
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 

Master's Thesis 

 

 

Effect of Filler Particle Characteristics on Yield 

Stress and Plastic Viscosity of Sulfur Composites  

 

 

 

 

 

 

 

 

 

Lee Jin Hyun 

 

Department of Urban and Environmental Engineering 

(Urban Infrastructure Engineering) 

 

 

 

Graduate School of UNIST 

 

2018 

 

[UCI]I804:31001-200000108257[UCI]I804:31001-200000108257



 

 

Effect of Filler Particle Characteristics on Yield 

Stress and Plastic Viscosity of Sulfur Composites 

 

 

 

 

 

Lee Jin Hyun 

 

 

 

 

 

 

 

Department of Urban and Environmental Engineering 

(Urban Infrastructure Engineering) 

 

 

Graduate School of UNIST 



 

 

Effect of Filler Particle Characteristics on Yield 

Stress and Plastic Viscosity of Sulfur Composites 

 

 

 

 

 

 

 

A thesis 

submitted to the Graduate School of UNIST 

in partial fulfillment of the 

requirements for the degree of 

Master of Science 

 

 

 

 

 

Lee Jin Hyun 

 

 

 

06. 08. 2018 

Approved by 

_________________________ 

  Advisor 

Myoungsu Shin 



 

 

Effect of Filler Particle Characteristics on Yield 

Stress and Plastic Viscosity of Sulfur Composites 

 

 

 

Lee Jin Hyun 

 

 

This certifies that the thesis of Lee Jin Hyun is approved. 

 

06. 08. 2018 

 

 

 

 

 

    

                     ___________________________ 

                 Advisor: Myoungsu Shin 

Department of Urban and Environmental Engineering 

Ulsan National Institute of Science and Technology 

Chairperson 

   

                    ___________________________ 

                Committee Member: Jaeeun Oh 

Department of Urban and Environmental Engineering 

Ulsan National Institute of Science and Technology 

Committee Member  

  

                    ___________________________ 

                Committee Member: Byungmin Kim  

Department of Urban and Environmental Engineering 

Ulsan National Institute of Science and Technology 

Committee Member  



 

  



 

i 

 

ABSTRACT 

 

Since sulfur has fluidity only at specific temperature (over 115 °C) and it is very sensitive to the 

temperature, it is necessary to quantitatively evaluate the workability of sulfur concrete. In this study, 

we considered the sulfur composite as a suspension of filler particles, which are the blends of cement 

and fly ash, and investigated the influence of filler properties on the rheology of the sulfur composite 

in paste level, which made of modified sulfur and fillers. The rheological properties of modified sulfur 

and sulfur composite are measured by parallel plates and the properties of filler particles were measured 

by laser diffraction. Bingham model to the selected shear strain rate showed better trends of rheological 

properties of sulfur composite. Yield stress of sulfur composites is mainly affected by the volume 

fraction of fillers and the type of fillers. Plastic viscosity is mainly affected by the surface area of fillers 

in sulfur composite. The rheological results and the Krieger-Dougherty model confirmed the intrinsic 

viscosity in the model equation is affected by the type of binder regardless of their volume fraction in 

sulfur composite. Consequently, the sulfur composite follows the suspension-rheology models when 

the proper content of filler was used, which is less than 30% in sulfur composite, and it implies the 

suspension theories can be applied to the materials based on the sulfur binder.  
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CHAPTER 1 – INTRODUCTION 

 

1.1 Research Background 

Sulfur is one of the byproducts produced by petroleum refineries and natural gas process plants. 

There is so much byproduct sulfur that it does not need to be mined anymore, unlike other minerals.  

However, the demand for the surplus sulfur is very confined, which causes many social and 

environmental problems. Recently, some part of sulfur begins to be consumed as construction materials, 

such as building materials and roadway paving, due to its cheap price and unique properties [1]. Sulfur, 

which is a thermoplastic material, gets a fluidity only at higher temperature (over 115 °C) and gets the 

strength rapidly during the cooling process. Given that the temperature is controlled, sulfur can replace 

the cementitious binders in concrete, which is called sulfur concrete [2,3].  

Sulfur concrete made of sulfur and aggregates, where the molten sulfur acts like a binder 

surrounding the aggregates. It produces a rapid strength development, higher ultimate strength, and 

better resistance to strong acids. While the cement based concrete gets a maximum strength in several 

weeks at a humid curing condition; it gets about 90 percent of the maximum strength after 28 days, 

sulfur concrete reaches its maximum strength in a few hours regardless of the humidity condition [4]. 

When the sulfur is cooled in solid state, its phase is changed from monoclinic sulfur (Sβ) to 

orthorhombic sulfur (Sα). Since sulfur allotropes belong to eight membered ring class, they have 

different physical properties, molecular structure, and chemical activity. Especially, the phase transition 

causes the volume reduction and the induced internal stress brings about the shrinkage in sulfur concrete. 

Due to the shrinkage, sulfur concrete has a critical durability problem such as a repetitive freezing and 

thawing and continuous exposure to highly humidity condition [2,5]. 

Modified sulfur can improve the durability problems caused by the shrinkage of elemental sulfur 

in the process of cooling. Modified sulfur is produced by mixing elemental sulfur and organic chemical 

additives at 130~150 °C, where the week bonds in ring structure of sulfur are broken and new bonds 

with the other sulfurs or modifier are formed to make a long chain polymer [1]. Dicyclopentadiene 

(DCPD) is one of the commonly used modifiers, which plasticizes and stabilize the sulfur in polymeric 

form. Adding 5 % of DCPD on the composition of sulfur materials keeps the form of orthorhombic 

sulfur (Sα) and the portion of Sα is dominant [6], which prevents the formation transition and, as the 

result, reduces the shrinkage problems. 
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Sulfur cement refers to the mixture of modified sulfur and mineral fillers. Mineral filler improves 

the workability and strength, allowing the modified sulfur to be used more stably as a binder. Addition 

of mineral filler controls the viscosity of sulfur cement paste, which affects the workability and reduces 

segregation between modified sulfur and aggregates. Filler replaces the portion of sulfur, which reduces 

shrinkage caused by transformation of sulfur during hardening. Fly ash, silicate flour, and crushed dust 

are the examples of the commonly used mineral fillers [1,7]. 

Usage of modified sulfur and filler as a binder in concrete induces a better resistance to freezing 

and thawing due to lower permeability and porosity. After modification, modified sulfur concrete still 

has advantages such as higher strength, rapid strength development, and a good resistance to most acid 

or salt condition [1]. Mix design of modified sulfur concrete for construction material considers 4 

factors, including a good resistance to acid or salt, lower water absorption, better strength than Portland 

cement concrete, and enough fluidity for good workability. Many test standards are reported for the 

performance about mechanical strength and durability such as ASTM C39 [8], ASTM C78 [9], ASTM 

C496 [10]. On the other hand, there is no standard or recommended test for the workability of sulfur 

concrete. 

In the case of Portland cement concrete, the conventional tests for workability such as slump test 

have been used for estimating the workability of the concrete. The properties of aggregates and cement 

influence the workability of Portland cement concrete but the conventional test has a limitation of 

describing the behavior of flow; it has only one indicator, the value of slump. Due to its insufficiency, 

many rheological theories have replaced the conventional tests [11]. Rheology, especially rheology for 

suspension, can describe various flow behaviors and relate the properties of suspended particle 

(aggregates) and suspending fluid (cement paste) [12]. In case of sulfur concrete, the properties of 

modified sulfur, filler, and aggregate can influence on the workability of sulfur concrete. Appling the 

studies for suspension rheology to sulfur concrete will produce better estimation for the performance of 

sulfur concrete. In this study, the author focuses the effect of the properties of filler to the workability 

of sulfur composite as the first step for applying rheology to sulfur products. 

1.2 Objectives and Scope 

In this study, the theory of suspension rheology is applied to sulfur products in paste level and it 

will be revealed whether rheology can be used to analyze the workability of sulfur products in further 

studies. The properties of filler particles are characterized by particle size distribution and total surface 

area of filler. The rheological results will be fitted to the conventional models relating the rheological 

properties of suspension and the properties of suspended particles, where specific model terms will 

describe the effect of filler in sulfur composite.  
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CHAPTER 2 – SUSPENSION RHEOLOGY 

 

2.1 The needs of rheological properties in freshly-mixed normal concrete 

In this study, the author focused on the behavior of sulfur in paste level as the first step for 

evaluating the performance of sulfur concrete. Except for the type of binder, the compositions of normal 

concrete and sulfur concrete are very similar. Since there are no standards or official tests for the 

performance of sulfur concrete before hardening, the standards or studies for the freshly mixed normal 

concrete were examined. One of the intuitive methods to evaluate the fluidity of materials is to visually 

confirm how much the materials can flow by an external force. For example, the workability of freshly 

mixed concrete has been evaluated by slump or slump flow test as described in ASTM C143 [13], where 

the freshly mixed concrete vertically deforms or flows by their self-weight. Based on the test result, the 

workability, or fluidity, is qualitatively evaluated. This intuitive method is quite simple but it has only 

one parameter (slump or slump flow) to evaluate the workability of concrete. According to ASTM C143, 

acceptable ranges of test result for identical test specimens depend on the number of test operator, which 

implies the intuitive method requires a lot of experience for accurate evaluation [14]. 

For the exact and quantitative evaluation about the workability of fresh concrete, rheology theory 

has been studied and applied to the freshly mixed concrete [11,12,14]. In rheology theory, the flow 

behavior can be described by rheological properties, which obtained by rheometer test and analyzed by 

some models. Many constitutive model equations have been developed to describe the behavior of 

freshly mixed concrete. Among them, Bingham model and Herschel-Bulkley model are fitted well with 

the experimental data [15]. The Bingham model describes the behavior, where the shear stress is linearly 

proportional to the shear strain rate above some specific shear stress like Eq. (2.1). In terms of the 

rheological properties, the rate of change for the shear stress to the shear strain rate is defined as plastic 

viscosity (η) and the minimum shear stress required for the matter to initiate to flow or deform is defined 

as yield stress (τ0). Herschel-Bulkley model represents the behavior of materials, where the shear stress 

has a power growth with increasing shear strain rate above yield stress like Eq. (2.2). In the case of this 

model, the model constant a means the viscosity when the shear rate equals 1 1/s and b is model constant. 

 τ = τ0 + 𝜂𝛾̇ (2.1) 

 τ = τ0 + 𝑎𝛾̇𝑏 (2.2) 
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2.2 The needs of rheological properties in sulfur concrete before hardening 

The difference between normal concrete and sulfur concrete is the type of binder; the sulfur 

concrete uses modified sulfur in the liquid state instead of cement paste. Mixing cement and water at 

some ratio produces cement paste with fluidity while melting modified sulfur with high temperature 

produces modified sulfur in the liquid state. Cement paste has lower flowability as the water-cement 

ratio is lower and the flowability of modified sulfur is controlled by the temperature and amount of 

added modifier. Hardening of cement paste occurs due to the hydration react of cement, while modified 

sulfur gets strength during the cooling. That is, cement is a hydraulic material and modified sulfur is a 

thermoplastic material [16]. Since the properties of paste influences on that of concrete material, the 

conventional tests or studies for freshly-mixed normal concrete are needed to be modified, considering 

the properties of binder materials. 

According to the mix design for sulfur concrete proposed by Makenya [17], the sulfur concrete 

should be designed to find the optimized viscosity of the mixture. Considering the relationship between 

the sulfur content and mineral filler content, the sulfur concrete with relatively higher sulfur content has 

a problem such as thermal expansion and abundant microcracking, while the sulfur concrete with lower 

sulfur content has very poor workability and high porosity. For preventing such defects in sulfur 

concrete, optimum sulfur content should be found and used. However, the determination of optimum 

sulfur content requires many experiences and trials. Since sulfur concrete has a workability only with a 

high temperature and its workability easily varies depending on the temperature, more strict conditions 

and methods are required to evaluate the workability of sulfur concrete. For example, slump test 

couldn’t be a good indicator for the workability of sulfur concrete because the error from temperature 

control may additionally affect its original inaccuracy. However, rheology can be applied to evaluate 

the workability of sulfur concrete without difficulty from the heat condition because some of the 

rheometers, which are equipment measuring the rheology, can precisely control the temperature of the 

entire sulfur sample. 

Like the rheology studies conducted for normal concrete, the constitutive equations, Bingham or 

Herschel-Bulkley models, were applied to sulfur composite (sulfur with filler particles). This approach 

is based on the concept of suspension, which consists of suspending fluid and suspended particles. 

Freshly mixed normal concrete, mortar, cement paste can be classified as suspension; concrete, mortar, 

and cement paste are a suspension of aggregates, fine sand, and cement respectively [18]. Sulfur 

products, made of sulfur and particle materials, also can be considered as a suspension of particles such 

as aggregates and filler. Thus, the rheological models for suspension materials can describe the sulfur 

composite and characterize the effect of different types of fillers. 



 

5 

 

2.3 Yield stress model for suspension materials 

Yield stress is an important property to express the behavior of the particle-fluid suspension 

system. The study for the yield stress of suspension is less developed rather than the viscosity of 

suspension since there are difficulties in measuring the yield stress of suspension. The dilute suspension 

behaves like a Newtonian fluid with no yield stress, while the onset of yield stress is found at the 

suspension with high solid volume fraction, which behaves like non-Newtonian fluid [19]. In terms of 

interaction between particles, the behavior of the less concentrated suspension is hydrodynamic and 

after specific concentration is over transition point, the particles start to frictionally interact one another, 

influencing the rheology of suspension [20]. The specific solid volume fraction for the transition point, 

where the onset of yield stress occurs, is called percolation threshold. With the concept of percolation, 

the power law relationship between the yield stress and the solid volume fraction was numerically 

driven for the crystal-melt suspension, where the crystals forms crystal-network bridging the 

macroscopic samples, which results in the onset of yield stress (Eq. (2.3)) [21]. 

 𝜏0 ∝ (𝜑 − 𝜑𝑐)𝛽 (2.3) 

In the relationship, τ0 is yield stress, φ is the solid volume fraction, φc is percolation threshold, 

and β is a model constant. For the crystal-melt suspension, the power law exponent is from 2.5 to 3.5. 

This power law was also applied to the relationship between the yield stress and solid volume fraction 

in a subliquidus basalts [22]. Cement pastes with different amount of fly ash were fitted the power 

growth with the exponent of 4.5 [23]. 

 

2.4 Viscosity model for suspension materials 

The behavior of suspension depends on the solid volume fraction or concentration of solid 

particles. As the solid volume fraction is higher, the viscosity of the suspension is higher. The 

relationship between the solid volume fraction and the viscosity of the suspension is well described by 

Krieger-Dougherty equation (Eq. (2.4)), which was derived by measuring the rheology of the 

suspension of mono-sized spherical latex particles [24]. 

 𝜂𝑟 =
𝜂𝑠

𝜂𝑐
= (1 −

𝜑

𝜑𝑚
)−[𝜂]𝜑𝑚 (2.4) 

In the equation, ηr is the relative viscosity which is expressed as the ratio of the viscosity of the 

suspension, ηs and the viscosity of the continuous fluid, ηc. φ means the volume fraction occupied by 

solid particles and φm means the maximum packing volume fraction occupied by the solid particles 
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completely packed by external forces in specific volume. [η] is intrinsic viscosity for the solid particles. 

Since Krieger-Dougherty equation is derived from the mono-sized spherical particles, it fits well with 

the data for suspensions with the same shaped particles. In addition, the equation has been applied to 

the more complex suspensions such as submicron sphere, ground particles, and glass rods fibers. 

Intrinsic viscosity varies with the shape of the solid particles; [η] is 2.5 for a spherical particle, 3~5 for 

an equant particle, 4~10 for rod or fiber particles. The maximum packing volume fraction is also 

affected by not the size of the solid particles but the shape and size distribution of the solid particles. 

For example, the intrinsic viscosity of dispersed cement paste with superplasticizer is 5, where the 

cement particle is quite broad and has an elongate shape [25]. 
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CHAPTER 3 – RHEOLOGY OF SULFUR COMPOSITE 

 

3.1 Materials 

3.1.1 Properties of modified sulfur and fillers 

Dicyclopentadiene (DCPD)-modified sulfur was used as the binder of a sulfur composite, which 

was produced in the form of a yellow powder by Micro Powder, Inc. in Korea. Its specific gravity is 

1.91. The blends of class F fly ash and Type I Portland cement were used for filler contents. Each 

specific gravity is 2.22 and 3.14, respectively. The oxide compositions for them were analyzed by XRF 

analysis and the results are shown in Table 3.1. Blends of fly ash and cement powder with various ratios 

produce a different particle size distribution of filler contents. The volumetric ratios of fly ash and 

cement are 1:0, 0.75:0.25, 0.5:0.5, 0.25:0.75, and 0:1, where each blend is labeled as F100, C25F75, 

C50F50, C75F25, and C100, respectively. The particle size distributions of each blend are analyzed by 

laser diffraction. As shown in Fig. 3.1, the particle size distributions for each filler particle are plotted, 

which shows the trend that the higher the cement content, the lower the median particle size. The median 

particle sizes of each blend (F100, C25F75, C50F50, C75F25, and C100) are listed in Table 3.2. It 

demonstrates the size of cement particle is smaller than that of fly ash. 

 

Table 3.1 Oxide composition of Portland cement and fly ash obtained by XRF analysis 

Label CaO SiO2 Al2O3 Fe2O3 SO3 MgO K2O Na2O 

Cement 60.8% 21.1% 4.7% 3.2% 2.7% 2.1% 0.9% 0.3% 

Fly ash 6.2% 52.3% 22.6% 9.1% - 1.8% 1.8% 1.8% 

 

Table 3.2 Volumetric ratio and median particle size of each blend of cement and fly ash 

Label 
Volumetric ratio 

(Cement:Fly ash) 
Median particle size 

C100 1:0 11.93 μm 

C75F25 0.75:0.25 11.96 μm 

C50F50 0.5:0.5 13.68 μm 

C25F75 0.25:0.75 15.04 μm 

F100 0:1 18.22 μm 
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Figure 3.1 Cumulative particle distribution curves for each blend of cement and fly ash 

 

3.1.2 Calculation of the number and the surface of filler particles in sulfur composite 

As described in Fig. 3.2, assuming all the particles have a spherical shape, the total surface area 

and the number of particle in the composite was calculated with the measured density of each filler 

content. The result of particle size analysis produces how much weight of particles is portioned on each 

mesh size. Given that each particle between the adjacent meshes has a mono-sized diameter and each 

size of diameters equals to the average value of the adjacent mesh sizes (Di), the volume (Vp,i) and the 

surface area (Ap,i) of one particle are expressed as below: 

 𝑉𝑝,𝑖 =
𝜋

6
𝐷𝑖

3, 𝐴𝑝,𝑖 = 𝜋𝐷𝑖
2 (3.1), (3.2) 

In the case of single cement or fly ash, the total volumes of particles between the adjacent meshes (Vi) 

are calculated by using the measured density (ρm) and the corresponding total weight of particles (mi). 

The number of particles between the adjacent meshes (ni) is obtained by Eq. (3.4). 

 𝑉𝑖 =
𝑚𝑖

𝜌𝑚
 (3.3) 

 
𝑛𝑖 =

𝑉𝑖

𝑉𝑝,𝑖
=

6𝑚𝑖

𝜋𝜌𝑚𝐷𝑖
3 (3.4) 

Then, the total number of particles (n) and the total surface area (A) of all the particles are obtained like 

below: 

 
n = ∑ 𝑛𝑖 , A = ∑ 𝑛𝑖𝐴𝑝,𝑖 = ∑

6𝑚𝑖

𝜌𝑚𝐷𝑖
 (3.5), (3.6) 
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Since cement and fly ash have a different range of size, the weight ratio of them (mc:mf) in each 

mesh size should be considered to calculate the total surface area of the blends of them. Fig. 3.3 shows 

the distribution density of C100 and F100, where the maximum sizes of fly ash and cement are 100 and 

255 μm, respectively. If the volumetric ratio between the cement and fly ash is a:b, the total number of 

particles and the total surface area of blends of cement and fly ash is represented like below: 

 
𝑚𝑖,𝑐 =

𝑎𝑚𝑐

𝑎𝑚𝑐 + 𝑏𝑚𝑓
, 𝑚𝑖,𝑓 =

𝑏𝑚𝑓

𝑎𝑚𝑐 + 𝑏𝑚𝑓
 (3.7), (3.8) 

 
𝑚𝑖,𝑐×

1

𝜌𝑐
= 𝑉𝑖,𝑐 , 𝑚𝑖,𝑓×

1

𝜌𝑓
= 𝑉𝑖,𝑓 (3.9), (3.10) 

 
𝑛𝑖,𝑐 =

𝑉𝑖,𝑐

𝑉𝑝,𝑖
, 𝑛𝑖,𝑓 =

𝑉𝑖,𝑓

𝑉𝑝,𝑖
 (3.11), (3.12) 

 𝐴𝑖,𝑐 = 𝑛𝑖,𝑐𝐴𝑝,𝑖, 𝐴𝑖,𝑓 = 𝑛𝑖,𝑐𝐴𝑝,𝑖 

n = ∑ 𝑛𝑖,𝑐 + 𝑛𝑖,𝑓 , , , A = ∑ 𝑛𝑖,𝑐𝐴𝑝,𝑖 + 𝑛𝑖,𝑓𝐴𝑝,𝑖 = ∑
6𝑚𝑖,𝑐

𝜌𝑐𝐷𝑖
+

6𝑚𝑖,𝑓

𝜌𝑓𝐷𝑖
 

(3.13), (3.14) 

(3.15), (3.16) 

Table 3.3 shows the total number of particles and surface area for each blend. Like the trend of 

the median particle size, the sulfur composites with higher cement content have a higher value of the 

total surface area and the number of the solid particle. 

 

 

Figure 3.2 Particle distribution with assumption all the particles have a spherical shape and 

mono-sized diameter in each interval 
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Figure 3.3 Particle size distribution of cement and fly ash 

 

Table 3.3 Calculated surface area (based on 40 cm3 of filler and 200 cm3 of sulfur composite) 

Label 
Total number of 

particles 

Particle number 

density 

(#/100μm3) 

Total surface area 

Total surface area of 

particle / Volume of 

sulfur composite 

C100 1.2791E+12 3.20 372448 cm2 0.18622 cm2/m3 

C75F25 1.2070E+12 3.02 354898 cm2 0.17744 cm2/m3 

C50F50 1.1519E+12 2.88 338862 cm2 0.16943 cm2/m3 

C25F75 1.0576E+12 2.64 316517 cm2 0.15826 cm2/m3 

F100 1.0019E+12 2.50 299499 cm2 0.14975 cm2/m3 

 

3.1.3 Maximum packing density of filler particles 

In the particles just poured without any external forces except for gravity, there are voids between 

the particles. Applying external forces to the poured particles, the voids are occupied by other particles 

and the apparent volume of it seems to decrease, which process is called packing. When the particles 

are packed until there is no further increase in packing density, the maximum packing density(φm) is 

defined as the portion of the volume only occupied by the particles in the volume of particles including 

voids. In this study, the maximum packing density is measured by using a centrifuge (Fig. 3.4) [23]. For 

better packing results, the blends are centrifuged at 3000 rpm for 10 minutes after the cement and fly 

ash particles are well mixed. The volumes of centrifuged particles including voids were measured, and 

the volume of particles is calculated from the density of particles. Then the maximum packing density 
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is calculated by using the below equation: 

 
φ𝑚 =

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑎𝑛𝑑 𝑣𝑜𝑖𝑑𝑠
=

𝑉𝑝

𝑉𝑝𝑎𝑐𝑘𝑒𝑑,𝑚𝑎𝑥
=

𝑚/𝜌𝑚

𝑉𝑝𝑎𝑐𝑘𝑒𝑑,𝑚𝑎𝑥
 (3.17) 

Fig. 3.5 shows the volume reduction after maximum packing by the centrifuge. The higher the cement 

content, the lower the maximum packing density, which means the cement has more voids after packing. 

It demonstrates cement has lower maximum packing density due to its narrower size distribution of 

particles. Table 3.4 shows the calculated maximum packing densities of each blend of cement and fly 

ash. 

 

           

(a) (b)1111111111 

Figure 3.4 (a) Particles in general state before packing, (b) Particles packed maximumly by 

centrifugal force 

 

   

(a) (b) (c) 

Figure 3.5 (a) Centrifuge, (b) C75F25 and C25F75 before packing, (c) C75F25 and C25F75 

after maximum packing 
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Table 3.4 Calculated maximum packing densities 

Label 
Volume of 

particles and voids 

Volume of 

particles 

Maximum 

packing density 

C100 
26.25 cm3 

12.74 cm3 
0.49 

26.25 cm3 0.49 

C75F25 
27.50 cm3 

13.75 cm3 
0.50 

27.38 cm3 0.50 

C50F50 
28.13 cm3 

14.93 cm3 
0.53 

28.25 cm3 0.53 

C25F75 
30.00 cm3 

16.33 cm3 
0.54 

29.90 cm3 0.54 

F100 
30.78 cm3 

18.02 cm3 
0.59 

30.78 cm3 0.59 

 

3.2 Experimental procedure 

3.2.1 Sample preparation 

According to ACI committee 548 [26], the mix proportions for sulfur composites with a different 

filler content were designed at volumetric ratio. The filler volume is 20, 25, 30, 35% of the total volume 

of the sulfur composite. For each filler volume, 5 different blends from F100 to C100 were applied and 

the total mix designs are listed in Table 3.5 with their particle number density and total surface area of 

particles per volume of sulfur composite. Fig. 3.6 shows the protocol of mixing sulfur composite. 

Modified sulfur powder was placed into the heated pot. Stirring continuously, the constant heat was 

applied until modified sulfur gets fluidity. Then the filler was added into the molten sulfur and well 

mixed. After enough time to get the required temperature and homogeneity, the rheology of sulfur 

composite is measured. 
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Table 3.5 Mix design of sulfur composite 

Filler Label Sulfur (g) Cement (g) Fly ash (g) 

Particle 

number 

density 

Total surface 

area particles / 

Volume of 

sulfur 

composite 

20% 

F100 

305.6 

0 88.8 2.50 0.150 

C25F75 31.4 66.6 2.64 0.158 

C50F50 62.8 44.4 2.88 0.169 

C75F25 94.2 22.2 3.02 0.177 

C100 125.6 0 3.20 0.186 

25% 

F100 

286.5 

0 111 3.13 0.187 

C25F75 39.3 83.3 3.31 0.198 

C50F50 78.5 55.5 3.60 0.212 

C75F25 117.8 27.8 3.77 0.222 

C100 157 0 4.00 0.233 

30% 

F100 

267.4 

0 133.2 3.76 0.225 

C25F75 47.1 99.9 3.97 0.237 

C50F50 94.2 66.6 4.32 0.254 

C75F25 141.3 33.3 4.53 0.266 

C100 188.4 0 4.80 0.279 

35% 

F100 

248.3 

0 155.4 4.38 0.262 

C25F75 55.0 116.6 4.63 0.277 

C50F50 109.9 77.7 5.04 0.297 

C75F25 164.9 38.9 5.28 0.311 

C100 219.8 0 5.60 0.326 

 

 

Figure 3.6 Mix and measurement process 

3.2.2 Test protocol and temperature control 

The rheometer records shear stress induced by according shear strain, which characterize the flow 

of sulfur composite quantitatively. The samples were measured for 160 seconds and Fig. 3.7 represents 

the shear rate history over time. During the first 30 seconds, relatively lower shear rate 1 1/s is applied 

for better contact between sample and the surface of plates. After 30 seconds, the shear rate is increased 

by 5 1/s every 20 seconds from 5 to 30 1/s. During the mixing sulfur composite, the heated pot controls 

the temperature of the sample. During the measurement of rheology, as shown in Fig. 3.8 (a), the furnace 



 

14 

 

controls the temperature of sample, which surrounds the parallel plates and keeps a constant temperature 

with hot air. 

 

Figure 3.7 Shear strain rate history over times 

 

   

(a) (b) (c) 

Figure 3.8 (a) Furnace controls the sample during the measurement of rheology, (b) Parallel 

plates in furnace after loading sulfur composite, (c) Parallel plates measuring the rheology of 

sulfur composite 
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3.2.3 Rheometer - parallel plates 

The rheology of sulfur composites was measured by HAKKE MARS rheometer. Fig. 3.8 shows 

the overview of the rheometer. In detail, the samples are placed between the two plates with a diameter 

of 35 mm, called parallel plates, as described in Fig. 3.9. The parallel plate rotates with torque and 

angular velocity, which are instrument numbers recorded in the rheometer. For rheological analysis, the 

instrument numbers are needed to be converted to rheology numbers; shear stress and shear rate. The 

bottom plate is fixed and the upper plate rotates at given angular velocities. The gap size of them is set 

as 1 mm. Then, the placed sample has a shape of the cylinder like Fig. 3.9 (a). Since the bottom plate is 

fixed, the top surface of the cylinder sample, which is closest to the upper plate, has a maximum shear 

rate. From the definition of shear rate, the shear rate in the parallel plate can be expressed like below: 

 𝛾̇(1/𝑠) =
𝑉

ℎ
=

𝛺𝑟

ℎ
 (3.18) 

, where h (m) is the distance from the bottom plate and V is a linear velocity (m/s). Linear velocity is 

expressed as a product of an angular velocity Ω (rad/s) and the distance from the center r (m). As shown 

in Fig. 3.9 (b), the circumference of the top surface of the cylinder has a maximum shear rate. Like the 

maximum shear rate, the maximum shear stress occurs at the circumference of the top surface. The 

maximum shear stress τmax (Pa) caused by torque T (N·m) is express as Eq. (3.19). 

 𝜏𝑚𝑎𝑥 =
𝑇×𝑅

𝐽
=

2𝑇

𝜋𝑅3
 (3.19) 

, where R is the radius of the top surface and J is a polar moment of area, which is expressed as π/2·R4 

in the cylinder. Based on the relationship between the maximum shear rates and shear stresses measured 

by parallel plates, the rheology of samples can be measured and analyzed. 

  

(a) (b) 

Figure 3.9 (a) Parallel plates with cylindrical sulfur composite, (b) Top surface of the sample  
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3.3 Flow curve 

Flow curve describes the general flow behavior of materials, where the history of shear stress 

according to the protocol of shear strain rate is recorded. As mentioned in chapter 2, the representative 

analysis methods for linear and non-linear flow behavior are Bingham and Herschel-Bulkley models, 

both of which were applied to the result of measuring the sulfur composites.  

3.3.1 Application of Bingham model 

The yield stress and plastic viscosity of the sulfur composite were obtained by applying Bingham 

model. In the case of the sulfur composite with low filler contents, it shows linear behavior, where 

Bingham model shows a good fitting result like Fig. 3.10 (a). However, as the filler content is higher, 

the sulfur composite shows power growth, where the slope of tangent decreases as shear strain rate 

increases. The tangential slope is rapidly decreased at lower shear strain rate and gradually decreased 

at higher shear strain rate, as shown in Fig. 3.10 (b). Since the flow of higher filler contents is nonlinear, 

applying Bingham model for all rates describes the behavior of the sulfur composite inaccurately. To 

increase the accuracy of the fitting, Bingham model can be selectively applied to the certain shear strain 

rates having a small rate of change of slope. In Fig. 3.10 (d), the shear strain rate of 1~10 1/s is excluded 

due to the rate of change and the shear strain rate of 20~30 1/s is also excluded since the shear strain 

rate of 10~20 1/s shows better results like Fig. 4.1~4.5. 

  

(a) (b) 
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(c) (d) 

Figure 3.10 (a) Bingham model applied for 120°C 20% F100, (b) Herschel-Bulkley model 

applied for 140°C 35% C75F25, (c) Bingham model applied for 140°C 35% C75F25, (d) 

Bingham model applied for 140°C 35% C75F25 at the shear strain rate of 10, 15, 20 1/s 

 

3.3.2 Application of Herschel-Bulkley model 

Herschel-Bulkley model well describes the behavior of the sulfur composite with higher filler 

contents. As mentioned in Chapter 2, Herschel-Bulkley model is characterized by three model constants 

a, b, and c, which mean viscosity at the shear strain rate of 1 1/s, exponent, and yield stress, respectively. 

Fig. 3.11 describes the trend of the three model constants according to the surface area of filler particles, 

applying Herschel-Bulkley model to the sulfur composites measured in 120 °C. Compared to the trend 

of viscoisty obtained by Bingham model in Fig. 4.3, the viscosity shows a similar continuous growth 

except for C75F25 and C100 samples in each filler content. It demonstrates the effect of the surface 

area of particles to the viscosity is different depending on the range of shear strain rate. The exponents 

show the upside down reversed trend of the viscosity at 1 1/s. The yield stress of each group having the 

same total filler content has a discontinuous power growth, which trend is similar to the results analyzed 

by Bingham model in Fig 4.1. 
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(a) (b) 

 

(c) 

Figure 3.11 (a) Viscosity at shear strain rate of 1 1/s, (b) exponents, and (c) yield stress 

depending on the particle surface area 
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CHAPTER 4 – RESULT AND DISSCUSION 

 

4.1 Rheological properties: yield stress and viscosity 

4.1.1 Yield stress depending on the surface area of particles in sulfur composite 

Yield stress and plastic viscosity were measured by applying Bingham model at the shear strain 

rate of 10~20 1/s. As shown in Fig. 4.1, in the group of sulfur composites with same volume fractions 

of filler, the sulfur composite with higher cement content produces higher yield stress. However, the 

general trend of yield stress and particle surface area shows a discontinuous growth when the sulfur 

composite has a different volume fraction of filler. For example, 30% C100 (0.279 m2/cm3) and 35% 

C25F75 (0.277 m2/cm3) have similar particle surface area but the yield stress of 35% C2575 is 

remarkably low. It demonstrates the other characteristics of filler, rather than total surface area, are more 

influential in producing the yield stress of sulfur composite. As shown in Fig. 4.2, the trends of yield 

stress and particle surface area of each filler type represent a continuous power growth of yield stress. 

If the same type of filler is used, the yield stress of sulfur composites is proportional to the particle 

surface area and the volume fraction of the filler, which is consistent with the description of the yield 

stress model for suspensions. 

 

(a) 120 °C 
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(b) 140 °C 

Figure 4.1 The relationship between the yield stress of the sulfur composite and particle surface 

area of the filler based on the total amount of filler contents (a) at 120 °C (b) at 140 °C. 

 

(a) 120 °C 
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(b) 140 °C 

Figure 4.2 The relationship between the yield stress of the sulfur composite and particle surface 

of the filler based on the mixing ratio of cement and fly ash 

 

4.1.2 Viscosity depending on the surface area of particles in sulfur composite 

Fig. 4.3 shows the trend of viscosity according to the surface area of the filler particles in the 

sulfur composite. Compared to the trend in yield stress, viscosity clearly shows power growth with 

increasing surface area of filler regardless of mixing ratio between cement and fly ash. For example, 

25% C100 (0.233 m2/cm3) and 30% C25F75 (0.237 m2/cm3) have a different filler ratio of cement and 

fly ash but the viscosity of them fits well to the overall trend of viscosity according to the particle 

surface area in the sulfur composite. It demonstrates the surface area of filler particles strongly affect 

the viscosity of sulfur composite. 
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(a) 120 °C 

 

(b) 140 °C 

Figure 4.3 The relationship between the viscosity of the sulfur composite and particle surface 

area or the filler 
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4.2 Model fitting 

4.2.1 Application of yield stress model 

The factors to be considered in the yield stress model are how the model constants and the percolation 

thresholds are determined according to the characteristics of the filler. Fig. 4.4 shows the growth in 

yield stress depending on the volume fraction of the filler. For each filler type, the yield stress shows 

the power growth with the increasing volume fraction of the filler. Taking log on both sides of the model 

represents the linear behavior of yield stress in log scale, where the slope and y-intercept increase with 

the higher portion of cement. It implies the properties of the particles affect the coefficient and exponent 

in the yield stress model. From Fig. 4.4 (a)~(d), the yield stress is proportional to the volume fraction 

of the filler from 20% to 35%, which means the percolation threshold is less than 0.2 and it is negligible 

when the filler content is above 20%. 

 

(a) 120 °C 
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(b) 120 °C (log scale) 

 

(c) 140 °C 
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(d) 140 °C (log scale) 

Figure 4.4 The relationship between the yield stress of sulfur composite and the solid volume 

fraction of the filler 

4.2.2 Application of viscosity model 

In the viscosity model, relative viscosity is measured by rheometer, volume fraction was set from 

the mix design, and the maximum packing density is measured by the centrifuge test. The only unknown 

variable is intrinsic viscosity. Intrinsic viscosity indicates how much the suspended particles influence 

the rheological properties of the suspension, which varies with the shape and size distribution of 

particles. When the blends of two particles are used, the intrinsic viscosity of the blends can be 

calculated by considering the volumetric ratio and intrinsic viscosity of each particle like Eq. (4.1) [23]. 

 [η] =
𝑉𝑐𝑒𝑚

𝑉𝑐𝑒𝑚 + 𝑉𝐹𝐴

[η]𝑐𝑒𝑚 +
𝑉𝐹𝐴

𝑉𝑐𝑒𝑚 + 𝑉𝐹𝐴

[η]𝐹𝐴 (4.1) 

where, [η]cem, [η]FA, and [η] are the intrinsic viscosity of cement, fly ash, and the blends of them and Vcem 

and VFA is the volume fraction of cement and fly ash in the blends of them, respectively. Table 4.1 shows 

the intrinsic viscosity of F100 and C100 obtained from fitting the results to Krieger-Dougherty Equation 

(Eq. (2.4)). Regardless of the volume fraction of filler, the obtained intrinsic viscosities in the same 

label have a similar value and the average value of them is used for the representative value, where the 

relative viscosity is measured twice, which are ηr1 and ηr2, for each volume fraction. Based on the 

intrinsic viscosity of F100 and C100, the intrinsic viscosity of each blend of cement and fly ash is 

calculated by Eq. (2.4) and the results are shown in Table 4.2. 
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Fig. 4.5 compares the relative viscosity from Krieger-Dougherty equation and the calculated intrinsic 

viscosity and the relative viscosity measured by parallel plates. In the case of 120 °C, the measured 

relative viscosity of 30% C100 is 20.23% lower, those of 35F C25F75, C50F50, and C75F25 are 

12.42%, 29.69%, and 25.13% lower, respectively. For other samples with the relative viscosity of 8 or 

less, the measured relative viscosities are similar with the calculated relative viscosities. In the case of 

140 °C, the measured relative viscosities of 30% C75F75 and 35% C25F75, C50F50, C75F25, and 

C100 are 20.38%, 37.03%, 37.49%, 19.54%, 19.93% higher, respectively. For other samples with the 

relative viscosity of 5 or less, the measured relative viscosities and the calculated relative viscosities 

are well matched each other. 

Table 4.1. Intrinsic viscosity of C100 and F100 calculated by Krieger-Dougherty equation 

Temp. Label φ ηs1 ηs2 φm ηc ηr1 ηr2 [η]1 [η]2 [η] 

120 °C 

F100 

0.2 0.11 0.11 

0.59 0.043 

2.53 2.45 3.79 3.66 

3.80 
0.25 0.15 0.15 3.47 3.52 3.81 3.86 

0.30 0.26 0.25 5.15 5.02 3.90 3.84 

0.35 0.36 0.36 7.36 7.58 3.74 3.80 

C100 

0.20 0.14 0.14 

0.49 0.043 

3.33 3.27 4.66 4.60 

4.54 
0.25 0.23 0.23 5.28 5.27 4.74 4.73 

0.30 0.30 0.29 7.10 6.76 4.19 4.09 

0.35 0.76 0.77 17.56 18.00 4.62 4.66 

140 °C 

F100 

0.2 1.11 1.13 

0.59 0.6 

1.86 1.89 2.52 2.59 

2.85 
0.25 1.43 1.70 2.38 2.83 2.66 3.19 

0.30 1.99 2.13 3.32 3.55 2.86 3.01 

0.35 2.82 3.07 4.70 5.12 2.90 3.06 

C100 

0.20 1.44 1.57 

0.49 0.6 

2.41 2.61 3.41 3.72 

3.80 
0.25 2.14 2.21 3.56 3.68 3.62 3.71 

0.30 3.48 3.69 5.81 6.15 3.76 3.89 

0.35 7.94 7.90 13.24 13.16 4.17 4.16 

 

Table 4.2. Calculated intrinsic viscosity of each blend of cement and fly ash 

Label [η] for 120 °C [η] for 140 °C 

F100 3.799 2.850 

C25F75 3.983 3.088 

C50F50 4.168 3.327 

C75F25 4.353 3.565 

C100 4.537 3.804 
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(a) 120 °C 

 

(b) 140 °C 

Figure 4.5 The comparison of the relative viscosity predicted by Krieger-Dougherty equation 

with the relative viscosity measured by parallel plates 
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4.3 Effects of excessive use of filler to the rheology of sulfur composite 

4.3.1 Sedimentation of filler particles in sulfur composite 

Fig. 4.5 (a) represents the samples with the relative viscosity above 8 have a less relative viscosity 

than the calculated one. Since sulfur at 120 °C has quite lower yield stress and viscosity than at 140 °C, 

it has a lower capability to suspend the filler particles, which results in partial sedimentation of filler 

particles [27]. Sedimentation refers to the separation of particles and fluid, where the particles are 

relatively concentrated at the bottom place due to gravity. Since parallel plates measure the shear stress 

at the top surface of the sample, the sedimentation makes the upper part of sulfur composite more dilute 

and reduces the effect of particles on the rheological properties. 

4.3.2 Frictional interaction and hydrodynamic interaction between particles in suspension 

In suspension system, the mechanism of interaction between the suspended particles changes 

depending on the shear strain rate and the volume fraction of suspended particles [28]. For example, 

the yield stress of the freshly-mixed normal concrete with a different volume fraction of aggregates has 

a different trend depending on the range of the volume fraction. As the volume fraction of aggregates 

increases, the frictional effect of particles becomes dominant rather than hydrodynamic effect [20]. 

Frictional contact between the particles induces more increase in not only the yield stress but also 

viscosity. As shown in Fig. 4.5 (b), the samples with the relative viscosities above 5, most of which 

have 35% filler content, have a higher relative viscosity than the calculated one. It is because Krieger-

Dougherty equation is derived without considering the frictional effect of particles and has been verified 

for soft suspension, which has a lower volume fraction of particles. The sedimentation of filler and 

frictional effect, which occurred mostly above 35% filler content, contribute to the difficulty of 

performance evaluation of sulfur composite; there are 10~30% overestimate and underestimate of 

viscosity. 
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CHAPTER 5 – CONCLUSIONS 

 

5.1 Conclusions 

In this study, the effect of filler on the rheology of sulfur composites was investigated as a basic 

data for the quantitative evaluation of workability of sulfur concrete. The yield stress and plastic 

viscosity were investigated by varying the characteristics of filler in the sulfur composite such as the 

volume fraction, particle size distribution, and total surface area of the filler. In the flow curve obtained 

from the rheometer: parallel plates, the sulfur composite with low volume fraction of filler showed a 

linear behavior and the sulfur composite with high volume fraction of filler had a nonlinear behavior. 

Analysis of the flow curve through the Bingham model and Herschel Bulkley model represented the 

application of the Bingham model at a shear strain rate of 10 to 20 1/s best describes the effect of filler 

characteristics on rheological properties. The yield stress tends to increase with the surface area of the 

filler when the total amount of filler is constant, and the yield stress increases discontinuously with 

respect to the surface are of the filler in overall. In terms of volume fraction, the yield stress of sulfur 

composite with the same type of filler shows continuous power growth. Applying the conventional yield 

stress model represents model constants, the coefficient and exponent, were depending on the type of 

filler. It demonstrates the yield stress of sulfur composite is described mainly by volume fraction and 

the degree of increase in yield stress is depending on the type of the filler. The viscosity of sulfur 

composite shows continuous power growth with the increasing the surface of filler particles regardless 

of the type of filler. It demonstrates the viscosity of sulfur composite is mainly affected by the surface 

area of the filler. In Krieger-Dougherty model, the intrinsic viscosity is characterized by the type of 

filler. The intrinsic viscosity of blends of two type of filler can be predicted by considering the 

volumetric ratio and the intrinsic viscosity of each type of filler. The predicted intrinsic viscosity and 

Krieger-Dougherty model produced the calculated (predicted) relative viscosities of the sulfur 

composite. Generally, the sulfur composites with the volume fraction of the filler of 30% or less at both 

120 and 140 °C show good agreement with the predicted relative viscosity and the measured relative 

viscosity. When the filler is added excessively like the sulfur composites with the volume fraction of 

35%, the sedimentation or frictional interaction between the filler particles occurs depending on the 

rheological properties of the suspending sulfur. The models for the rheological properties of the 

suspension were well applied to the sulfur composite within the range of proper addition of filler. Thus, 

sulfur composites are considered as suspensions and various suspension theories can be applied to the 

sulfur composite. 
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APPENDIX 

 

The relationship between shear stress and shear strain rate of sulfur composite at 120 °C 

20% 

F100 C25F75 C50F50 C75F25 C100 

τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) 

0.251  1 0.394  1 0.479  1 0.690  1 1.178  1 

0.798  5 0.946  5 1.088  5 1.429  5 2.307  5 

1.348  10 1.499  10 1.650  10 2.056  10 3.173  10 

1.887  15 2.035  15 2.167  15 2.649  15 3.897  15 

2.400  20 2.561  20 2.685  20 3.183  20 4.580  20 

2.936  25 3.065  25 3.175  25 3.711  25 5.229  25 

3.474  30 3.555  30 3.666  30 4.195  30 5.834  30 

25% 

F100 C25F75 C50F50 C75F25 C100 

τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) 

0.476  1 0.686  1 1.333  1 2.371  1 2.738  1 

1.178  5 1.365  5 2.229  5 3.566  5 4.696  5 

1.927  10 2.122  10 3.040  10 4.518  10 5.990  10 

2.684  15 2.825  15 3.911  15 5.395  15 7.172  15 

3.418  20 3.557  20 4.715  20 6.245  20 8.255  20 

4.163  25 4.266  25 5.512  25 7.117  25 9.154  25 

4.936  30 4.947  30 6.292  30 7.899  30 10.186  30 

30% 

F100 C25F75 C50F50 C75F25 C100 

τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) 

0.733  1 1.619  1 2.839  1 6.198  1 6.807  1 

1.714  5 2.737  5 4.227  5 8.812  5 9.735  5 

2.821  10 3.996  10 5.594  10 10.664  10 11.790  10 

3.882  15 5.237  15 6.930  15 12.302  15 13.398  15 

4.978  20 6.518  20 8.326  20 13.891  20 14.841  20 

6.081  25 7.823  25 9.678  25 15.325  25 16.250  25 

7.186  30 9.160  30 11.095  30 16.809  30 17.410  30 

35% 

F100 C25F75 C50F50 C75F25 C100 

τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) 

1.186  1 2.745  1 5.693  1 11.943  1 17.347  1 

2.602  5 4.171  5 7.425  5 15.147  5 27.427  5 

4.193  10 5.894  10 9.182  10 17.525  10 32.913  10 

5.798  15 7.665  15 10.984  15 19.878  15 37.051  15 

7.454  20 9.476  20 12.807  20 22.294  20 40.654  20 

9.110  25 11.305  25 14.649  25 24.724  25 43.957  25 

10.767  30 13.161  30 16.510  30 27.153  30 47.073  30 

 

 

 



 

 

 

The relationship between shear stress and shear strain rate of sulfur composite at 140 °C 

Several samples are measured at the shear strain rate of 1~60 1/s 

20% 

F100 C25F75 C50F50 C75F25 C100 

τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) 

1.298  1 1.828  1 2.139  1 2.419  1 2.052  1 

11.999  10 14.589  10 16.596  10 17.927  10 16.561  10 

23.313  20 27.506  20 31.082  20 32.524  20 30.996  20 

34.309  30 39.604  30 44.648  30 45.921  30 44.920  30 

45.057  40 51.022  40 57.596  40 58.440  40 58.325  40 

55.522  50 62.050  50 69.784  50 69.924  50 70.985  50 

65.621  60 73.329  60 81.700  60 80.959  60 83.046  60 

25% 

F100 C25F75 C50F50 C75F25 C100 

τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) 

2.249  1 3.246  1 3.616  1 4.332  1 6.238  1 

10.030  5 22.298  10 21.028  10 2.516  5 19.350  5 

18.969  10 41.523  20 37.341  20 2.022  10 32.162  10 

27.578  15 59.895  30 52.455  30 1.799  15 43.750  15 

36.856  20 77.481  40 66.850  40 1.653  20 54.251  20 

45.265  25 94.113  50 80.660  50 1.558  25 64.361  25 

53.417  30 110.905  60 94.308  60 1.484  30 73.876  30 

30% 

F100 C25F75 C50F50 C75F25 C100 

τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) 

3.505  1 5.907  1 7.473  1 15.739  1 14.507  1 

13.970  5 20.104  5 39.895  10 41.851  5 39.121  5 

23.615  10 31.292  10 68.042  20 62.681  10 61.190  10 

34.378  15 44.803  15 93.952  30 81.662  15 80.402  15 

43.562  20 55.252  20 118.480  40 102.716  20 98.081  20 

53.470  25 67.742  25 142.360  50 119.443  25 114.700  25 

62.417  30 78.027  30 166.270  60 135.032  30 130.585  30 

35% 

F100 C25F75 C50F50 C75F25 C100 

τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) τ (Pa) γ̇ (1/s) 

5.746  1 9.494  1 24.668  1 22.133  1 28.964  1 

21.590  5 36.069  5 60.002  5 65.298  5 86.563  5 

39.290  10 65.298  10 93.034  10 104.125  10 141.862  10 

55.017  15 93.239  15 123.480  15 138.020  15 177.391  15 

69.919  20 119.465  20 156.659  20 168.855  20 220.821  20 

82.354  25 141.800  25 179.733  25 197.570  25 262.110  25 

93.490  30 162.330  30 201.176  30 225.180  30 301.682  30 
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