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Abstract 

 

We propose DropMax, a stochastic version of softmax classifier which at each iteration drops non-target 

classes with some probability, for each instance. Specifically, we overlay binary masking variables over 

class output probabilities, which are learned based on the input via regularized variational inference. 

This stochastic regularization has an effect of building an ensemble classifier out of exponential number 

of classifiers with different decision boundaries. Moreover, the learning of dropout probabilities for 

non-target classes on each instance allows the classifier to focus more on classification against the most 

confusing classes. We validate our model on multiple public datasets for classification, on which it 

obtains improved accuracy over regular softmax classifier and other baselines. Further analysis of the 

learned dropout masks shows that our model indeed selects confusing classes more often when it 

performs classification. 

 

 

 

1.  Introduction 

 

Deep learning models have shown impressive performances on classification tasks. However, most of 

the efforts thus far have been made on improving the network architecture, while the predominant 

choice of the final classification function remained to be the basic softmax regression. Relatively little 

research has been done here, except for few works that propose variants of softmax function, such as 

Sampled Softmax (Jean et al., 2014), Spherical Softmax (de Br ébisson & Vincent, 2016), and 

SparseMax (Martins & Fernandez Astudillo, 2016). However, they either do not target accuracy 

improvement or obtains improved accuracy only on certain limited settings. 

 

In this paper, we propose a novel variant of softmax classifier that achieves improved accuracy over 

the regular softmax function by leveraging the popular dropout regularization, which we refer to as 

DropMax. At each stochastic gradient descent step in network training, DropMax classifier applies 

dropout to the exponentiations in the softmax function, such that we consider the true class and a 

random subset of other classes to learn the classifier. At each training step, this allows the classifier to 

be learned to solve a distinct subproblem of the given multi-class classification problem, enabling it to 

focus on discriminative properties of the target class relative to the sampled classes. Finally, when 

training is over, we can obtain an ensemble of exponentially many classifiers with different decision 

boundaries. 
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Figure 1: concept. (a) shows conceptual network structure of Dropmax for fine-grained recognition. 

(b) shows classification boundary of existing models (up) and of Dropmax (bottom). 

 

Moreover, when doing so, we further exploit the intuition that some classes could be more important 

in reducing the confusion between an instance with all others, as they may be more confused with the 

target class. For instance in Figure 1(a), an instance of class cheetah is likely to be more confused 

with class leopard and jaguar, than with less relevant classes such as class poalr bear or humpback 

whale. Thus, we extend our classifier to learn the probability of dropping non-target classes, for each 

instance, such that the stochastic classifier can consider classification between confused classes more 

often than others, as in Figure 1(b).  

 

The proposed adaptive class dropout can be also viewed as stochastic attention mechanism, that 

selects a subset of classes each instance should attend to for it to be well discriminated from any of the 

false classes. It also in some sense has similar effect as boosting, since learning a classifier at each 

iteration with randomly selected non-target classes can be seen as learning a weak classifier, which is 

combined into a final strong classifier that solves the complete multi-class classification problem with 

the weights provided by the class retain probabilities learned for each input. 

 

Our regularization is generic and can be applied even to networks on which the regular dropout is 

ineffective, such as ResNet, to obtain improved performance. We validate our regularization on 

multiple public datasets for classification, on which it obtains substantial accuracy improvements. 

 

Our contributions are two-folds: 

- We propose a novel stochastic softmax function, DropMax, that randomly drops non-target 

classes when computing the class probability for each input instance. 

- We further propose a variational inference model to learn the dropout probability for each 

class adaptively for each input, which allows our stochastic classifier to consider highly 

confused non-target classes more often than others. 
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2. Related Work 

 

Subset sampling with softmax  Several existing works propose to consider only a partial subset of 

classes to compute the softmax, as done in our work. The main motivation is on improving the 

efficiency of the computation, as matrix multiplication for computing class logits is expensive when 

there are too many classes to consider. For example, the number of classes (or words) often exceeds 

millions in language translation task. Usual practice is to use a shortlist of 30K to 80K the most 

frequent target words to reduce the inherent scale of the classification (Bahdanau et al., 2014; Luong 

et al., 2014). Further, to leverage the full vocabularies, Jean et al. (2014) propose to calculate 

imporance of each word with a deterministic function and select top-K among them. On the other 

hand, Martins & Fernandez Astudillo (2016) suggest a new softmax variant that can generate sparse 

class probabilities, which has a similar effect to aforementioned models. Our model also works with 

subset of classes, but the main difference is that our model selects non-target classes randomly with 

learned probabilities at each iteration with the goal of obtaining an ensemble network in a single 

training step, for improved classification performance. 

 

Learning dropout probability  Dropout (Srivastava et al., 2014) randomly drops out neurons at 

each iteration of a stochastic gradient descent, to achieve the effect of ensemble learning by 

combining exponentially many networks learned during training. The dropout rate 𝜌 is a tunable 

parameter via cross-validation. However, some recently proposed models allow to learn the dropout 

probability in the training process. Variational dropout (Kingma et al., 2015) assumes that each 

individual weight has independent Gaussian distribution with mean 𝜇 and variance 𝜎2, which are 

trained with reparameterization trick. Due to the central limit theorem, such Gaussian dropout is 

identical to the binary dropout, with much faster convergence (Srivastava et al., 2014; Wang & 

Manning, 2013). Molchanov et al. (2017) show that variational dropout that allows infinite variance 

results in sparsity, whose effect is similar to automatic relevance determination(ARD). All the 

aforementioned work deals with the usual posterior distribution not dependent on input at test time. 

On the other hand, adaptive dropout (Ba & Frey, 2013) learns input dependent posterior at test time 

by overlaying binary belief network on hidden layers. Whereas approximate posterior is usually 

assumed to be decomposed into independent components, adaptive dropout allows us to overcome it 

by learning correlations between network components in the mean of input dependent posterior. 

Recently, Gal et al. (2017) proposed to train dropout probability 𝜌 of each layer for accurate 

estimation of model uncertainty, by reparameterizing Bernoulli distribution with continuous 

relaxation Maddison et al. (2016). 
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Stochastic gradient variational bayes  When we model latent variables in neural networks to find 

relationship between variables, approximate inference is used due to the nonlinear dependency among 

variables. (Kingma & Welling, 2013) proposes to assume a gaussian latent variable 𝐳 that generates 

data 𝐱, and maximize the evidence lower bound with reparameterization trick. Optimization is 

straightforward via stochastic gradient descent. Whereas VAE assumes conditional distribution 

𝑝(𝐱|𝐳), (Sohn et al., 2015) suppose a latent variable 𝐳 dependent on input 𝐱, thus having 𝑝(𝐳|𝐱). 

Then label 𝑦 is generated from 𝑝(𝑦|𝐱, 𝐳), allowing the model to generate input dependent output 

predictions. The framework of (Sohn et al., 2015) coincides to ours, but they consider quite different 

problems to ours and consider only gaussian latent variables. 

 

 

 

3. Approach 

 

We first introduce the general problem setup. Suppose we have a dataset with 𝑁 instances,  

𝒟 = {(𝐱𝑖, 𝑦𝑖) ∶ 𝐱𝑖 ∈ ℝ𝑑 , 𝑦𝑖 ∈ {1, … , 𝑇}}
𝑖=1

𝑁
 

where 𝑑 is the data dimension and 𝑇 is the number of classes to predict. Further suppose a neural 

network with weight matrices and biases 𝝎 = {(𝐖1, 𝐛1), … , (𝐖𝐿, 𝐛𝐿)} for 𝐿 layers. The number 

of neurons for the layer 𝑙 = 1, … , (𝐿 − 1) is 𝐾1, … , 𝐾L−1 respectively, and We have T neurons, 𝐨 =

(𝑜1, 𝑜2, … , 𝑜𝑇), the last layer which are the logits (or scores) for T classes. 

 

As mentioned in the introduction, we propose to randomly drop out exponentiations of output logits, 

exp(𝑜1) , … , exp(𝑜𝑇) at the training phase, with the motivation of learning an ensemble of 

exponentially many classifiers in a single training. Dropout (Srivastava et al., 2014) has been 

developed with a similar motivation, but our model promotes even stronger diversity among the 

learned models, by enforcing them to consider different subproblems of the multi-class classification 

at each stochastic gradient descent step. 

 

To this end, we introduce a dropout binary mask vector 𝑧𝑡 with retain probability 𝜌𝑡, which is one 

minus the dropout probability for each class 𝑡. 𝜌𝑡 can be simply set to some predefined probability, 

such as 0.5, or can be further learned end-to-end to consider which classes are the most relevant for 

the correct classification given each instance. In the next subsection, we describe our stochastic 

version of softmax function, which we refer to as Dropmax, along with the method to learn the retain 

probabilities. 

(1) 
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3.1  DropMax 

 

 

Figure 2: Contour plots of softmax and Dropmax with different retain probabilities. For Dropmax, we 

sampled the Bernoulli variables for each data point with fixed probabilities. 

 

The original form of the softmax classifier is written as 

𝑝(𝑦|𝐱) =  
exp (𝑜𝑦(𝐱; 𝝎))

∑ exp(𝑜𝑡(𝐱; 𝝎))𝑡=1

  , 

where 𝑜𝑡(𝐱; 𝝎) is an output logit for class 𝑡. One can easily see that if exp(𝑜𝑡(𝐱; 𝝎)) = 0, then 

class 𝑡 is excluded from the classification and the gradients are not back-propagated from it. From 

this observation, in dropmax, we randomly drop {exp(𝑜1) , … , exp(𝑜𝑇)} based on Bernoulli trials. 

𝑧𝑡  ~ Bern(𝜌𝑡) ,      𝑝(𝑦|𝐱, 𝐳; 𝝎) =
𝑧𝑦 exp (𝑜𝑦(𝐱; 𝝎))

∑ 𝑧𝑡 exp(𝑜𝑡(𝐱; 𝝎))𝑡=1

 . 

Figure 2 illustrates the contour of this dropmax function with different retain probabilities. However, 

if we drop the classes based on purely random Bernoulli trials, we may exclude the classes that are 

important for the classification. Especially, the target class 𝑡∗ of a given instance should not be 

dropped, but we cannot manually set retain probabilities 𝜌𝑡∗ = 1 since the target classes differ for 

each instance, and more importantly, we do not know them at test time. We also want the retain 

probabilities 𝜌1, … , 𝜌𝑇 to encode meaningful correlations between classes, so that the highly 

correlated classes may be dropped or not dropped together. 

 

To resolve this issue, we adopt the idea of Adaptive Dropout (Ba & Frey, 2013). We let the retain 

probability to be a function taking the input 𝐱. More specifically, we model it as a neural network 

taking the activations of the last layers of the classification network, 

𝜌𝑡(𝐱; 𝝂) = Sigm(𝐕T𝐡𝐿−1(𝐱) + 𝐜) , 

with additional parameters 𝝂 = {(𝐕, 𝐜)}. By learning 𝝂, we expect these retain probabilities to be 

high for the target classes of given inputs, and consider important relations between classes. Based on 

this retain probability network, the Dropmax is defined as follows. 

(2) 

(3) 

(4) 
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𝑧_𝑡 |𝐱 ~ Bern(𝜌𝑡(𝐱; 𝝂)),    𝑝(𝑦|𝐱, 𝐳; 𝝎) =
𝑧𝑦 exp (𝑜𝑦(𝐱; 𝝎))

∑ 𝑧𝑡 exp(𝑜𝑡(𝐱; 𝝎))𝑡

 

The main difference of our model with (Ba & Frey, 2013) is that, unlike in the adaptive dropout where 

the neurons of intermediate layers are dropped, we drop class logit exponentiations. As we stated earlier, 

this is a critical difference, because by dropping the classes we let the model to learn different (sub)-

problems at each iteration, while in the adaptive dropout we train different models at each iteration. Of 

course, our model can be extended to let it learn the dropout probabilities for the intermediate layers, 

but it is not our primary concern here. Note that the dropmax can easily be applied to any type of neural 

networks, such as convolutional neural nets or recurrent neural nets, if they have the softmax output for 

the last layer. This generality is another benefit of our approach compared to the (adaptive) dropout that 

are reported to degrade the performance when used in the intermediate layers of convolutional or 

recurrent neural networks carelessly. 

 

One limitation of (Ba & Frey, 2013) is the use of heuristics to learn the dropout probabilities that may 

possibly result in high variance gradients during training. Instead, we use a continuous relaxation of 

discrete random variables, which is called concrete distribution (Maddison et al., 2016). It allows us to 

back-propagate through the (relaxed) Bernoulli random variables 𝑧𝑡 to compute the gradients of 𝝎 

(Gal et al., 2017). 

𝑧𝑡 = Sigm {
1

𝜏
(log

𝜌𝑡(𝐱; 𝝂)

1 − 𝜌𝑡(𝐱; 𝝂)
+ log

𝑢

1 − 𝑢
)} ,        𝑢 ~ Unif (0, 1) 

The temperature parameter 𝜏 is usually set to 0.1, which determines the degree of probability mass 

concentration towards 0 and 1. The uniform random variable 𝑢 is sampled every iteration. 

 

 

4. Efficient Approximate Inference for DropMax 

 

In this section, we provide the general learning framework for Dropmax. For notational simplicity, we 

first define 𝐗, 𝐲, 𝐙  to denote the concatenations of 𝐱𝑖 , 𝑦𝑖  and 𝐳𝑖  over all training instances 

(𝑖 = 1, … , 𝑁).  Since our model in (5) involves nonlinear dependencies among variables, the 

computation of exact posterior distribution 𝑝(𝐙|𝐲, 𝐗) is intractable, and hence the log-likelihood of 

our observation 𝐲|𝐗 cannot be directly maximized via exact algorithms such as EM. We instead resort 

to the standard variational inference where the parameter 𝜽 = {𝝎, 𝝂} is optimized with respect to the 

evidence lower bound (ELBO): 

(5) 

(6) 
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log 𝑝(𝐲|𝐗; 𝜽) ≥ ∑{𝔼𝑞(𝐳𝑖|𝐱𝑖, 𝑦𝑖) [log 𝑝(𝑦𝑖|𝒛𝑖, 𝒙𝑖; 𝝎) − KL[𝑞(𝐳𝑖|𝐱𝑖, 𝑦𝑖)||𝑝(𝐳𝑖|𝐱𝑖; 𝜽)]]}

𝑁

𝑖=1

 . 

Here, 𝑞(𝐳|𝐱, 𝑦) is a variational distribution to approximate the true posterior 𝑝(𝐳|𝐱, 𝑦; 𝜽). Following 

the recent advances in the stochastic variational inference, we apply the reparametrization trick in (6) 

for our model, and the ELBO can be approximated by Monte-Carlo sampling as follows: 

1

S
∑ ∑ log 𝑝 (𝑦𝑖|𝐳𝑖

(𝑠)
, 𝐱𝑖; 𝝎) + log 𝑝 (𝐳𝑖

(𝑠)
|𝐱𝑖; 𝜽) − log 𝑞 (𝐳𝑖

(𝑠)
|𝐱𝑖 , 𝑦𝑖)

𝑁

𝑖=1

𝑆

𝑠=1

,      𝐳𝑖
(𝑠)

 ~  𝑞(𝐳𝑖|𝐱𝑖 , 𝑦𝑖) . 

 

4.1  Regularized Variational Inference 

 

Out of several tractable options, we define 𝑞(𝐳|𝐱, 𝑦) in the following simple but practically successful 

form: 

𝑞(𝐳𝑖|𝐱𝑖 , 𝑦𝑖) = ∏{𝛿𝑡(𝑧𝑖,𝑡)𝕀{𝑦𝑖=𝑡} + 𝕀{𝑦𝑖≠𝑡}𝑝(𝑧𝑖,𝑡|𝐱𝑖; 𝜽)} 

𝑇

𝑡=1

 

where 𝛿𝑡(𝐳𝑖) is the delta function defined as 1 if 𝑡-th element of 𝐳𝑖 is 1, and 0 otherwise. In other 

words, we set the variational distribution to have 𝑧𝑡 = 1 for target class 𝑡 and to be the same as the 

prior 𝑝(𝐳|𝐱; 𝜽) for other classes. In fact, (9) is our deliberate choice in that the corresponding inference 

coincides with the approximated maximum likelihood estimation, as we will show later. Armed with 

(9), the KL-divergence term nicely reduces to 

KL[𝑞(𝐳𝑖|𝐱𝑖, 𝑦𝑖)||𝑝(𝐳𝑖|𝐱𝑖; 𝜽)] = − ∑ 𝕀{𝑦𝑖=𝑡} log 𝜌𝑡(𝒙𝑖; 𝜽)

𝑇

𝑡=1

  . 

so that it encourages the retain probabilities of the target classes to be 1. Now, the ELBO in (8) can 

be rewritten as 

1

S
∑ ∑ log 𝑝 (𝑦𝑖|𝐳𝑖

(𝑠)
, 𝐱𝑖; 𝝎)

𝑁

𝑖=1

𝑆

𝑠=1

+ ∑ ∑ 𝕀{𝑦𝑖=𝑡} log 𝜌𝑡(𝐱𝑖; 𝜽)

𝑇

𝑡=1

𝑁

𝑖=1

,      𝐳𝑖
(𝑠)

 ~ 𝑞(𝐳𝑖|𝐱𝑖, 𝑦𝑖) . 

An alternate view to construct (11) is approximating the maximum likelihood estimation. The 

loglikelihood of observations 𝐲 and 𝐳𝑡  =  1 (target mask variables) is given by 

log 𝑝(𝐲, 𝐳𝑡|𝐗; 𝜽) = log ∑ 𝑝(𝐲, 𝐳|𝐗; 𝜽)

𝐳\t

= log ∑ 𝑝(𝐲, 𝐳|𝐗; 𝝎)𝑝(𝐳𝑡|𝐗; 𝜽)𝑝(𝐳\𝑡|𝐗; 𝜽)

𝐳\t

 

where 𝐳\𝑡 is the concatenation of mask variables for non-target classes. This quantity can be lower 

bounded as 

log 𝔼
𝑝(𝑧\𝑡|𝐗; 𝜽)

[𝑝(𝐲|𝐳, 𝐗; 𝝎)𝑝(𝐳𝑡|𝐗; 𝜽)] ≥ 𝔼
𝑝(𝐳\𝑡|𝐗; 𝜽)

[log(𝑝(𝐲|𝐳, 𝐗; 𝝎)𝑝(𝐳𝑡|𝐗; 𝜽))] 

which coincides with (11) if we apply Monte-Carlo approximation for 𝑝(𝑧\𝑡|𝐗; 𝜽). 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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Our final ingredient for approximate inference is the regularization to complement crude 

approximations in (9) especially for non-target outputs (they are simply set as the prior). Following (Gal 

et al., 2017), we regularize the retain probabilities of non-target classes to have high entropies in order 

to avoid trivial mapping such as 𝑝(𝐳|𝐗; 𝜽) = 1 at all times, 

Ω(𝜽) = −λ ∑ ∑ 𝕀{𝑦𝑖≠𝑡}(𝜌𝑡(𝐱; 𝜽) log 𝜌𝑡(𝐱; 𝜽) + (1 − 𝜌𝑡(𝐱; 𝜽)) log(1 − 𝜌𝑡(𝒙; 𝜽)))

𝑇

𝑡=1

 

𝑁

𝑖=1

 

where λ  is a hyperparameter to control the amount of regularization. Combining the variational 

inference objective with the regularization term, our final objective function is 

ℒ(θ) = ∑ [
1

𝑆
∑ log 𝑝 (𝑦𝑖|𝐳𝑖

(𝑠)
, 𝐱𝑖; 𝝎)

𝑆

𝑠=1

𝑁

𝑖=1

+ ∑{𝕀{𝑦𝑖=𝑡} log 𝜌𝑡(𝐱𝑖; 𝜽)

𝑇

𝑡=1

− 𝜆𝕀{𝑦𝑖≠𝑡}(𝜌𝑡(𝐱𝑖; 𝜽) log 𝜌𝑡(𝐱𝑖; 𝜽) + (1 − 𝜌𝑡(𝐱𝑖; 𝜽)) log(1 − 𝜌𝑡(𝐱𝑖; 𝜽)))}] , 

where 𝐳𝑖
(𝑠)

~ 𝑞(𝐳𝑖|𝐱𝑖, 𝑦𝑖). We optimize this objective function via stochastic gradient descent, where 

we sample mini-batches to evaluate unbiased estimates of gradients. We found that in practice the single 

sample (𝑆 =  1) is enough to get the stable gradients. 

 

4.2  Prediction 

 

Having trained parameter 𝜽, the prediction for new test input 𝐱∗, is given as follows: 

𝑦∗ = arg max
𝑦

𝑝(𝑦|𝐱∗; 𝜃) = arg max
𝑦

𝔼𝑝(𝐳|𝐱∗; 𝜽) [
𝑧𝑦 exp (𝑜𝑦(𝐱∗; 𝝎))

∑ 𝑧𝑡 exp(𝑜𝑡(𝐱∗; 𝝎))𝑡

] 

Evaluating the exact expectation over the dropout masks 𝐳 is computationally prohibitive, so we 

consider the Monte-Carlo approximation as follows: 

𝑦∗ = arg max
𝑦

1

𝑆
∑ [

𝑧𝑦
(𝑠)

exp (𝑜𝑦(𝐱∗; 𝝎))

∑ 𝑧𝑡
(𝑠)

exp(𝑜𝑡(𝐱∗; 𝝎))𝑡

]

𝑆

𝑠=1

,     𝐳(𝑠) ~ 𝑝(𝐳|𝐱∗; 𝜽) . 

Alternatively, we may approximate the expectation by a simple heuristic where we put the expectation 

inside the softmax function, as many practitioners do for dropout: 

𝑦∗ = arg max
𝑦

𝜌𝑦(𝐱∗; 𝜽) exp (𝑜𝑦(𝐱∗; 𝝎))

∑ 𝜌𝑡(𝐱∗; 𝜽) exp(𝑜𝑡(𝐱∗; 𝝎))𝑡

 . 

(15) 

(14) 

(16) 

(17) 

(18) 
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5. Experiments 

 

Baselines and our models  We first introduce relevant baselines and our models. 

1) Base Network. The baseline CNN network, that only uses the hidden unit dropout at fully connected 

layers, or no dropout regularization at all if the network does not have fully connected layers other than 

the last layers, as in the case of ResNet (He et al., 2016). 

2) Sampled Softmax.  Base network with sampled softmax (Jean et al., 2014). The sampling function 

𝑄(𝑦|𝐱) is either uniformly distributed or learned during training. At training time, the number of non-

target classes to be randomly selected is set to one of {20%;  40%;  60%} of total classes, while target 

class is always selected. At testing time, class probabilities are obtained from (2). 

3) Sparsemax.  Base network with Sparsemax loss proposed by Martins & Fernandez Astudillo 

(2016), which produces sparse class probabilities. 

4) Random Dropmax.  Our all-random DropMax, where each non-target class is randomly dropped 

out with a predefined retain probability 𝑝 ∈  {0.2, 0.4, 0.6} at training time. At test time, we perform 

prediction with 30 or 100 random dropouts, and then average out class probabilities to select the class 

with maximum probability. We also report the performance based on (2), without sampling. 

5) Adaptive Dropmax.  Our adaptive stochastic softmax, where each class is dropped out with input 

dependent probabilities trained from the data. The entropy scaling parameter λ is found among 3 to 5 

values such as {100, 10−1, 10−2, 10−3, 10−4}. 

 

For random and adaptive dropmax, we considered two different approaches mentioned in Section 4.2 

to compute the dropout masks: 1) using test-time sampling in (17), and 2) using an approximate 

expectation in (18). 

 

Datasets and base networks  We validate our method on multiple public datasets for classification, 

with different network architecture for each dataset. 

1) MNIST.  This dataset consists of 60,000 images that describe hand-written digits from 0 to 9. We 

experiment with varying number of training instances: 1K, 5K, and 55K. The validation and test set has 

5K and 10K instances, respectively. As for the base network, we use the CNN provided in the 

Tensorflow Tutorial, which has a similar structure to LeNet. 

2) CIFAR-10.  This dataset consists of 10 generic object classes, which for each class has 5000 images 

for training and 1000 images for test. We use ResNet-34 (He et al., 2016) as the base network, which 

has 32 Conv layers. 

3) CIFAR-100.  This dataset consists of 100 generic object classes. It has 500 images for training and 

100 images are for test for each class. We use the same base network as CIFAR-10. 
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4) AWA. This is a dataset for classifying different animal species (Lampert et al., 2009), that contains 

30,475 images from 50 animal classes such as cow, fox, and humpback whale. For each class, we used 

50 images for test, while rest of the images are used as training set. The resultant training set is quite 

imbalanced between classes. We used AlexNet (Krizhevsky et al., 2012) pretrained on ImageNet as the 

base network. 

 

Experimental Setup Here we briefly mention about the experimental setup for MNIST dataset. The 

number of iteration is 20k with batch size 50. We use Adam optimizer (Kingma & Ba, 2014), with 

learning rate starting from 10−4 . The ℓ2  weight decay parameter is searched in the range of 

{0, 10−4, 10−3, 10−2}. All other hyper-parameters are found with separate validation set. Our model is 

implemented using Tensorflow Abadi et al. (2016) library, and we will release our codes upon 

acceptance of our paper, for reproduction. 

 

Table 1: Test classification error (%). The first three columns are results on MNIST dataset. For MNIST, 

the reported number is median of 3 runs. For other dataset, the reported numbers are onetime runs. 
 

Models 1K 5K 55K C10 C100 AwA 

Base Network 7.17 2.19 0.84 7.97 30.81 26.77 

Sampled Softmax (uniform Q) 7.48 2.17 0.91 8.29 30.52 28.04 

Sampled Softmax (learned Q) 7.62 2.45 0.85 8.37 30.58 26.60 

Sparsemax 6.84 2.28 0.82 7.73 31.54 28.41 

Deterministic-Attention 7.15 2.17 0.70 7.64 29.60 26.85 

Random-Dropmax (17) 7.11 2.23 0.89 8.88 30.84 27.55 

Random-Dropmax (18) 7.43 2.33 0.89 8.09 30.35 26.81 

Adaptive-Dropmax (17) 6.56 1.96 0.77 7.49 29.56 26.40 

Adaptive -Dropmax (18) 6.59 1.95 0.75 7.47 29.58 26.44 

 

5.1  Quantitative Evaluation 

 

Multi-class classification.  We report the classification performances of our models and the 

baselines in Table 1. The results show that the variants of softmax function such as SparseMax and 

Subset Sampling perform similarly to the original softmax function (or worse). Random dromax also 

performs similarly, except for MNIST-55K. On the other hand, our adaptive DropMax significantly 

outperforms the baseline models, consistently across all datasets, either when using test-time sampling 

or using the approximation. 

 

Adaptive dropmax obtains higher accuracy gains on CIFAR-100 that has larger number of classes, 
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which is reasonable since with larger number of classes, classes are more likely to get confused on 

which case our stochastic attention-like mechanism becomes helpful. Further, having larger number 

of classes allows the model to explore larger number of ensembles. On MNIST dataset, we also 

observe that the adaptive dropmax is more effective when number of training instances is small, 

which we attribute to the advantage of variational inference. 

 

Convergence rate.  We examine the convergence rate 

of our model against the base network with regular 

softmax function. Figure 3 shows the plot of cross 

entropy loss computed at each training step, on CIFAR-

100 dataset. To reduce the variance of 𝐳, we plot 𝝆 

instead (training is done with z). Despite of stochasticity 

and sampling process of z, Dropmax shows almost the 

same convergence rate to the base model, and shows 

slightly lower test loss, preventing overfitting.  

 

5.2  Qualitative Analysis 

 

We further perform qualitative analysis of our model to see how exactly it works and where the 

accuracy improvements come from. 

 

Figure 4: Visualization of class dropout probabilities for example test instances from MNIST dataset. 

(a) and (b) shows estimated class retain probability for easy and difficult test instances respectively, 

where the last column of (b),  �̂�𝐵 are the predictions from the baseline model. (c) shows generated 

retain masks from (b). (d) shows the average retain probability per class for hard instances. (e) shows 

examples from CIFAR-100 dataset with top-4 and bottom-2 retain probabilities. Red color denotes 

base model predictions. 

 

Figure 4(a) shows the retain probabilities estimated for easy examples, in which case the model set the 

Figure 3: Convergence plot 
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retain probability to be high for the true class, and evenly low for non-target classes. Thus, when the 

examples are easy, the dropout probability estimator works like a second classifier. However, for 

difficult examples in Figure 4(b) that is missclassified by the base softmax function, we observe that 

the retain probability is set high for the target class and few other candidates, as this helps the model 

focus on the classification between them. For example, instances from class 9 set high retain 

probability for class 4, since their handwritten characters looks somewhat similar to number 9. In 

general, instances in the same class tend to have similar class dropout pattern (e.g. class 9). However, 

the retain probability could be set differently even across the instances from the same class, which 

makes sense since even within the same class, different instances may get confused with different 

classes. For instance, for the first instance of 2, the classes with high retain probability are 1, which is 

somewhat confused with it. However, for the second instance of 2, the network set class 7 and 8 with 

high retain probability as this particular instance looks like 7 or 8. 

 

Similar behaviors can be observed on CIFAR-100 dataset (Figure 4(e)) as well. As an example, for 

class boy, dropmax set the retain probability high on class boy, baby, and girl, which shows that it 

attends to most confusing classes and enables the model to focus on fine-grained classification. 

 

We further examine the class-average dropout probabilities for each class in MNIST dataset in Figure 

4(d). We observe that some classes (3, 5, 9) are more often retained than others, as they often get 

confused with the other classes, while classes that are easily distinguishable from others, such as 

classes (0, 1), are retained with very low probability. This asymmetry allows the network to focus 

more on those most often confused classes, which in turn will enable the network to learn a more 

accurate decision boundary. 

 

 

6. Conclusion 

 

We proposed a stochastic version of a softmax function, DropMax, that randomly drops some 

nontarget classes at each iteration of the training step. DropMax enables to build an ensemble over 

exponentially many classifiers with high diversity, that provide different decision boundaries. We 

further proposed to learn the class dropout probabilities based on the input, such that it can consider 

the discrimination of each instance against more confused classes. We cast this as a Bayesian learning 

problem and present how to optimize the parameters through variational inference. We validate our 

model on multiple public datasets for classification, on which our method obtains consistent 

performance improvements over the base models. Our method also converges fast and incurs 
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marginal extra training cost. Further qualitative analysis shows that it can learn dropout mask 

differently for each class, and for each given instance. Potential future work includes a more accurate 

approximation of the 𝑞 function, and extension of the method to multi-task learning. 
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