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Abstract  

 

Highly efficient water-oxidation catalysts (WOCs) were readily prepared through the simple 

heat treatment of cobalt-containing polyoxometalate [Co4(H2O)2(PW9O34)2]10- (POM). The 

annealing of soluble POM molecules at high temperatures in air led to the formation of 

insoluble nanoparticles, of which the crystal structure and catalytic activity can be controlled 

by the annealing temperature. POMs were converted to amorphous and crystalline CoWO4 

nanoparticles when annealed at 400 and 500 °C, respectively. Interestingly, amorphous CoWO4 

nanoparticles exhibited excellent catalytic activity near the neutral pHs, making them superior 

to both pristine POM and POM-derived crystalline CoWO4 nanoparticles. Their outstanding 

performance was attributed to the optimum distance between the nearest Co ions, which 

facilitates the Langmuir-Hinshelwood (LH) mechanism that provides faster pathway of water 

oxidation than Eley-Rideal (ER) mechanism.  

For its versatile application, however, its integration with a heterogeneous 

electrode/photoelectrode is critically required. Based on the findings on the synthesis of POM-

derived WOCs by annealing, we could readily immobilize CoWO4-based WOCs on the 

surfaces of various electrodes for efficient electrochemical and photoelectrochemical water 

oxidation through the annealing of POMs pre-adsorbed onto the desired electrode surface, such 

as porous carbon-felt electrodes and worm-like hematite photoanodes. In particular, we found 

that the photoelectrochemical performance of the hematite photoanode was significantly 

improved after the decoration with a-CoWO4 WOCs in terms of photocurrent density and onset 

potential owing to the fast charge transfer and advantageous reaction pathway. This study may 

provide insights not only for the synthesis of efficient electrocatalysts derived from POMs but 

also for their immobilization onto the desired electrode surface for practical applications. 
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1  Introduction 

 

1.1 Research Backgrounds 

 

In recent years, our excessive dependence on fossil fuels has caused severe environmental 

problems such as emissions of pollutants and greenhouse gases. Consequently, the development of clean 

and sustainable technologies enabling the production and utilization of energy resources has become 

urgently needed for both the present and future generations. Numerous researchers have extensively 

studied to develop such technologies, while the nature has already devised a system for sustainable 

energy conversion utilizing infinite solar energy, photosynthesis. In natural photosynthesis, electrons 

liberated by absorbed sunlight at the chloroplast are used to reduce CO2 to carbohydrates and remaining 

vacancies are filled with electrons from electrochemical water oxidation. (Eq. 1) 

 

2H2O + hv → O2 + 4H+ + 4e-       (Eq. 1) 

 

By mimicking natural photosynthesis, various chemical fuels and compounds can be produced 

in an environmentally friendly and carbon-neutral manner by utilizing electrons from electrochemical 

water oxidation using solar energy (i.e., artificial photosynthesis) or renewable energies (water 

electrolysis). This is because water can act as a cheap and abundant source of electrons without the 

emission of any pollutants and greenhouse gases. For example, various forms of chemical compounds, 

such as hydrogen, CO, formate, and methanol, are produced using energetic electrons from 

electrochemical1-3 or photoelectrochemical4-6 water oxidation. As a result, it is the key for its realization 

to develop technologies to extract electrons efficiently from water oxidation and transfer to coupled 

reduction reaction to store the energy into the chemical bond.7-8  

  



15 

 

1.2 Introduction to Water Oxidation  

1.2.1 Water Electrolysis 

 

Water molecules can be electrochemically decomposed into oxygen and hydrogen (2H2O → 

O2 + 2H2) by applying a proper potential difference between two electrodes; a cathode and an anode 

where hydrogen evolution reaction (HER: 2H+ + 2e- 
→ H2) and oxygen evolution reaction (OER: 2H2O 

→ O2 + 4H+ + 4e-) take place, respectively. (Figure 1) These half reactions also can be balanced with 

base as 2H2O + 2e- 
→ H2 + 2OH- (HER) and 4OH- → 2H2O + O2 + 4e- (OER). In terms of 

thermodynamics, the standard cell potential (Eo
cell = Eo

cathode – Eo
anode) for water electrolysis is unchanged 

as -1.23V which means theoretical minimum energy required to operate the overall cell, while each 

half-cell potential can be varied depending on the pH based on Nernst equation. (Eq. 2) 

 

𝐸 = 𝐸𝑜  −  
𝑅𝑇

𝑛𝐹
ln

𝑎𝑅𝑒𝑑

𝑎𝑂𝑥
       (Eq. 2) 

 

 

Figure 1. Schematic image showing overall water electrolysis including OER at anode and HER at 

cathode9. 

 

According to the Nernst equation, each half-cell potential (E) can be expressed in terms of the 

standard reduction potential (Eo) and activities of reduced and oxidized species (𝑎). Chemical activities 

(𝑎) are related to the concentration (c) via 𝑎 = 𝑟𝑐 where the 𝑟 is an activity coefficient that can be 

approximated to unity under dilute conditions. As a result, each half-cell potentials can be simply 
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expressed using the pH of electrolysis solutions and several physical constants such as the gas constant 

(R, 8.314J K-1mol-1), temperature (T, 298K in case of reaction at room temperature), the number of 

electron transferred in the reaction (n=2 for HER and n=4 for OER), and the Faraday constant (F, 96485 

C mol-1), respectively. (Eq. 3 and Figure 2) 

 

E HER = -0.059pH,   E OER = 1.23V – 0.059pH      (Eq. 3) 

 

However, additional energy is required more than 1.23 V in practice due to overpotential for 

OER and HER. Of the two reactions, water oxidation reaction is a rate determining step due to its high 

activation energy and slow kinetics stemming from the complex reaction mechanism including many 

intermediates. (Figure 3)10 As a result, OER requires a much higher overpotential than HER counterpart. 

Furthermore, it should be avoided that the active intermediates react to yield partially oxidized 

byproducts (e.g., HO·, H2O2)
11. In this point of view, much efforts have been to devoted to develop 

efficient water oxidation catalysts (WOCs) by stabilizing these intermediates, leading faster and 

efficient water electrolysis. 

 

 

Figure 2. Pourbaix diagram showing each half cell potential required for oxygen and hydrogen 

evolution reactions as a function of the pH 
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Figure 3. Standard free energies at U = 0 V for an (a) ideal catalyst and for (b) real catalyst (in here, 

LaMnO3). For real catalysts, value for ΔG0 
HOO* − ΔG0 HO* (vertical line) has large barrier of 3.22 eV, 

whereas the ideal catalyst shows 2.46 eV. 10 

 

 

 

1.2.2 Artificial Photosynthesis 

 

Natural photosynthesis is an energy harvesting process that all plants, algae, or 

microorganisms utilize for conversion of light energy into chemical products for their survival. It 

consists of light harvesting chlorophyll, electron transport system and water as a substrate. Based on 

the principles of light reactions, researchers have mimicked those components and incorporated into a 

working system that can produced chemical fuels using solar energy. (Figure 4) 
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Figure 2. Schematic images of a) natural and b, c) artificial photosynthesis system with b) single step 

and c) two step reactions (Z-scheme) under light irradiation. Both systems take water as electron source 

which becomes oxygen at the catalyst.12 

 

Compared to the combination of solar panels to a water electrolyzer (PV-electrolyzer), 

artificial photosynthesis (direct solar-to-fuel production) systems can directly convert solar energy to 

chemical energy, implying that the latter can have a higher theoretical efficiency as the more processes 

and connections between functional components are requires for the former. (Figure 5) 

Photoelectrochemical (PEC) cell, one of the device types of artificial photosynthesis, requires minimal 

components of two light absorbers (semiconductor photoelectrodes), electrocatalysts for redox 

reactions, a separator, and an electrolyte. Photoelectrodes are usually divided into two types; 
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photoanode where the oxidation reactions occur and photocathode where the reduction reactions do.  

The basic principle of water splitting by PEC cells is described in Figure 6. It initiates its 

operation by generating free electrons via photoexcitation from the valence band (VB, Ev) to the 

conduction band (CB, Ec) of photoanodes by absorption of solar energy larger than its band-gap. Excited 

electrons flow towards counter electrode to reduce the substrate (e.g., H+). It decides the products 

acquired from PEC cell which substrates are reduced at cathode interface. The vacancies, holes, 

remained after electron excitation are filled with electrons from water oxidation with a release of oxygen 

gas. Despite its huge potential for the production of chemical fuels in eco-friendly manner, artificial 

photosynthesis is suffered from low kinetics of water oxidation, resulting in a high overpotential. Hence, 

semiconductor photoelectrode with a bandgap much larger than 1.23 eV and light with a wavelength 

much shorter than the theoretically determined one (approximately 1000nm) are required for solar water 

splitting (Eq. 4). The relationship between wavelength of light and its photon energy is given by  

 

E = hv         (Eq. 4) 

 

where, E is amount of energy [eV], v is frequency [nm] and h is 6.6262Ⅹ10-34 J·s, called Planck’s 

constant.  

Hence, various aspect of studies has been performed to lower the energy input in respect to 

structure or surface chemical composition of semiconductor13, introduction of efficient water oxidation 

catalysts (WOCs), proper integrating method of catalyst onto the electrode, electrode with improved 

intrinsic properties and so on. 

 

 

Figure 5. Two representative devices that convert solar power to chemical fuel, hydrogen. Left) 

Conventional combination of solar panel supplying electricity to discrete electrolyzer for water 

electrolysis. Right) Integrated photoelectrochemical cell where excited electrons are consumed directly 

by scavenger.14 
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Figure 6. Schematic image of photoelectrochemical cell with connected wire that enables to produce 

products from anode and cathode separately. This system prevents the danger in the formation of 

explosive H2 and O2 mixture and problem about purity of fuel.15 

 

 

 

1.3 Water Oxidation Catalysts (WOCs) 

 

Among various strategies to address sluggish kinetics of water oxidation, in recent years, there 

has been a vigorous activity targeting the development of efficient water oxidation catalysts. It is highly 

demanded for both electrolysis of water with and without aid of light owing to its critical features that 

1) facilitates the binding of water molecules to active sites which helps to by-pass the radical 

intermediates O· and HOO· and 2) leads immediate proximity for facile O-O collision and bond 

formation in the peroxo intermediate.(Figure 7)16 Therefore, it lowers free energy of the highest energy 

intermediates of water oxidation and increase the efficiency of evolved oxygen by decreasing 

overpotential.  
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Figure 7. a) A fast mechanism and b) slow mechanism for water oxidation on Co3O4 surface site. The 

step forming O-O bond with H2O in the fast mechanism features the aid of adjacent electronically 

coupled Co(IV) = O sites, which is not shown in the water oxidation at the slow mechanism. 17 

 

1.3.1 History and Limitations of Conventional WOCs 

 

To overcome the complex mechanism of water oxidation for efficient oxygen evolution, 

numerous studies have been done on the synthesis of novel WOCs, such as organometallic compounds 

containing noble metals, including Ru18 and Ir19, transition metal oxide and perovskite nanomaterials,20-

22 and layered double hydroxides23. However, their intrinsic problems, such as the high cost and low 

stability of molecular homogeneous WOCs due to orgarnic lignads and low catalytic activity of 
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inorganic heterogeneous WOCs, have become a significant hurdle for their applications.16, 24-25 (Figure 

8) 

 

Figure 8. Various kinds of oxygen evolution catalyst reported to date. a) Ir-based WOCs including 

porphyrin 19, b) Ni–Fe layered double hydroxide/graphene electrode23 and c) Ru WOCs assembled on 

multi-walled carbon nanotubes by π−π stacking. 18 

 

1.4 Polyoxometalates (POMs) 

 

Polyoxometalates (POMs) are usually anions and consist of transition metal oxyanions (with 

chemical formula of AxOy 
z−) connected by oxygen atoms forming discrete molecular structure, which 

can be regarded an intermediate of monometallic oxometallate and bulk metal oxide. POMs have been 

studied intensively as a promising WOCs because of its fast and reversible electron transfer reaction 

coming from their distinguished characteristics.26 It has advantages resulting from reversible redox 

chemistries with transition metal at cores27-28, high solubility in water, high stability with fully inorganic 

structure and tremendous number of exposed active sites with nanosized geometry. The possibility of 

POMs as a WOC was firstly reported by M. Bonchio29 with Dawson-derived structure embedding a 

tetraruthenium-oxo-core. (Figure 9a) Another POM having four cobalt atoms, which are more economic 

than ruthenium, with molecular formula of [Co4(H2O)2(PW9O34)2]
10- was also reported by C. Hill.30-31 
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Its structure was inspired by the oxo-bridged tetra-Mn complex of the oxygen evolution center in natural 

photosystem (PS) II, whose four manganese ions are corresponding to four cobalt ions placed in the 

center of Co4POM. (Figure 9b) 

 

 

 

Figure 9. a) Ball and stick structure of Ru-substituted polyoxometalate having water oxidation 

capability, which have molecular formula of [Ru4(µ-O)4(µ-OH)2(H2O)4(γ-SiW10O36)2]
10-. Combined 

polyhedral and ball and stick structure of [Co4(H2O)2(PW9O34)2]
10-. Purple-Co atoms; red-O/OH2 

(terminal); Orange tetrahedral-PO4 and gray octahedral- WO6. 

 

1.5 Research Objectives 

 

As discussed in section 1.3 and 1.4, numerous studies have focused on improving catalytic 

activities and stability of WOCs, however, it is also essential to develop a simple method for 

immobilizing homogeneous catalysts onto the desired electrode surface or anchoring in the structure 
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for practical applications.32-33 In this regard, there have been several approaches to anchoring POMs for 

heterogeneous structure. (Figure 10) 

 

 

Figure 10. Schematic images for immobilization of various POMs to fabricate heterogeneous electrode. 

a) CNT-POM nanocomposite by amide bond followed by annealing at 120 °C for 24 h, b) POM@MOF 

(Fe) inorganic material synthesized by solvo-thermal method at 140 °C and c) organic-inorganic hybrid 

electrode fabricated by spin coating followed by annealing process.  

 

Each research described in Figure 10 showed various immobilization strategies of POM by 

formation of amide bond34, solvo-thermal method35 and spin coating36, including annealing process of 

POM. However, there is no further studies towards change of properties of POM resulting from heat 

treatment. Inspired by this niche, we designed the experiments to study thermal properties of POM and 

simple integrating strategy for heterogeneous configuration.  

As a result, this research mainly focuses on 1) the investigation resulting from heat treatment 

to POM and 2) integrating highly efficient and stable electrode through the physical adsorption of POM 

molecules onto the desired surface following by annealing in air.  
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2  Experimental Section 

2.1.   Materials 

FeCl3·6H2O, Co(NO3)2·6H2O, Na2WO4·2H2O, and fluorine-doped tin oxide (FTO) glass (surface 

resistivity of 7 Ω/sq.) were purchased from Sigma-Aldrich (Saint Louis, MO, USA). NaNO3 was 

purchased from Alpha Aesar (Hebrille, MA, USA). Na2HPO4 was obtained from Life Technologies. 

Carbon felt (through-plane resistivity < 12 Ω mm, in plane resistance < 4 Ω mm) was purchased from 

Fuelcell (Woburn, MA, USA). 

 

2.2.   Synthesis of POM and POM-Derived Water Oxidation Catalysts (WOCs) 

[Co4(H2O)2(PW9O34)2]
10- was synthesized according to a previously reported method. Briefly, 1.08 M 

of Na2WO4·2H2O, 0.12M of Na2HPO4, and 0.24 M of Co(NO3)2·6H2O were mixed in 50mL of water, 

followed by an adjustment of the pH to 7.0 with 1M HCl. The resultant precursor solution was refluxed 

at 100 °C for 2 h and was supersaturated with NaCl. Following the filtration of the saturated solution to 

remove NaCl and unreacted precursors, a pristine POM was obtained from recrystallization. The 

pristine POM was annealed at a desired temperature for 1 h with a ramping rate of 10 °C min-1 to 

synthesize POM-based WOCs.  

 

2.3.   Fabrication Method of Electrodes  

2.3.1. Preparation of electrode modified with WOCs for electrochemical analysis 

Working electrode for analysis of intrinsic electrochemical activity of WOCs is prepared on glassy 

carbon electrodes purchased from BASi (Cat. No. of MF-2012). After drying drop-casted solutions (5 

μL of 1mM POM and POM-derived WOCs dissolved in 80mM phosphate buffer), drop-cast the 10 μL 

of Nafion® 117 solution (Sigma Aldrich, Cat. No. of 70160) whose pH is adjusted by NaOH to the 

neutral and dry. In case of CoWO4, considering the concentration of cobalt ions which are thought to 

be active sites, 4mM amorphous CoWO4 solution dissolved in 80mM phosphate buffer was analyzed 

instead of 1mM of that.  

 

2.3.2. Preparation of Hematite Photoelectrodes 

Hematite photoanodes were fabricated via a simple hydrothermal method followed by annealing. 

Briefly, a clean FTO substrate was placed in a 50mL Teflon-lined stainless steel autoclave containing 

an aqueous solution of 0.15M FeCl3 and 0.1M NaNO3 (10 mL) with the conductive side facing up. 

FeOOH nanorods were grown on the FTO substrate using a hydrothermal process at 100 °C for 1 h and 

then converted to a-Fe2O3 via annealing at 800 °C for 5 min. The processes were repeated twice.32 
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2.3.3. Deposition of WOCs onto surface 

Negatively charged POMs were adsorbed onto the desired electrode surface, such as carbon felt and 

hematite, using a positively charged polyelectrolyte, such as branched poly(ethyleneimine), through 

electrostatic interactions. This adsorption process was repeated for a desired number of times to control 

the adsorbed amount of POMs. The electrode with the adsorbed POMs was annealed at 400 °C in air 

with a ramping rate of 10 °C min-1. 

 

2.4   Characterization 

Morphology of samples was characterized using an S-4800 scanning electron microscope (SEM) 

(Hitachi High-Technologies, Japan) and a JEM-2100 transmission electron microscope (TEM) (JEOL, 

Japan) equipped with an energy dispersive X-ray spectrometer (EDS). Spectroscopic analyses were 

carried out using a Cary 5000 UV-Vis-NIR spectrophotometer (Agilent Technologies, Santa Clara, CA, 

USA), a D/MAX2500V/PC high-power X-ray diffractometer (XRD) (Rigaku, Japan), a q500 

thermogravimetric analyzer (TGA) (TA instrument, USA), and an alpha 300R confocal Raman 

microscope (WITec, German). 

 

2.5   Electrochemical and Photoelectrochemical Characterization 

The performance of WOCs was evaluated using linear sweep voltammetry (LSV) and cyclic 

voltammetry (CV) using a WMPG1000 multichannel potentiostat/galvanostat and a 1260A 

electrochemical impedance spectroscopy (EIS) (Solartron, UK) in a three-electrode configuration: a 

working electrode, an electrode modified with WOCs; a counter electrode, Pt wire; and a reference 

electrode, Ag/AgCl filled with 1M KCl. For photoelectrochemical characterization, a 300W Xe lamp 

equipped with a 400nm cut-on filter (100 mW cm-2) and a water infrared filter was used as a light source. 

All measurements were performed at least in triplicate for statistical analysis. Charge transfer efficiency 

was calculated by comparing LSV curves in an 80mM phosphate buffer with and without the addition 

of 0.1M H2O2 according to the following equation:37-38 

Transfer efficiency (%) =  
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐻2𝑂2

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑤𝑖𝑡ℎ 𝐻2𝑂2
× 100 

 

2.6   Gas Chromatography 

A photoelectrochemical (PEC) cell (384mL) was filled with 50mL of an 80mM of phosphate buffer (pH 

of 8.0). The cell was sealed and purged with N2 gas for 30 min before gas chromatography. A PEC cell 

was composed of a hematite working electrode, a Pt coil counter, and an Ag/AgCl reference electrode 

and was illuminated with a Xe lamp equipped with an ultraviolet and an infrared filter. For gas 

chromatography, a sample from the headspace of the PEC cell was collected using a gas-tight syringe 

and analyzed using a GC-2010 Plus gas chromatograph (Shimadzu Co., Japan). 
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3 Results and Discussion 

 

3.1 Research Overview  

 

Numerous researches dealing with catalytic activities of POMs have been studied after 

reported that they have efficient and robust performance for water oxidation by M. Bonchio.29 There 

was, however, lack of researches towards thermal properties of POMs which is necessary to study since 

required annealing process for immobilization or fabrication of heterogeneous catalyst during electrode 

fabrication.39-40 In this regards, POM with molecular formula of [Co4(H2O)2(PW9O34)2]
10- was annealed 

at various temperatures in air (POM annealed at 400 °C will be notated as POM400) to study their 

temperature-dependent structural and catalytic properties (Figure 11). In brief, POM after heat treatment 

was transformed to amorphous or crystalline CoWO4-including WOCs with different catalytic activity. 

 

Figure 11. Synthesis of CoWO4-based WOCs by annealing of POM. Graphical illustration showing 

the structure of POM and the formation of POM-derived WOCs. 

 

Encouraged by these findings, finally, it was attempted to fabricate efficient water oxidation anode for 

photoelectrochemical cell by depositing POM onto photoelectrode followed by heat treatment at 

optimized temperature. Consequently, we showed that WOCs covering the interface of photoelectrode 

let the resistance of hole transfer lower, leading efficient hydrogen production. (Figure 12)  
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Figure 12. Schematic diagram of the basic principles of water splitting by photoelectrochemical cell 

with hematite as a photoanode. There are two pathways for charge carriers to follow depending on the 

presence of catalyst. In case of i) bare hematite, holes trapped in surface state can be consumed to 

recombination causing low faradaic efficiency but hematite with WOCs, generated holes are transferred 

to catalyst faster to prevent recombination, leading improved water oxidation.  
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3.2 Characterizations  

 

Most notably, the annealing of POMs resulted in a color change: violet at 300 °C or below, 

cobalt blue at 400 °C (POM400), dark green at 500 °C (POM500), and light blue at 600 °C or above 

(Figure 13a). Accordingly, the solubility of POMs and POM-derived nanoparticles in water was 

dramatically changed also at 400 °C where the notable color change was first observed. Whereas pristine 

POMs and POMs annealed below 300 °C were highly soluble in water, POMs annealed at 400 °C and 

above became insoluble showing precipitation after placing it for a while. (Figure 13b).  

 

 

Figure 13. Structural change of POMs by annealing. (a, b) Photographs showing changes in (a) the 

color and (b) solubility of POMs upon annealing at various temperatures. 

 

A distinct absorbance peak of pristine POMs at around 560 nm was red-shifted following the 

heat treatment. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) showed 

rapid drop and endothermic peak around 100 °C respectively, owing to desorption of water from hydrate 

POM. Moreover, TGA and ex-situ X-ray photoelectron spectroscopy (XPS) revealed an endo- and an 

exo-thermic peak at around 250 and 450 °C with a negligible change in mass and elemental composition, 

implying the phase transitions of POMs (Figure 14) 
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Figure 14. Several properties changed after heat treatment were analyzed by (a) Diffuse reflectance 

spectra (DRS) of POMs annealed at various temperatures, (b) TGA and DSC analysis of the pristine 

POM and (c) X-ray photoelectron spectra of the pristine POMs and POMs annealed at various 

temperatures. 
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The morphology of Transmission electron microscopy (TEM) revealed that the annealing of 

POM with a diameter of less than 2 nm at high temperatures resulted in the formation of nanoparticles 

on a scale of several tens of nm (Figure 15a, b). Electron diffraction analysis revealed that the POM400 

and POM500 were in the amorphous and crystalline phases, respectively (insets of Figure 15a, b). The 

result of the X-ray diffraction (XRD) analysis (Figure 15c) was consistent with that of TEM. Although 

no peaks were observed for the POM400, characteristic peaks of monoclinic CoWO4 (ICDD 01-072-

0479) and orthorhombic Na2W2O7 (ICDD 01-073-0554) appeared for the POM500, indicating the 

formation of binary mixed crystalline materials. Interestingly, the characteristic Raman peaks 

corresponding to WO4 for the amorphous POM400 were blue-shifted compared with those for the 

crystalline POM500 (Figure 15d). Considering that a blue shift is frequently observed when 

compressive stress exists,35 it was thought that the POM400 with a-CoWO4 had a more compact 

structure compared with the pristine POM and POM500 with c-CoWO4. The formation of CoWO4 from 

the POM can also be indirectly demonstrated by comparing the temperature-dependent properties of 

amorphous CoWO4 (a-CoWO4), which was prepared via the precipitation method,36 with those of the 

POM400. a-CoWO4 also underwent a phase transition to crystalline CoWO4 (c-CoWO4) with a similar 

color change upon annealing but at a lower temperature of 400 °C (Figure 16). Similarly, a red shift of 

the Raman spectra was observed upon the formation of c-CoWO4 from a-CoWO4. These results clearly 

support the formation of a- and c- CoWO4 nanoparticles from the POM via simple heat treatment. 
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Figure 15. (a, b) TEM images of CoWO4-based nanoparticles formed via annealing at (a) 400 and (b) 

500 °C. The insets reveal the respective electron diffraction pattern. (c) XRD patterns and (d) Raman 

spectra of the pristine POMs and POMs annealed at 400 (POM400) and 500 °C (POM500). 
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Figure 16. Temperature-dependent properties of CoWO4 WOCs prepared using precipitation methods. 

(a) Diffuse reflectance spectra of the respective CoWO4 WOCs. (b) TGA and DSC analysis of a-CoWO4. 

(c) XRD patterns and (d) Raman spectra of the respective CoWO4. 
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3.3 Electrochemical Catalytic Activity  

3.3.1 Analysis of Electrochemical Catalytic Activity  

 

Based on these findings, the catalytic activity of POMs and POM-derived nanoparticles for 

water oxidation was investigated using cyclic voltammetry (CV) at around neutral pHs (Figure 17a). 

Pristine POMs exhibited moderate performance with an onset potential of 1.63 V versus reversible 

hydrogen electrode (RHE) and a Tafel slope of 144 mV dec-1. The annealing of POMs resulted in a 

dramatic change in their catalytic activity as well as in their crystal structure. POMs treated at 400 °C 

or below exhibited an improved catalytic activity, whereas POMs treated at 500 °C or above with c-

CoWO4 exhibited a degraded catalytic activity (Figure 17b). Among various POM-derived 

nanoparticles, POM400 with a-CoWO4 exhibited the best performance with an onset potential of 1.41 

V versus RHE and a Tafel slope of 80 mV dec-1. Overpotentials at a current density of 100mA cm-2 

molCo for the POM, POM400, and POM500 were 0.498, 0.385, and 0.55 V, respectively. Interestingly, 

the POM400 exhibited a much higher catalytic activity compared with a-CoWO4 prepared using the 

precipitation method and the pristine POM (Figure 17c), suggesting a new approach to the synthesis of 

WOCs. In addition to, we attempted to fabricate an efficient water oxidation anode by depositing the 

POM400 on a porous carbon-felt (CF) electrode. For the deposition of the POM400, pristine POMs 

with a high negative charge were adsorbed onto the CF electrode using a cationic polyelectrolyte 

through electrostatic interactions, and then, they were annealed at 400 °C for 1 h for the formation of a-

CoWO4 and the removal of the polyelectrolyte (Figure 18a). After such a simple treatment, the CF 

electrode was readily and uniformly coated with POM400 nanoparticles (Figure 18b, c) and exhibited 

outstanding performance for water oxidation even at a pH of 8.0. The overpotentials at current densities 

of 10 and 100 mA cm-2 were 0.392 and.0.72 V, respectively, which is highly impressive given that these 

measurements were carried out at around neutral pHs.(Figure 18d) 
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Figure 17. Electrocatalytic water oxidation by the pristine POMs and POMs annealed at different 

temperatures. (a) Cyclic voltammograms and (inset) Tafel plots for the evaluation of their catalytic 

activity. CV plots of various WOCs for the performance evaluation. (b) Comparison between POMs 

annealed at various temperatures. (c) Comparison between the POM-derived WOCs and a-CoWO4 

prepared using the precipitation method. 
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Figure 18. (a) Experimental scheme for the fabrication of an efficient anode for water oxidation via the 

deposition of POM400 on a carbon felt (CF) electrode. (b, c) SEM images and (d) cyclic voltammogram 

of the carbon felt electrode (b) before and (c) after the deposition of POM400 WOCs. The insets show 

the respective higher-magnification SEM image. 

 

3.3.2 Proposed Principle for Enhanced Activity 

  

The outstanding performance of the POM400 can be explained in terms of various water 

oxidation mechanisms dependent on the distance between the nearest neighboring Co2+ ions (DCo2+-Co2+) 

which interact with water molecules as active sites. It was figured out via cyclic voltammetry of POM 

without Co ions (POM w/o Co) that showing negligible current compared to that of POM or WOCs 

originated from POM. (Figure 19) Moreover, electrochemical catalytic activities of POM w/o Co and 

its derivatives didn’t display any increasement after heat treatment. We thought this supported the role 

of cobalt ions in water oxidation process. 
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Figure 19. Identification of activity of cobalt as active sites of water oxidation. Cyclic voltammogram 

of POM w/o Co, POM w/o Co annealed at 400 °C (POM w/o Co 400) and POM w/o Co 500.  

 

According to the literature, a red shift of characteristic Raman peaks suggests the presence of 

compressive stress35 and the mechanism of electrocatalytic water oxidation highly depends on the 

distance between the active site (Co2+ ions in this study) for water oxidation (Figure 20).41 When DCo2+-

Co2+ is comparable to the bond length of molecular oxygen, the water oxidation reaction may follow the 

Langmuir-Hinshelwood (LH) mechanism where molecular oxygen is formed by reactions between 

oxygen species adsorbed onto two neighboring active sites. In contrast, when DCo2+-Co2+ is much larger 

than the bond length is, it may follow the Eley-Rideal (ER) mechanism, where molecular oxygen is 

formed from the single active site. According to the literature, DCo2+-Co2+ is much shorter for a-CoWO4 

(2.82 Å) than for c-CoWO4 (4.69 Å),41 meaning that a- and c-CoWO4 may follow the LH and ER 

mechanisms, respectively. The ER mechanism requires a higher overpotential compared with the LH 

mechanism because it requires thermodynamically less-favorable processes for the complete water 

oxidation.41-42 In the same manner, the POM400 with a-CoWO4 and the POM500 with c-CoWO4 may 

follow the LH and ER mechanisms, respectively. Interestingly, the POM400 exhibited much higher 

catalytic performance than did pure a-CoWO4 prepared using the precipitation method (Figure 17c). It 

is thought that the Co2+-Co2+ distance varies even in a-CoWO4 due to its disordered nature, meaning 

that only a small portion of Co2+-Co2+ pairs follow the LH mechanism. In contrast, it is thought that a 

large portion of Co2+-Co2+ pairs are present and follow the LH mechanism for a POM400 because raw 

material for a POM400 (i.e., a POM) has a cluster of Co2+ ions with a nearest neighbor distance of 3.18 

Å. 
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Figure 20. Electrocatalytic water oxidation by the amorphous POM400 and crystalline POM500 that 

have different distance between nearest Co ions. Two suggested pathways of oxygen evolution reaction 

according to the Co-Co distance to explain outstanding performance of POM400. 
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3.4 Analysis of Photoelectrochemical Catalytic Activity  

3.4.1 Characterizations  

 

Our approach was also tested to construct a water oxidation photoanode by decorating α-Fe2O3 

(hematite) with POM400 as a cocatalyst. Hematite is regarded a promising photoanode due to its 

abundance, moderate band gap, and suitable band edge position for water oxidation 38-40. Due to its 

sluggish water oxidation kinetics, however, it should be modified with WOCs. Here, the POM400 was 

readily deposited on the hematite photoanode via high temperature annealing following the pre-

adsorption of the pristine POMs (Figure 21). Prominent difference of surface morphology was observed 

before and after deposition of POM400. Scanning electron microscope (SEM) images presented 

POM400 nanoparticles immobilized on warm-like hematite photoelectrode via electrostatic adsorption 

and annealing. (Figure 21b, c) Uniform and conformal coating of POM400 catalyst layer on the rough 

hematite photoanode is more clearly shown in cross-sectional TEM images where the area painted with 

blue or orange expressed POM400 and hematite respectively. (Figure 21d, e) It was observed that 

POM400 catalyst forms not only tangled nanoparticles, but catalyst layer with a few tens of nanometers 

uniformly. It was also proved by energy-dispersive X-ray spectroscopy (EDS). EDS spectrum of 

hematite on FTO electrode showed peaks corresponding to the iron and tin, but that of hematite 

electrode modified with POM400 displayed additional tungsten, phosphorus and cobalt signal. The 

signal of cobalt was presented on both bare and modified hematite since it was overlapped with the 

signal from nickel TEM grid which has similar energy level to the cobalt. Nevertheless, the intensity 

was increased twice from 0.97 to 1.98, indicating the deposition of POM400 on hematite photoelectrode. 

The formation of the POM400 layer on the hematite photoanode was also confirmed via the diffuse 

reflectance and Raman spectra (Figure 22). It is noteworthy here that the formation of the POM400 

layer had a negligible effect on the absorbance of the underlying photoanode due to a relatively small 

amount of the POM400. 
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Figure 21. Photoelectrochemical water oxidation using a hematite (Fe2O3) photoanode modified with 

POM400 WOCs. (a) Experimental scheme for the fabrication of an efficient photoanode using hematite 

and POM400. (d, e) Cross-sectional TEM images of the hematite photoanodes (b) before and (c) after 

the deposition of POM400. Raw and false-colored images were shown together for comparison. The 

insets show the respective EDS spectra for elemental analysis.  
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Figure 22. Spectroscopic analysis showing the deposition of POM400 on the surface of hematite 

photoanodes. (a) Diffuse reflectance and (b) Raman spectra of the photoanodes were compared before 

and after the deposition of POM400. 

 

3.4.2 Analysis of Photoelectrochemical Catalytic Activity 

 

The deposition of the POM400 significantly improved the performance of the underlying 

hematite photoanode for visible light-driven water oxidation. As displayed in Figure 23a, the hematite 

with POM400 cocatalysts exhibited a photocurrent density of 1.36 mA cm-2 at 1.23 V versus RHE and 

an onset potential of 0.64 V versus RHE that is dramatical increasement compared to the bare hematite 

and hematite with POM. Polarization curves measured under mild conditions: a low ionic strength (an 

80 mM phosphate buffer) and near neutral pH (pH of 8.0) (Table 1) is noteworthy since extreme pH 

such as 1M NaOH or KOH which is much more advantageous for water oxidation weakens the 

mechanical strength of photoelectrochemical device. The dark current of hematite with POM400 

appearing at 1.45V indicates superior intrinsic activity of POM400 towards water oxidation. In this 

respect, hematite with POM400 expressed almost three-fold photoelectrochemical activity in 

chronoamperometry (CA) curves measured at 1.3V versus RHE for 3 hours. (Figure 23b) Note that the 

amount of the deposited POM400 cocatalysts were readily controlled by varying the number of the 

adsorption processes before annealing also (Figure 23c). A negligible effect on the onset potential for 

water oxidation was found. However, the photocurrent density increased rapidly with the amount of 

POM400 cocatalysts up to 10 cycles of the adsorption process and was saturated thereafter. 
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Table 1. Comparison of the photoelectrochemical performance of hematite photoanodes modified with 

various water oxidation cocatalysts. 

Cocatalyst 

Onset 

potential 

shift (mV) 

Onset 

potential (V) 
Electrolyte 

Current 

density 

(mA cm-2)* 

Light source Ref. 

POM400 312 0.62  
80mM KPi 

pH 8 
1.36 100 mW cm-2 

This  

work 

FeNiOOH 190 0.57 1M NaOH 1.11 
Xe lamp 

100 mW cm-2 

43 

Ga2O3 200 0.8 1M NaOH 
0.25 (at 

1.02V) 

450 W Xe lamp  

100mW cm-2  

44 

Ni-Bi 230 0.62 0.5M KBi 1.12 
AM 1.5  

100 mW cm-2 

45 

CoOx 250 0.6 1M KOH 0.65 
350 W Xe lamp 

100 mW cm-2 

46 

Co / APA** 290 0.61 1M NaOH 0.97 
70W Xe lamp  

100 mW cm-2 

47 

Co(OH)2/Co3O4 200 0.9 0.1M KOH 
2.1 (at 

1.53V) 

300W arc lamp  

AM 1.5 

48 

IrO2 200 0.8 1M NaOH 3 
AM 1.5  

100 mW cm-2 

49 

 

* Current density (J) was measured at 1.23V (vs. RHE). 
** APA: 3-aminopropionic acid 
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Figure 23. The photoelectrochemical performance of the bare and the modified hematite photoanodes 

were compared using (a) linear sweep voltammetry, (b) chronoamperometry at 1.3V versus RHE and 

(c) in terms of photocurrent densities and onset potentials. 
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3.5 Additional Analysis for Mechanism Study 

 

Electrochemical impedance spectroscopy (EIS) revealed that the improved photoelectrochemical 

performance was resulted from the considerable decrease of catalytic charge transfer resistance at the 

electrode/electrolyte interface (R2) due to the deposition of the POM400 (Figure 24a and Table 2). Two 

semicircles in Nyquist plot of hematite with POM400 clearly supported stable deposition of POM on 

the photoanode. As a result, charge transfer efficiency at the interface was significantly improved. 

(Figure 24b). Note that the charge transfer efficiency was calculated by comparing photocurrent 

densities (Figure 25) measured in the presence and absence of a hole scavenger H2O2.
41-42 Through the 

whole potential range from 0.75 V to 1.55 V versus RHE, electrode with POM400 presented higher 

transfer efficiency that bare electrode. As expected, the hematite photoanode with the POM400 

produced a much larger amount of oxygen gas than the bare counterpart did (Figure 26). The hydrogen-

to-oxygen ratio for the hematite photoanode modified with the POM400 was slightly higher than the 

theoretical 2:1 ratio but much lower than that for the bare counterpart. The deviation from the theoretical 

ratio is attributed to the photocorrosion of hematite at around neutral pHs, meaning that the modification 

of hematite with the POM also improves its stability.  

 

 

Figure 24. (a) Electrochemical impedance spectra of the bare and modified hematite photoanodes were 

shown. The inset shows the equivalent circuit model for fitting and the magnified impedance spectra 

for the modified hematite photoanode. (b) Transfer efficiency plots calculated from Jphoto-V curves of 

bare hematite and hematite covered with POM400.  
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Figure 25. Polarization curves measured in the presence (dotted lines) and absence (solid lines) of 0.1M 

H2O2 for the calculation of the transfer efficiency shown in Figure. 24 (b). 

 

Table 2. Fitting results of the impedance spectra shown in Figure 24a.  

 

 
RS  

(Ω) 

R1  

(Ω) 

CPE1 

(F) 

R2  

(Ω) 

CPE2 

(F) 

Bare 129 938 0.00014 1.128E19 0.00021 

POM400 71.23 168 92.3E-6 1178 0.00099 

 

 

 

Figure 26. The amount of evolved gases from a PEC cell using a hematite photoanode before and after 

the modification with POM400 that shows the enhancement of overall PEC performance  
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Conclusion 

 

In summary, nanoparticulate CoWO4 WOCs were synthesized via the annealing of POMs in air. We 

found that their structure and catalytic activity for water oxidation highly depend on the annealing 

temperature. Especially, the POM400 prepared via annealing at 400 °C exhibited an outstanding 

performance even when compared with the pristine POM, which is a well-known efficient WOC. The 

annealing of POMs at a higher temperature resulted in a phase transition from a- to c-CoWO4 with a 

significant decrease of catalytic activity. The superior performance of the POM400 is attributed to its 

amorphous nature where a high population of Co2+-ion pairs with a shorter nearest-neighbor distance 

(DCo2+-Co2+) exists, facilitating the Langmuir-Hinshelwood (LH) mechanism. Based on these findings, 

highly efficient electrodes for electrochemical and photoelectrochemical water oxidation were readily 

prepared through the electrostatic adsorption of POM onto the desired electrode as well as the annealing 

process. This study not only suggests a new approach to the synthesis of efficient WOCs but also 

provides insights into the fabrication of various electrochemical systems.  
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