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Abstract

In this thesis, several efficient numerical methods are proposed to solve initial value

problems and boundary value problems of fractional differential equations.

For fractional initial value problems, we propose a new type of the predictor-
evaluate-corrector-evaluate method based on the Caputo fractional derivative operator.
Furthermore, we propose a new type of the Caputo fractional derivative operator that
does not have a differential form of a solution. However, with some fractional orders,
there are problems that a solution blows up and the scheme has a low convergence.
Thus, we identify new treatments for these values. Then, we can expect a significant
improvement for all fractional orders. The advantages and improvements are shown by

testing various numerical examples.

For fractional BVPs, we propose an explicit method that dramatically reduces
the computational time for solving a dense matrix system. Moreover, by adopting
high-order predictor-corrector methods which have uniform convergence rates O(h?) or
O(h?) for all fractional orders [8], we propose a second-order method and a third-order
method by using the Newton’s method and the Halley method, respectively. We show

its advantage by testing various numerical examples.
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Chapter 1

Introducation

Fractional calculus has recently been considered as an important mathematical model to de-
scribe various phenomena in nature. The origins of fractional calculus date back to the end of the
17th century. It started with a question from L’Hopital to Leibnitz: “What does C;% f(z) mean if
n = 1/27” [2]. From this, the field of fractional calculus was born and several well-known defini-
tions of fractional integral and derivative were developed, such as the Riemann-Liouville operators,
the Caputo operators, the Hadamard operatos, and the Griinwald-Letnikov derivative. In this pa-
per, we only consider the Riemann-Liouville and Caputo operators to solve fractional differential
equations. The main difference between the derivatives of integers and fractions is a non-local
property. For example, the derivative of an integer is only defined by a current point. However, the
Riemann-Liouville fractional derivative is a form of integral equation with a kernel function that
contains all previous information from an initial point to a present point. By cause of the non-local
property, fractional derivatives have a unique aspect — the so-called memory effect — differentiat-
ing them from regular derivatives. There exists many research that the fractional order can be
physically explained as an index of memory [5]. This is why many scientists and engineers use
mathematical models with fractional orders to illustrate variety of natural phenomena. However,
the robust interpretation of fractional derivative is still an open problem [5]. Moreover, due to the
non-local property of a fractional derivative, there still remains many improvements in the conven-
tional numerical approaches for solving fractional differential equations in terms of computational
algorithms.

In this paper, we primarily concentrate on constructing efficient numerical algorithms for solving
fractional initial value problems (IVPs) and boundary value problems (BVPs). First of all, we
propose a new type of numerical method for solving fractional IVPs: the Direct Method. In
the conventional method, which is based on the Caputo fractional derivative, the finite difference

method is adopted to approximate a derivative of a solution. However, we propose a new type



of Caputo fractional derivative without a solution’s derivative. It reduces the computational cost
by using the same accuracy order. Furthermore, an explicit method for solving FDEs has several
problems with some fractional orders. There is a problem of stability with a small fractional order
and a problem of low convergence with a large fractional order. To overcome these defects, we
propose the enhanced methods for each case. For a small fractional order, the problem of stability
is highly improved by using the Newton’s method with an initial value from our method. Moreover,
we get a higher convergence by decomposing a FDE into a system of equations with small fractional
orders compared to the original FDE. Several numerical examples are demonstrated to show the
effectiveness for the proposed methods.

Next, the High-Order Method is introduced to solve two-point BVPs of FDEs. In general,
we construct a matrix for imposing boundary conditions of FDEs. However, due to the non-local
property, it takes many computational costs to solve a matrix equation at each time. For nonlinear
fractional problems, we might need huge amounts of computational time to solve a nonlinear system
of matrices. To reduce the computational cost, we propose the High-Order Method that changes a
BVP to an IVP and use the nonlinear shooting method for updating an approximation of an IVP.
Then, the new scheme achieves a uniform accuracy order regardless of the value of fractional order
by adopting a modified PECE method [8], the Newton’s Method, and the Halley’s Method. Several

numerical examples are demonstrated to show the effectiveness for the proposed methods.



Chapter 2

Fractional Differential Equations

In this section, we introduce basic definitions and properties in fractional calculus. There exists
several well-known definitions which define fractional derivatives, such as the Caputo operators, the
Riemann-Liouville operators, and the the Griinwald-Letnikov definition. In addition, we introduce

several conventional numerical schemes for solving fractional differential equations.

2.1 Preliminaries
First of all, we begin with a special function which is well-known in fractional calculus.

Definition 2.1.1. The function T': (0,00) — R, defined by

[(z):= /OOO t* e tat, (2.1)

is called Euler’s Gamma function (or Euler’s integral of the second kind) [2].

Now, we shall introduce fractional integral and derivative operators J™ and D", where n ¢ N.
Definition 2.1.2. Let n € RT. The operator J", defined on Li[a,b] by

TA0) = e [ =9 s)ds (2:2)

for a <t <b, is called the Riemann-Liouville fractional integral operator of order c.

For the Riemann-Liouville fractional integral operator, the following properties have been

known:



2.1 Preliminaries

Property 2.1.1.
1. Identity, i.e., JOf(t) = f(t)
2. Linearity, i.e., J*(wy f(t) +wag(t)) = w1 Jf(t) + waJ%(t), a€RY, wi,wyeC
8. If f(t) is continuous for t € R}, then

o lim Jf(1) = (1),
o JO(IBF(1) = JP(IUF(1) = JOPL(H), @B ERY, AeC

There is the left-inverse operator of the fractional integral operator [6].

Definition 2.1.3. Let n € R and m = [n]. The operator D}, defined by
DI'f .= DM (2.3)

is called the Riemann-Liouville fractional differential operator of order n.

Definition 2.1.4. Suppose that o > 0, t > a, {a,a,t} CR. Then,

- s 4 t(t—s)m_o‘_lf(s)ds, m—1l<a<meN,
D2f(t) = q ot (2.4)

%f(t)a a=méeN,

is called the Riemann-Liouville fractional derivative or the Riemann-Liouwville fractional differential

operator of order o [9].

Theorem 2.1.2. Let n > 0. If there exists some ¢ € Lila,b] such that f = J}'¢, then
JoDof=Tf (2.5)

almost everywhere.

However, we are interested in the Caputo fractional operator, which is an alternative operator
to the Riemann-Liouville fractional differential operator. The most significant point is that they do
not coincide in general and the following is not the left-inverse operator of the Riemann-Liouville

fractional integral operator.



2.1 Preliminaries

Definition 2.1.5. Suppose that o > 0, t > a, {a,a,t} CR. The fractional operator

o) [Ht —sym=etfm(s)ds, m—1<a<meN,

DG f(t) = (2.6)

%f(t), a=meN

is called the Caputo fractional derivative or Caputo fractional differential operator of order a [1].

The Caputo fractional operator is equivalent to (m — «)-fold integration after m-th order dif-

ferentiation [6]. It means the following lemma:

Lemma 2.1.3. If f(t) is a function such that 3 DS f(t), then
DSf(t) = J™“D™f(t), wherem —1<a<m, meN, a€ R} (2.7)
We will study linear fractional differential equations in the Caputo sense, and one of the useful

formulations regarding the Caputo fractional derivative is the following [7, 4]:

Theorem 2.1.4. The Caputo fractional derivative of the power function satisfies

L+l 4p—a _ B
Do F(pfaﬂ)t , m—1l<a<m,p>m-—1, peR, 2.4
“ .

0, m—1<a<m,p<m-—1 peN.

Definition 2.1.6. Let n > 0. The function E, defined by
E = - 2.9
whenever the series converges is called the Mittag-Leffler function of order n [2].

Definition 2.1.7. Let ni,ng > 0. The function E,, n, defined by

Enl,nz (Z) = Z T 2 (2.10)

=0 (jn1 +n2)
whenever the series converges is called the two-parameter Mittag-Leffler function with parameters
ny and ng [2].

Lemma 2.1.5. Let n € RT, m = [n], and b > 0. Assume that the function f : G — R is

continuous and bounded in G and that it fulfills a Lipschitz condition with respect to the second

5



2.2 Conventional Numerical Methods for Solving FDEs

variable, i.e. there exist a constant L > 0 such that, for all (x,y1) and (z,y2) € G, we have

|f(z,y1) = f(z,y2)| < L|y1 — 2. (2.11)

Then, the function y € C(a,b) is a solution of the fractional differential equation

Diy(x) = f(z,y(z)),

(2.12)
Dlgy(a) = Yk, kZO,l, ym—1,
if and only if it is a solution of the Volterra integral equation
m—1 l’k 1 T
= — — )"t y(2))dt [2]. 2.13
() kzzoykk!+r(n)/G<m " y(O)de 2] (213)

2.2 Conventional Numerical Methods for Solving FDEs

In this section, we introduce well-known conventional methods for solving fractional differential

equations. To be precise, the fractional differential equations is

Day(t) - f(tvy(t))a (2'14)

where @ € RT. Let m = [«a], and a solution y(t) is on the interval [a,T], where T' > 0. Then,
there are two typical approaches to solve the equation; by using the Caputo fractional derivative
operator or the Riemann-Liouville fractional integral operator.

Let t € Q:=[a,T).

e The Caputo Operator:

! ) / (t— 5™y (5)ds = f(t,y(8)). (2.15)

I'm—a«

e The Riemann-Liouville Operator:

o) =9 + oy [ (6= 9" s (s))ds, (216)

m—1
where g(t) = yk% is an initial condition.
k=0



2.2 Conventional Numerical Methods for Solving FDEs

Let us discretize the domain €2 to be
Py :={tjra=t1 <...<tj<...<tp <ty <...<ty=T} (2.17)

By (2.15), (2.16), and (2.17), we get discretized integral equations

1 n—2 tit1 tn
T(m—a) / (tn — )"y "™ (s)ds + / (tn — &)™y (s)ds | = f(tn, y(tn)),
I(m—a) | </, toe
]:1 J n—1
(2.18)
1 n—2 tit1 ol tn a1
) = gt + a7 | [ (e s+ [ (=9 s ao)is | (219)
j=1 tj tn—1
Define a memory term and a local term as follows.
o The Caputo Operator:
Memory term: 712—:2 [F+1(t, — s)mmamly(m) (s)ds
=R (2.20)
Local term: fti”_l (tn — s)™ 2 1y(m)(s)ds
e The Riemann-Liouville Operator:
Memory term: ni2 L5 (b — 5)* 7V f (5, y(s))ds
= T ’ (2.21)

Local term: ftil(t" —5)2 71 f(s,y(s))ds

Then, we can solve the fractional differential equation by only updating a numerical solution on a
current interval. There are several ways to update a numerical solution.

Now, we look at the popular algorithm that is so-called Predictor-Evaluate-Corrector-Evaluate
(PECE) method [3]. The PECE method was first proposed by Kai Diethelm in 2001 and is still
well-used to solve fractional differential equations. This approach is mainly based on the Volterra

integral equation in Lemma 2.1.5

1

y(tn>—g<tn)+r(1a) 3 [ ot steas| (2.22)
j=1"1



2.2 Conventional Numerical Methods for Solving FDEs

We apply the linear interpolation for f on each interval

/t Tt — ) f (s, y(s))ds ~ /t "t — )7 (5, y(s))ds, (2.23)

J J

where f] is the piecewise linear interpolant for f on [t;,t;41] for j =1,--- ,n — 1. We can rewrite

the integral by using the standard quadrature theory as

n—1

> tm(t —5)* 7 fis,y(s))ds = E Cif(t,y(t5)), (2.24)
t
=174
n—1

tj1
Z/ (tn — )" fis,9(s) dS—ZDf (t5,5(t;)), (2.25)

j=17"

where C; and D; are coefficients which are generated by the linear interpolation. Let 7 be a

numerical solution. Then, it gives us the PECE method, which is

i) = 9l ZCf J26)) + Fraggy e (1), (2:20)
where
n—1
37 (1) = 9(ta) + F(la) S D f(t5, (). (2.27)
j=1

The convergence analysis shows that the error is expected to behave as

jmax y(t;) — g;| = O(h"), (2.28)

where p = min(2, 1 + «).



Chapter 3

Numerical Method for Solving
Fractional IVPs

In this section, we consider the following ordinary differential equation with fractional order
a € RT,

{ Dgy(t) = f(t,y(1), t€a,T], (3.1)

y(k)(a):yk, k=0,1,...,m—1,

wherem —1<a<meZ"t.

3.1 Direct Method

3.1.1 Description of Direct Method

To solve the problem numerically, we adopt a fractional derivative in the Caputo sense (2.1.5),
i.e.,

Dey(t) = 1) / (t — )™ 10y (5)ds, (3.2)

I'(m—a«

because it imposes the initial conditions with homogeneous conditions. Furthermore, let 0 < o < 1
for the convenience of computation. In conventional methods based on the Caputo fractional
derivative, the derivative of a solution is approximated by the linear interpolation or quadratic

interpolation. However, in this method, we eliminate the derivative by using the integration by



3.1 Direct Method

parts. We can transform Eq. (3.2) into a form without the derivative of a solution as follows:

[ [P0y gy Oy VO MO0y

(t — s) (t —a)> (t —s) (t —s)atl

Then, we have the Caputo derivative without the derivative, i.e.,

P(1— a)Doy(t) = /t y(s) 4o v —yl@ a/t y(t) —y(s) (3.4)

(t —s)e (t —a)> (t —s)otl

In terms of numerical approaches, the main difficulty one has to tackle is the non-locality

a—1

property of the solution y(¢) due to the kernel (t — s)*~" under the integral equation on the right-

hand side of Eq. (3.4). In order to illustrate this, let us first discretize the grid to be
Py :={tjra=t1<...<tj<...<tp<tpp <...<ty=T} (3.5)

For simplicity, we assume that the grid is uniform, ie., h = t;41 —¢;, Vj = 1,...,N — 1. Let

DY =T(1 —a)D§ and f(t,u(t)) =T'(1 —a)f(t,y(t)). By multiplying I'(1 — «) to the both sides of
(3.1) and employing (3.4), we have

_ t — (s
w + O‘/t Mds = f(t.y(1)). (3.6)

3.1.2 Direct Method with Linear Interpolation

Before proceeding, we first define some notations. We denote y; = y(t;) the restriction of the
exact solution at time t;, j = 1,...,N. Let g, be the approximations of y,. Similarly, we also
denote f; = f(t;,y;), fj = f(t;,9;). For clarification, we re-derive the ABM ([3]) as follows. The

exact solution (3.4) is written as

w + a/t n st = f(tn,y(tn))- (3.7)

On each interval I; = [t;,t;11], we interpolate y(t) by a linear Lagrange polynomial

tiyg —t t—t;
y(t) = Ljy(t) = = —y(ty) + — 2 y(tj)- (3.8)

10



3.1 Direct Method

The value of f(t,,u(t,)) can be approximated by using the linear interpolation of f(t,u(t)) with
grid point t,_o and t,_1,

[t y(tn)) =~ L711—2fn = —f(tn—2,y(tn—2)) + 2f (tn—1,y(tn-1)). (3.9)

Substituting the approximation (3.8) and (3.9) into (3.7), taking into account the approximated

values g; and that the grid is uniform, we obtain that

~ n—1 t. ~ 1~

UYp — y(a) L Yp — Ljy(s) 71

(tn — a)a + O‘Z /t (tn _ S)O"H ds = L ana (310)
j=1"%

where

tipr —t bt . ~ )
]+h y; + . Lgiv1, L _ofn=—Ff(tn-2,9n—2) +2f (tn-1,Un—1)-

1~ —
Ljy(t) =
On (tp—1,t,) the integral can be simplified by

t ~ 1 ~ t ~ ~
" Yn — Lnfly(s) 1 / " Yn — Yn—1 1 - -
—ds = — ds = n — Yn—1)- 3.11
/t (=97 B0y (a2 T A= apha O ) (3:11)

n—1

Therefore, 4, can be evaluated by solving the following equation

1 nz_Q a "Z_Q afn—1 y(a) ;
A, s U, = B, u:+B, 7. n Ll
(tn - a’)a + ) ]:1 " + (1 - a)ha yn : ]:1( nﬂy‘]—i_ n’.]+1y]+1)+ (1 - a)ha+ (tn - a)a+ n_2fn’

(3.12)

tit1 1 1[4+ b —s 1 [ s—ty
A, ;= —d B, i=— +7d B, i1 =— 7d
/ (b —s)r1 > i h/ (b — g1 It h/t. (tn— )o71

J )

which can be evaluated explicitly. Moreover, the first two terms of the left hand side in (3.12) can

be simplified by

n—2
1 fita 1
—_— —————ds=h"" 3.13
(tn_a)a +aj§1/tj (tn—S)O"H § ( )

Hence, the approximated solution 7,, can be evaluated by solving the following explicit form

- ~ = ah™ . y(a) 17
Nt = iYj + Bn,j+19; —— U1+ ———=+ L, ofn. (3.14
h [ * (1-a) ] O‘Z ng¥j + Bnjr1¥j+1) + 1- a)y 1+ (tn — )™ + Ly _ofn (3.14)

11



3.1 Direct Method

3.1.3 Direct Method with Quadratic Interpolation

In this section, we further improve our scheme by employing a quadratic interpolation of y(¢)

over each interval I; = [t;,t;41]. For each I;,j > 2, we interpolate y(t) by a quadratic Lagrange

polynomial
Jj+1 '
u(t) ~ Liy(t) = Y @), (3.15)
k=j—1
where
J+1
i t—t
=TI +—=
. k—lm
m=j—1
m#k

On Iy = [t1,t2], yt) is interpolated by using the grid t3/,

y(t) = Liy(t) = Q1 (1) + ng%(t) + 12Q5(1), (3.16)
where
(t —ts)(t —t2) (t—t1)(t — t2) (t—t1)(t—ts)
1 _ 2 1 _ 1 _ 2
R A L e N R CeCa)

Now, the value of f(t,,y(t,)) can be approximated by using the quadratic interpolation of f(t,y(t))

with grid points ¢,,_3,t,—2 and t,_1

f(tna y(tﬂ)) ~ L%—Qf(tna y(tn)) = f(tn737 y(tnf2)) - 3f(tn727 y(tan)) + 3f(tnfla y(tnfl))' (3'17)

Substituting (3.15), (3.16) and (3.17) into Eq. (3.7), taking the uniform property of the grid, we
obtain that

~ n—1 t ~ 2 ~

Yn — y(a) It Yy — Ljy(s) s _

(tn —a)® + O‘Z /t st =Ly _o /. (318)
Jj=1""%

Lemma 3.1.1.

th & 2 -

" Yo — Ly _1y(s _ _ _ _

/ w =h a[Dlyn - D2yn71 +D3yn72]a n > 3.
t

(tn _ S)lJra

n—1

12



3.1 Direct Method

where
B (5 —2a)  (3-2a) B 1
D1 21— a)(2—a)’ D2 = I-—a)2—a) Ds 20— a)(2—a)’
Proof.
o~ gty = Lt 2t gy
1

:Thg {((tn - tnfl)(tn - tn*2) - (t - tnfl)(t - tn72))gn + Q(t - tn)(t - tan)gnfl - (t - tn)(t - tnfl)gnf2}

1 5 s -
:W {(tn - t)(t + tn - tnfl - tn72)yn + 2(t - tn)(t - tan)ynfl - (t - tn)(t - tnfl)yn72} .
Then we have

/t” gn — Ly _19(s)
tas (o —8)1He

n—1

1 [t 1 _ 3 3
=512 / T e {(3 +tp —tp—1 — tn—2)yn - 2(8 - tn—?)@/n—l + (3 - tn—l)yn—Q} . (319)
2n2 J, | (tn —s)

Using a simple change of variable, we can complete the proof. ]

Lemma 3.1.1 gives a explicit form for (3.18) as follows

_ ~ - _ - ~ a =
h=%[1 4+ aD1] gn = ag,, + ah™*[Dagn—1 — D3yn—2] + (ty(—)a)a + L2 ofn, n>3 (3.20)
n
Here, the lag term is approximated as follows,
G = [CY'51 + C2 i3 o + C2 2] + Z [Ch7Tj—1 + Cl s + C3 1] (3.21)
j=2

where,

Cl,l — /t2 Q%(T) dr
t1

" (t — 7)ot 1
CQ 1 b2 Ql% (T) d
n /151 (tn _ 7—)a+1 T,

Cg,l _ /t2 Q%(T) dr,
o (tp — 7)ottt

13



3.1 Direct Method

and, for 2 < j<n—2

. tj+1 Qj (T
Cl _/ Q). )ldT, i=1,2,3.
t; (tn - T)OH_

3.1.4 Error Analysis

From here, we denote C' a generic constant which is independent of all grid parameters and may

change case by case. We need the following lemmas.

Lemma 3.1.2. (Interpolation Errors) Let f € €"*L[a,b] and p, € Py[a,b] interpolate the function
f at the grid @, in (3.5) with a = t; and b = t,,, then there exists £ € (a,b) such that, for any
t € la,bl,

_ )
f(t) —pn(t) = (n—i—l)!jl_[()(t —tj).

Let e, = y(t,) — yn, be an error at time step t,,. Then, subtracting (3.10) from (3.7) we have

en [l en — (y(s) — Lig(s)) _
—ap @ / Gt 4= fltny(tn)) = Lo, (3.22)

j=1"1

Theorem 3.1.3. (Truncation Error with Linear Iinterpolation) Let T, be a truncation error at t,.
Suppose that y(-) and f(-,y(-)) € C%a,T], and furthermore is Lipschitz continuous in the second

argument, i.e.,
|f(tur) — f(t,u2)| < Llur —ug|, Vui,uz €R, (3.23)
Then, there exists a constant C' independent of all grid parameters such that
ITa| < CR*™, n>3. (3.24)

Proof. From the linear interpolation of y(¢) and f(¢,y(t)), we obtain

bt —(y(s) — Liy(s
mma s [ T g )~ Ehafu]

st 4 (tn _ S)1+a

14



3.1 Direct Method

By Lemma 3.1.2, we have the following; for some &; € (¢;,%j41) and 9,—2 € (tn—2,tn—1),

y"(&5) (s —t5)(s —tj41)
(t, — s)lte

1
ds + S n2) (772n2)

1
|Tn| < ozZ/

(tn - tn—Z)(tn - tn—l) .

Let M = max | "(&)| and M = | f”(nn—2)|- Then, we have

1<j<n—
aM 3 [l aM [t 1 M,
o < —— § — —h
|Tn| < 5 h /t 1+ads+ 5 h T _S>ad8—|— 5
aM ,[1 It M 1 fn
= —h?|=(t, — —h t atl h2
2 [O‘( 8)} t1 " 2 [a - 1( ) ]tn_l "
M aM M
_ - h—a _ h —« 2—« 7h2
3 )+ a3
M aM M
- (1— 11—« h270¢ h270{ 7h2 h2 «
y L= s T O(h™)

O

By a similar procedure in the theorem (3.1.3), we can obtain the analysis for the accuracy order

of the new scheme using a quadratic interpolation.

e nlortiie, — (y(s) — L?y(s)) B )
m e ;/t] (tn — 8)1+a ds = f(t”’ y(t”)) - Ln—2fn’ (3-25)

Theorem 3.1.4. (Truncation Error with Quadratic Interpolation) Let T, be a truncation error at
tn. Suppose that y(-) and f(-,y(-)) € C3[a,T), and furthermore is Lipschitz continuous in the second

argument, i.e.,
|f(t,ur) — f(t,u2)| < Llur —ug|, Vui,uz €R, (3.26)
Then, there exists a constant C' independent of all grid parameters such that
7| < CR*®, n>4. (3.27)
Proof. By following similar procedures in the Theorem 3.1.3, we obtain the truncation error for the

quadratic interpolation. O

15



3.1 Direct Method

3.1.5 Numerical Examples

In this section, we illustrate the accuracy and efficiency of our new methods, both with the
linear (DL) and quadratic interpolation (DQ). Also, in the sense of the PECE method [3], we use
our numerical solutions §*’ as a predictor and update a corrector § with both the linear (DL-PC)

and quadratic interpolation (DQ-PC).

o With Linear Interpolation:

n—2
_ a . _ _ ah™@ _ y(a) g
h™@ |:1 + (1 _ Oé):| y5 =« (Bn,]yj + Bn,j+1yj+l) + (1 — Oé) Yn—1 + (tn — (I)a + L'}Z—ana (328)
Jj=1
n—2 ~
_ « ~ ~ ~ AYn—1 Y1 ~
h™“ |:1 + 1- Oz):| Yn = @ (Bn,j¥j + Bnj+19j+1) + (1 —Zé)ha + (tn — 1) + f(t”’yg) (3.29)
n

o With Quadratic Interpolation:

h™* L+ aDi] g} = oy + ah™*[Dafin—1 — D3jn—2] + (ty(_al)a + L2 5 fn, (3.30)
h=*[1+ aD1] gn = gy, =@ Doijn_1 — D3 _yla) P
aD1]gn = agy, + ah”*[Dajn—1 — D3Jn-2] + G—ap ftn, 8, )- (3.31)

For all below tests, we measure the error (y, — y(t,)) by using the following error estimate:
Eriar = m;.ix ‘yj - gj’

Example 3.1.5.

whose exact solution s

16



3.1 Direct Method

Table 3-1: Numerical comparisons of errors and orders by linear and quadratic interpolation in Example

3.1.5.
a=0.01
DL DL-PC DQ DQ-PC
N Eyvran roc Eyran roc Eyrae roc Eyrae roc
10 1.0749E-01 - 3.8052E-04 - 9.2576E-02 - 2.2939E-04 -
20  2.7388E-02 1.9725 || 1.1268E-04  1.7558 | 2.0240E-02  2.1934 | 4.3337E-05 2.4041
40  8.6430E-03  1.6640 || 3.2169E-05 1.8084 | 3.2485E-03  2.6394 || 7.0813E-06  2.6135
80  2.6081E-03  1.7285 | 9.0736E-06  1.8259 || 4.5743E-04  2.8281 | 1.0744E-06  2.7205
160 7.1169E-04  1.8737 || 2.5293E-06  1.8429 | 6.0602E-05 2.9161 || 1.5636E-07  2.7805
320 1.8558E-04  1.9392 | 7.5169E-07  1.7505 || 7.7952E-06  2.9587 | 2.2113E-08  2.8219
640 4.7354E-05 1.9705 | 2.1770E-07  1.7878 || 9.8848E-07  2.9793 | 2.8170E-09  2.9727
a=0.1
N Enrrax roc Errox roc Errax roc Erraz roc
10 1.0454E-01 - 4.5666E-03 - 8.8051E-02 - 2.4067E-03 -
20  2.6512E-02 1.9794 | 1.3849E-03  1.7213 || 1.9426E-02  2.1804 | 4.8053E-04  2.3244
40  7.9392E-03  1.7396 || 4.1086E-04  1.7531 || 3.1217E-03  2.6376 || 8.2187E-05  2.5477
80  2.4003E-03  1.7258 | 1.2004E-04  1.7751 || 4.3879E-04  2.8307 | 1.2992E-05 2.6613
160 6.5298E-04  1.8781 || 3.4692E-05 1.7908 | 5.7935E-05  2.9210 || 1.9659E-06  2.7244
320 1.6930E-04  1.9475 | 9.9317E-06  1.8045 || 7.4192E-06  2.9651 | 2.8991E-07 2.7615
640 4.2875E-05 1.9813 | 2.8211E-06  1.8158 || 9.3416E-07  2.9895 | 4.3554E-08  2.7347
a=0.5
N Errax roc Eyran roc Eyvrae roc Eyrae roc
10  6.5888E-02 - 4.8710E-02 - 6.8290E-02 - 1.2247E-02 -
20  2.3036E-02  1.5161 | 1.8642E-02  1.3856 || 1.4812E-02  2.2049 | 3.3412E-03  1.8739
40  8.9031E-03  1.3715 || 6.8175E-03  1.4513 || 2.2180E-03  2.7394 || 7.3919E-04 2.1763
80  2.8217TE-03  1.6577 | 2.4662E-03  1.4669 | 2.7183E-04  3.0285 || 1.4761E-04  2.3242
160 8.3546E-04  1.7559 || 8.8523E-04  1.4782 | 2.7807E-05  3.2892 || 2.7964E-05  2.4001
320 2.5803E-04  1.6951 | 3.1623E-04  1.4851 || 2.0375E-06  3.7705 | 5.1499E-06  2.4409
640 9.3744E-05 1.4607 | 1.1261E-04  1.4896 || 2.0087E-07  3.3425 | 9.3351E-07  2.4638
a=20.9
N Eyrox roc Eyrax roc Eyvrax roc Erraz roc
10 1.8389E-01 - 2.0583E-01 - 6.6342E-02 - 2.8864E-02 -
20 9.8235E-02  0.9045 | 9.6674E-02  1.0903 || 1.2306E-02  2.4306 | 7.1881E-03  2.0056
40  4.5732E-02  1.1030 || 4.5708E-02  1.0807 | 1.8537E-03  2.7309 || 1.7031E-03  2.0774
80  2.1169E-02  1.1113 || 2.1397E-02  1.0950 || 3.9965E-04 2.2136 || 3.9948E-04  2.0920
160 9.9166E-03  1.0941 || 1.0000E-02  1.0973 | 9.2479E-05  2.1115 || 9.9293E-05  2.0084
320 4.6454E-03  1.0940 | 4.6699E-03  1.0986 || 2.1625E-05  2.0964 | 2.4194E-05  2.0370
640 2.1731E-03 1.0960 | 2.1797E-03  1.0993 || 5.0593E-06  2.0957 | 5.7686E-06  2.0684
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3.1 Direct Method

10°
102} 1
o
10 F ]
s
=
i
10°} ]
10871 il
—@— Direct Linear
—i— Direct Linear with PECE
Direct Quad
Direct Qaud with PECE
-10 L L
10
107 102 10
h
(a)
10°
107" F E
102 ¢ E
& 3
LLIE 107 E
104 E
10 ¢ —@— Direct Linear E
—i— Direct Linear with PECE
Direct Quad
Direct Qaud with PECE
6 | |
10
107 102 10°
h
(b)

Figure 3-1: Maximum errors of Example 3.1.5 obtained by linear and quadratic interpolation with
various h. (a) We set o = 0.01. (b) We set a = 0.9.
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3.1 Direct Method

Example 3.1.6.

whose exact solution 1is

TT(G-a)

t4= sin(t*) + & — sin(y) — 32,

Table 3-2: Numerical comparisons of errors and orders by linear and quadratic interpolation in Example

3.1.6.
a=0.1
DL DL-PC DQ DQ-PC
N Eyvrax roc Eyrax roc Eyvrae roc Eyiae roc
10  8.8913E-02 - 2.9958E+00 - 1.0741E4+01 - 2.7049E+00 -
20 4.9812E+4+00 - 2.9660E+00 - 4.4773E4+69 - 2.4529E+01 -
40  Inf - 2.6055E+08 - Inf - 3.3461E+25 -
a=0.5
N Errox roc Eyras roc Eyran roc Eyran roc
10  2.3398E-02 - 8.0027E-02 - 5.7667E-03 - 1.0903E-02 -
20  4.3325E-03  2.4331 || 1.6095E-02  2.3139 || 6.4081E-04 3.1698 || 1.0739E-03  3.3439
40  5.5369E-04  2.9680 || 3.9843E-03  2.0142 || 6.2650E-05  3.3545 || 1.3395E-04  3.0031
80 1.9840E-04  1.4807 || 1.1747E-03  1.7621 || 5.1008E-06  3.6185 | 1.9725E-05  2.7635
160 1.5414E-04 0.3642 || 3.8198E-04  1.6207 || 7.6452E-07 2.7381 || 3.1917E-06  2.6277
320 7.5947E-05 < 1.0212 || 1.3029E-04  1.5518 || 2.4976E-07  1.6140 || 5.4176E-07  2.5586
640 3.2268E-05  1.2349 | 4.5417E-05  1.5204 || 5.8548E-08  2.0928 || 9.4089E-08  2.5256
a=20.9
N Eyran roc Eyrax roc Eyrax roc Eyrae roc
10  3.5795E-02 - 1.0444E-01 - 4.1974E-03 - 1.5799E-02 -
20  2.8239E-02 0.3421 | 4.4972E-02  1.2155 || 2.2256E-03  0.9153 || 3.6497E-03  2.1140
40 1.6560E-02  0.7699 | 2.0733E-02  1.1171 || 6.8612E-04  1.6977 || 8.6176E-04  2.0824
80  8.6506E-03  0.9369 | 9.6941E-03  1.0968 || 1.8137E-04 1.9195 || 2.0314E-04  2.0848
160 4.2775E-03  1.0160 || 4.5383E-03  1.0949 | 4.4986E-05 2.0114 | 4.7695E-05  2.0906
320 2.0573E-03  1.0560 || 2.1225E-03  1.0964 || 1.0828E-05  2.0547 || 1.1166E-05  2.0947
640 9.7538E-04  1.0767 || 9.9167E-04  1.0978 || 2.5676E-06  2.0763 || 2.6097E-06  2.0971
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Figure 3-2: Maximum errors of Example 3.1.6 obtained by linear and quadratic interpolation with
various h. (a) We set a = 0.5. (b) We set a = 0.9.
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3.1 Direct Method

Example 3.1.7.

whose exact solution is

We choose the final time as 7' = 1. Let N(7) be a number of steps (a step-size) in the time and
M (h) be a number of steps (a step-size) in the space. For approximating the spatial derivative, we
use the central difference method which has a second-order convergence. Then, we can expect a

global convergence with O(h?) and O(73~%) by controlling each step-size for linear and quadratic

interpolation, respectively.

Dy(@,t) = yau + e (Ratadss g3ty

y(l’, O) =0,

I'(4)

y(0,t) = t3T* y(1,1) = et>*,

y(t) = e*t3te,

Table 3-3: Numerical comparisons of errors and orders with linear and quadratic interpolation in

Example 3.1.7.

M = 12000

a=0.5

DL DQ
N Eyrox roc Eyrax roc
10 1.0011E-02 - 9.6513E-04 -
20  3.7669E-03  1.4102 || 1.7872E-04  2.4330
40 1.3861E-03  1.4423 || 3.2479E-05  2.4602
80  5.0318E-04  1.4619 || 5.8541E-06  2.4720
160 1.8108E-04  1.4744 || 1.0424E-06  2.4895
320 6.4797E-05  1.4827 || 1.8560E-07  2.4897
640 2.3084E-05  1.4890 || 3.1310E-08  2.5675

a=20.9
N Eyras roc Eyran roc
10  6.4409E-02 - 8.5198E-03 -
20  3.1131E-02  1.0489 || 2.0738E-03  2.0386
40 1.4794E-02  1.0733 || 4.9394E-04  2.0699
80  6.9690E-03  1.0860 | 1.1639E-04  2.0854
160  3.2669E-03  1.0930 || 2.7284E-05  2.0928
320 1.5096E-03  1.1137 || 6.4172E-06  2.0880
640 6.7424E-04 1.1629 | 1.5641E-06  2.0366
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Table 3-4: Numerical comparisons of spatial errors and orders by linear and quadratic interpolation

in Example 3.1.7.

N =10?
a=0.5
DL DQ
M  Eyae roc Eyvran roc
4 8.9880E-04 - 1.4515E-04 -
8 2.2693E-04  1.9857 || 3.6675E-05  1.9846
16  5.7628E-05  1.9774 || 9.1713E-06  1.9996

Table 3-5: Numerical comparisons of global errors and orders by linear and quadratic interplation with
o— 2
N~ h"s and M ~ 723 respectively, in Example 3.1.7.

a=0.5

DL DQ
N Erraz roc M  Eyor roc
10 3.3981E-03 - 10 1.0095E-03 -
20  9.3128E-04 1.8674 | 20 1.8703E-04  2.4324
40 2.3692E-04 1.9748 | 40  3.392TE-05  2.4627
80  6.0243E-05 1.9755 || 80  6.1019E-06  2.4751
160 1.5217E-05 1.9851 || 160 1.0905E-06  2.4842
320 3.8294E-06  1.9905 | 320 1.9427E-07  2.4889
640 9.6181E-07 1.9933 || 640 3.4448E-08  2.4955
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3.1 Direct Method

Example 3.1.8.

whose exact solution 1is

We test the example with several variable fractional orders,

ar(t) = 0.7t 4 0.3,

21
Oéz(t) == 9 5
a3(t) = e_ta

as(t) = 0.1 sin(gt) +0.9.

Definition 3.1.1. The variable order(VO) fractional ordinary differential equation (ODE) is de-
fined by

DeWy(t) = f(t,y(1), telaT), feCm(a,T]), mezt

yFa) =y, m—-1<alt)<m, 0<k<m-—1,

~ 1

Dy Wy (t) = r(m—a(t))/ (t — s)m 20y (5)ds.

By definition 3.1.1, we can solve an IVP with a variable fractional order with our numerical

methods.

23



3.1 Direct Method

Table 3-6: Numerical comparisons of errors and orders with Variable Fractional Order in Example

3.1.8.

a1 (t)
DQ DQ-PC
N Erraz roc Erraz roc
10 1.3552E-02 - 1.4757E-02 -
20 1.5241E-03  3.1525 || 3.5578E-03  2.0523
40  3.4621E-04 2.1382 || 8.6977E-04  2.0323
80 1.4479E-04  1.2577 || 2.1078E-04  2.0449
160 4.2231E-05  1.7776 || 5.0486E-05  2.0618
320 1.0970E-05  1.9447 | 1.2001E-05  2.0727
640 2.7139E-06  2.0152 || 2.8425E-06  2.0779
a9 (t)
N Eyras roc Eyras roc
10 1.8407E-02 - 1.4135E-02 -
20 2.0330E-03  3.1786 | 3.2790E-03  2.1079
40 1.7189E-04  3.5640 || 7.8140E-04  2.0691
80  9.3326E-05 0.8812 | 1.8666E-04  2.0656
160 3.2368E-05  1.5277 || 4.4245E-05  2.0769
320 8.9226E-06  1.8591 | 1.0418E-05  2.0864
640 2.2577E-06  1.9826 || 2.4453E-06  2.0911
Qa3 (t)
N Errax roc Errax roc
10 5.1526E-03 - 6.0493E-03 -
20 5.9180E-04  3.1221 || 8.1730E-04  2.8878
40  6.6548E-05  3.1526 || 1.2809E-04  2.6737
80 1.8965E-05  1.8111 || 2.6208E-05  2.2891
160 4.6379E-06  2.0318 || 5.4946E-06  2.2539
320 1.0638E-06  2.1242 || 1.1652E-06  2.2375
640 2.3740E-07  2.1638 || 2.4943E-07  2.2239
ay(t)
N Erroz roc Erraz roc
10 7.7424E-03 - 2.0578E-02 -
20  4.2517E-03  0.8647 | 5.9969E-03  1.7788
40 1.3844E-03  1.6188 || 1.6060E-03  1.9007
80  3.8589E-04  1.8430 | 4.1368E-04  1.9569
160 1.0105E-04  1.9331 || 1.0453E-04  1.9846
320 2.5727E-05 1.9738 | 2.6161E-05  1.9984
640 6.4622E-06  1.9932 || 6.5165E-06  2.0052
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3.2 Enhanced Direct Method

3.2 Enhanced Direct Method

3.2.1 Newton’s Method for a = 0

With small «, we face a problem that a numerical solution easily blows up because of a singu-
larity under a small « in a nonlinear problem. Therefore, we suggest an improved scheme that use
a numerical solution, which is obtained by our method, as the initial value of Newton Method.

Let (' be a coefficient of a numerical solution ¢, at time t,, and Cy be a memory term. Then,

we can simplify the Direct Method with PECE as follows:

C1fjn = Ca + f(tn, 55). (3.32)
Define,
F(s)=s— W. (3.33)
The general Newton’s Method is
Skpl = Sk — 5,((‘1)) k=0,1,2, ... (3.34)

Moreover, we can easily get a clear form of %.

3.2.2 Decomposition Method for a ~ 1

With large «, our scheme has a low convergence rate compared to a smaller «. Therefore, we
suggest a scheme that decomposes a large « into a7 and «g, such as «/2, respectively. Suppose
that a = a1 + - - - + . For simplicity, assume that o = a3 + as. We can decompose a FDE into a

system of equations:

{Day(t):Do‘l(D”y(t)):f(t,y(t))v — { D™2(t) = f(ty(), 2(t) =0, g 5p)

y(t1) = o, D2y(t) = z(t), y(t1) = yo-

Let C1,1 and Cy 1 be coefficients of numerical solutions ¥, and Z, at time ¢,,, and C72 and Cs 2

be memory terms. Then, we have a predictor step as

C: i~ C: Ln— )
{ 2,12 92 + 2f. (3.36)

_p =P
Ci1y, =Ci2+72,,
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3.2 Enhanced Direct Method

and a corrector step as

(3.37)

02,1271 = 02,2 + f(tnu @5),
Ci119n = Cr2 + Zn.

3.2.3 Numerical Examples

We illustrate the accuracy and efficiency of our improved methods for a =~ 0. We have a stability

problem in the previous method, but the problem is eliminated by combining with the Newton’s
Method.

Table 3-7: Numerical comparisons of errors and orders by quadratic interpolation and Newton’s
Method in Example 3.1.6.

DQ-N
a=0.01 a=0.05 a=0.1
N Eyrax roc Eyrae roc Eyiae roc

10 1.2700E-05 - 7.0521E-05 - 1.6114E-04 -

20  1.8958E-06  2.7439 || 1.0694E-05  2.7213 | 2.4946E-05 2.6914
40 2.7368E-07  2.7922 || 1.5674E-06  2.7703 || 3.7324E-06  2.7406
80  3.86564E-08  2.8238 || 2.2480E-07  2.8016 | 5.4645E-07  2.7720
160 5.3790E-09  2.8452 || 3.1762E-08  2.8233 | 7.8828E-08  2.7933
320 7.4477E-10  2.8525 || 4.4503E-09  2.8353 || 1.1240E-08  2.8101

From now, we illustrate the accuracy and efficiency of our improved methods for oo ~ 1. Based
on the error analysis and numerical results, the Direct Method has a low convergence rate with
a large fractional order a. However, we transform an IVP into a system of IVPs to increase the
convergence rate. Because of the direct updating of an auxiliary solution, the computational cost
increases linearly. For simplicity, we assume a1 = ag = /2. Then, we expect a global convergence

as O(h?*=%/2) and O(h3~/?) for linear and quadratic interpolation, respectively.
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3.2 Enhanced Direct Method

Table 3-8: Numerical comparisons of errors and orders with quadratic interpolation and decomposition

method in Example 3.1.5.

a=0.5
D-DQ D-DQ-PC
N Erras roc Errax roc
10  6.8126E-02 - 1.1571E-02 -
20 1.5521E-02  2.1340 || 2.5973E-03  2.1555
40  2.4683E-03  2.6527 || 4.8785E-04  2.4125
80  3.3566E-04 2.8784 | 8.3754E-05  2.5422
160  4.2072E-05  2.9960 || 1.3697E-05  2.6123
320  5.0095E-06  3.0701 || 2.1779E-06  2.6529
640 5.7185E-07  3.1310 || 3.4032E-07  2.6780
a=0.7
N Erraz roc Erraz roc
10  5.8937E-02 - 1.5340E-02 -
20 1.3401E-02  2.1368 || 3.7609E-03  2.0282
40  2.0635E-03  2.6992 || 7.5773E-04  2.3113
80  2.6331E-04 29702 || 1.3836E-04  2.4533
160 2.9517E-05  3.1572 || 2.3984E-05  2.5283
320 2.8625E-06  3.3662 || 4.0381E-06  2.5703
640 2.0773E-07  3.7845 || 6.6840E-07  2.5949
a=20.9
N Eyras roc Eyras roc
10  5.1295E-02 - 1.7602E-02 -
20 1.1377E-02  2.1727 || 4.7897E-03  1.8777
40 1.6338E-03  2.7999 || 1.0450E-03  2.1965
80 1.7861E-04  3.1934 || 2.0426E-04  2.3550
160 1.3522E-05  3.7234 || 3.7723E-05  2.4369
320 1.5620E-06  3.1138 | 6.7565E-06  2.4811
640 3.5609E-07  2.1331 || 1.1939E-06  2.5006
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3.2 Enhanced Direct Method

Table 3-9: Numerical comparisons of errors and orders with quadratic interpolation and decomposition

method in Example 3.1.6.

a=0.5
D-DQ D-DQ-PC
N Erras roc Errax roc
10  6.5772E-03 - 9.2928E-03 -
20  8.4132E-04  2.9668 | 8.0372E-04  3.5313
40 1.0218E-04  3.0415 || 8.1622E-05  3.2997
80 1.1923E-05  3.0994 || 9.4832E-06  3.1055
160 1.3394E-06  3.1540 || 1.2151E-06  2.9643
320 1.4375E-07  3.2199 || 1.6623E-07  2.8698
640 1.4458E-08  3.3136 || 2.3692E-08  2.8107
a=0.7
N Erraz roc Erraz roc
10  6.2868E-03 - 5.8996E-03 -
20  7.3543E-04  3.0957 || 7.1293E-04  3.0488
40  7.7613E-05  3.2442 || 9.9899E-05  2.8352
80  7.2305E-06  3.4241 || 1.5136E-05 2.7225
160 5.8180E-07  3.6355 || 2.3777TE-06  2.6704
320 7.4653E-08  2.9623 || 3.7927E-07  2.6483
640 2.2912E-08  1.7041 || 6.0770E-08  2.6418
a=0.9
N Eyras roc Eyras roc
10  5.4180E-03 - 6.7505E-03 -
20  5.1709E-04  3.3893 || 1.0730E-03  2.6533
40  4.1227E-05  3.6488 || 1.8135E-04  2.5648
80  9.4853E-06 2.1198 || 3.1213E-05  2.5386
160 2.6836E-06  1.8216 || 5.3894E-06  2.5340
320 5.9175E-07  2.1811 | 9.2924E-07  2.5360
640 1.1613E-07  2.3492 || 1.5827E-07  2.5537
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3.2 Enhanced Direct Method

—@— Direct Quad with PECE
—il— Decomposed Direct Quad with PECE

107!

h

-2

Figure 3-3: Maximum errors of Example 3.1.6 obtained by quadratic interpolation with various h. We
set a = 0.9.

Table 3-10: Numerical comparisons of errors and orders with Direct(M) and Decomposition(M/2)
Methods in Example 3.1.7.

M = 12000

a=20.9

DL D-DL DQ D-DQ
N Errax roc Eyran roc Eyrae roc Eyrae roc
10  6.4409E-02 - 1.2475E-02 - 8.0198E-03 - 2.7754E-03 -
20  3.1131E-02  1.0489 | 4.4457E-03  1.4886 || 2.0738E-03  2.0386 || 4.9811E-04 2.4781
40 1.4794E-02  1.0733 || 1.5631E-03  1.5080 | 4.9394E-04 2.0699 || 8.7773E-05  2.5046
80  6.9690E-03  1.0860 | 5.4481E-04  1.5206 || 1.1639E-04  2.0854 | 1.5301E-05  2.5201
160 3.2669E-03  1.0930 || 1.8877E-04  1.5291 || 2.7284E-05  2.0928 || 2.6498E-06  2.5297
320 1.5096E-03  1.1137 | 6.5140E-05  1.5350 || 6.4172E-06  2.0880 | 4.5717E-07  2.5351
640 6.7424E-04 1.1629 | 2.2412E-05 1.5392 || 1.5641E-06 2.0366 | 7.6804E-08 2.5735

a=0.99
N Eyrox roc Eyrox roc Errax roc Erraz roc
10  9.3585E-02 - 1.7218E-02 - 1.3271E-02 - 3.9521E-03 -
20  4.7921E-02  0.9656 || 6.3080E-03  1.4486 | 3.4444E-03  1.9460 || 7.2999E-04  2.4367
40  2.4166E-02  0.9877 || 2.2804E-03  1.4679 || 8.7373E-04  1.9790 || 1.3236E-04 2.4634
80 1.2093E-02  0.9988 || 8.1758E-04  1.4799 | 2.1925E-04  1.9946 || 2.3746E-05  2.4787
160 6.0267E-03  1.0048 || 2.9153E-04  1.4877 || 5.4706E-05  2.0028 || 4.2341E-06  2.4876
320 2.8503E-03 1.0802 | 1.0357E-04  1.4930 || 1.3609E-05  2.0071 | 7.5158E-07  2.4940
640 1.4163E-03 1.0091 | 3.6704E-05  1.4966 || 3.4035E-06  1.9995 | 1.3288E-07  2.4998
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3.2 Enhanced Direct Method

Table 3-11: Numerical comparisons of global errors and orders with Direct(N =~ hT or M ~ T%)
a/2—2

a/2-3
2

and Decomposition(N ~h~ 2 or M =71 ) Methods in Example 3.1.7.

a=0.5

DL D-DL DQ D-DQ
N(M)Enqz roc Errax roc Errox roc Errax roc
10 3.3981E-03 - 3.5012E-04 - 1.0095E-03 - 5.2906E-04 -
20 9.3128E-04 1.8674 | 6.1499E-05  2.5092 || 1.8703E-04  2.4324 | 8.3939E-05  2.6560
40 2.3692E-04 19748 || 1.2177E-05  2.3364 | 3.3927E-05  2.4627 | 1.3108E-05  2.6789
80  6.0243E-05  1.9755 | 2.6475E-06  2.2015 || 6.1019E-06  2.4751 | 2.0244E-06  2.6949
160 1.5217E-05  1.9851 || 6.1504E-07  2.1059 | 1.0905E-06  2.4842 || 3.1019E-07  2.7062
320 3.8294E-06  1.9905 | 1.4814E-07  2.0537 || 1.9427E-07  2.4889 | 4.7335E-08  2.7122
640 9.6181E-07  1.9933 | 3.6522E-08  2.0201 || 3.4448E-08  2.4955 | 6.8873E-09  2.7809
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3.2 Enhanced Direct Method

Table 3-12: Numerical comparisons of errors and orders with variable fractional orders in Example

3.1.8.
a1 (t)
DQ D-DQ DQ-PC D-DQ-PC
N Eyvran roc Eyran roc Eyrae roc Eyrae roc
10 1.3552E-02 - 2.5786E-02 - 1.4757E-02 - 5.0121E-03 -
20 1.5241E-03  3.1525 || 3.3538E-03  2.9427 | 3.5578E-03  2.0523 || 9.3424E-04  2.4236
40  3.4621E-04  2.1382 || 3.9400E-04 3.0895 || 8.6977E-04 2.0323 || 1.6842E-04 2.4718
80 1.4479E-04  1.2577 || 4.3035E-05  3.1946 | 2.1078E-04  2.0449 || 2.9821E-05  2.4977
160 4.2231E-05  1.7776 || 4.6344E-06  3.2150 | 5.0486E-05  2.0618 || 5.2273E-06  2.5122
320 1.0970E-05  1.9447 | 4.9610E-07  3.2237 || 1.2001E-05  2.0727 | 9.1099E-07  2.5205
640 2.7139E-06  2.0152 | 5.2906E-08  3.2291 || 2.8425E-06  2.0779 | 1.5824E-07  2.5253
(1)
N Enrrax roc Errox roc Errax roc Erraz roc
10 1.8407E-02 - 3.1662E-02 - 1.4135E-02 - 4.8345E-03 -
20  2.0330E-03  3.1786 | 4.4320E-03  2.8367 || 3.2790E-03  2.1079 | 8.9632E-04  2.4313
40 1.7189E-04  3.5640 || 5.5536E-04  2.9965 | 7.8140E-04  2.0691 || 1.6086E-04  2.4782
80  9.3326E-05 0.8812 | 6.4353E-05  3.1093 || 1.8666E-04  2.0656 | 2.8360E-05  2.5038
160 3.2368E-05  1.5277 || 6.8492E-06  3.2320 | 4.4245E-05  2.0769 || 4.9503E-06  2.5183
320 8.9226E-06  1.8591 | 6.9430E-07  3.3023 || 1.0418E-05 2.0864 | 8.5911E-07 2.5266
640 2.2577E-06  1.9826 | 6.9164E-08  3.3275 || 2.4453E-06  2.0911 | 1.4841E-07 2.5332
as(t)
N Errax roc Eyran roc Eyvrae roc Eyrae roc
10  5.1526E-03 - 1.5508E-02 - 6.0493E-03 - 1.3326E-03 -
20  5.9180E-04 3.1221 | 2.0941E-03 2.8886 || 8.1730E-04 2.8878 | 2.2151E-04  2.5887
40  6.6548E-05  3.1526 || 2.6779E-04  2.9672 | 1.2809E-04  2.6737 || 3.5859E-05  2.6270
80 1.8965E-05  1.8111 || 3.3259E-05  3.0093 | 2.6208E-05  2.2891 || 5.7274E-06  2.6464
160 4.6379E-06  2.0318 || 4.0559E-06  3.0357 || 5.4946E-06  2.2539 || 9.0903E-07  2.6555
320 1.0638E-06  2.1242 | 4.8760E-07  3.0562 || 1.1652E-06  2.2375 | 1.4397E-07  2.6586
640 2.3740E-07  2.1638 | 5.8007E-08  3.0714 || 2.4943E-07  2.2239 | 2.2823E-08  2.6572
(1)
N Eyrox roc Eyrax roc Eyvrax roc Erraz roc
10 7.7424E-03 - 1.4076E-02 - 2.0578E-02 - 6.0873E-03 -
20  4.2517E-03  0.8647 | 1.5285E-03  3.2030 || 5.9969E-03  1.7788 | 1.1754E-03  2.3726
40 1.3844E-03  1.6188 || 1.3811E-04  3.4683 | 1.6060E-03  1.9007 || 2.1813E-04  2.4299
80  3.8589E-04  1.8430 | 1.1535E-05  3.5818 || 4.1368E-04  1.9569 | 3.9650E-05  2.4598
160 1.0105E-04  1.9331 || 1.5413E-06  2.9038 | 1.0453E-04  1.9846 || 7.1236E-06  2.4766
320 2.5727E-05  1.9738 | 5.7067E-07  1.4334 || 2.6161E-05 1.9984 | 1.2711E-06  2.4865
640 6.4622E-06  1.9932 | 1.3821E-07 2.0458 || 6.5165E-06  2.0052 | 2.2593E-07  2.4921
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Chapter 4

Numerical Method for Solving
Fractional BVPs

In this section, we discuss a new numerical scheme for solving the following multi-term fractional
differential equation with two point boundary values:

Let 0 < a1 <1< ag <2and g(--), h(+,-) be linear functions.

{ D%y (t) = f (t,y (t) .« DI3y (1)) 1)
gy (a),y (a)) =To,h(y (T),y' (T)) =Tr.

4.1 High-Order Method

4.1.1 Description of High-Order Method

In conventional methods for solving fractional BVPs, many computational cost is required to
solve a dense matrix and a multi-dimensional nonlinear solver. However, by changing a BVP to an

IVP with the following theorem, we can explicitly solve a two-point BVP of fractional order.

Theorem 4.1.1. Multi-term Fractional Differential Equations
D%y(t) = f(t,y(t), D"y(t), -, DU=1y(t)) (4.2)
subject to the initial conditions
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4.1 High-Order Method

where ayg, > ap_1 > - > a1 >0, ap—ap_1 <1 forallj=2,3,--- ,k and 0 < ay < 1. Then, given
the equation (4.2), we may write 1 := a1, fj == oj —oj—1 , y1 =y, and y; := D¥~1y. Subject to
the condition above, the multi-term equation (4.2) with initial conditions (4.3) is equivalent to the

system

D™y (y) = ya(t),

DPys(y) = ys(t),

DPe=1y 1 (y) = yu(t),

DP%y(y) = f(ty1(t), 12(t), -+, y(t))
with the initial conditions

oy ifg =1,
yj(o) = y(()l) if Qj_1 = l €N,

0 else.
Proof. O
For simplicity, we first consider the Dirichlet boundary conditions,
D3y (t) = f (t,y (1) e Dby (1), y(a) = ya, y(T) = yr. (4.4)

By Theorem 4.1.1, the two points BVP (4.4) can be rewritten in a system of equations with

fractional orders as follows:

eDg iy (t)
DIy (1)
D221z 1)

w(t), y(a)=ys y(T)=yr,
z(t), w(a)=0, (4.5)
ftyt),w®), z(a)=y(a).

Since we do not have any information about y'(a), we apply the shooting method to this problem.

33



4.1 High-Order Method

Then, we can change the BVP into the IVP as follows:

D2y (t) —w(t), y(a)=ya,
DT MW () =2 (), w(a)=0,
DX = f ity (), w (), z(a) =y (a) =s.

(4.6)

By letting s be a variable and solving the IVP with numerical approaches for FDEs, we can get

y(s) ==y (t,s) |t=r when s differs. However, since Newton’s Method is for an integer-order system,

we have to adjust it for a fractional-order system to update an approximation.

4.1.2 Second-Order Scheme with Newton’s Method

Define

The general Newton’s Method is

F (s
Skl = Sk — F’<(sz))’ k=0,1,2,....

We need to get

t
ds |
So we apply the operator % to (4.6) that
oy(t ow(t oy(t
B S e
D]—oq]—oq ow(t) _ 9z(t) Ow(t) ‘ .
cayt Os — 9s ds It=a —
pee—lealoz(t)  _ 9ftyt)w(®)) aZ(t)‘ _
cHayit Ds - Js » TPs It=a T

Notice that t and s are independent, we can get

0f (by (), w(®) _0f By, Of dw,

95 “ay a5 aw a5
Define
oy . ow 0z
a_y()ag_w(t)aandas_z(t)
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4.1 High-Order Method

Then we can rewrite the auxiliary IVP (4.10) as

DUG (1) = (1), 7(a) =0,
CD(EC;H o (t) =2 (t), W (a) =0, (4.13)
Dz =9 g+ 5w t), Z(a)=1

We can get clear forms of % and g—f;. Hence, the solution of (4.13) can be solved by numerical
approaches for fractional-order equations, such as PECE [3], Second-Order method [8], or Third-
Order Method [8]. When updating an approximated solution 3 (7"), we can apply it to Newton’s
Method until F'(s) becomes small enough.

4.1.3 Third-Order Method with Halley’s Method

By using the Newton’s Method with high-order methods for solving FDEs, we have limitations
to get an accurate approximated solution. The Newton’s Method has a second-order convergence,
and the initial condition should be sufficiently close to an exact value. So, even if we use a high-order
method for solving FDEs which has a higher convergence than the second-order, we do not expect
any improvement in terms of using a high-order method with the Newton’s Method. It it clearly
shown in the error analysis of our method with the Newton’s Method. Thus, we apply a more
efficient root-finding method, the Halley’s Method, to our method for updating the approximated
solution of the IVP.

The general Halley’s Method is

o 2F (si) F' (s1)
Sk+1 = Sk~ 5 (sk) — F (sg) F" (sg)’

k=0,1,2,.... (4.14)

To get F” (s) distinctly, we apply operator g—; on (4.6) and define

a2y - 82’u) — 622 ~
@:y(t),@:w(t),and@:z(t). (4.15)

Then,

Doty (t) = w (),

of 0?2 92 202
7%7 Ty;a 6wf27 Hd f

We can either get clear forms of %
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4.1 High-Order Method

4.1.4 Error Analysis

Let 5, be a numerical solution which is obtained by an IVP solver and h be a step-size for an
IVP solver. Suppose that we can get the value y(s) at ¢t =T by using a shooting method with the
Newton’s Method in a fixed interval [a,T] with an initial value syg. Let s* be a unique solution of
F(s,y(s)) =0 in the interval [a,T]. We may assume that F(s,y(s)) is sufficiently differentiable to

s, and furthermore is Lipschitz continuous in the second argument, i.e., y(s) is Lipschitz continuous.

Theorem 4.1.2. Suppose that we have ||yn(s) — y(s)|| = O (h°"), and there exists a § > 0 such
that |sg — s*| < 6, for § < h. Then, the high-order method with the Newton’s Method has a rate of

convergence at least da-th order, where 02 = min {2, d; }.
Proof. Let e, = s, — s*. By expanding F'(s,y (s)) about s*, we get

oF
F (5,9(5)) |s=s, = 5 (s*,y(s")) [en + coe? 4 c3ed + cued + c5ed + ] (4.17)

Moreover, by applying % to expanded F' (s,y(s)), we get

F F
OF () omen = 2E (% g () [1 + 2020m + Beac? +descd 4 5escd 4], (418)
0s 0s
OV F g* s
where ¢, = %i“((s*”ii*)))) k=1,2,3

From the Newton’s Method, the recursive formula of the error e, is

_ ( (50,9 (50)) ) - <F<sn,yh<sn>> - F(sn,y<sn>>)
En+1 = | En .

% (50,9 (s0)) G (snyn(sn)) G5 (sn,y (sn)

Then,
enar] < len — F (sn,y (sn)) F (sn,yn(sn) F(sn,y(sn)) |
%f (Smy(sn)> a{j (Smyh(sn)) 85 (sn,y(sn))
Define
. _F<y<>>|
5 (sn,y (sn)
and

F(Smyh(sn)) n F(Smy(sn))
OF oF

IQ = .
Bs (80, Yn(sn)) Bs (81,9 (sn))
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4.1 High-Order Method

By (4.17) and (4.18), we get

B coe? + 2c3ed + 3cqed + ...
1+ 2coey, + 3cze? +

’:chi+o(ez) <o),

F(Snayh(sn)) 865 (Smy(sn)) — %s (Snayh(sn))F(Smy(Sn))

o (Snayh(sn)) 9 (51,9 (sn))

)

I, =

)

9E (50, yn(sn)) — ZE (50,9 (50

OF (51,9 (50)) 9L (80, (5n

)
F (s, yn(50)) = F ($n,Y (sn)) . aj s s
%Z (STHyh(Sn)) %71: (Sn,y (Sn)) s ( n’y( n))

< Clyn(sn) =y (sn)| = O(A™).

’ |F (Sna Yy (sn))‘

9

Hence, it concludes as

lent1] < I + I < O(h%), (4.19)
where do = min {2,6; }. O

Theorem 4.1.3. Suppose that we have ||yx(s) —y(s)|| = O (h°*). Then, the high-order method with

the Halley’s Method has a rate of convergence at least d3-th order, where 65 = min {3, d; }.
Proof. By applying 6%22 to expanded F (s,y(s)), we get

>*F OF
Fel (5,9 () |s=s, = s (s*,y (s%)) [2c2 + 6csen + 12cs€r + 20cs5€) + ...] (4.20)

ok F *
(s™y(s™))
where Cl — %%(S*iy(s*)),k = 2,3, e .

From the Halley’s Method, we can define

Ia = B 2F (Smy(sn)) %s (Smy(sn))
3= |€n ,

2 (95 (50,9 (50))” = F (50,9 (50)) 5 (s, (50))
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4.1 High-Order Method

2F ($n,y (5n) 5 (50,5 (30))

2 (9 (50,9 (50)))" = F (50,9 (50)) SF (50,9 (50)

B 2P (s, Y1 (52)) G (s () ‘
2 (% (s, yn(50))” = F (s (50)) 2L (s, yn(s0)) |

Iy =

From (4.17), (4.18), and (4.20), we get

2 *
2e, (%—f) (s*,y(s%)) (1 + coen + c3€2 + cqed + ) (1 + 2c9e, + 3cze? + 4C4€%...)

I3 = |e, — 5
(%—f) (5%, (s°)) 2 (1 + 2caen + 3cze...)? — (en + a2 + ...) (2¢2 + 6czen + 12¢4€2 + ...)
2e, + 6c2e? + (8¢ + 4c3) €3 + O (ep)
= |e —_
" 24 6een + (6c3 +6c3) €2 4+ O (e3)

(203 — 20%) el +0 (efl)
2+ 6egen, + (6c3 +6¢3) €2 + O (e3)

=0 (e}) <O (h%).

Define f1 := F (sp,yn(sn)) and fo := F (sn,y (sn)). Notice that the denominator of I is bounded,

we only consider its numerator and get

I's numerator = |4f; - 8f1 <%§> —2f1f %% —4fy- 8 <8f1> 8(;;1 8822 a;g (3325@2
<4 %% f % _ 3f1 o010/ N 0 fi
ST 0s 0s ! > 0s s 0s \ s 052 Os 0s°
_ L |0f10f2 5’f2 Ofs 0fi
oo o o)
o |0f10f2 Kafl B 3]”2) 0> fo L 9f (32f2 B 52f1>]
Os 0s |\ Os 0s ) 0s? Os \ 0s? 0s?

Moreover, fy and its derivatives are bounded in the interval [a,b]. Hence, we get

I = Clyn(sa) — y(sa)| = O (n)

Hence, it concludes as

lens1| < Is + Iy < O(R%), (4.21)

where 03 = min {3, d; }. O
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4.1 High-Order Method

4.1.5 Numerical Examples

In this section, we illustrate the accuracy and efficiency of our new methods. We set oy = 0.5

and as = 1.5.

Example 4.1.4. Consider the two-point boundary value problem

y(0) =

whose exact solution is

_ 24 44— 24
cDg,iy(t)—r(5—a2)t -

0, y(1) =1,

T'(5—a1)

y(t) = th.

e 42 — 18 4+ DGLy(t),

Table 4-1: Approximated errors in Example 4.1.4 by PECE and Newton’s Method.

Error | s=0.2 s=0.4 s=0.6 s=0.8 s=1.0 s=1.2

m=1 | 1.7096E-01 5.5210E-01 9.5997E-01 1.3962 1.8624 2.3605
m=2 | 4.3260E-03 3.1847E-02 8.2967E-02 1.5647E-01 2.5151E-01 3.6758E-01
m=3 | 3.9053E-05 3.7634E-04 1.4013E-03 3.7464E-03 8.2173E-03 1.5722E-02
m=4 | 3.3544E-07 3.2455E-06 1.2232E-05 3.3600E-05 7.7445E-05 1.6018E-04
m=5 | 2.8799E-09 2.7865E-08 1.0503E-07 2.8858E-07 6.6551E-07 1.3778E-06
m=6 | 2.4725E-11 2.3923E-10 9.0170E-10 2.4776E-09 5.7136E-09 1.1829E-08
m=7 | 2.1227E-13 2.0537E-12 7.7411E-12 2.1271E-11 4.9053E-11 1.0156E-10
m=8 | 1.7764E-15 1.7986E-14 6.6613E-14 1.8274E-13 4.2100E-13 &8.7197E-13
m=9 | 2.2204E-16 1.1102E-16 4.4409E-16 1.3323E-15 3.7748E-15 7.5495E-15
m=10 | - - - 2.2204E-16 1.1102E-16 1.1102E-16

Table 4-2: Approximated errors in Example 4.1.4 by Second-Order Scheme and Newton’s Method.

Error | s=0.2 s=0.4 s=0.6 s=0.8 s=1.0 s=1.2

m=1 | 4.0222E-01 8.4594E-01 1.3363 1.8789 2.4799 3.1462
m=2 | 1.9777E-02 7.4713E-02 1.6372E-01 2.8655E-01 4.4368E-01 6.3627E-01
m=3 | 1.3045E-04 9.9618E-04 3.8926E-03 1.0687E-02 2.3622E-02 4.5156E-02
m=4 | 5.3868E-07 4.2226E-06 1.7922E-05 5.8336E-05 1.6712E-04 4.3970E-04
m=>5 | 2.2156E-09 1.7369E-08 7.3752E-08 2.4036E-07 6.9090E-07 1.8329E-06
m=6 | 9.1127E-12 7.1440E-11 3.0334E-10 9.8861E-10 2.8417E-09 7.5390E-09
m=7 | 3.7748E-14 2.9332E-13 1.2477E-12 4.0661E-12 1.1688E-11 3.1008E-11
m=8 | 2.2204E-16 1.3323E-15 5.1070E-15 1.6653E-14 4.8406E-14 1.2768E-13
m=9 |- 1.1102E-16  2.2204E-16  2.2204E-16 4.4409E-16
m

I
_
o

3.3307E-16
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4.1 High-Order Method

Table 4-3: Approximated errors in Example 4.1.4 by Third-Order Scheme and Newton’s Method.

Error | s=0.2 s=0.4 s=0.6 s=0.8 s=1.0 s=1.2

m=1 | 3.1529E-01 6.5121E-01 1.0109 1.3965 1.8104 2.2553
m=2 | 1.0199E-02 3.9874E-02 &8.8836E-02 1.5715E-01 2.4510E-01 3.5323E-01
m=3 | 1.9808E-05 2.0339E-04 9.0724E-04 2.6940E-03 6.3089E-03 1.2658E-02
m=4 | 1.6793E-08 1.7645E-07 8.5589E-07 3.0599E-06 9.6181E-06 2.7918E-05
m=5 | 1.4201E-11 1.4921E-10 7.2385E-10 2.5885E-09 &.1433E-09 2.3693E-08
m=6 | 1.1546E-14 1.2612E-13 6.1240E-13 2.1889E-12 6.8863E-12 2.0035E-11
m=7 | 2.2204E-16 2.2204E-16 4.4409E-16 1.9984E-15 5.7732E-15 1.6875E-14
m=8 | - - - - 2.2204E-16  2.2204E-16
m=9

m

I
—_
S

Table 4-4: Approximated errors in Example 4.1.4 by PECE and Halley’s Method.

Error | s=0.2 s=0.4 s=0.6 s=0.8 s=1.0 s=1.2

m=1 | 1.2375E-01 4.9818E-01 &8.9901E-01 1.3278 1.7864 2.2763
m=2 | 1.0327E-03 4.3187E-03 8.7785E-03 1.5272E-02 2.4588E-02 3.7447E-02
m=3 | 8&7129E-06 3.6421E-05 7.3984E-05 1.2860E-04 2.0680E-04 3.1447E-04
m=4 | 7.3523E-08 3.0733E-07 6.2430E-07 1.0852E-06 1.7450E-06 2.6535E-06
m=5 | 6.2042E-10 2.5934E-09 5.2681E-09 9.1570E-09 1.4725E-08 2.2391E-08
m=6 | 5.2356E-12 2.1884E-11 4.4454E-11 7.7270E-11 1.2425E-10 1.8895E-10
m=7 | 4.3965E-14 1.8430E-13 3.7526E-13 6.5215E-13 1.0483E-12 1.5945E-12
m=8 | 4.4409E-16 1.7764E-15 3.1086E-15 5.5511E-15 9.1038E-15 1.3323E-14
m=9 |- - - - - 2.2204E-16
m

Il
—_
o

Table 4-5: Approximated errors in Example 4.1.4 by Second-Order Scheme and Halley’s Method.

Error | s=0.2 s=0.4 s=0.6 s=0.8 s=1.0 s=1.2

m=1 | 3.7979E-01 &8.1077E-01 1.2871 1.8140 2.3976 3.0447
m=2 | 1.9011E-03 4.9348E-03 1.0437E-02 1.9887E-02 3.4843E-02 5.6933E-02
m=3 | 9.4156E-06 2.4421E-05 5.1580E-05 9.8062E-05 1.7125E-04 2.7866E-04
m=4 | 4.6655E-08 1.2101E-07 2.5558E-07 4.8589E-07 8.4851E-07 1.3807E-06
m=5 | 2.3118E-10 5.9960E-10 1.2664E-09 2.4076E-09 4.2044E-09 6.8414E-09
m=6 | 1.1453E-12 2.9712E-12 6.2752E-12 1.1930E-11 2.0834E-11 3.3899E-11
m=7 | 5.5511E-15 1.4655E-14 3.1086E-14 5.9286E-14 1.0325E-13 1.6831E-13
m=8 | - 2.2204E-16 2.2204E-16 2.2204E-16 4.4409E-16 4.4409E-16
m=9

m

Il
—_
o
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4.1 High-Order Method

Table 4-6: Approximated errors in Example 4.1.4 by Third-Order Scheme and Halley’s Method.

Error | s=0.2 s=0.4 s=0.6 s=0.8 s=1.0 s=1.2

m=1 | 3.1144E-01 6.3934E-01 9.9026E-01 1.3663 1.7697 2.2032
m=2 | 5.1742E-04 1.2199E-03 2.3964E-03 4.3286E-03 7.2964E-03 1.1574E-02
m=3 | 8.8500E-07 2.0860E-06 4.0957E-06 7.3924E-06 1.2446E-05 1.9709E-05
m=4 | 1.5140E-09 3.5686E-09 7.0067E-09 1.2647E-08 2.1292E-08 3.3718E-08
m=5 | 2.5899E-12 6.1049E-12 1.1987E-11 2.1636E-11 3.6426E-11 5.7684E-11
m=6 | 4.6629E-15 1.0214E-14 2.0650E-14 3.6637E-14 6.2617E-14 9.9032E-14
m=7 | - - - 2.2204E-16 1.1102E-16 1.1102E-16
m=8

m=9

m

I
—
o

Example 4.1.5. Consider the two-point boundary value problem

DGiy(t) + (2t +6)y'(t) +y(t) = f(1), for 0 <t <1,

y(0) — 55=59'(0) = 0, y(1) +¢'(1) = m,

whose exact solution 1is
y(t) =t

Table 4-7: Approximated errors in Example 4.1.5 by Newton’s Method with a; = 0.5 and as = 1.5.

PECE Second-Order Third-Order

N Eyvran roc Eyvras roc Eyvras roc

64 4.2849E-02 - 2.9781E-04 - 8.2528E-06 -

128  6.9098E-03 2.6326 2.5989E-05 3.5184 1.5487E-08 9.0577
256  1.5955E-03 2.1146 4.0708E-06 2.6745 7.7000E-10 4.3300
512 4.2928E-04 1.8940 8.1725E-07 2.3165 3.8895E-11 4.3072
1024 1.2598E-04 1.7687 8.1725E-07 2.1469 1.7150E-12 4.5033
2048 3.9103E-05 1.6879 4.4007E-08 2.0681 3.9169E-13 2.1304
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Chapter 5

Conclusion

In this paper, we introduced several numerical approaches for solving fractional differential
equations. In the Direct Method, we proposed a new type of the Caputo differential operator
without a derivative by using integration by parts. For a small fractional order, we proposed the
enhanced Direct Method with the Newton’s Method for a stable numerical solution. For a large
fractional order, we proposed the enhanced Direct Method with a decomposition to increase a
convergence rate. All numerical results support efficiency of the proposed methods for solving
fractional IVPs.

In the High-Order Method, we change a BVP into an IVP instead of solving a matrix system
which causes much computational time. Then, we can explicitly solve the equation with higher
efficiency by using a high-order scheme [8]. For updating an approximation of IVP, we employ
the nonlinear shooting methods that construct auxiliary IVPs. Even though we solve at least two
systems of IVPs, the computational time is linearly increasing, whereas the conventional methods
are exponentially increasing.

In the sense of computational mathematics, we can expect outstanding improvements of using
our explicit methods. For example, when using the conventional PECE method, the computational
cost to draw a bifurcation diagram of a fractional dynamical system when using the conventional
PECE method is extremely high, approximately a month. However, when implementing our pro-

posed methods, the expected computational time drastically reduces to approximately a few days.
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