is much larger than 𝐹(⋅). 

Figure 5 illustrates how 𝐹(⋅) and 𝐶(⋅) are computed for a sample radio frame. 

 

 

Figure 5: Sample calculation of 𝐹(𝑓𝑖) and 𝐶(𝑓𝑖) from packet receptions in a given radio frame 𝑓𝑖. 

 

𝑭 and 𝑪 over dynamic channels: Figure 6 (a) and (b) present 𝐹(⋅), 𝐶(⋅), and the measured 

throughput on the UE in the carrier-aggregated channels of 30 MHz and 40 MHz, respectively, when 

(1) 
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the UE downloads data for 30 seconds from a server running Cubic. Two interesting observations are 

found from these figures: 1) 𝐹(⋅) very precisely tracks the achievable network bandwidth before it 

measures the actual throughput, 2) 𝐶(⋅) estimates the channel bandwidth of 300 Mbps or 400 Mbps 

from 30 MHz or 40 MHz channel very precisely and quickly. When the MCS is degraded due to a 

poor channel condition, 𝐹(⋅) and 𝐶(⋅) instantly detect it as shown in the figures. 𝐶(⋅) estimates the 

best case performance for a single UE, but even when eNB serves only one UE, the achievable 

throughput can be lower than 𝐶(⋅) due to QoS settings of eNB such as UE-AMBR (aggregate 

maximum bitrate)3,4 [3]. We find both metrics 𝐹(⋅) and 𝐶(⋅) are useful for different purposes. In 

Section 4.3 and 4.5, we detail the usage of them. 

 

 

(a) Measurements from a real LTE network   (b) Measurements from a real LTE network with 

with 30 MHz channel                     40 MHz channel 

Figure 6: Comparison of measured throughput with Cubic and bandwidth estimations from 𝐹(⋅) and 

𝐶(⋅) over time. 

 

3.2 Cellular Uplink 
 

LTE uplink scheduling is different from that of downlink. The biggest difference is that before obtaining 

an uplink scheduling grant from the BS, a UE needs to send its scheduling request by following the SR 

periodicity as depicted in Figure 7. Commercial LTE eNBs typically use SR periodicity chosen either 

from 5, 10, 20, 40, or 80 ms [29, 37]. While ExLL implements the SR periodicity inference algorithm in 

4.4. we experimentally show such uplink scheduling patterns below. 

Uplink scheduling patterns: Figure 8 (a) shows the receiving packet counts in a UE downloading data 

from a server and Figure 8 (b) shows the receiving Ack counts in the server. The time lines are adjusted 

                                           
3 This is defined to limit total throughput for each UE. 
4 In general, QoS settings in eNB are invisible to UEs. However, as specified in the LTE attach procedure of UE [4], some 

QoS settings can be shared from eNB to UE through ESM (EPS session management) messages. The purpose of this sharing 

is to let the UE give optional intelligence to applications that need better traffic control. Provided such QoS settings, fine 

tuning of 𝐶(⋅) can be further made. 
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to start from zero by the moment of receiving the first packet. As shown in Figure 8 (a) and (b), the 

granularity of Ack reception in the server is about 10 ms whereas the granularity of packet reception in 

the UE is about 1 ms. This implies that SR periodicity in the connected eNB for uplink is set as 10 ms. 

 

 

Figure 7: Concept of SR periodicity for cellular uplink scheduling in comparison with downlink 

scheduling. 

 

(a) The number of received packets at UE 

 

(b) The number of received Acks at sender 

 

(c) CDF of RTTs collected at UE 

Figure 8: Snapshot of received packets and Acks over time and the distribution of RTT values observed at UE. 
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RTT variation and min RTT: Figure 8 (c) shows the CDF (Cumulative Density Function) of per-

packet RTT measured in the UE by pinging the server. We find that the RTTs from the ping test vary 

from 37 ms to 47 ms whose average is about 42ms. The gap between the maximum and minimum is 

about 10 ms that matches with SR periodicity. An important lesson is drawn here. If a low-latency 

congestion control simply takes the observed minimum RTT as its measure or target for controlling 

CWND, the control becomes overly conservative and loses throughput. To avoid such a problem, we 

develop a realistic estimation technique for the minimum RTT that takes SR periodicity into 

consideration5, which will be detailed in Section 4.4. 

  

                                           
5 Note that a major cellular chipset vendor, Qualcomm, is reflecting this aspect in assessing their latency performance in 

LTE networks [25]. 
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4. ExLL Design 
 

ExLL aims at controlling its sending rate (i.e., CWND) so as to minimize latency while achieving 

throughput comparable with that of Cubic. Realizing this goal requires us to address two important 

challenges: 1) given a dynamic cellular channel whose achievable throughput and RTT vary, how do we 

track them precisely without explicitly probing the network?; 2) once achievable throughput and RTT 

become known, how do we use them to tightly control the CWND so as not to deviate from the desired 

operating point? In this section, we answer these questions and propose ExLL. 

 

4.1 Control Algorithm 
 

The well-known dilemma that every low-latency congestion control has is that the queuing in the 

bottleneck link should be minimized for latency, but it should be always non-empty for throughput. This 

dilemma becomes more challenging in dynamic networks. When the bottleneck bandwidth increases or 

decreases, the sending rate should quickly change accordingly, otherwise throughput loss or RTT 

increase occurs. We tackle this dilemma by revisiting the following control equation of FAST: 
 

𝑤i+1 = (1 − 𝛾)𝑤𝑖 + 𝛾 (
𝑚𝑅𝐸𝑖

𝑅𝑖
𝑤𝑖 + 𝛼), 

 

where 𝛾 ∈ (0,1], 𝛼 > 0 and 𝑤𝑖, 𝑅𝑖, and 𝑚𝑅𝐸𝑖 denote CWND at time slot 𝑖, RTT measured at 𝑖, 

and the minimum RTT estimate at timeslot 𝑖, respectively. 

The equation of FAST reduces CWND as the measured RTT deviates from the minimum RTT 

estimate (mRE) while persistently pushing CWND to grow by a constant  incremental factor, 𝛼. 

This control equation lets a flow (say flow 𝑗) converge to the equilibrium data rate 𝑥(𝑗) = 𝛼(𝑗)/𝑞(𝑗), 

where 𝑞(𝑗) denotes the round-trip queueing delay of the flow (i.e., summation of all queueing delays 

on its routing path), which is dominated by the queueing delay at its bottleneck link. This equilibrium 

rate is known as the unique maximizer of a network utility maximization problem: 

max
𝑥≥0

∑ 𝛼(𝑗)𝑙𝑜𝑔𝑥(𝑗) [32]. FAST probes and tracks the network bandwidth as fast as Cubic, provides 

weighted proportional fairness that does not penalize flows with large propagation delays, and 

suppresses queueing in the bottleneck link compared to Cubic. Nonetheless, it is hard to classify 

FAST as a low-latency congestion control because of α, the tuning parameter. In FAST, 𝛼 plays 

many roles. It determines the amount of queueing in the bottleneck of a flow, which accumulates 

when having multiple flows, the agility of bandwidth adaptation, and the robustness in maintaining 

high throughput. Small 𝛼 may give restrained queueing that is desirable for a low-latency congestion 

control, but it slows down the speed of adaptation. More seriously, small 𝛼 loses its guarantee to 

achieve maximum throughput in a network in which RTT can fluctuate heavily. In such a network, 

(2) 
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CWND can sometimes be overly reduced from RTT fluctuation leading to failures in always keeping 

the queueing non-empty. 

ExLL is designed to provide a solution to the problems related to 𝛼 by using our inference 

techniques in the UE, while retaining all the merits of FAST. Our solution is simple and does not 

complicate the control logic of FAST. It replaces α with 𝛼(1 − 𝑇𝑖/ 𝑀𝑇𝐸𝑖), where 𝑇𝑖 and 𝑀𝑇𝐸𝑖 

denote the measured throughput at time 𝑖  and the maximum throughput estimate at time 𝑖 , 

respectively. ExLL can obtain 𝑀𝑇𝐸𝑖 at the UE using cellular downlink characteristics. Thus, the 

control equation of ExLL is given as follows: 
 

𝑤i+1 = (1 − 𝛾)𝑤𝑖 + 𝛾 (
𝑚𝑅𝐸𝑖

𝑅𝑖
𝑤𝑖 + 𝛼(1 −

𝑇𝑖

𝑀𝑇𝐸𝑖
)), 

 

Unlike FAST, 𝑤𝑖 updates in ExLL is basically done by the receiver (UE), so 𝑤𝑖 for the receiver-

side ExLL means RWND; in the sender-side ExLL, the same equation updates CWND. 

If 𝑀𝑇𝐸𝑖 can be obtained precisely, the revised equation has a critical benefit over FAST. Even if 

𝛼 is chosen arbitrarily large for agile and robust bandwidth probing, ExLL does not to over-buffer the 

bottleneck link. This is because the increment given to congestion window from 𝛼 diminishes to zero 

as the actual throughput 𝑇𝑖 approaches the maximum throughput6. The equilibrium data rate of ExLL 

flow 𝑗 is given as 𝑥(𝑗) = 𝛼(𝑗)/(𝑞(𝑗) + 𝛼(𝑗)/𝑀𝑇𝐸𝑖
(𝑗)

), where 𝑀𝑇𝐸𝑖
(𝑗)

 denotes MTE measured by 

flow 𝑗 at time 𝑖. Similar to FAST, ExLL provides fairness to flows without any penalty in large 

propagation delays. 

 

4.2 State Transition 
 

ExLL can be implemented either at the receiver or at the sender. The receiver-side ExLL 

implementation has a significant advantage over the sender-side one as it can work with any server 

running Cubic as in Figure 9 (a). In order for ExLL receiver to take control by its RWND, the CWND 

of Cubic at the server should grow sufficiently so that min(cwnd, rwnd) is governed by RWND. 

Therefore, until Cubic increases its CWND by slow start beyond the cellular link bandwidth estimated 

by ExLL, ExLL stays in observation mode. As soon as the CWND grows sufficiently, ExLL receiver 

exits to control mode and starts to report RWND, computed from Eq. 3, back to the server. If Cubic 

experiences a packet loss and reduces its CWND below RWND, a recovery logic of ExLL receiver, 

which will be explained in Section 4.6, detects such an event by checking the difference between its 

RWND and CWND measured in the receiver. Upon detection, the recovery logic temporarily stores 

that RWND value and stops updating RWND until CWND of Cubic increases again to exceed that 

                                           
6 We use 𝛼 = 200, 𝛾 = 0.5 by default. They work reliably in all experiments. 

(3) 
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RWND. When Cubic resets by a timeout, the recovery logic also detects it and lets ExLL restart from 

observation mode. 

On the other hand, sender-side ExLL can have two design choices. We can let it work by itself 

similarly to FAST or let it be a plug-in module of Cubic. The former may operate efficiently in the 

network where all the flows rely on ExLL, but the latter would be preferable if there are cases for 

ExLL to coexist with Cubic flows. Here, we present the latter option that may give better deployment 

opportunity. As a plug-in, sender-side ExLL runs Cubic in the background as shown in Figure 9 (b). 

When a session is initiated, ExLL relies on Cubic to increase the CWND, 𝑐𝑤𝑛𝑑𝐶, quickly by slow 

start. If 𝑐𝑤𝑛𝑑𝐶 is determined to grow enough to achieve estimated cellular bandwidth from checking 

𝑐𝑤𝑛𝑑𝐶/𝑚𝑅𝐸𝑆 > 𝑀𝑇𝐸𝑆 , the CWND of ExLL 𝑐𝑤𝑛𝑑𝐸  starts to be computed, where 𝑚𝑅𝐸𝑆  and 

𝑀𝑇𝐸𝑆 denote 𝑚𝑅𝐸 and 𝑀𝑇𝐸 obtained at the sender, respectively. From then on, ExLL overrides 

Cubic when 𝑐𝑤𝑛𝑑𝐸 is smaller than 𝑐𝑤𝑛𝑑𝐶 and vice versa. We explain the detailed computations of 

𝑚𝑅𝐸 and 𝑀𝑇𝐸 below. 

 

4.3 𝑀𝑇𝐸 Calculation 
 

As UEs are scheduled by the BS, changes in the bandwidth of cellular link can be observed more 

precisely by the UEs than the servers. For the receiver-side ExLL implementation, we obtain 𝑀𝑇𝐸 

from the moving average of 𝐹(⋅), the estimated cellular bandwidth by observing the packet reception 

during the duration of one radio frame. Because 𝐹(⋅) is calculated at every radio frame except for the 

radio frames that have no allocated subframes, in most cases the moving average is updated at every 

10 ms. In the cellular network with RTT of a few tens of milliseconds, ExLL receiver refreshes 𝑀𝑇𝐸 

several times during one RTT and uses the up-to-date 𝑀𝑇𝐸 for the RWND computation. As analyzed 

in Section 3, 𝐹(⋅) is capable of figuring out cellular bandwidth changes much faster than the 

throughput measurement done by the sender. 

For the sender-side ExLL implementation, we estimate the UE’s receiving rate by calculating 

𝑀𝑇𝐸𝑆 from Acks received at the sender as 𝑀𝑇𝐸𝑆 = 𝑐𝑤𝑛𝑑/∆𝑡, where ∆𝑡 denote the time difference 

between the first Ack arrival and the last Ack arrival for the group of packets sent as CWND. 𝑀𝑇𝐸𝑆 

estimates how the packets sent as CWND are received in the receiver. 

To see the difference in throughput estimation between the receiver-side and sender-side ExLL 

implementations, Figure 10 compares 𝑀𝑇𝐸, 𝑀𝑇𝐸𝑆, and the measured throughput between the server 

and the UE. 𝑀𝑇𝐸 estimated in the receiver-side ExLL shows the fastest response in detecting 

bandwidth changes that are reflected in the measured throughput later. 𝑀𝑇𝐸𝑆, on the other hand, 

detects the changes faster than the measured throughput, but it is a bit slower than 𝑀𝑇𝐸 while the 

difference is marginal. 
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(a) State transition diagram of Receiver-side ExLL 

 

(b) State transition diagram of Sender-side ExLL 

Figure 9: State transition diagrams of the receiver-side ExLL and the sender-side ExLL. 
 

 

Figure 10: 𝑀𝑇𝐸 shows the fastest response in detecting bandwidth changes that are reflected in the 

measured throughput later. 𝑀𝑇𝐸𝑆 is slightly slower than 𝑀𝑇𝐸 but is faster than the measured throughput. 
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4.4 𝑚𝑅𝐸 Calculation 
 

Our finding in Section 3 confirms that setting the minimum RTT, by taking the minimum value 

among the observed RTT values can mislead the protocol control due to SR periodicity. For the 

receiver-side ExLL implementation, the minimum and the average per-packet RTT are tracked during 

observation mode, which are denoted by 𝑚𝑝𝑅𝑇𝑇 and 𝑎𝑝𝑅𝑇𝑇, respectively. When the ExLL receiver 

switches to control mode, it first sets 𝑚𝑅𝐸  as 𝑚𝑅𝐸 = 𝑚𝑝𝑅𝑇𝑇 + 𝐷(2 × (𝑎𝑝𝑅𝑇𝑇 − 𝑚𝑝𝑅𝑇𝑇)), 

where 𝐷(⋅) is the function that finds the most matching SR periodicity value either among 5, 10, 20, 

40, and 80 ms from the observation of  𝑇̂𝑆𝑅 = 2 × (𝑎𝑝𝑅𝑇𝑇 − 𝑚𝑝𝑅𝑇𝑇). 

ExLL receiver measures per-packet RTT by the time interval between the reception of a packet 

whose sequence number is n and the reception of a packet that is brought by the Ack for the packet 𝑛 

(typically from two consecutive packets sent from the sender). 

We show a sample run of 𝑚𝑝𝑅𝑇𝑇 and 𝑎𝑝𝑅𝑇𝑇 during the observation mode of the ExLL receiver 

in Figure 11. As the figure confirms, for the eNB that use SR periodicity of 10 ms, our 

estimation  𝑇̂𝑆𝑅 suggests a very close value to 10 ms, and thus 𝐷(𝑇̂𝑆𝑅) becomes 10 ms. Table 2 

shows the results of multiple SR periodicity estimations done over a commercial LTE network of 10 

ms SR periodicity and over our in-lab LTE testbed with SR periodicity settings of 20 and 40 ms. In all 

cases, ExLL calculates  𝑇̂𝑆𝑅  that correctly converts to the ground truth SR periodicity. We also test 

the reliability of SR periodicity estimation in a multi-flow scenario in which an ExLL receiver 

initiates three download sessions, each lasting 30 seconds, sequentially with the interval of 10 seconds 

(as depicted in Figure 15). Even with such co-existing flows, we find that all three flows correctly 

estimate 10 ms as their SR periodicity. 

In the sender-side ExLL implementation, the same logic runs with per-packet RTT measurement at 

the sender. 

 

 
 

Figure 11: A sample run of 𝑎𝑝𝑅𝑇𝑇 and 𝑚𝑝𝑅𝑇𝑇 measured at a cellular receiver during the 

observation mode.  𝑇̂SR estimates 10 ms SR periodicity for the connected eNB. 
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Table 2: SR periodicity estimation in a real LTE network and from our in-lab LTE testbed 

Real LTE Network In-lab LTE Testbed 

SR periodicity: 10 ms SR periodicity: 20 ms SR periodicity: 40 ms 

𝑚𝑝𝑅𝑇𝑇 𝑎𝑝𝑅𝑇𝑇 𝑇̂𝑆𝑅 𝑚𝑝𝑅𝑇𝑇 𝑎𝑝𝑅𝑇𝑇 𝑇̂𝑆𝑅 𝑚𝑝𝑅𝑇𝑇 𝑎𝑝𝑅𝑇𝑇 𝑇̂𝑆𝑅 

37.65 42.55 9.8 24.98 34.18 18.4 23.74 40.69 33.9 

38.61 42.58 7.9 23.78 35.29 23.0 22.82 40.47 35.3 

38.59 43.04 8.9 25.17 37.96 25.6 24.01 41.15 34.3 

36.85 41.90 10.1 24.85 33.16 16.6 22.99 41.60 37.2 

39.16 42.89 7.5 24.52 36.73 24.4 23.67 41.25 35.2 

 

4.5 Exit from Observation to Control 
 

In order to exit from observation mode, ExLL receiver needs confirmation that the current CWND at 

the server exceeds the required size to fully exploit the cellular link bandwidth. If the CWND fails to 

grow that much, it means that the downlink flow has its bottleneck in a non-cellular link. In such a 

case, ExLL receiver stays in observation mode and lets Cubic running at the server control the flow to 

be compatible with other competing Cubic flows. It is known by BBR and Copa [6] that when 

competing with Cubic flows in the shared FIFO queue of a non-cellular bottleneck, a low-latency 

congestion control flow mostly loses its throughput. Thus, compatibility with Cubic is an important 

merit of ExLL. 

For the cellular bottleneck case, the exact condition to exit from observation mode is as follows: 

𝑐𝑤𝑛𝑑𝑖/𝑚𝑅𝐸𝑖 >UE-AMBR. If CWND measured at receiver divided by its minimum RTT estimate, 

𝑚𝑅𝐸𝑖, is larger than the maximum allowed cellular bandwidth for the receiver, RWND can safely 

govern CWND with no potential throughput loss. Unfortunately, UE-AMBR is hardly known at the 

receiver since it is one of operator-configured parameters. Thus, we conservatively use 𝐶𝑖, the 

estimated channel bandwidth which is the moving average of 𝐶(⋅) at the moment as the substitute of 

UE-AMBR. Using 𝐶𝑖 guarantees no throughput loss. 

 

4.6 Recovery from Loss or Timeout 
 

The role of recovery mechanism is two-fold: 1) when the CWND of Cubic at the sender becomes smaller 

than the RWND provided by ExLL receiver, which happens mostly due to packet losses, recovery lets 



19 

 

ExLL receiver stop computing and updating RWND until the CWND exceeds the RWND again, 2) when 

Cubic at the sender initiates a new slow start due to timeout, recovery lets ExLL restart for fresh 

measurements. Below we describe in more detail. 

In most LTE networks where packet losses are nearly perfectly concealed from transport layer thanks to 

mild MCS selection [9, 18], the measured CWND in ExLL receiver from counting received packets during 

one RTT matches with its computed RWND as long as RWND is governing the CWND of Cubic at the 

sender. However, when a packet loss or a timeout occurs, Cubic’s CWND at the sender temporarily 

shrinks, so ExLL receiver can observe the measured CWND is lower than its RWND. Upon this 

observation, recovery focuses on the size of the measured CWND – 1) if it is equal to the initial CWND 

of Cubic, recovery determines that a timeout happened and restarts ExLL from its observation mode; 

2) otherwise, recovery determines that packet losses occur. It reserves RWND as RWNDρ and stops 

updating RWND until the measured CWND recovers. During this waiting period, Cubic’s control 

temporarily governs ExLL. As soon as the measured CWND exceeds RWNDρ, RWND computation 

as in ExLL control equation restarts and ExLL takes the control back. By doing so, we remove 

potential confusion of ExLL in controlling its RWND. We omit the recovery logic for sender-side 

ExLL due to similarity. 
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5. Evaluation 
 

In this section, we first provide a comparison between receiver-side and sender-side ExLL. Then, 

using receiver-side ExLL, we extensively evaluate ExLL in comparison with other protocols in 

stationary and mobile LTE networks. We then further examine the performance ExLL in multi-flow 

and non-cellular bottleneck scenarios. We implement receiver-side ExLL on Android smartphones 

(Nexus 5X) by patching the kernel. The number of lines added to or modified in the kernel 3.10 of 

Android 8.1.0 is 327 in total. The modifications are made in two files: tcp_ipv4.c, and tcp_input.c. 

Sender-side ExLL is implemented by modifying tcp_input.c in Linux kernel 4.13. The number of lines 

modified is 114. We use TCP Probe installed in the server to monitor and throughput, CWND, and 

RTT for both of sender-side and receiver-side ExLL. 

 

5.1 Receiver- vs. Sender-side ExLL 
 

We first compare the behaviors of receiver-side ExLL and sender-side ExLL in Figure 12 (a) from a real 

LTE network whose RSSI is stable at -90 dBm and minimum RTT and maximum throughput are about 50 

ms and 150 Mbps. Both ExLL implementations have similar basic operations except for calculations of 

𝑀𝑇𝐸, so similar behaviors are indeed observed. They both exit from Cubic at the similar moment and 

show similar CWND control resulted from Eq. 3. Unlike BBR or PropRate, CWND fluctuation from 

intentional overbuffering and queue draining does not exist, and thus RTT stays very closely at around 

its minimum value. Figure 12 (b) summarizes RTT against throughput for both ExLL implementations 

tested with an eNB with different RTT and throughput variation. It confirms that both 

implementations perform comparably, though receiver-side ExLL performs a little better as expected. 

Figure 12 (c) shows another comparison made in a mobile channel whose bandwidth swings between 

100 Mbps to 50 Mbps. Thanks to its responsive cellular bandwidth estimation, receiver-side ExLL 

adapts to the channel very smoothly, hence it shows highly suppressed RTT close to its minimum RTT. 

Sender-side ExLL also performs quite closely to receiver-side ExLL. Figure 12 (d) summarizes the 

performance of both ExLL implementations in mobile channels with an eNB with different mobility 

scenarios, and it confirms they are comparable. For brevity, we only present receiver-side ExLL in the 

remaining evaluations. 

 

5.2 Performance in Static Channel 
 

In a static LTE network with 90 Mbps bandwidth and 50 ms minimum RTT, we compare CWND, RTT, 

and throughput recorded while downloading data from a UE with ExLL and BBR in Figure 13 (a). ExLL  
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(a) CWND, RTT, and throughput measured in a stationary cellular receiver in a real LTE 

network 

 

 

(b) ExLL comparison in a stationary cellular receiver from three LTE eNBs that give different 

latency and throughput 

 

(c) CWND, RTT, and throughput measured in a mobile cellular receiver in a real LTE network 
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(d) ExLL comparison in a mobile cellular receiver from an LTE eNB with three different 

mobility scenarios 

Figure 12: Congestion control behaviors and performance of receiver-side and sender-side ExLL 

compared in real LTE networks while the tested cellular receiver is (a) stationary or (c) mobile. (b) 

and (d) summarize the comparison of throughput and RTT between two implementations of ExLL. 

 

shows much lower average RTT as well as much lower RTT variance compared to BBR. We repeat the 

same experiment multiple times with other protocols and summarize the throughput and latency 

performance in a scatter plot, Figure 13 (b). Each protocol has a marking in the graph that represents its 

average throughput and RTT and another marking connected by a dotted line, which presents the average 

throughput and the 95-th percentile RTT. As Figure 13 (b) tells, ExLL outperforms others. It provides full 

throughput as well as a lower and more constrained RTT than other protocols. Also, the result from 

sending static amounts of congestion window as 1.0 ×BDP that characterizes the ideal performance 

boundary confirms that ExLL operates nearly ideally in a static LTE channel. 

 

(a) CWND, RTT, and throughput of ExLL and BBR measured in a stationary UE in a real LTE 

network 
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(b) Mean and 95-th percentile RTT against the average throughput from ExLL and other 

congestion controls in a real LTE network 

Figure 13: (a) A comparison between ExLL and BBR in a stationary LTE channel, (b) RTT and 

throughput performance comparison between ExLL and other protocols. ExLL outperforms other low-

latency protocols and operates very closely to the ideal performance characterized by sending 

1.0 × BDP of the network. 

 

5.3 Performance in Mobile Channel 
 

We then conduct similar experiment over a mobile LTE network whose bandwidth bounces between 

65 Mbps and 15 Mbps while the minimum RTT stays at around 45 ms. For fair comparison, instead of 

testing over real LTE networks, we program the signal attenuator of our in-lab LTE testbed and apply 

exactly the same mobile channel to all protocols. Figure 14 (a), capturing CWND, RTT, and 

throughput of ExLL and BBR, demonstrates that ExLL has smaller RTT compared to BBR. Especially 

whenever the channel gets worse, ExLL shows extremely efficient adaptation to the dynamic channel 

by suppressing RTT significantly better than BBR while not losing throughput. A scatter plot 

summarizing the statistics from repeated runs in the same mobile scenario with various protocols, 

Figure 14 (b), evidences that ExLL outperforms other low-latency protocols by non-negligible 

margins in all aspects: average RTT, 95-th percentile RTT, and throughput. 

 

5.4 Performance with Multiple Flows 
 

In section 2, we show that cellular devices in LTE networks are served by separate bearers. To see the 

impact of self-inflicted delay (i.e., queueing made in its own bearer), we evaluate the performance of  
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(a) CWND, RTT, and throughput of ExLL and BBR measured in a UE in a mobile channel 

 

(b) Mean and 95-th percentile RTT against the average throughput from ExLL and other 

congestion controls in mobile channels 

Figure 14: (a) A comparison between ExLL and BBR in the same mobile channel generated by in-lab LTE 

testbed, (b) RTT and throughput performance comparison between ExLL and other protocols in a mobile 

channel. ExLL shows nearly 20 ms less RTT compared to BBR while getting throughput as much as Cubic. 

 

multiple flows running between a server and a cellular device over an LTE network of 90 Mbps and 

50 ms. Note that BBR is controlled by the server while ExLL here is controlled by the receiver. Since 

receiver-side ExLL can turn Cubic flows from any servers into ExLL-controlled ones, it guarantees 

that the receiver has only ExLL-controlled flows in its corresponding bearer. Therefore, based on the 
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equilibrium data rate of ExLL provided in section 4.1, we can expect throughput fairness between 

ExLL-controlled flows. Figure 15 shows how ExLL and BBR behave when running three flows that 

start from different moments. As shown in the figure, ExLL shows much fairer throughput sharing 

than BBR. Also, ExLL shows much more constrained RTT compared to BBR especially when three 

flows coexist. ExLL shows about 93 ms while BBR exhibits around 137 ms. We further experiment 

multi-flow scenarios with different number of flows (𝑛) ranging from 2 to 4 under the same LTE 

network. We configure that flows start together and last for either 30 or 3000 seconds. Table 3 

summarizes the result of throughput fairness between flows by calculating Jain’s fairness index [20] 

that ranges from 1/𝑛 (unfairest) to 1 (fairest). The fairness of ExLL outperforms Cubic and BBR for 

short flows. For long flows, ExLL shows comparable fairness performance with Cubic and 

outperforms BBR. 

 

(a) ExLL: 3 Flow Fairness 

 

(b) BBR: 3 Flow Fairness 

Figure 15: ExLL (a) persistently maintains lower latency while giving throughput fairness to second 

and third flows compared to BBR (b). 
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Table 3. Jain’s Fairness Index from Multi-flow Scenarios 

 

Flow duration: 30 seconds Flow duration: 3000 seconds 

# of flows ExLL Cubic BBR # of flows ExLL Cubic BBR 

2 0.992 0.919 0.809 2 0.990 0.997 0.846 

3 0.985 0.891 0.799 3 0.979 0.988 0.882 

4 0.979 0.836 0.807 4 0.978 0.976 0.833 

 

5.5 Non-Cellular Bottleneck Adaptation 
 

We first demonstrate the adaptability of ExLL to non-cellular bottleneck via the following experiment: 

we throttle the bandwidth of access link from our server to the Internet by 𝑅𝑎 Mbps for 30 seconds, 

500 Mbps for 30 seconds, and 𝑅𝑎 Mbps again for 30 seconds via netem [16] and let a cellular 

receiver connected to 60 Mbps channel download data with ExLL. We present CWND, RTT, and 

throughput from the experiment in Figure 16 (a) with 𝑅𝑎 of 10 Mbps and 30 Mbps. The figure shows 

that for the first 30 seconds where non-cellular bottleneck exists, ExLL does not exit from its 

observation mode and lets Cubic in the server govern the control. For the next 30 seconds where the 

bottleneck moves to cellular link, ExLL takes control over Cubic. Then, for the last 30 seconds where 

the bottleneck moves back to the non-cellular link from which packet drops occur, ExLL stops 

controlling (i.e., stops updating RWND) and lets Cubic take control as explained in Section 4.6. 

Figure 16 (a) confirms that ExLL adapts well to non-cellular or cellular bottleneck irrespective of 𝑅𝑎 

values. 

We then test the adaptability of ExLL in more complicated scenarios in which 1) a cellular receiver 

downloads from our server using ExLL via a non-cellular bottleneck link (40 Mbps) that is shared 

with two Cubic flows (say Cubic 1 and 2) connecting different wired servers and via a cellular link 

(100 Mbps) and the non-cellular bottleneck later disappears, and 2) a cellular receiver downloads one 

ExLL flow (say ExLL 1) from our server which experiences a non-cellular bottleneck (40 Mbps) and 

downloads two more ExLL flows (say ExLL 2 and 3) from another server whose bottleneck forms at 

the cellular link (100 Mbps). In both scenarios, we let flows start sequentially with the interval of 30 

seconds and last commonly for 90 seconds as shown in Figure 16 (b) and Figure 16 (c), respectively 

with CWND, RTT, and throughput information. Figure 16 (b) shows that when the ExLL flow joins 

the non-cellular bottleneck which was already occupied by two Cubic flows, it runs as Cubic to keep 

the fairness, and as soon as the bottleneck disappears, it turns into ExLL and fully exploits the cellular 
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link with low latency. Figure 16 (c) shows that the ExLL flow experiencing a non-cellular bottleneck 

(ExLL 1) runs as Cubic, but it does not starve by other ExLL flows (ExLL 2 and 3) competing with 

ExLL 1 in the cellular link as well as it does not make those ExLL flows (ExLL 2 and 3) to starve. 

 

 

(a) One ExLL flow adapting to non-cellular or cellular bottleneck over time 

 

(b) One ExLL flow and two Cubic flows competing in a non-cellular bottleneck link 
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(c) One ExLL flow experiencing non-cellular bottleneck competing with two ExLL flows, with 

no non-cellular bottleneck, in a cellular link 

Figure 16: (a) ExLL takes control or hands it over to Cubic adaptively under cellular or non-cellular 

bottleneck for coexistence with Cubic. (b) ExLL runs as Cubic and achieves fairness when competing 

with Cubic flows under non-cellular bottleneck. (c) An ExLL flow experiencing non-cellular 

bottleneck coexists with two ExLL flows with no non-cellular bottleneck in a cellular link. 
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6. Application Performance 
 

In this section, we evaluate the improvement in quality of experience (QoE) from adopting ExLL in 

web browsing scenario through QoE metrics: page loading time (PLT) and Speed Index [31]. Unlike 

other low-latency congestion controls, thanks to its receiver-side design, ExLL allows us to 

immediately test such improvement from commercial servers running Cubic without touching the 

servers. In order to measure PLT in a systematic way, we extract the event timing information from 

Android Chrome browser using Chrome developer tool [11].We define PLT by the time interval from 

the moment of requesting a new page, 𝑇𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑟𝑡, to the moment of receiving the last byte of 

the requested page, 𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐸𝑛𝑑 . Speed Index is a popular page load performance metric that 

quantifies how fast contents of a page are visibly populated over time. Speed Index can also be 

obtained from Android Chrome browser using Chrome developer tool [11]. 

In a similar manner, using the Youtube player library of Android, we develop an Android 

application that measures the time interval between the moment that a new video is requested by a 

user while playing another video and the moment that the requested video starts to play after 

satisfying its required buffering. For the precise measurement of video CST, we record the time stamp 

from the Android Youtube player API’s state change listener, onVideoStarted() capturing the first 

moment of playing the requested video and compare it with the moment of requesting a new video in 

our test application. We divide types of videos to test as (i) videos with low accessibility (i.e., 

overseas videos with very low view counts) and (ii) videos with high accessibility (i.e., popular videos 

on domestic contents with high view counts). 

It is known that low-latency congestion controls do not reduce the download duration of a given 

data because the duration depends more on throughput rather than latency [21]. However, low-latency 

congestion control can still demonstrate its benefit when the bottleneck experiences bufferbloat. To 

capture such benefit, in Figure 17 (a), we compare PLT in an Android device for loading three popular 

web sites with and without ExLL while updating or not updating applications from Google Play Store. 

When browsing runs only, improvement in PLT with ExLL is minor. But when update coexists, ExLL 

manages PLT nearly the same as that with no concurrent update. In such a case, ExLL reduces PLT 

significantly by about 54%, 71%, and 74% from three websites respectively. As shown in Figure 

17(b), we can also observe the improvement of ExLL with Speed Index, which is by about 15%, 42%, 

and 46% from three websites, respectively.  

Figure 18 shows the average video CST with and without ExLL. ExLL records 37% and 25% 

shorter CST for the videos of low and high accessibility. It is impressive to observe that ExLL with a 

background download session experiences virtually no performance degradation in the CST compared 
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to the scenario with no background session. This is because ExLL resolves bufferbloat in the network 

and makes a new video delivered much more quickly to the user device. 

 

(a) PLT as 𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐸𝑛𝑑 −  𝑇𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑟𝑡 

 

(b) Speed Index 

Figure 17: (a) Average PLT and (b) Speed Index with 95% confidence interval measured from three 

popular web sites with or without application updates. ExLL substantially improves PLT and Speed 

Index especially when application updates coexist. 

 

 

Figure 18: Video channel switching time. ExLL switches to a new video much faster than TCP Cubic 

when background traffic exists. 



31 

 

7. Related Work 
 

There have been many proposals aiming at achieving low latency and high throughput together. 

Below we categorize them into three groups by their targeting networks: 1) the Internet, 2) datacenter, 

and 3) cellular networks. 

Low latency for the Internet: There have been delay-based congestion control protocols such as 

Vegas [8] and FAST [32], and they shed light on designing a protocol that achieves low latency. 

However, the difficulty involved in tuning parameters across different networks as well as their 

coexistence issue with loss-based congestion controls have limited their wide deployment. One of the 

most recent proposals, BBR [10] implements the adaptability by introducing four modes of operation: 

start-up, drain, probe-bandwidth, and probe-RTT, to estimate time-varying network bandwidth. By 

controlling its CWND to be close around the estimated BDP, BBR gets substantial improvement in 

the packet latency. Recently proposed Copa [6] adjusts its CWND towards the target rate which is 

based on the observed queueing delay under Markovian packet arrival assumption for a range of 

networks. Its throughput, however, is shown to be much lower than those of both CUBIC and BBR in 

cellular networks. 

Low latency for datacenter networks: In datacenter networks, pHost [12] uses pull-based packet 

scheduling using token packets generated from receivers in order to minimize the flow completion 

time. However, it assumes that the congestion in the core is free and the size of flows activated is 

known in advance. ExpressPass [19] proposes a receiver-driven congestion control in which a sender 

explicitly controls packet transmission depending on credit packets sent by a receiver. This requires 

not only network switches with a specific function to adjust the credit packets to be transmitted to the 

available bandwidth but also additional overhead for sending the credit packets. 

Low latency for cellular networks: DRWA [21] proposes a receiver-based congestion control for 

cellular devices, which roughly controls RWND inversely proportional to the ratio between the 

current RTT and minimum RTT so that the CWND of TCP sender is cropped by the RWND of TCP 

receiver. CQIC [24] presents a cross-layer congestion control by directly estimating the channel 

capacity based on physical layer information (i.e., channel quality indication (CQI) and discontinuous 

transmission ratio) of the cellular device. Sprout [33] models the cellular network bandwidth as 

random walk and performs a short-term prediction on the number of packets that can be transferred by 

the network without incurring additional queueing delays. Verus [36] devises a curve fitting-based 

delay profiling which maps resulting RTT values into the corresponding CWNDs. Verus finds a 

relationship between RTT increase and its CWND changes to decide operating points of achieving 

lower RTTs. CLAW [34] harnesses limited PHY-layer statistics available from LTE smartphones with 

an analytical model to estimate the achievable cellular bandwidth and uses it to reduce Web loading 
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time rather than minimizing transport-layer latency. PropRate [23] proposes to directly monitor the 

bottleneck buffer size in cellular networks by referring to the increase of one-way delay. PropRate 

also utilizes two modes of operation like BBR which fill up and drain the bottleneck queue to balance 

latency and throughput. 
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8. Conclusion 
 

In this work, we proposed ExLL, a new low-latency congestion control tailored for cellular networks, 

that closely achieves minimum possible latency even in dynamic cellular channels while retaining 

throughput as much as Cubic. ExLL not only leverages cellular network characteristics such as RB 

allocation patterns in downlink scheduling and SR periodicity in uplink scheduling but also suggests a 

refined equation-based congestion control from FAST. Our implementation using Android 

smartphones shows that ExLL outperforms existing low-latency congestion control algorithms in both 

static and dynamic channels of LTE networks. 
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