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Abstract 

 

This thesis presents the generation and application results of the windowed multipole (WMP) 

library in UNIST in-house Monte Carlo code (MCS). The given library is used in the on-the-fly Doppler 

broadening of microscopic cross section at the temperature of the interest during a Monte Carlo 

simulation. This feature is one of the major requirements for multi-physics simulations; in other words, 

coupled calculations of neutron transport, thermal-hydraulics, and fuel performance codes. A windowed 

multipole library significantly reduces the memory necessary for cross section storage with a reasonable 

increase in the total Monte Carlo simulation time. The ENDF/B-VII.1 neutron induced library contains 

information on 430 isotopes, where 331 contain resonance parameters for the resolved resonance region. 

In the first step, the parameters from the evaluated nuclear data file were converted into corresponding 

rigorous multipole parameters, which can be directly used in temperature dependent cross section 

reconstruction. Further, in order to reduce the cross section generation time the energy window concept 

was applied with an accuracy threshold of 0.1 % relative difference in comparison to the reference cross 

section. The accuracy and effect of the generated windowed multipole library on the MCS simulation 

was evaluated using fresh and burned PWR fuel pins, and assemblies. 

  



 

 



 

Contents 
 

I. Introduction ·································································································· 1 

II. Theory ········································································································· 2 

2.1 R-Matrix Theory ························································································ 2 

2.2 Multipole Representation ·············································································· 5 

2.3 Doppler broadening ····················································································· 7 

III. Converting Resonance Parameters ········································································ 9 

3.1 Breit-Wigner Formalisms ·············································································· 9 

3.2 Reich-Moore Formalism ············································································· 13 

IV. Windowed Multipole Representation ··································································· 21 

4.1 Window Concept ······················································································ 21 

4.2 Polynomial Fitting ···················································································· 23 

4.3 Windowed Multipole Library ······································································· 24 

V. Numerical Results ························································································· 27 

5.1 PWR Fuel Pin ························································································· 27 

5.2 PWR Fuel Assembly ················································································· 38 

5.3 Performance Tests ···················································································· 41 

VI. Conclusion and Future Work ············································································· 42 

APPENDIX A ···································································································· 43 

APPENDIX B ···································································································· 46 

 

  



 

List of Figures 

 

Figure 1. Resonance cross section comparison at 0 K and 3000 K temperatures. .................................. 8 

Figure 2. Multipole reconstructed cross sections of 241Am at 0 K temperature. ................................... 13 

Figure 3. Distribution of poles for 238U isotope. ................................................................................... 18 

Figure 4.   Re F u : s-wavelike poles corresponding to the first 10 p-wave resonances of 238U. ..... 18 

Figure 5.   Im F u : s-wavelike poles corresponding to the first 10 p-wave resonances of 238U. ..... 19 

Figure 6. Not s-wavelike poles clusters along imaginary axis for 238U isotope. ................................... 19 

Figure 7. Multipole reconstructed cross sections of 238U at 0 K temperature. ...................................... 20 

Figure 8. XS generated by poles corresponding to 6.673491 eV s-wave resonance of 238U. ............... 21 

Figure 9. Window concept scheme (inner and outer windows). ........................................................... 22 

Figure 10. Windowed multipole library generation algorithm. ............................................................ 24 

Figure 11. Window concept applied to 241Am isotope. ......................................................................... 25 

Figure 12. Multiplication factor comparison: ACE and WMP w.r.t. burnup for problems 1C, and 1I. 28 

Figure 13. Pin 1C absolute and relative differences in number density for fission products. ............... 29 

Figure 14. Pin 1C absolute and relative differences in number density for important actinides. ......... 30 

Figure 15. Pin 1I absolute and relative differences in number density for fission products. ................ 30 

Figure 16. Pin 1I absolute and relative differences in number density for important actinides. ........... 31 

Figure 17. Difference of k: ACE and WMP w.r.t. temperature at 0.00 and 60.00 MWd/kgHM. ......... 32 

Figure 18. Isotope-wise reactivity error for pin 1C at 0.00 MWd/kgHM. ............................................ 33 

Figure 19. Isotope-wise reactivity error for pin 1C at 60.00 MWd/kgHM. .......................................... 33 

Figure 20. Isotope-wise reactivity error for pin 1I at 0.00 MWd/kgHM. ............................................. 33 

Figure 21. Isotope-wise reactivity error for pin 1I at 60.00 MWd/kgHM. ........................................... 34 

Figure 22. Isotope-wise reaction rate difference for pin 1C at 0.00 MWd/kgHM. ............................... 34 

Figure 23. Isotope-wise reaction rate differences for pin 1C at 60.00 MWd/kgHM. ........................... 35 

Figure 24. Isotope-wise reaction rate differences for pin 1I at 0.00 MWd/kgHM. .............................. 36 

Figure 25. Isotope-wise reaction rate differences for pin 1I at 60.00 MWd/kgHM. ............................ 37 

Figure 26. FA 2C: Relative pin power difference between ACE and WMP. ....................................... 39 

Figure 27. FA 2F: Relative pin power difference between ACE and WMP. ........................................ 40 

Figure 28. FA 2G: Relative pin power difference between ACE and WMP. ....................................... 40 

Figure 29. FA 2P: Relative pin power difference between ACE and WMP. ........................................ 40 

  



 

List of Tables 

 

Table 1. Summary on ENDF/B-VII.1 isotopes. ...................................................................................... 5 

Table 2. Important orbital momentum dependent functions. .................................................................. 9 

Table 3. The first order derivative of  lq u  function. ........................................................................ 17 

Table 4. The 40 step burnup points for depletion calculation. .............................................................. 27 

Table 5. VERA single pin depletion benchmark problems................................................................... 28 

Table 6. List of nuclides used for comparison study. ........................................................................... 29 

Table 7. VERA single fuel assembly depletion benchmark problems. ................................................. 38 

Table 8. Selected VERA single fuel assembly problems multiplication factor comparison. ............... 39 

Table 9. Performance tests: Monte Carlo simulation configurations. ................................................... 41 

Table 10. Estimated clock cycles per get_xs_micro_all call (* indicates sub-function). .............. 41 

Table 11. Breit-Wigner s-wave resonance parameters. ........................................................................ 43 

Table 12. Calculated poles and residues for 78Kr isotope. .................................................................... 44 

Table 13. Reich-Moore s-wave resonance parameters. ........................................................................ 44 

Table 14. Calculated poles and residues for 241Pu isotope. ................................................................... 45 

Table 15. List of isotopes with WMP library generated from ENDF/B-VII.1. .................................... 46 



1 

 

I. Introduction 

Over the last several decades, there has been a growth in interest in high fidelity simulations of 

the current and future nuclear systems. The multi-physics approach enables the simulation of nuclear 

systems in detail and in terms of different physics. In other words, the coupling calculation of neutron 

transport, thermal hydraulics, fuel performance, and nuclear chemistry codes allows to achieve very 

accurate, detailed predictions of the nuclear reactor behavior. One of the most important parameters to 

take into account is the temperature of a material, or its distribution within the nuclear reactor core. 

Conventionally, Monte Carlo code solves the neutron transport problem assuming a constant 

temperature profile within the same material, which is not true for the operating commercial nuclear 

power plants. The cross section (XS) - the key quantity required for reactor physics calculations - is 

very dependent on temperature. The nuclide XS is experimentally measured using various known 

techniques, and evaluated for further applications in nuclear engineering. The R-Matrix theory allows 

the reconstruction of the neutron induced resonance cross sections employing the parameters from 

evaluated nuclear data files (i.e., ENDF-B/VII.1).  

The Monte Carlo approach typically employs the continuous energy representation of the 

neutron XS for all isotopes of interest; hence, several hundreds of thousands of energy points are 

required. This increases the memory associated with storing the XS during the neutron transport 

calculation. In order to perform the coupled simulation of the neutron transport and thermal hydraulics 

codes, which provides temperature feedback, a large number of ACE formatted cross sections at various 

temperatures need to be pre-generated. In order to overcome the memory burden, various on-the-fly 

Doppler broadening techniques have been proposed. One of the most promising approaches is 

windowed multipole representation, proposed by the Computational Reactor Physics Group (CRPG) in 

MIT. This method of reconstructing a cross section at the target temperature of interest significantly 

reduces memory consumption from GBs to several tens of MBs. In addition, to decrease the memory 

requirements associated with XS, windowed multipole representation does not significantly increase 

the overall Monte Carlo simulation time. 

In this document, the generation of a windowed multipole library for the on-the-fly Doppler 

broadening routine in UNIST in-house Monte Carlo code MCS is discussed, and its further verification 

results for fuel pin and assembly problems are provided. The starting point is to obtain the parameters 

(poles and residues) from the resonance parameters given in the evaluated nuclear data base. Next, 

following the MIT optimization technique, also known as window concept, an efficient windowed 

multipole library for every possible isotope is generated. 
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II. Theory 

The theory behind the reconstruction of the resolved resonance region microscopic cross 

section is described in Section 2.1, including a summary of the conventional formalisms. In Section 2.2, 

the rigorous multipole representation is summarized. Doppler broadening techniques of the cross 

section and the major drawbacks are described Section 2.3. 

 

2.1 R-Matrix Theory 

The general R-Matrix theory was introduced by Wigner and Eisenbud [1]. It considers the 

nucleon-nucleus interaction and predicts the experimental behavior of the microscopic cross sections. 

This theory does not require the internal structure information of the nucleus; the parameters or 

elements of the R matrix used to reconstruct resonance cross sections are determined by evaluation of 

the measured data. A detailed description of the R-Matrix theory was provided by Lane and Thomas 

[2]. 

This section contains a simplified summary of the complex theory, neglecting the spin 

dependence. The potential within the nucleus is unknown; hence, it is not possible to directly calculate 

the inner region wave function of the angular momentum l . Instead, the linear combination of the 

eigenfunctions corresponding to the energy states in the compound nucleus is used to represent wave 

function  ,l E r , as shown in Eq. (1). 

 

    , ,l l lE r A E r 


   ,  (1) 

 

where A  is the normalization factor. 

The wave function and eigenfunctions are the solutions of the internal region Schrodinger 

equation in the radial direction as given in Eq. (2). 
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In the case of the boundary conditions, both functions vanish at 0r  , and the logarithmic 

derivatives of the eigenfunctions are constant at the boundary surface r a ; where a  is the 

interaction radius (channel radius). 
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 The normalization factor 
lA   given in Eq. (1) is calculated using the orthogonality condition 

and the assumption that the eigenfunctions are normalized. 

 

    
0

, ,
a

l l lA E r E r dr     .  (4) 

 

 The simple mathematical manipulations of Eq. (2), such as multiplication, subtraction and 

integration over the inner region result in Eq. (5) below. Using the Eqs. (4) and (5), it is possible to 

express the normalization factor as shown in Eq. (6). 
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Finally, by inserting the normalization factor expression into Eq. (1) and applying the boundary 

condition given in Eq. (3), the inner region wave function transforms into the following expression. 

The R-matrix is defined in Eq. (8). 
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where l  is the reduced width amplitude given below. 
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The energy level E  and reduced width amplitude 
l  are evaluated by fitting the measured 

cross sections. The general form of the R-matrix is obtained by introducing the channels shown in Eq. 

(10), which include the possible pair of nucleon-nucleus and the corresponding spin of the pairs. 

 

 
 

c c
ccR

E E

 

 

  
 


  ,  (10) 

 

where c  is the incident channel; c  is the exit channel; and the reduced width amplitude 

corresponding to the level   and channel c  is given below. 
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The resonance microscopic partial and total cross sections are calculated using the collision 

matrix elements ccU   as shown in Eq. (12) and (13), respectively. 
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where the collision matrix is symmetric and unitary; k  is the wave number; and 
cg  is the statistical 

factor, the function of compound nucleus spin J , and target nucleus spin I . The collision matrix 

element 
ccU   is defined in terms of the matrix R  and level matrix A , as shown in Eq. (14) below. 
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where  
1/2

2x x xP    is the channel x  width (given in nuclear data files); 
0L  is the diagonal 

matrix; 
cS  and 

cP  are shift and penetration factors, respectively; 
c  is the hard-sphere shift factor; 

and 
cB  is the arbitrary boundary parameter. 

Depending on assumptions made, there are conventional formalisms applied to reconstruct the 

resonance microscopic cross sections [4, 9]. Currently, single-level Breit-Wigner (SLBW), multilevel 

Breit-Wigner (MLBW), Reich-Moore (RM), and R-matrix Limited (RML) formalisms are in practical 

use. Table 1 provides a short summary of the ENDF/B-VII.1 neutron-induced library. In the given 

nuclear data, 331 isotopes contain the resonance parameters used to generate the resolved resonance 

cross sections and the remaining 92 isotope – only point-wise cross section in File 3. More detailed 

information on the formalisms are provided in Chapter III. 

 

Table 1. Summary on ENDF/B-VII.1 isotopes. 

RESONANCE PARAMETERS METHOD NUMBER OF ISOTOPES 

YES 

SLBW 8 

MLBW 268 

RM 54 

RML 1 

NO point-wise XS 92 

 
Total 423 

 

It is important to note that cross sections reconstructed using formalisms based on R-matrix 

theory are at 0 K temperature; in other words, the target nucleus is at rest in the laboratory system. 

According to the nuclear reactor type there is need in the wide range of temperature dependent cross 

sections data.  

 

2.2 Multipole Representation 

The multipole representation was first proposed by Hwang [4-7] as an alternative to the 

conventional formalisms SLBW, MLBW, and RM. The collision matrix must be single valued and 

meromorphic in momentum space, which allows us to represent a cross section as the sum of the 

Lorentzian terms. Eqs. (17), (18), and (19) demonstrate the rigorous multipole formulae to obtain 

capture/fission, total, and elastic scattering cross sections, respectively. 
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where  , N  are the resonance index and the total number of resonances;   *

, , , , , ,, ,
x

l J j l J jR p E   are the 

residue corresponding to the reaction x , the complex conjugate of the resonance pole, and energy, 

respectively. 

The main advantage of the given approach over the methods widely used to generate cross 

sections is the capability to apply analytical Doppler broadening. In other words, the resonance 

microscopic cross sections at any temperature of the interest are directly reconstructed from multipole 

parameters as shown in Eqs. (20) and (21). 
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z u du u u
C z

z u  

    
          

  ,  (22) 

 

where 

*

, , ,

0
2

l J jE p
z






 ; 

4

bk T

A
   ; T  is target temperature; z  is the complex variable;  W z  is 

the complex probability integral (Faddeeva function); and u E . Eq. (22) provides the expression 

for the correction term used to properly Doppler broaden microscopic cross sections in the low energy 

region [4-7Error! Reference source not found.]. In general, the given term is negligible when 

 EMBED Equation.DSMT4 1E eV  for most of the isotopes, since it exponentially vanishes. The 
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details on the Doppler broadening using Faddeeva function and its evaluation are described in Section 

2.3. 

However, the major difficulty caused by the given approach is obtaining multipole parameters; 

in other words, poles and residues. Chapter III provides details on converting processes from 

conventional formalisms formatted resonance parameters into rigorous multipoles. 

 

2.3 Doppler broadening 

In order to take into account, the thermal motion of the nucleus at the temperature of the interest 

during the neutron-nucleus interaction, microscopic cross sections need to be modified or Doppler 

broadened. The well-known Doppler-broadening equation is given below for target temperature T  

and reference temperature 
0T . The solution of Eq. (23) provides the microscopic cross section of the 

nuclei at the temperature of the interest T . The direct method to solve the Doppler-broadening equation 

is to use a tabulated cross section as done by SIGMA1 [10]. 

 

         
2 2

1/2

0
0

1
, , r rV V V V

r r r rV V T V V T V dV e e
V

 
 



     
       

 
  ,  (23) 

 

 
 02 b

m

k T T
 


 ,  (24) 

 

where V  is speed of neutrons; 
rV  is relative speed between the monoenergetic neutron beam and the 

target nuclei; 
0T  is the temperature below target temperature T ; 

bk  is the Boltzmann constant; and

m  is the mass of the projectile (neutron). 

Another well-known Doppler broadening technique is analytical broadening using Doppler-

broadened Line-Shape functions. To use the given method, the cross sections need to be expanded in 

pole and residue form (Lorentzian-like terms), as shown in Section 2.2. Application of the Doppler-

broadened line-shape functions to reconstruct temperature dependent cross sections is possible for 

conventional SLBW and MLBW formalisms [9]. 

 

  
2ti e dt

W z
z t







  ,  (25) 

 

      , ,yW z x y i x y     ,  (26) 

 

where z x iy   is the complex variable; and    are Doppler-broadened line-shape functions. 
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Figure 1. Resonance cross section comparison at 0 K and 3000 K temperatures.  
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III. Converting Resonance Parameters 

This chapter describes the conversion of the resonance parameters given in the evaluated 

nuclear data files into multipole parameters. Single-level and multilevel Breit-Wigner format 

resonances are processed in Section 3.1. In the case of Reich-Moore formalism, the process and issues 

associated with it are provided in Section 3.2. 

 

3.1 Breit-Wigner Formalisms 

Breit-Wigner approximations require the application of a level matrix to represent resonance 

microscopic cross sections. There are two assumptions regarding the boundary constants as shown in 

Eq. (27) based on Breit-Wigner formalisms. By accepting the expressions in Eq. (27) and the 

substitution into Eq. (16), the level matrix element in Eq. (15) transforms into the expression given in 

Eq. (28) below. 

 

  n lB S E  and , ,x f x fB S    ,  (27) 

 

 
    2 1/2 1/2

2

l

x x

x

i
A E u u            

    ,  (28) 

 

where E
 is the resonance energy; 

x  is the resonance width associated with channel , ,x n f  ; 

 n u  is the energy dependent neutron width defined in Eq. (30); and    l
u  is the shift factor 

defined in Eq. (31). An example of constructing a level matrix is given in APPENDIX A. Table 2 

shows the important functions dependent on orbital angular momentum l , which are used to calculate 

level shift factor 
lS  and penetration factor 

lP  given in Eq. (29). 

 

Table 2. Important orbital momentum dependent functions. 

l   lq u   ls u   l u  

0  1  0    

1  
21   1   1tan   

2  
2 49 3    218 3   1 2tan 3     

 
 

3  2 4 6225 45 6      2 4675 90 6       1 2 2tan 15 15 6       
 

 

 

  
 

 
l

l

l

s u
S u

q u
  and  

 

2 1l

l

l

P u
q u

 

  , (29) 
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   

 

 
l l

n n

l

P u
u

P E
 



    , (30) 

 

    
   

 2

l ll

n

l

S E S u
u

P E



 




    , (31) 

 

where 
0u  ; 

0 0k a  ; a  is the channel radius; 
0 0.002196771

1

A
k

A
 


;  and A  is the 

isotopic mass. 

Radiative capture and fission cross sections for both single-level and multilevel Breit-Wigner 

approximations have the same formulae - shown in Eq. (32) below. The major difference between 

those formalisms is the interference cross sections given in Eq. (36). 

 

    
2

1 2 1 2

2
,

n x

nx nx J

l J

u
   g

Ak

  

  


 

 
    ,  (32) 

 

 
     1 2 1 2

2

2
,

2
Re l n niSLBW

t p t p J

l J

u u
  ieg

Ak

  

 


    

   
     

  
   , (33) 

 

  2

2
,

2
Re 1 li

p J

l J

g e
k






 

   , (34) 

 

 
int

MLBW SLBW

t t     ,  (35) 

 

 

       

   
int 2 *

,

Re

l lN N
n n

J

l J

u u
g

k A u A u

 

    






   
  

  
   .  (36) 

 

In order to calculate poles corresponding to the resonance  ,  polynomial of order  2 1l   

in Eq. (37) need to be solved. By substituting the level matrix element given in Eq. (28) and function 

lq  defined in Table 2, the coefficients are derived in terms of the resonance parameters from nuclear 

data files. The complex coefficients depending on the momentum l  are given from Eq. (38) to Eq. 

(41). 

 

    
 2 1

0

0
l

k

l k

k

q u A u a u





   ,  (37) 
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1

0

2

2 2

0
2

1

f

n

i i
a E

i
l

E
a

a

 









 
   




  

  



 ,  (38) 

 

 

 

 

0

0

1

2

2 0 3/2

0

2

0
3 3/2

2

4 0

2 2

0

1 1
2 2

2 2

n
f

n
f

n n

i
a E

E

a

i
l a E

E

i i
a

E E

a


  




  



 

 










 
    





 

       



 
  




  
   








 

 ,  (39) 

 

 

 

 

 

3/2 3

0 0

1

2 0

2 0 5/2 3

0

3

4 20

4 0 05/2 3/2

0

2

0

5 5/2 3/2

0

27 9
9

2

0

27 3
3 9

2 2 2

2 0

9 3
3

2

2 2

9 3

2 2

n n

f

n n

f

n n

f

n n n

E
E E

a

i
a E

E E

l a

i
a E

E E

i i i
a

E E

i
a  

  

 

 
  

 

 
  

 

  

 

 







 



 

  
    

 



 
     

  

 
     

  
  

  

 
  



 

 
  

 
4

0

4

6 0

2 E

a






















  

 ,  (40) 
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 

 

0 5/2 5 3/2 3

0 0 0

1

2 0

2 0 7/2 5 3/2

0 0

3

2 0

4 07/2 3 5/2

0 0

10125 1350 675
225

2 2

0

10125 135 45
45 225

2

0

1350 135 3
3

2

45

2

n n n

f

n n n

f

n n n

a E
E E E

a

a E
E E E

a

l a
E E

i

i

  
  

  

  
  

  

  

 

  




 




 

 

 
 

   
      

 



  
      



  
    


 

 

 

3

4 4 4

0 0 0

5

3

6 40 0

6 0 07/2 5/2 3/2

0

2 4 6

0 0 0

7 7/2 5/2 3/2

6

8 0

3 3 6

0

675 45 3
6

2

225 45 3

2 2 2

2

f

n n n

f

n n n n

i i E
E

a

a E
E E E

i i i i
a

E E

a

i

E E

  



  
  

  

   

   

  

 
 



  
















    

 

   

      



  

 
 


     


 










 .  (41) 

 

As soon as the poles are calculated, the next step is to generate the residues associated with the 

total, absorption, fission cross sections, and the interference cross section in the case of MLBW 

formalism. The first residue to calculate is associated with the total reaction cross section using Eq. (42) 

below. The capture and fission residues are obtained using the already calculated total residue as shown 

in Eq. (43). Absorption residue is calculated by summation of capture and fission residues. The 

interference residue is generated using Eq. (44). 

 

 
       

 
 

* *

, , , , , ,

, , , 2 2 1

0 2 * *

0 , , , , , ,

1

2
l

l l J j n l J jt

l J j J l

l

l J j l J k

k
k j

q p p
R g

k
p p

  



 










 

 

 ,  (42) 

 

 
   

   
,

, , , , , , *

, , ,

x f t n
l J j l J j l

n l J j f

R R
p

 
 

   

 
 

    
 ,  (43) 

 

 
   

   

 

*

, , ,int

, , , , , , *
*

, , ,

l

n l J jt

l J j l J j

l J j

p
R R i

A p

 

 

 
 



 


  
  
   

  .  (44) 

 

As soon as the converting of the Breit-Wigner resonance parameters are converted into 

corresponding poles and residues, the cross section can be reconstructed. Figure 2 demonstrates the 
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241Am (MLBW) isotope total, elastic scattering, and absorption cross sections at 0 K temperature 

generated using poles and residues. 

 

 

Figure 2. Multipole reconstructed cross sections of 241Am at 0 K temperature. 

 

3.2 Reich-Moore Formalism 

The collision matrix is represented in terms of a channel matrix  I K  in Eq. (45). The 

expression of the channel matrix element is given in Eq. (46). In addition, APPENDIX A contains an 

example of constructing channel matrix using artificial resonance parameters.  

 

    
1

' ''
2c ci

cc cccc
U e I K

 


     
 

 ,  (45) 

 

  
1/2 1/2

'
''

22

2

c c
cccc

i
I K

i
E u

 


 


 

  

  
  .  (46) 

 

In order to convert the RM resonance parameters into the corresponding multipoles, the 

relation given in Eq. (47) between the channel matrix and the transmission probability is used. 

Substitution of the transmission probability into the collision matrix given in Eq. (45) results in the 

following expressions of the total, elastic scattering, absorption and fission reaction cross sections. 

 

  
1

cc cc cc
I K 



  
    ,  (47) 
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    2

2
,

2
1 cos 2 2Re li

t J l nn

l J

g e
k


     

   ,  (48) 

 

 
s t abs     ,  (49) 

 

    
2

2
,

4
Reabs t nn J nn nn

l J

E g
k


        

   ,  (50) 

 

 
2 2

1 22
,

4
nf J nf nf

l J

g
k


    

    .  (51) 

 

The transmission probability elements can be represented as the ratio of polynomials of orders 

 2 1M   in numerator and  2M  in denominator [5], where  1M l N   and N  is the number 

of resonances. The sum of the Lorentzian terms can be used to represent the cross sections using Eqs. 

(52) and (53). 

 

 
2

1

M
nj

nn

j j

r

p u







  ,  (52) 

 

 

*2 2
2

*
1 1

2
Re

M M
cj cj cj

nc

j jj j j

r r r

p u p u p u


 

    
     

        
   .  (53) 

 

 The first step is to obtain the poles jp  using the Reich-Moore parameters from the nuclear 

data file. The polynomial  F u  given in Eq. (54) of the very high order  2 1N l   needs to be 

solved and the roots are the corresponding complex poles. 

 

       2det 0
2

N

l

i
F u I K q u E u 



 
        

 
  .  (54) 

 

 The Newton Raphson method was implemented to calculate all the roots of the polynomial 

 F u  one by one. Eq. (55) shows the iterative scheme and how the  1t  -th root is updated using 

the previous iteration root and the inverse of the logarithmic derivative of  F u  at t -th iteration. 

 

 
 

 
1

t

t t

u

F u
u u

F u

  


 .  (55) 



15 

 

 There are two main tasks to complete: (1) calculate the initial guesses for the iterative scheme, 

and (2) properly calculate the logarithmic derivative of the polynomial  F u . Hwang suggested using 

the simplified polynomial given in Eq. (56) which consists of only single resonance information [5]. 

Eq. (57) shows the expression for the channel matrix consists of single resonance only. The complex 

coefficients are derived in the similar manner as was done in Section 3.1. 

 

       2det 0
2

l

i
P u I K q u E u  

 
        

 
 ,  (56) 
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 ,  (57) 
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Another important step is to derive the logarithmic derivative of  F u  used in the Newton 

Raphson iteration scheme. High order polynomial  F u  consists of three main terms, which are 

shown in Eqs. (62), (63), and (64). By taking the logarithmic derivative of the polynomial, it is easy 

to derive the symbolic expression in terms of the momentum dependent functions as is given in Eq. 

(65). 
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Now, the logarithmic derivative of every term can be derived separately. Eqs. (66) and (67) 

show the logarithmic derivatives of the product term and the determinant of the channel matrix, 

respectively. Table 3 provides the first order derivative of the orbital angular momentum l  dependent 

function  lq u . 
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Table 3. The first order derivative of  lq u  function. 

l   lq u  

0  0  

1  
2

02 u  

2  
2 4 3

0 06 4u u   

3  
3 5

0 0 090 24 6     

 

 Figure 3 demonstrates the pole distribution for 238U, as well as the classifications. There are 

s-wavelike and not s-wavelike poles depending on the position on the complex plane. The former are 

concentrated along the real axis, while the latter are far from it, as shown in the figure below. 
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Figure 3. Distribution of poles for 238U isotope. 

 

The real and imaginary parts of the polynomial  F u  constructed using the first 10 p-wave 

resonances of 238U isotope are shown in Figure 4 and Figure 5, respectively. As shown in figures below, 

s-wavelike poles are well separated and distinguishable from each other. Hence, those poles are easily 

obtained using the iterative approach. 

 

 

Figure 4.   Re F u : s-wavelike poles corresponding to the first 10 p-wave resonances of 238U. 
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Figure 5.   Im F u : s-wavelike poles corresponding to the first 10 p-wave resonances of 238U. 

 

 In general, every isotope contains 2N  s-wavelike, and 2Nl  not s-wavelike poles. The 

reason for the grouping is that the location of 2N  poles for higher angular momentum resonances 

0l   is similar, as in the case of s-wave resonances. It is complicated to calculate all the complex roots 

of the high order polynomial  F u  using the numerical methods. This problem is caused by the 

closely packed not s-wavelike poles, which are hardly distinguishable. Figure 6 shows the highly 

packed initial guesses of not s-wavelike poles clusters positioned along the imaginary axis. True not s-

wavelike clusters are slightly shifted along the imaginary axis. 

 

 

Figure 6. Not s-wavelike poles clusters along imaginary axis for 238U isotope. 

  

 It is practically impossible to calculate every pole within the cluster. Instead of trials to obtain 

every separate not s-wavelike pole, approximations of the cluster using a single pole is preferable. In 
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other words, pseudo poles need to be calculated [5]. It was found that for p-wave resonances, 2N  

poles are located near to two zeros of Eq. (68). Any two initial guesses for not s-wavelike poles can be 

used as the basis for the calculation of pseudo poles via the Newton Raphson method. 

 

  
2

01 0u   .  (68) 

 

As soon as the initial guesses for 2N  s-wavelike and 2l  pseudo poles are obtained, those 

values are used in the Newton Raphson iterative scheme to obtain the true poles corresponding to the 

Reich-Moore resonance parameters. The application of pseudo poles reduces the total number of 

multipole parameters from  2 1N l   to  2 N l . 

Rigorous multipole representation allows us to directly reconstruct microscopic cross sections 

at various temperatures using the calculated poles and residues. Figure 7 shows the 238U isotope 

resolved resonance microscopic cross sections generated at 0 K. 

 

 

Figure 7. Multipole reconstructed cross sections of 238U at 0 K temperature. 
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IV. Windowed Multipole Representation 

A detailed description behind the windowed multipole representation [11-16] is given in this 

chapter. The window or energy window concept is summarized in Section 4.1. The polynomial fitting 

techniques used to reconstruct the background cross section are given in Section 4.2. In the final section 

of this chapter, the algorithm to generate the optimized windowed multipole library is provided. 

 

4.1 Window Concept 

Conventionally, the single energy point microscopic cross section is generated using all the 

resonance parameters given in the nuclear data file. In the case of rigorous multipole approach all the 

poles are used to reconstruct the cross section. This is the main disadvantage of the rigorous method, 

due to the large number of parameters as shown in Chapter III. To decrease XS generation time at a 

single energy point, the smooth behavior of the single resonance far from its peak is used. A similar 

trend was noticed in the case of multipole parameters. This is another important classification associated 

with the individual pole cross section behavior. Poles with positive real parts exhibit resonance behavior 

at the resonance energy, while the remaining counterparts have smooth contribution [11]. Hence, there 

are N  fluctuating and remaining  2 1N l   or 2N l  in the case of Breit-Wigner or Reich-Moore 

formalisms, respectively.  

 

 

Figure 8. XS generated by poles corresponding to 6.673491 eV s-wave resonance of 238U. 
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The peak and smooth contributions of fluctuating and non-fluctuation poles are presented in 

Figure 8. As shown in this figure, only fluctuating components create the resonance behavior of the 

microscopic cross section, and all the remaining components can be approximated using polynomial 

fitting. However, even though every single pole has a smooth contribution far from its resonance peak, 

the summation gives a very complicated background cross section. This cannot be fitted by a low order 

polynomial. In order to resolve the given issue, the energy window concept is used [12-15]. 

Basically, the resolved resonance energy range is divided into sub-intervals or inner windows 

uniformly. In order to reconstruct the cross section within one particular inner window, only the 

fluctuating poles within and nearby it’s boundaries are required. The remaining poles give only smooth 

contributions which can be approximated by the polynomial. Hence, on top of every inner window there 

is an outer window, which contains all the important poles to reconstruct the resonance cross section. 

This approach enables us to decrease the number of poles used to reconstruct the cross section at every 

single energy point, and ignore all the non-fluctuating poles by applying low order polynomials. Figure 

9 shows the basic scheme of the window concept, with sub-intervals (inner windows) and corresponding 

outer windows. Cross sections constructed using the poles outside of the outer window are smooth and 

can be approximated. 

 

 

Figure 9. Window concept scheme (inner and outer windows). 
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The window concept allows us to minimize the number of evaluations of the Faddeeva function 

required for analytical Doppler broadening of the microscopic cross section at a single energy point. 

Section 4.2 contains a description on the polynomial fitting techniques used to compensate the 

background cross section from the omitted poles and File 3 of the evaluated nuclear data. 
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where E  and T  are the energy point and the temperature of interest; 
outer  is the outer window 

index for the corresponding inner window;  p E  is the fitting polynomial; the second term on the 

right hand side is summation over the poles j  within the given outer window 
outer  only. 

 

4.2 Polynomial Fitting 

The first technique is to perform polynomial fitting of the smooth cross section generated by 

the poles outside the outer window. According to the multipole representation, the cross section is 

expressed as the summation of the Lorentzian terms, which means that series expansion can be applied 

to each term in order to obtain the polynomial as shown in Eq. (70) below.  
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 ,  (70) 

 

where ju d  must be satisfied. 

Another polynomial fitting technique is required, when Eq. (70) is not valid due to the 

limitations and point-wise cross sections are provided by File 3 in the evaluated nuclear data. The least 

squares approach is used to compensate those background cross sections. Suppose that a cross section 

is approximated using polynomial  f u  as shown in Eq. (71). 

 

              
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M

Mu f u a u a u a a u a u a u
 

          ,  (71) 

 

where M  is the polynomial order; and 
ia  is the expansion polynomial coefficients. 

The given method of polynomial fitting minimizes the sum of squares of errors 

 1 2 3, , ,..., MS a a a a  in order to calculate the polynomial coefficients. The partial derivative of Eq. (72)

with respect to each expansion coefficient is calculated as shown in Eq. (73). This allows us to obtain 

the linear system of M  equations used to calculate the M  expansion coefficients. 
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where 
i  is the background cross section. 

 

4.3 Windowed Multipole Library 

There are several important parameters which need optimization in order to generate windowed 

multipole library for the specific isotope meeting the cross section error criteria. As explained in Section 

4.1, inner and outer windows determine the number of poles used to reconstruct the temperature 

dependent cross section at single energy point. The order of the fitting polynomial highly depends on 

the number of poles within the outer window and the error criteria which need to be met. Figure 10 

shows the scheme to obtain the optimized inner and outer window sizes, and the polynomial order for 

any given isotope. 

 

 

Figure 10. Windowed multipole library generation algorithm. 

 

The first step is to convert the resonance parameters from conventional formalisms into 

rigorous multipole parameters as described in Chapter III. As soon as poles and residues are obtained, 
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the windowed multipole library generation begins from initializing the inner and outer window sizes. 

As shown in Figure 10, for every inner window, fluctuating poles corresponding to the resonances 

within the outer window are assigned, or the first and the last pole indices are stored. Next, the cross 

section is generated within the inner window using the assigned poles and the background cross section 

corresponding to the neglected poles is obtained at different non-zero temperatures. Finally, attempts 

are made to fit the background cross sections using the polynomial of a different order until the cross 

section error criteria is met. In cases where no polynomial can be constructed, the outer window size is 

increased, and steps mentioned above are repeated. If even the change in the outer window size does 

not give the optimized parameters, the inner window size is decreased, and the entire process is repeated 

until the windowed multipole library is generated.  

In the APPENDIX B, there is list of isotopes from ENDF/B-VII.1 neutron induced data bank 

which have been successfully converted into the windowed multipole library format, including the 

information on the resolved resonance upper energy limit, total number of poles, number of inner 

windows, order of polynomial fitting, and the time ratio between rigorous and windowed multipole 

reconstructed cross sections at single energy point at 0 K and 300 K temperatures. As can be observed 

from the time ratios, the window concept application has an obvious advantage over the rigorous 

multipole representation. 

 

 

Figure 11. Window concept applied to 241Am isotope. 

 

The MLBW formatted resonance parameters of 241Am undergo the converting process given 

in Section 3.1. This isotope contains only 194 s-wave resonances, which results in double the number 
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of poles. As already described, in the case of s-wave resonances, half of the poles are fluctuating and 

remaining are non-fluctuating. Figure 11 illustrates the total cross section, cross section calculated 

using poles within outer windows, and non-fluctuating cross section fitted using low order polynomial 

for every inner window of 241Am isotope.  
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V. Numerical Results 

This chapter provides verification of the UNIST in-house generated windowed multipole 

library for 308 isotopes. Several single fuel pin-cell and fuel assembly problems were selected from the 

VERA benchmark suite [17]. Section 5.1 includes comparison results between on-the-fly Doppler 

broadening and a pre-generated ACE cross section treatment for single state, and the depletion 

calculation of selected fuel pins. Section 5.2 summarizes the application of the windowed multipole 

library in simulations of the chosen fuel assembly problems. 

The VERA depletion benchmark suite provides a power density of 40W/gU and 40 step burnup 

points from 0 to 60MWD/kgU for the depletion calculation of neutron transport codes. Table 4 shows 

40 burnup points. 

 

Table 4. The 40 step burnup points for depletion calculation. 

Step MWd/kgHM Step MWd/kgHM Step MWd/kgHM Step MWd/kgHM 

1 0.00 11 7.00 21 17.00 31 37.50 

2 0.01 12 8.00 22 18.00 32 40.00 

3 0.25 13 9.00 23 19.00 33 42.50 

4 0.50 14 10.00 24 20.00 34 45.00 

5 1.00 15 11.00 25 22.50 35 47.50 

6 2.00 16 12.00 26 25.00 36 50.00 

7 3.00 17 13.00 27 27.50 37 52.50 

8 4.00 18 14.00 28 30.00 38 55.00 

9 5.00 19 15.00 29 32.50 39 57.50 

10 6.00 20 16.00 30 35.00 40 60.00 

 

5.1 PWR Fuel Pin 

In the VERA benchmark specifications, there are ten single fuel pin-cell problems for four 

temperature and five enrichment configurations, and the presence of burnable poison material, which 

are widely used in LWRs. Table 5 summarizes the VERA pin-cell problems, including not only UO2 

pin-cells, but also gadolinia (5% Gd2O3 + 95% UO2, 1.8 wt.% 235U enriched) and IFBA pin problems. 

Among all the pin-cell problems 1C of the 3.1wt.% UO2 fuel, and 1I of 5% gadolinia rods are selected. 

Pin-cell problem 1C is representative of normal fuel pin cases at the hot full power condition, and the 

problem 1I contains gadolinia which is the burnable poison material of the benchmark problem. 
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Table 5. VERA single pin depletion benchmark problems. 

Problem Description 
Temperature (K) 

235U wt.% 
Moderator Cladding Fuel 

1A Pin (3.1w/o) 565 565 565 3.1 

1B Pin (3.1w/o) 600 600 600 3.1 

1C Pin (3.1w/o) 600 600 900 3.1 

1D Pin (3.1w/o) 600 600 1200 3.1 

1E Pin (IFBA) 600 600 900 3.1 

1F Pin (2.1w/o) 600 600 900 2.1 

1G Pin (3.6w/o) 600 600 900 3.6 

1H Pin (4.6w/o) 600 600 900 4.6 

1I Pin (Gadolinia) 600 600 900 1.8 

1J Pin (3.1w/o) 600 600 600/900/1200 3.1 

 

The UNIST in-house Monte Carlo code MCS depletion calculations of the chosen fuel pins 

are performed using ACE cross sections, and the on-the-fly Doppler broadening routine employing the 

pre-generated windowed multipole library. For the depletion calculation of pins 1C and 1I 100,000 

histories are employed per cycle, 20 inactive and 200 active cycles. 

 

 

Figure 12. Multiplication factor comparison: ACE and WMP w.r.t. burnup for problems 1C, and 1I. 

 

Figure 12 presents the multiplication factor comparison for problems 1C and 1I between ACE 

and windowed multipole library reconstructed cross sections. The k comparison shows good agreement 

between the reference ACE cross section data and the windowed multipole library throughout the 

depletion calculation.  
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Table 6. List of nuclides used for comparison study. 

  Element Isotope list 

Fission Products Iodine 135 

Xenon 135 

Neodymium 147, 148 

Promethium 147, 148, 149 

Samarium 147, 148, 149 

Fission Products / Burnable Absorbers Gadolinium 152, 154, 155, 156, 157, 158, 160 

Important Actinides Uranium 234, 235, 236, 237, 238 

Neptunium 237, 238, 239 

Plutonium 238, 239, 240, 241, 242, 243 

Americium 241, 242, 243 

Curium 242, 243, 244 

 

In addition to the multiplication factor comparison, the isotope-wise number density difference 

is calculated at BOC, MOC, and EOC for pins 1C, and 1I. Important fission products, the burnable 

absorber, and actinides were selected to verify the windowed multipole library. The list of those nuclides 

is given in Table 6. The Pin 1C number density absolute difference and relative differences are 

illustrated in Figure 13 and Figure 14 for fission product and actinides, respectively. In the case of pin 

1I, Figure 15 and Figure 16 show the comparison for the chosen isotopes. 

 

 

 

Figure 13. Pin 1C absolute and relative differences in number density for fission products. 
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Figure 14. Pin 1C absolute and relative differences in number density for important actinides. 

 

 

 

Figure 15. Pin 1I absolute and relative differences in number density for fission products. 
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Figure 16. Pin 1I absolute and relative differences in number density for important actinides. 

 

The absolute relative difference in the number density comparison between the ACE and 

WMP libraries used in the MCS depletion calculations is negligible according to the figures provided 

above. The relative difference is less than 0.7 % for fission products, and 0.2 % for important actinides; 

and the absolute difference is in the order of 10-8 for both 1C and 1I pin-cell problems 

Next, the fresh and burned pins 1C and 1I are simulated at various temperatures starting from 

0 K up to 1500 K. The isotope-wise reactivity error, absorption and fission reaction rates comparison 

between the ACE and WMP libraries are obtained for the given problems. It is important to note that 

all material temperatures, including fuel, air, cladding and coolant are the same and change from 0 K to 

1500 K; in other words, there are 16 temperature points of comparison of the WMP library with 

reference ACE cross sections. The kinf differences with corresponding standard deviations for pins 1C 

and 1I at 0.00 and 60.00 MWd/kgHM are illustrated in Figure 17 at various temperatures. All the pin 

transport calculations are carried out using 100,000 particles per cycle for 50 inactive and 500 active 

cycles. 
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Figure 17. Difference of k: ACE and WMP w.r.t. temperature at 0.00 and 60.00 MWd/kgHM. 

 

 The isotope-wise reactivity error in group g  and cell i  is calculated using Eqs. (74) and 

(75) below [20]. The multiplication factor is calculated as the ratio of the volume integrated nu-fission 

reaction rate over the volume integrated absorption reaction rate. 
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 ,  (75) 

where 
,

, ,

ACE g

a i jR  = absorption reaction rate of isotope j  (ACE) in group g  and cell i , 

,

, ,

WMP g

a i jR  = absorption reaction rate of isotope j  (WMP) in group g  and cell i . 

 

The calculated reactivity errors using the one group collision estimator reaction rate tallies with 

the corresponding standard deviations for fresh and burned 1C pin-cell problem, as shown in Figure 18 

and Figure 19. As clearly shown in the figures below, the isotope-wise reactivity errors are within three 

standard deviations for the chosen isotopes given in Table 6. 
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Figure 18. Isotope-wise reactivity error for pin 1C at 0.00 MWd/kgHM. 

 

 

Figure 19. Isotope-wise reactivity error for pin 1C at 60.00 MWd/kgHM. 

 

Similar reactivity errors are obtained for the 1I problem, which includes the Gd2O3 burnable 

poison within it, at 0.00 and 60.00 MWd/kgHM burnups at different temperatures in Figure 20 and 

Figure 21, respectively. Although the errors for several isotopes are of several tens of pcm in the fresh 

fuel pin case, all the isotope-wise reactivity errors are within three standard deviations. 

 

 

Figure 20. Isotope-wise reactivity error for pin 1I at 0.00 MWd/kgHM. 
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Figure 21. Isotope-wise reactivity error for pin 1I at 60.00 MWd/kgHM. 

 

In addition, the absorption and fission reaction rates of the selected nuclides are compared. 

Figure 22 and Figure 23 illustrate the relative differences of those reaction rates for 1C pin problem at 

0.00 and 60.00 MWd/kgHM burnups, respectively. The absorption reaction rate errors do not exceed 

0.3 %, and the fission reaction rate differences are less than 0.15 % for both fresh and burned 1C fuel 

pin. Absorption and fission reaction rate comparisons between the ACE and WMP libraries for the fresh 

and burned 1I pin-cell problem are given in Figure 24 and Figure 25, respectively. The results for the 

selected nuclides show similar behavior as in problem 1C. 

 

 

Figure 22. Isotope-wise reaction rate difference for pin 1C at 0.00 MWd/kgHM. 
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Figure 23. Isotope-wise reaction rate differences for pin 1C at 60.00 MWd/kgHM. 
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Figure 24. Isotope-wise reaction rate differences for pin 1I at 0.00 MWd/kgHM. 
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Figure 25. Isotope-wise reaction rate differences for pin 1I at 60.00 MWd/kgHM. 
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5.2 PWR Fuel Assembly 

In the case of the fuel assembly simulations, the VERA benchmark provides 15 problems 

including four fuel enrichments, three temperature configurations, four burnable poison types, and two 

control rod materials. Table 7 summarizes all the fuel assembly problems given in the VERA 

benchmark suite. Four assemblies to test WMP library are selected: 2C, 2F, 2G, and 2P with no poison, 

pyrex, AIC, and Gadolinia, respectively. 

 

Table 7. VERA single fuel assembly depletion benchmark problems. 

Problem Description 
Temperature (K) 235U 

wt.% Moderator Cladding Fuel 

2A FA (No poison) 565 565 565 3.1 

2B FA (No poison) 600 600 600 3.1 

2C FA (No poison) 600 600 900 3.1 

2D FA (No poison) 600 600 1200 3.1 

2E FA (12 Pyrex) 600 600 900 3.1 

2F FA (24 Pyrex) 600 600 900 3.1 

2G FA (24 AIC) 600 600 900 3.1 

2H FA (24 B4C) 600 600 900 3.1 

2I FA (IT, Instrumentation Tube) 600 600 900 3.1 

2J FA (IT, 24 pyrex) 600 600 900 3.1 

2K FA (Zoned, 24 pyrex) 600 600 900 3.1/3.6 

2L FA (80 IFBA) 600 600 900 3.1 

2M FA (128 IFBA) 600 600 900 3.1 

2N FA (104 IFBA, 20 WABA) 600 600 900 3.1 

2O FA (12 Gadolinia) 600 600 900 3.1/1.8 

2P FA (24 Gadolinia) 600 600 900 3.1/1.8 

 

Monte Carlo simulations for the selected fuel assembly problems are performed using 200 

inactive, and 200 active cycles with 1,000,000 neutrons per cycle. The multiplication factor comparison 

between the ACE and WMP libraries are shown in Table 8. 
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Table 8. Selected VERA single fuel assembly problems multiplication factor comparison. 

FA problem 
ACE WMP 

kinf STD kinf STD 

2C 1.17367 0.00007 1.17361 0.00007 

2F 0.97534 0.00006 0.97539 0.00007 

2G 0.84729 0.00006 0.84747 0.00007 

2P 0.92661 0.00007 0.92666 0.00006 

 

The normalized pin power distributions are compared for Monte Carlo simulation between the 

ACE cross sections and the WMP library for the chosen VERA fuel assembly problems. Figure 26-

Figure 29 illustrates the absolute difference and corresponding standard deviations of the pin power for 

assemblies 2C, 2F, 2G, and 2P, respectively. It is obvious from the results below that pin power error 

is always less than 0.5 % due to the introduction of the WMP library instead of the conventional ACE 

cross sections. 

 

 

Figure 26. FA 2C: Relative pin power difference between ACE and WMP. 
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Figure 27. FA 2F: Relative pin power difference between ACE and WMP. 

 

 

Figure 28. FA 2G: Relative pin power difference between ACE and WMP. 

 

 

Figure 29. FA 2P: Relative pin power difference between ACE and WMP. 
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5.3 Performance Tests 

In Sections 5.1, and 5.2 the application of the in-house generated windowed multipole library 

is presented for the VERA benchmark suite selected fuel pin and assembly problems, respectively. The 

multiplication factor, number density, isotope-wise reactivity, reaction rates, and pin power 

comparisons are given. This section provides the performance tests result in terms of clock cycles for 

the WMP library application in on-the-fly Doppler broadening. The convergence of the solution is not 

a priority in the performance evaluation tests; hence, the number of cycles and particles per cycle are 

significantly reduced. Table 9 presents the number of inactive and active cycles, as well as the particle 

number per cycle used in the given tests. 

 

Table 9. Performance tests: Monte Carlo simulation configurations. 

Parameter Value 

Number of inactive cycles 100 

Number of active cycles 200 

Number of neutrons per cycle 500 

 

The Monte Carlo code MCS contains a subroutine get_xs_micro_all, which provides all 

the reaction cross section types during the simulation. Within the given function, the temperature 

dependent cross sections are from the ACE file, or the windowed multipole reconstruction routine. The 

clock cycles are estimated per call of the get_xs_micro_all subroutine. Table 10 shows the clock 

cycle comparison of the single temperature ACE cross section utilization and on-the-fly Doppler 

broadening routine with the in-house generated WMP library. Although the ACE cross section lookup 

time decreased by 45 %, the overall performance of the get_xs_micro_all subroutine decreases by 

58 % due to on-the-fly cross section generation. The slowing down of the subroutine providing the cross 

section due to the WMP library translates into a 28% performance loss of the Monte Carlo simulation. 

 

Table 10. Estimated clock cycles per get_xs_micro_all call (* indicates sub-function). 

 ACE WMP Difference (%) 

Total 568 897 58% 

ACE cross section 84 46 -45% 

Windowed Multipole cross section - 284 - 

* Faddeeva function evaluation - 130 - 

* Broadening of polynomial - 5 - 
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VI. Conclusion and Future Work 

This thesis presents the generation process of a windowed multipole library and its verification 

in the on-the-fly Doppler broadening routine of the UNIST in-house Monte Carlo code MCS. The re-

processing of the conventional formalisms resonance parameters into rigorous multipole parameters 

was performed. The reduction of the overall number multipole parameters was achieved through 

implementing pseudo poles, and the window concept. The latter technique allowed us to decrease the 

number of poles used in cross section reconstruction at a single energy point of the target temperature. 

The verification of the generated WMP library was achieved through solving selected VERA 

benchmark suite pin-cell and fuel assembly problems using the Monte Carlo code MCS. The 

multiplication factor, isotope-wise reactivity error, absorption and fission reaction rates comparison at 

the different temperatures were evaluated for fresh and burned fuel pins. In the case of the assembly 

problems, pin power differences were calculated for the ACE and WMP libraries not exceeding 0.5 %. 

In addition to accuracy tests, the performance of the in-house generated WMP library was evaluated. 

Although the cross section generation time increased by around 50 %, the Monte Carlo simulation 

performance loss was only about 30 %. 

Throughout the given research, the in-house converting capability from Breit-Wigner, and 

Reich-Moore formalisms into a rigorous multipole representation, and its further optimization into a 

windowed multipole library were achieved. In the future, the isotopes with no resonance data need to 

be re-processed into the windowed multipole library, as well as converting and optimizing the most 

recent version of the ENDF/B-VIII.0 neutron induced data. 
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APPENDIX A 

 

LEVEL MATRIX 

 

Table 11 shows the Breit-Wigner resonance parameters of 78Kr isotope (ENDF/B-VII.1) are 

used to reconstruct the level matrix for Breit-Wigner formalisms. According to the table given below, 

there are in total four resonances, meaning that the size of the level matrix is 4x4. Recall, the level 

matrix is diagonal, and elements are given in Eq. (28). 

 

Table 11. Breit-Wigner s-wave resonance parameters. 

E  l  J  t  
n    f  

-122.0000 0 0.50 1.19500 0.96000 0.23500 0.00000 

108.4000 0 0.50 0.28500 0.04900 0.23600 0.00000 

450.9000 0 0.50 0.46600 0.23000 0.23600 0.00000 

640.0000 0 0.50 1.73600 1.50000 0.23600 0.00000 

 

As an example, the level matrix is calculated at 1 eV energy point. Since all the resonances 

are s-wave types, the level shift is zero according to Eq. (31). In addition, in order to simplify the 

problem, the energy dependence of the neutron half-width is ignored. The numerical values of the level 

matrix elements are given in Eq. (76), below. 

 

 

123.0 1.2 0.5 0.7 1.4

0.5 107.4 0.3 0.3 0.5

0.7 0.3 449.9 0.5 0.8

1.4 0.5 0.8 639.0 1.7

i i i i

i i i i
A

i i i i

i i i i

     
 

   
 
    
 

    

 ,  (76) 

  

Following the converting process given in the Section 3.1, it is possible to obtain the set of 

poles and residues of 78Kr isotope. Table 12 shows the numerical values of the calculated poles and 

residues corresponding to the each resonance energy. The given isotope does not have fission cross 

section, the residues corresponding to the reaction are zero and hence not included in the table, below. 

As soon as the rigorous multipole parameters are obtained, the window multipole library is generated 

following the instructions in Chapter IV. The WMP library for the 78Kr isotope only contains poles and 

residues in bold, shown in Table 12. The windowed multipole library for the given isotope consists of 

only three poles, forty windows, and the fifth order polynomial. The information on the WMP library 

for the other isotopes are included in Table 15. 
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Table 12. Calculated poles and residues for 78Kr isotope. 

E   Re d   Im d   Re tR   Im tR  

-122.0000 
0.005319 -11.067112 5.8170E+04 -5.4997E-02 

-0.005319 11.023655 5.7941E+04 5.4997E-02 

108.4000 
10.411534 -0.006843 3.1436E+03 -3.5525E-01 

-10.411534 0.004490 3.1436E+03 3.5525E-01 

450.9000 
21.234406 -0.005486 7.2350E+03 -9.2263E-01 

-21.234406 0.000071 7.2350E+03 9.2263E-01 

640.0000 
25.298217 -0.017155 3.9605E+04 -2.3206E+01 

-25.298217 -0.012491 3.9605E+04 2.3206E+01 

E   intRe R   intIm R   Re aR   Im aR  

-122.0000 
7.5321E+01 2.2592E-03 3.2822E+03 1.3408E+04 

-7.4916E+01 -2.5026E-03 3.2822E+03 -1.3408E+04 

108.4000 
3.7144E-02 -7.6611E+00 2.6032E+03 1.0524E-07 

1.5576E-02 7.6612E+00 3.9674E+03 -1.0524E-07 

450.9000 
3.1282E-01 2.2752E+01 3.6641E+03 1.5797E-08 

1.6457E-01 -2.2753E+01 2.8458E+05 -1.5797E-08 

640.0000 
4.4273E-01 -1.8054E+02 5.3841E+03 1.9722E-07 

2.5426E-01 1.8054E+02 -7.3947E+03 -1.9722E-07 

 

CHANNEL MATRIX 

 

In order to reconstruct the channel matrix, the Reich-Moore resonance parameters for 241Pu 

isotope are obtained from ENDF/B-VII.1 neutron incident library. For the given isotope there are 244 

s-wave resonances. Table 13 shows only the first four resonances for compound nucleus spin 2J  . 

 

Table 13. Reich-Moore s-wave resonance parameters. 

E  l  J  n    fa  fb  

-59.5300 0.0000 2.0000 0.5961 0.0445 0.4153 0.0430 

0.1501 0.0000 2.0000 3.84E-07 0.0423 0.0200 0.0200 

1.7253 0.0000 2.0000 2.07E-06 0.0403 0.0679 0.2823 

4.5873 0.0000 2.0000 0.0005 0.0368 -0.0192 0.1211 

 

The channel matrix elements are generated using the Reich-Moore formatted resonance 

parameters given for 0l   and 2J  . There are 110 resonance levels for 241Pu isotope with the given 

quantum numbers. The expressions for channel matrix elements are given in Eq. (46). There are 

neutrons, and first and second partial fission channels for RM formalism. Hence, in the case of the 
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fissile isotopes the size of the channel matrix is 3x3. Eq. (77) illustrates the elements of the channel 

matrix calculated at 1 eV. 

 

  

4 5 7 5 3

5 7 3 2

5 3 3 2

1.00 1.22 10 -1.18 10 2.47 10 2.95 10 4.68 10

-1.18 10 2.47 10 1.00 0.44 2.61 10 3.98 10

2.95 10 4.68 10 2.61 10 3.98 10 1.01 0.32

i i i

I K i i i

i i i

    

   

   

        
 

         
        

 , (77) 

 

The RM formatted resonance parameters are converted into rigorous multipoles using the 

process described in Section 3.2. Table 14 shows the generated poles and residues using the Reich-

Moore resonance parameters of 241Pu isotope, including only first four levels. The WMP library contains 

244 poles, 60 windows, and the 6th order polynomial coefficients for the given isotope. The windowed 

multipole library is generated following Chapter IV. 

 

Table 14. Calculated poles and residues for 241Pu isotope. 

E   Re d   Im d   Re tR   Im tR  

-59.53 
1.61752E-02 -7.73301E+00 2.12264E+04 1.48578E+02 

-1.59067E-02 7.69440E+00 2.10122E+04 1.45199E+02 

0.1501 
3.97766E-01 -4.93081E-02 2.32946E-01 1.60131E-01 

-3.97765E-01 4.93077E-02 2.32917E-01 1.60204E-01 

1.7253 
1.32518E+00 -7.20455E-02 -4.29071E-01 1.18089E+00 

-1.32518E+00 7.20463E-02 -4.29606E-01 1.18085E+00 

4.5873 
2.14576E+00 -1.80601E-02 4.52720E+01 2.43771E+01 

-2.14572E+00 1.79772E-02 4.53659E+01 2.43045E+01 

E   Re aR   Im aR   Re fR   Im fR  

-59.53 
8.62539E+03 1.05294E+04 7.84945E+03 9.59555E+03 

8.62541E+03 -1.02356E+04 7.84947E+03 -9.30179E+03 

0.1501 
2.32922E-01 1.60164E-01 8.07407E-02 1.59578E-01 

2.32941E-01 1.60172E-01 8.07534E-02 1.59587E-01 

1.7253 
-4.29314E-01 1.18067E+00 -5.55464E-01 1.18846E+00 

-4.29364E-01 1.18108E+00 -5.55531E-01 1.18887E+00 

4.5873 
4.51313E+01 2.43192E+01 3.33614E+01 2.43028E+01 

4.55076E+01 2.43624E+01 3.36664E+01 2.43459E+01 
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APPENDIX B 

 

Table 15. List of isotopes with WMP library generated from ENDF/B-VII.1. 

Isotope Upper Limit (eV) 
WMP library [RMP time / WMP time] per energy point 

# of poles # of windows fit order at 0 K at 300 K 
25Mg 2.20E+05 8 392 2 8 198 
26Mg 4.50E+05 5 800 2 6 184 
27Al 8.45E+05 89 403 2 31 250 
28Al 1.75E+06 49 175 2 20 231 
29Al 1.30E+06 26 130 2 12 234 
30Al 1.50E+06 28 324 2 13 218 
32S 1.57E+06 121 157 3 42 231 
33S 2.60E+05 8 26 4 5 138 
34S 4.80E+05 9 11 5 7 185 

37Cl 1.20E+06 310 2400 2 2 19 
36Ar 4.65E+04 4 1860 5 3 189 
38Ar 3.00E+05 4 1500 5 3 182 
40Ar 1.50E+06 436 1498 3 2 10 
41K 1.00E+06 694 1000 5 2 9 

40Ca 5.00E+05 146 233 2 82 275 
42Ca 3.00E+05 40 300 2 24 201 
43Ca 4.00E+04 26 187 2 11 179 
44Ca 5.00E+05 39 50 4 17 167 
48Ca 5.00E+05 6 24 4 6 183 
45Sc 9.69E+04 606 1552 2 2 7 
46Ti 3.63E+05 108 169 2 57 198 
47Ti 7.49E+04 37 162 2 14 173 
48Ti 4.00E+05 119 400 2 39 227 
49Ti 2.41E+05 183 1122 3 28 180 
50Ti 5.87E+05 34 274 2 21 243 
50V 4.25E+04 17 92 4 7 148 
51V 1.00E+05 66 216 2 33 189 
50Cr 7.83E+05 396 435 4 103 257 
52Cr 1.43E+06 340 2554 4 118 480 
53Cr 5.64E+05 346 564 4 104 238 
54Cr 8.34E+05 117 464 2 36 219 

55Mn 1.25E+05 164 224 4 48 203 
54Fe 7.00E+05 238 2188 2 113 315 
56Fe 8.50E+05 313 1518 2 89 319 
57Fe 2.00E+05 72 625 4 27 262 
58Fe 4.00E+05 67 4000 2 25 425 
59Co 1.00E+05 334 800 5 2 9 
58Ni 8.12E+05 494 1450 2 138 485 
60Ni 8.00E+05 462 800 2 125 359 
61Ni 5.70E+04 53 123 3 24 169 
62Ni 6.00E+05 79 600 3 42 213 
64Ni 5.53E+05 63 56 4 29 174 
63Cu 9.95E+04 222 463 3 67 191 
65Cu 9.95E+04 156 995 3 54 200 
70Zn 2.10E+05 108 560 3 66 254 
69Ga 4.50E+03 25 74 5 13 156 
71Ga 5.60E+03 29 92 5 12 195 
70Ge 1.40E+04 48 1400 10 1 18 
72Ge 1.20E+04 12 160 2 8 169 
73Ge 8.63E+03 48 116 4 15 133 

     Continued on the next page 
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Table 15. Continued from the previous page. 

Isotope Upper Limit (eV) 
WMP library [RMP time/ WMP time] per energy point 

# of poles # of windows fit order at 0K at 300K 
74Ge 6.00E+03 4 114 7 5 140 
76Ge 3.00E+04 8 214 7 5 131 
74As 5.50E+01 3 11 5 3 118 
75As 3.00E+04 8 214 7 5 131 
74Se 2.60E+03 7 260 5 6 166 
76Se 9.00E+03 18 128 8 10 158 
77Se 2.70E+03 32 67 8 15 140 
78Se 1.20E+04 13 171 8 10 162 
80Se 1.00E+04 9 143 7 8 173 
82Se 3.00E+04 6 285 4 6 175 
79Br 5.50E+03 200 91 9 82 135 
81Br 1.60E+04 190 171 7 79 171 
78Kr 8.00E+02 3 40 5 3 190 
80Kr 1.00E+03 3 50 5 6 133 
82Kr 4.00E+01 1 4 5 3 132 
83Kr 2.72E+02 2 19 7 3 132 
84Kr 9.00E+04 57 480 4 36 198 
85Kr 1.80E+03 7 45 8 4 125 
85Rb 8.47E+03 141 91 5 122 212 
86Rb 3.00E+03 65 74 7 28 140 
87Rb 1.25E+04 11 178 8 12 174 
84Sr 3.40E+03 10 73 8 6 157 
86Sr 3.00E+04 32 285 9 18 161 
87Sr 1.41E+04 115 232 5 32 145 
88Sr 3.00E+05 87 1600 2 49 292 
89Y 4.50E+04 41 320 7 204 361 
90Y 1.00E+04 33 134 3 19 164 
90Zr 5.35E+04 23 54 2 13 166 
91Zr 1.00E+04 50 218 2 26 154 
92Zr 7.10E+04 71 331 2 56 220 
93Zr 6.80E+03 51 136 3 26 163 
94Zr 9.00E+04 72 419 2 37 201 
96Zr 1.00E+05 29 100 3 15 159 
93Nb 7.35E+03 193 613 5 63 254 
94Nb 2.80E+01 2 8 5 3 119 
92Mo 4.00E+04 59 400 2 35 185 
94Mo 2.00E+04 54 112 3 31 166 
95Mo 2.14E+03 56 343 5 29 203 
96Mo 1.90E+04 72 1056 2 44 194 
97Mo 2.00E+03 66 200 2 30 146 
98Mo 3.20E+04 142 696 3 79 215 
100Mo 2.60E+04 122 260 4 60 227 

99Tc 6.38E+03 535 158 5 143 138 
99Ru 1.00E+03 40 50 5 12 102 

100Ru 1.20E+04 87 198 4 46 175 
101Ru 1.04E+03 48 52 7 14 103 
102Ru 1.34E+04 144 166 3 62 187 
103Ru 3.50E+02 8 35 8 4 108 
104Ru 1.11E+04 109 183 3 47 203 
103Rh 4.17E+03 707 209 5 22 37 
105Rh 7.50E+00 1 4 10 3 113 
102Pd 8.20E+02 3 41 5 3 131 
104Pd 7.50E+03 122 160 8 61 180 
105Pd 2.05E+03 198 68 5 54 105 

     Continued on the next page 
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Table 15. Continued from the previous page. 

Isotope Upper Limit (eV) 
WMP library [RMP time/ WMP time] per energy point 

# of poles # of windows fit order at 0 K at 300 K 
106Pd 6.00E+03 85 99 6 46 163 
107Pd 1.00E+03 63 50 5 36 100 
108Pd 5.50E+03 214 136 5 23 98 
110Pd 6.80E+03 79 112 5 40 167 
107Ag 6.50E+03 400 1161 2 136 184 
109Ag 7.12E+03 449 223 10 139 151 
111Ag 9.99E+02 82 50 6 30 115 

110Ag-m 1.25E+02 10 7 8 5 104 
106Cd 6.00E+03 56 600 2 19 167 
108Cd 6.00E+03 65 600 2 20 161 
110Cd 7.00E+03 91 700 3 30 161 
111Cd 2.30E+03 155 1070 2 42 130 
112Cd 1.15E+04 118 1150 2 34 157 
113Cd 5.00E+03 592 500 8 29 62 
114Cd 8.00E+03 79 800 2 26 165 
116Cd 9.50E+03 47 4419 2 17 185 

115Cd-m 1.00E+03 24 50 7 12 149 
113In 6.00E+02 125 108 4 22 101 
115In 2.00E+03 626 358 4 75 116 
112Sn 1.50E+03 15 150 2 8 153 
113Sn 5.10E+02 29 34 7 15 133 
114Sn 2.00E+03 13 94 2 9 161 
115Sn 9.00E+02 5 42 4 3 131 
116Sn 3.00E+04 213 300 3 101 222 
117Sn 2.30E+03 76 230 2 30 128 
118Sn 2.00E+03 8 94 2 8 159 
119Sn 1.26E+03 23 126 3 11 146 
120Sn 5.00E+04 223 500 3 131 279 
122Sn 3.00E+05 354 647 3 163 325 
124Sn 3.15E+05 190 315 4 89 207 
125Sn 9.90E+02 9 49 10 7 142 
121Sb 5.40E+03 213 134 5 48 99 
123Sb 5.40E+03 204 134 6 61 135 
126Sb 9.99E+02 99 67 6 32 105 
122Te 2.00E+04 750 62 6 35 69 
123Te 2.00E+03 43 400 4 14 155 
124Te 1.50E+04 186 160 8 81 198 
125Te 7.75E+03 293 128 7 128 183 
126Te 1.36E+04 57 146 5 30 175 
128Te 2.25E+04 38 240 6 22 174 
130Te 3.10E+04 22 331 7 15 175 
132Te 2.78E+04 26 297 5 17 186 

127I 4.05E+03 339 100 4 89 120 
129I 3.40E+03 124 84 7 42 138 
130I 5.60E+02 63 38 6 23 114 

124Xe 2.60E+02 6 208 5 3 156 
126Xe 2.33E+03 4 104 4 3 131 
128Xe 3.50E+03 14 88 3 7 126 
129Xe 4.10E+03 69 103 4 19 112 
130Xe 4.00E+03 18 100 4 7 135 
131Xe 3.95E+03 47 132 4 14 123 
132Xe 4.00E+03 6 100 3 4 137 
134Xe 1.00E+04 5 165 3 6 184 
135Xe 1.90E+02 2 608 2 2 78 

     Continued on the next page 
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Table 15. Continued from the previous page. 

Isotope Upper Limit (eV) 
WMP library [RMP time/ WMP time] per energy point 

# of poles # of windows fit order at 0 K at 300 K 
136Xe 4.90E+05 36 1307 3 23 254 
133Cs 4.00E+03 214 134 4 56 104 
134Cs 1.80E+02 7 24 4 4 119 
135Cs 2.20E+02 6 22 4 4 119 
130Ba 2.80E+03 51 560 2 14 122 
132Ba 1.30E+02 2 26 2 3 131 
133Ba 3.06E+02 6 31 3 4 125 
134Ba 1.10E+04 86 182 3 42 178 
135Ba 4.70E+03 110 118 3 34 141 
136Ba 3.50E+04 103 374 9 52 198 
137Ba 1.25E+04 77 206 3 36 189 
138Ba 1.40E+05 33 1120 5 21 196 
140Ba 2.30E+04 8 1840 5 5 144 
138La 3.30E+02 9 33 4 5 104 
139La 2.00E+04 277 500 2 35 120 
140La 9.99E+02 15 67 3 6 122 
136Ce 8.80E+02 13 59 3 5 125 
138Ce 9.99E+02 8 50 4 5 132 
139Ce 3.01E+02 9 27 5 5 120 
140Ce 2.00E+05 166 1235 2 108 298 
141Ce 3.50E+02 6 35 4 4 148 
142Ce 1.30E+04 30 214 3 20 173 
143Ce 4.60E+02 11 31 5 5 120 
141Pr 1.01E+04 188 166 4 73 175 
142Pr 9.99E+02 23 50 4 9 118 
143Pr 3.75E+02 5 75 4 4 132 

142Nd 2.25E+04 71 279 4 35 180 
143Nd 5.50E+03 149 138 5 44 144 
144Nd 9.98E+03 136 399 3 27 173 
146Nd 7.60E+03 56 190 2 29 171 
147Nd 1.80E+02 11 24 5 5 100 
148Nd 9.99E+03 114 220 3 45 162 
150Nd 1.39E+04 77 228 3 24 153 
147Pm 1.02E+02 22 21 5 13 89 
151Pm 1.56E+02 38 32 4 11 85 

148Pm-m 1.00E+00 1 2000 2 3 235 
144Sm 1.19E+04 74 299 2 40 181 
147Sm 1.99E+03 212 100 5 44 83 
148Sm 9.14E+02 15 366 2 5 133 
149Sm 5.20E+02 217 416 5 21 40 
150Sm 1.57E+03 32 79 4 8 110 
151Sm 2.96E+02 163 119 7 19 42 
152Sm 5.15E+03 91 172 5 25 133 
153Sm 2.50E+01 12 50 3 5 97 
154Sm 5.20E+03 35 260 2 12 126 
151Eu 1.00E+02 128 400 5 10 28 
152Eu 6.20E+01 83 62 4 20 63 
153Eu 9.80E+01 71 14 7 16 67 
154Eu 2.75E+01 35 550 2 3 38 
155Eu 2.97E+01 11 297 2 4 95 
157Eu 6.72E+01 21 12 7 7 82 
152Gd 2.66E+03 186 709 6 25 74 
153Gd 1.32E+02 17 528 5 4 78 
154Gd 2.76E+03 163 69 5 40 92 
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Table 15. Continued from the previous page. 

Isotope Upper Limit (eV) 
WMP library [RMP time/ WMP time] per energy point 

# of poles # of windows fit order at 0 K at 300 K 
155Gd 1.83E+02 117 367 6 14 49 
156Gd 2.23E+03 88 99 3 25 124 
157Gd 3.07E+02 61 614 6 16 114 
158Gd 9.98E+03 95 220 3 25 140 
160Gd 9.66E+03 57 242 2 18 152 
159Tb 1.25E+03 222 84 4 47 80 
160Tb 9.00E+00 7 1440 2 3 82 
156Dy 9.10E+01 19 364 2 7 106 
158Dy 8.62E+01 3 12 6 3 131 
160Dy 2.01E+03 66 101 4 16 81 
161Dy 9.96E+02 253 50 5 44 53 
162Dy 4.85E+03 126 388 5 16 87 
163Dy 9.97E+02 132 89 6 24 69 
164Dy 7.00E+03 136 87 7 24 133 
165Ho 1.25E+03 248 63 4 55 78 

166Ho-m 6.50E+01 5 130 6 2 87 
162Er 2.50E+02 17 34 4 7 101 
164Er 8.00E+02 18 54 4 7 114 
166Er 5.00E+03 122 250 2 45 155 
167Er 1.75E+03 392 350 5 24 32 
168Er 1.50E+04 129 330 2 40 154 
170Er 5.00E+03 62 100 5 42 166 

169Tm 1.95E+03 193 98 4 43 88 
170Tm 8.96E+01 13 24 4 5 103 
175Lu 4.11E+02 100 42 4 27 74 
176Lu 1.02E+02 73 1632 6 11 45 
174Hf 1.68E+02 16 560 6 5 93 
176Hf 7.00E+02 17 63 4 9 112 
177Hf 5.10E+02 169 204 6 38 76 
178Hf 1.60E+03 33 1280 2 9 117 
179Hf 5.10E+02 92 51 4 27 89 
180Hf 4.99E+03 62 250 2 62 197 
181Ta 3.30E+02 75 44 4 20 84 
182Ta 3.50E+01 14 560 2 3 57 
180W 1.00E+02 5 20 4 4 122 
182W 4.50E+03 91 900 2 40 137 
183W 2.20E+03 95 110 3 28 123 
184W 4.00E+03 46 100 2 35 124 
186W 8.50E+03 166 213 4 40 141 
185Re 2.00E+03 484 100 4 76 70 
187Re 2.00E+03 374 89 5 74 82 
191Ir 1.53E+02 46 31 5 12 74 
193Ir 3.10E+02 39 62 5 12 94 

197Au 5.00E+03 263 167 4 64 127 
196Hg 1.03E+02 1 14 7 3 135 
198Hg 4.59E+02 5 46 3 4 130 
199Hg 9.68E+02 9 49 5 5 131 
200Hg 8.58E+03 4 215 2 4 143 
201Hg 7.54E+02 7 101 2 4 130 
202Hg 4.52E+03 2 201 2 3 153 
203Tl 1.89E+04 84 311 3 40 194 
205Tl 8.37E+04 115 689 2 60 223 
204Pb 5.00E+04 63 412 2 43 408 
206Pb 9.00E+05 379 2400 2 115 349 
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Table 15. Continued from the previous page. 

Isotope Upper Limit (eV) 
WMP library [RMP time/ WMP time] per energy point 

# of poles # of windows fit order at 0 K at 300 K 
207Pb 4.75E+05 134 1462 2 46 259 
209Bi 1.00E+05 71 800 5 44 229 
226Ra 1.00E+03 45 134 5 9 77 
229Th 8.00E+00 21 2560 2 6 79 
232Th 4.00E+03 912 134 5 166 121 
231Pa 1.17E+02 201 1872 2 12 23 
232Pa 2.10E+01 47 420 2 8 54 
233Pa 1.07E+02 91 22 7 19 49 
233U 6.00E+02 1026 600 5 30 18 
234U 1.50E+03 119 84 4 30 100 
235U 2.25E+03 3184 2250 6 522 147 
236U 1.50E+03 116 100 4 38 136 
237U 2.00E+02 44 20 7 12 74 
238U 2.00E+04 3321 2000 2 619 323 
239U 1.03E+02 42 28 5 13 81 

236Np 2.15E+01 38 1075 6 10 90 
237Np 5.00E+02 666 50 7 88 51 
238Np 6.65E+00 22 532 2 6 85 
236Pu 1.00E+01 6 1600 6 3 91 
238Pu 5.00E+02 53 1000 5 16 109 
239Pu 1.00E+03 539 2000 2 45 45 
240Pu 5.70E+03 395 1900 2 27 46 
241Pu 3.00E+02 242 60 6 44 54 
242Pu 9.23E+02 64 93 4 21 120 
243Pu 1.02E+02 40 21 5 11 80 
244Pu 2.90E+02 14 39 4 6 114 

241Am 1.50E+02 194 300 6 43 65 
242Am 1.00E+02 120 40 7 27 62 
243Am 2.50E+02 232 50 4 32 42 

142Am-m 4.30E+01 111 86 6 22 73 
242Cm 2.75E+02 12 37 4 6 119 
243Cm 1.00E+02 106 27 5 20 52 
244Cm 1.00E+03 85 2000 4 17 106 
245Cm 1.00E+02 86 20 7 19 66 
247Cm 6.00E+01 43 24 7 11 72 
248Cm 1.50E+03 34 100 3 15 122 
250Cm 1.50E+02 8 600 2 4 134 
249Bk 6.00E+01 54 60 6 8 45 
249Cf 7.00E+01 48 24 6 13 70 
250Cf 1.00E+01 6 1000 5 3 112 
251Cf 5.00E+00 4 20 5 3 103 
252Cf 1.00E+03 36 67 5 11 105 
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