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Abstract

Deep learning (DL) is one of the state-of-the art techniques in practical and theoret-

ical perspective. As a significant method to extract features, deep learning is applied

to many fields like computer vision, data analysis, and others. Convolutional Neural

Network (CNN), which is the popular DL architectures, has been successfully pro-

viding excellent features for some computer vision tasks. Based on a large volume

and diversity of database, deep learning figure out key features and solve problems

on classification, recognition, or reconstruction.

Moreover, designing deep learning architectures as well as optimizers are popu-

lar and principal tendencies for enhancing the efficiency and performance of deep

learning systems. In this project, we aim to solve one of the problematic issues of

deep learning - the imbalance database. Usually, large medical databases with high

quality and quantity are difficult to collect and be publicly available. Hence, some

techniques were investigated as alternative methods to strengthen deep learning ap-

plications which are restricted and have a low performance when training database

is not ideal such as using non-medical database for chest pathology detection train-

ing [5],visual features map [26], neuroimaging data model [35], and others. Thus,

in this project, we proposed two methods to analyze two specific well-liked kinds of

medical database: Skin cancer database and electrocardiogram signal.

To understand what good features are for skin cancer classification, we investigated

image features of melanoma and benign images using VGG-19 that is a CNN model

trained with the general ImageNet [50] database. Skin cancer data with labels (900

images) were obtained from 2016 IEEE ISBI challenge about Skin Lesion. These

images were fed into VGG-19 [26] and each image yielded a vector with 1000 elements

that are corresponding to classes in. These feature vectors were clustered into 8

categories using k-means algorithm with 3 different distance metrics: Euclidean

distance, correlation, and cityblock distance (l1 norm). K-means algorithm with

Euclidean distance yielded concentrated clusters that do not have any differentiation

power. K-means with other metrics yielded histograms of clusters that are well-

spread. Among them, k-means with cityblock yielded the best consistent images



for each category (e.g. images with circular patch or pale orange background).

Most of these clusters contain both melanoma and benign images, but one category

contains mostly benign images (about 100 images). This implies that noncancer

related background information may affect CNN for melanoma detection when this

database is used without care.

Additionally, we also proposed a specific method to solve the imbalance issue for

signal classification. Biometrics due to the electrocardiogram(ECG) is one of the

most promising techniques to substitute for classical methods such as iris, finger-

print, hand geometry, voice, or face. Though, the variations of ECG affect a lot on

the performance of user identification. These variations derive from many multiple

states (e.g exercises, stress, tension) as well as physiology changes of the heart. Thus,

the proposed method is an augmentation method for QT interval correction (QTc

augmentation). Aim to evaluate our investigated technique, we apply the model to

publicly available ECG-ID database. The ECD-ID database with QTc augmenta-

tion is identified by several machine learning methods such as SVM with different

kernels parameters, deep learning architectures (e.g RNN, CNN). From that, we

evaluated the different performances of classifier techniques with and without QTc

augmentation.
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CHAPTER I

Introduction

Nowadays, deep learning has become a powerful technique when it surpassed the human

level to solve many complex problems for numerous fields . It consists of many perceptron

layers to form the deep neural network. In data processing, especially medical image and signal

processing, this type of architecture can learn to recognize the features of the image hierarchi-

cally. The effectiveness of deep neural network, however, depends on the model architecture

and the data to train it. Having a significant role for the performance of deep learning, the

quality and quantity of database always affect on the generalization and accuracy of deep learn-

ing practicability. One of most challenging problem classes is the biased data problems. These

problems that are very common on actual database.For examples, are when the number of data

instances is distributed unequally on data labels or classes, data contains meaningless features,

or ineffective database. In classification by deep learning, as a consequence, the performance

of the class that has an abundance of database samples usually is biased while the accuracy of

classifier on minority classes is very low. The volume of minority samples has the more impor-

tant role than majority classes on the performance of deep learning classifier. To solve out this

problem, many methods have been proposed such as low-level features feeding for CNN [56],

random oversampling, adaptive sampling, and class-sensitive Accuracy [44]. In this work, we

concentrated on solving the biased data of two kinds of medical databases: skin cancer ISIC

database and electrocardiogram.
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Skin cancer early detection is an effective method assisting to help the treatment more ef-

fectively. Due to a plenty of methods, people researchers are studying to explore a most specific

method with high accuracy on skin cancer analysis. By using spectroscopic reflectometry as

well as based on the characteristics of cell-nuclear size, oxyhemoglobin, and deoxyhemoglobin,

Garcia-Uribe [19] could classify cancer cases from many kinds of skin cancer lesions. The ex-

periments from this article achieved high accuracy with a collection of sophisticated databases.

Have achieved 91.6 percent for skin cancer classification challenge in ISBI 2016, Gutman [22] ul-

tilized simple linear iterative clustering algorithm [2] in order to figure out skin cancer features.

Besides that, clinical database, which is considered as a simple and inexpensive database from

digital camera, have been served for skin cancer classification by deep learning. This investiga-

tion was published by Nasr-Esfahani [29].With the CNN model, in this research, we utilize the

VGG-19, which achieved the high rankings in the ILSVRC-2014 challenge, as the main model.

In this paper, the VGG-19 that was pre-trained by ImageNet is applied to classify dermatologic

images from the ISBI 2016 challenge for melanoma detection. This model was built up to an-

alyze the tons of features for 1000 categories from 1.2 million images and applied to solve the

classification and detection such as Texture synthesis [20], Facial Landmark Detection [34], etc.

Melanoma detection is one of the most interesting fields of cancer detection when the occur-

rence of cutaneous melanoma has risen every year, and the early detection demand is required.

At this time, there were many methods and models to solve this problem such as artificial neural

networks [36], decision tree [10], or Nestor Development System (NDS) [16]. On this paper, we

used the VGG-19 to detect the skin cancer lesions. The skin cancer training data is a part of

database of International Skin Imaging Collaboration (ISIC). It contains 900 dermoscopic skin

images with their labels, which have been vetted by recognized melanoma experts. However,

on these images, there are some unnecessary objects such as: circular patch or pale orange

background. Although, in general, CNN, particularly VGG-19, can automatically analyze and

extract features of data by their specific layers, the quality of dataset still has the significant role

to improve the generalized function for output model. Because of the reason, we investigated

the model to detect the biased features as well as invalid images of training dataset by k-means

clustering.

Electrocardiogram has been investigated as a potential candidate for biometrics[29]. Each

ECG pulse, which records the electricity signal of heart activity, contains a P wave, a QRS

complex , and T wave. They are corresponding to three heart activity steps in one circle:

atrial depolarization, ventricular depolarization, and ventricular repolarization. Due to specific
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Figure 1.1: An ECG signal structure [13].

Figure 1.2: Specific QRS complexes of subjects [40].

characteristics of heart structure and circulatory system, ECG pulse of each person is different to

of other people and even on various circumstances such as: alternative ECG device, distinctive

recording days, or surrounding environment, ECG pulse is also changed.

To employ ECG signals as a powerful target on biometrics,excepting traditional features,

Safie et al [51] investigated a new framework to extract a new feature which was called pulse

active ratio. This method yielded to a greater performance than ECG processing by other

features. Vu et al [40] utilized QRS complexes, which is evaluated as the most robust specific

feature as Figure 1.2, to classify the user’s identifications.

With the astonishing development trend, deep learning is also a candidate technique to

solve the ECG biometric topic. A combination of Deep Belief Networks and Restricted Boltz-

man Machines showed an impressive performance when this process achieved a high accuracy
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96.1 percent [30]. Comparing to other techniques, Neural Network has shown an outstanding

ability on figuring data features adaptively and efficiently [58]. Furthermore, one of the most

strength aspects of deep learning is analyzing a huge volume of data. Via a deep neural net-

work with a big size of database, Pranav et al was successful in mapping ECG sequences to

arrhythmia signals.

In this study, we have experimented with many kinds of machine learning techniques as

well as efficient deep learning models to solve the ECG identification problem. In this time,

though, there are several works on ECG authentication as well as classification. Many of them

have achieved very good performances [45, 46, 53] . However, in some mentioned challenging

situations, it is really difficult to solve out. Thus, not only applying deep learning to ECG clas-

sification, but in this article, we also apply a new investigation to increase the ECG database

which usually is constrained. This is the augmentation method that analyses active QT interval

correction to improve number of effective features of ECG database at different hearth rates.

In this thesis, chapter II describes the background of two powerful DL architectures. Next,

chapter III reviews some previous works on skin cancer classification and discusses the pro-

posed framework of our method as well as results. Then, chapter IV represents a literature

review of ECG processing for identification, proposes the Qtc augmentation for classification.

Finally, chapter V concludes this study with a summary and a general evaluation.

4



CHAPTER II

Background

In this study, we concentrated on how to improve performances of different kinds of deep

learning architectures. The first one is convolutional neural network, which is very popular

and effective machine learning technique as well as deep learning method. In general, CNN is

familiar to the neural network; however, it requires more sophisticated unit activations than the

regular neural network. The second one is the recurrent neural network(RNN) that is utilized

commonly with sequential data with three specific kinds of RNN cells: traditional RNN cell,

gated recurrent units (GRUs) cell, and long short-term memory(LSTM) cell. These kinds of

RNN model were implemented to experiment on the ECG identification task.

2.1 Convolutional Neural Network

Convolutional neural network is created of neurons that have learnable kernels and biases.

These neurons analyze their inputs, perform a scalar product and optionally with a non-linearity.

There are three main kinds of layers to construct a ConvNet architectures that are sequences

of kernels: Convolutional Layer, Pooling Layer, and Fully-Connected Layer(F). Besides that,

CNN model was evaluated and strengthened by optimizing a loss function on the last layer

which is normally a fully connected layer as an ouput layer. Generally, the Convnet’s function

is transforming the image volume or the signal (1D input) into an output of class scores.
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Figure 2.1: Convolutional layer. a. Input matrix, b. Kernel filter, c. Ouput matrix.

2.1.1 Convolutional Layer

Convolutional layers is the primary component of ConvNet to extract features of input and

be a mainly computational element of a model. In practical, a convolutional layer performs as

a set of 2D filter in certain conditions and extends through the volume of the input data. The

weighted outputs of pixels are calculated as a linear function and a new neuron is obtained.

f = W TX +B (II.1)

By convolving input signal x with a band of K filters f and biases b, we could obtain an output

signal y:

yi′′j′′d′′ = bd′′ +
H
′∑

i′=1

W
′∑

j′=1

D
′∑

d′=1

+fi′j′d′ × xi′′+i′−1,j′′+j′−1,d′ ,d′′ (II.2)

where H : height, W : the width, D: the depth dimension. The characteristics of each con-

volutional layer are depended on the three hyperparameters which determine the the output

volume: the depth, padding numbers, and stride.

• The depth hyperparameters is the number of filters as the dimension of the convolution

layer. This parameter is also the depth of the output volume. (Figure 2)

• Sometimes, it is necessary to add several zeros around the border to pad the input data.

The numbers of this zero-padding are advantageous for setting the spatial final volume of

convolutional layer.

• When we slide kernel filters on input matrix, the stride is the step of the convolutional

layer. This will produce smaller output volumes. (Figure 3)
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Figure 2.2: Ouput image depth [14]

Figure 2.3: A 3x3 convolutional layer with stride = 2

In particular, the output volume of neuron is measured by the equation:

Ouput =
I − F + 2Z

T
+ 1 (II.3)

with the I is the input size, the F is size of convolutional layer, Z is the zero-padding number,

and T is tride option. However, the output of convolutional layer is a result of a linear function,

we need an activation function to avoid this phenomenon. Hence, Retified Linear activation

function (ReLU) is utilized as an important factor for ConvNet. Without ReLU, the network

would aim to be a linear classifier. The predominantly used ReLU activation function in almost

CNN models with convolution layers defined as the position elements of its argument.

f(x) = max(0, x) (II.4)

where x is the ouput of kernel size apply to ReLU .

2.1.2 Max Pooling Layer

The results, after convolving by the bands of filters, are the significant features which have

been extracted from the input neuron. Though, the deep Convnet with many filters accumulates

a large amount of information, this problem affects on the speed of the networks optimizer.

Because of this reason, the Max Pooling layer becomes a powerful tool to reduce the feature

7



Figure 2.4: Max Pooling layer with 2x2 filter. Source: Stanford’s CS231n course

Figure 2.5: The max pooling layer extracts the significant feature. Source: Stanford’s CS231n
course.

space from convolution layers. For a layer with the size WxH, we have the formulation [26].

yi′′j′′d′′ = max16i′6H′ ,16j′6W ′χi′′+i′−1,j′′+j′−1,d (II.5)

For max pooling layer, there are two main hyperparameters: filter size and stride. Figure 4

is a max pooling layer 2 by 2 filter size and stride 2. In the real case, this kind of layer is a

filter that is utilized to deflate size of the output of convolutional neuron and just extract the

remarkable information as Figure 2.5.

2.1.3 Fully Connected Layer

In particular, the fully connected layer, which is final kernel, is a layer of regular neural

network. Each activation of FC layer connected all activations of the last layer. For classification

problems, after using the fully connected layers, we need to squash the output to between 0 and

1 which are equivalent to a probability distribution. This represents these probabilities as the

8



Figure 2.6: Recurrent Neural Network

classified label outcomes. The softmax equation is shown [35].

σ(z)j =
ezj∑K
k=1 e

zk
(II.6)

for j = 1,...,K, with K is the size of input volume from the final FC layer.

2.2 Recurrent Neural Network

Originally, recurrent neural network is an artificial neural network method to solve the

sequential data prediction problem. This is a kind of network that is created as a guided graph

along a sequence by links among nodes. A simple recurrent neural network consists of a input

layer x which is a variable length sequence x = (x1, ..., xT ),a hidden layer h, and a output layer

y. The input data of RNN is a vector of information for a time sequence, at each time t, the

input to the network is x(t), the state of the network is h(t), the output is defined as y(t).

The input layers, hidden layers, and output layers are formulated [42].

x(t) = w(t) + h(t− 1) (II.7)

h(t) = f(
∑
i

xi(t)uij) (II.8)

with f(s) = 1
1+e−z is a sigmoid activation function.

yk(t) = g(
∑
j

sj(t)υkj) (II.9)

9



Figure 2.7: Long Short-term Memory Structure [60]

with g(z) is a softmax function as II.6. The output layer is a softmax function [12].

p(xt,j |xt−1, ..., x1) =
ewjht∑K
j=1 e

wjht
(II.10)

for j = 1, ,K and wj are the rows of weight matrix.

2.2.1 Long short-term memory

In RNN, the hidden layer determines the characteristics of the network. With different kinds

of hidden layer, RNN shows an alternative specific performance. Besides that, RNN against a

problem with its memory to understand a sequence which contains too much irrelevant infor-

mation. The reason of this problem is of Vanishing Gradient. One of the most popular hidden

unit for RNN layer to solve this kind of problem is long short-term memory (LSTM) which was

proposed by Sepp Hochreiter [25]in 1997. The RNN model using LSTM as the main unit for

hidden layers is called as an LSTM model.

In general, a LSTM unit is included an input gate, an output gate, and a forget gate [60].

First of all, the LSTM unit ultilize the forget gate f(t), which is defined as a sigmoid function,

to filter input information x(t) and output of previous LSTM unit . The outcome of forget gate

is a probability value between 0 and 1 for each number in the cell state C(t− 1)

f(t) = σ(Wf · [h(t− 1), x(t)] + bf ) (II.11)

i(t) = σ(Wi · [h(t− 1), x(t)] + bi) (II.12)

10



c̃(t) = tanh(Wi · [h(t− 1), x(t)] + bf ) (II.13)

Next, to determine what new information should be stored in the cell C. There are two

steps. The first step is activating a sigmoid input gate II.12 to consider what information to

update. Subsequently, on the second step, a tanh function II.13 is applied to create a vector of

potential information for the cell C updating.

Then, the new cell state c(t) of this LSTM unit will be updated by the cell state c(t− 1) of

the last LSTM cell based on f(t), i(t), and c̃(t) . It follows the formulation below.

c(t) = f(t) ∗ c(t− 1) + i(t) ∗ c̃(t) (II.14)

Finally, we need two more parts to decide the value for the output gate. Firstly, a output

gates is used to analyse the input signals as first step. After that, another tanh function is

applied to cell state c(t) and multiplies by o(t) to output the appropriate content.

i(t) = σ(Wo · [h(t− 1), x(t)] + bo) (II.15)

h(t) = o(t) ∗ tanh(c(t)) (II.16)

In each gate, there are the parameterss weigth W and bias b, correspondingly. In general,

the LSTM based on these gates could evaluate and consider about the meaningful information

to store. This assists to the RNN model to avoid the vanishing gradient. From that, it is

improving the performance by higher accuracy and faster optimization.

2.2.2 Gated Recurrent Unit

In 2014, Kyunghyun Cho [12] proposed a new method to overcome the vanishing gradient

problem which is a drawback of the traditional RNN. In fact, the GRU cell has a similar design

with LSTM cell unless it has fewer parameters as well as the absence of an output gate. However,

this kind of hidden layer shown a more positive performance on small dataset. The GRU cell

consists of two main parts: update gate and reset gate. Both of these gates provide for RNN

model with an ability to analyze what information should be kept in reserve. Comparing to

LSTM cell, this hidden layer merges the cell state and hidden state. Additionally, while LSTM

activates a forget gate and an input gate, GRUs combines them to be an update gate which is

also a sigmoid function.

z(t) = σ(Wz · [h(t− 1), x(t)]) (II.17)
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Figure 2.8: GRU Structure. Source: Wikipedia

The function of LSTMs forget gate is now performed on the reset gate of GRU.

r(t) = σ(Wz · [h(t− 1), x(t)]) (II.18)

After using a reset gate to figure out the relevant information from the input and the last hidden

layer, a tanh function is called to store these information.

h̃(t) = tanh(Wi · [h(t− 1), x(t)]) (II.19)

The final step is combining the result from the reset gate and the update gate to output them

to hidden state and cell outcomes.

h(t) = (1− z(t)) ∗ h(t− 1) + z(t) ∗ h̃(t) (II.20)

Using gating mechanism as LSTM, GRUs are able to filter irrelevant information by using

update and re set gates. This shows that GRU cell is a great way to eliminate the vanishing

gradient problem for RNN.
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CHAPTER III

Towards Good Features for Skin Cancer

Classification

3.1 Related work

A several years ago, malignant melanoma has became one of the most appealing fields of

cancer detection. It could be due to the rapidly increasing of skin cancer around the world,

especially United State. According to the statistics of Siegel RL et al. [54], the estimated

new cases and estimated deaths of skin cancer in US mutatively rise to 76,380 and 10,130 in

2016. Hence, early detection is required as an advantageous way to assist doctors on diagnosis.

In efforts to solve out this problem, A.Estela et al [17] evaluated the performance of a DL

architecture that was the state-of-the-art architecture at that time - the GoogleNet Inception

v3 CNN architecture and compare to the performance of dermatologists. Transfer learning

with ImageNet was applied to improve the performance of model when their clinical dataset

is 129,450 images that is significantly smaller than ImageNet. Moreover, Ulzii-Orshikh Dorj et

al [15] incorporated the convolutional neural network Alexnet with ECOC SVM. Using CNN

features from Alexnet which is suitable for small size dataset images, ECOC SVM classified

skin cancer images into several groups.

On the other hand, many authors have used CNN segmentation to extract the skin lesions

before classifying them. We could believe that this is the way to avoid the meaningless informa-

13



Figure 3.1: VGG-19 Architecture [3]

tion. To be comparable to classify without segmentation tasks, the performance showed more

efficient as [9]. For skin lesion segmentation, there are many deep-learning-based techniques

that have achieved significant performances such as [29], [23], and [57]. Besides that, there

have been recent works to figure out effective features from skin cancer database. Bhuiyan et

al [7] has proposed that Otsus method, Gradient Vector Flow, Color Based Image Segmenta-

tion Using K-mean Clustering are the beneficial methods for features extraction approaching

to skin cancer analysis. Simple Adaptive Thresholding Algorithm [31] was shown an incredible

performance on skin cancer texture detection.

3.2 Methodology

3.2.1 The proposed approach

On this paper, the convolutional network (ConvNet) is the deep neural network which is up

to 19 layers and feasible to use the small convolutional layers, VGG-19.

With the one of the best performances on the challenge of ImageNet, we applied a pre-trained

VGG-19 model with ImageNet to our experiments. Following the procedure:

First of all, the ISIC skin cancer training database was applied through the VGG-19 model

which was trained by ImageNet to test our skin lesion images. The output of this step is the

900x1000 matrix that indicates the correspondence between skin lesions features and 1000 Ima-

geNet objects features. Then, the matrix was partitioned into categories by k-mean clustering.

On our experiments, k-means clustering algorithm with different distance measures presents

clusters the corresponding matrix of training database and ImageNet to eight categories. Based

on the centroids locations, the variant category of cityblock histogram was interpreted to check

their corresponding ImageNet objects and contains almost cicular patches and pale orange back-

ground images of ISCI skin cancer database. The obstacles as the colourful circular patches

in Fig 3.4 do not have the specific features of skin lesions. Their existence provides the noise
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Figure 3.2: Experiment Procedure

features for our deep learning models. Because of the reason, we need to detect and remove the

images of the variant category.

3.2.2 K-means clustering algorithm

Our proposed approach is based on k-mean clustering technique that is a principle algorithm

of machine learning on unsupervised learning. This method follows a simple way to classify

unlabel data to separate groups or clusters. The preeminent idea of this algorithm is to detect

the collection of points that is assigned to a center of cluster(centroid). Each centroid is updated

based on the assigned points via optimizing the loss function L.

L(x, v) =
c∑

i=1

j=1∑
ci

(‖xi − vj‖)2 (III.1)

where j is the volume database, i is the number of centroids or labels, ci is quantity of data

point in ith centroid, x is data points, and v is the cluster center.
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Algorithm 1: K-means Clustering

Input: Data X = (x1, x2, ..., xn) is the set of data

Output: Centroids V = (v1, v2, ..., vn) is the set of data

Step 1 : Randomly choose $c$ c e n t r o i d s .

Step 2 : Measure the d i s t anc e between each data po in t s $X$ and c e n t r o i d s .

Step 3 : Assign the data po int to the nea r e s t c e n t r o i d s .

Step 4 : Updating the c e n t r o i d s by the mean func t i on .

Step 5 : Reca l cu la t e the d i s t ance and updating the c e n t r o i d s .

Step 6 : Unt i l c e n t r o i d s do not change .

As function III.1 shown, the loss function utilizes the Euclidian function to calculate distance

between data points and centroids. In this article, we evaluate the results of k-means clustering

on several kinds of distance functions.

The cityblock L1 − norm distance :

d(x, c) =
n∑

i=1

(|xj − cj |) (III.2)

The correlation distance:

d(x, c) = 1− (x− x̄)(c− c̄)√
(x− x̄)(x− x̄)

√
(c− c̄)(c− c̄)

(III.3)

where

x̄ = n
1 (
∑n

i=1 xi1̄p)

c̄ = n
1 (
∑n

i=1 ci1̄p)

1̄p is a row vector of p vector

3.2.3 Experimental Results

While other metrics distribute histograms of clusters of benign and melanoma uniformly,

cityblock distance (l1 − norm) presents that there is the special category which yields almost

benign images with circular patches or pale orange background on this category (Fig 3.4a). This

category is category 5 in Figure 3.4.

Almost images that accumulate cicular patches and pale orange background are on the

variant category 5 and they predicted by three main objects: butternut squash, toilet seat, and

plectrum.
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Figure 3.3: K-means clustering Histograms

Figure 3.4: Representative images of category 5
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Figure 3.5: Examples for Heat Map of Skin Cancer Classification

Table III.1: The Performances of Testing Set with 379 images

Model Accuracy Sensitivity Specificity Average precision Database Volume

Original Database 81.53% 97.36% 17.33% 47.8% 900 images

New Database 82.06% 98.02% 17.33% 51.06% 775 images

To figure out what are biased features of category 5, by using the discriminative localization

method of Zhou et al [61], we recognize that the activity of the CNN model concentrates on

the circular patches and pale background as Figure 3.5. The red areas are corresponding to

unexpected objects. Specially, these areas do not detect skin lesions, their targets almost are

the patches.

We evaluate the efficiency of our model by applying new training database to VGG-19

model. The database is trained by VGG-19 model with pre-trained ImageNet VGG-19 model.

Compare to the original training database, the accuracy of validation test on training task is

higher and the loss of training is more stable. The validation accuracy is 80 percent for the

model of original training database, but increases to 84,4 percent for the model of new training

database. The model of our new training database also shows the more positive performance

than the model of primitive database as table III.1.
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3.2.4 Discussion

In this section, we proposed the framework to analyze the training data for skin cancer

classification. After training data with the powerful deep CNN model like pre-trained ImageNet

VGG-19 and k-means clustering, we can detect and remove the invalid images of our database.

Although, the new database has smaller volume, it improves the productivity for our training

model.
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CHAPTER IV

ECG Classification via Deep Learning

4.1 ECG signal models for biometrics.

Electrocardiogram has been investigated as a potential target for biometrics. However, the

intra-personal varibility is the serious challenges when ECG is applied as a biometric objective.

There are several works which have been shown that intra-personal variation has an negative

impact on the verification and identification performance [27], [49], and [43]. Odinaka et al [43]

presented the accuracy of verification with intra-personal ECG data is always lower than without

intrapersonal one.

Recently, ECG biometric has been further investigated. Israel et al [28] by using fiducial

features proposed an ECG-based recognition system for identification biometric via linear dis-

criminant analysis(LDA). Biet et al [8] extracted 30 fiducial feature points from amplitude,

duration, and deflection of QRS complex and achieved a 100 percent recognition rate for the

test experiment, the soft independent modeling of a class analogy was applied for classification.

Moreover, there are many further investigations using fiducial features such as beat duration,

amplitudes, wave features for ECG biometric [55], [41], and [48] . Besides that, unlike fiducial

approach-based studies, non-fiducial feature-based studies, which do not require precise infor-

mation of ECG waveforms, also have been investigated for biometrics with the combination of

Euclidian classifier and wavelet transform [11], linear predictive coding [37], linear discriminant

analysis [4].
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In this study, we proposed an evaluation survey for the performance of deep learning tech-

niques on ECG identification when they against to the intra-personal problem of ECG. In this

time, deep learning studies for ECG classification have been investigated, though, almost of

these works are for the non-intrapersonal ECG dataset. Adam Page et al [45] proposed an em-

bedded system using neural network classifier. The system could achieve a good performance

with an EER (equal error rate) of 0.0582 percent. Palva et al [46] suggested a deep convolutional

neural network with an ECG signal processing framework using R peaks normalization and dis-

tance measures. Another CNN model was presented by Zhang et al [59] as a core component

of a multi-resolution identification system with segmented ECG signal by autocorrelation and

wavelet transform.

In addition, we introduce an ECG augmentation method using active QT interval conrrection

. In fact, QT interval correction have been studied as a normalization method and feature

extraction [52], [6] ,and [18]. Lugovaya [38] proposed to use a QT interval correction to normalize

ECG signal and concluded that T wave features could improve the performance of verification.

This proposed method is able to be a promising way to augment ECG database and aim to

increase the volume as well as the quantity of useful features.

4.2 Methodology

4.2.1 Deep Learning models for ECG biometrics

In this time, using deep learning for automatically signal detection is becoming a new ten-

dency based on the outstanding characteristics of deep learning methods such as working on

large volume of database, high accuracy, and creating new features. Although, in this project,

our target is classifying the single pulse ECG database being collected by wearable devices, the

attribute of ECG signal is sequential. Thus, in many kinds of deep learning methods, RNN is

an expected technique which has the feedback connections that is suitable for sequential data

processing. Salloun et al [53] showed that RNN model with few hidden layers could identify

ECG-ID database effectively when they analyze three or nine ECG pulses simultaneously. The

model is shown in Figure 4.1

The model was evaluated with different kinds of RNN hidden layers units: traditional,

LSTM, and GRU. Besides that, their input sequence was selected as a group of continuous ECG

pulses. This step is to ensure that the sequential features of signals are obtained. In fact, ECG

data is a high noise signal that was mentioned above. So, single ECG pulse is more effortless to

denoise than sequential 1-lead ECG signal or multiple lead signal even though amount of features

is constrained. However, CNN model is still popular to handle the sequential data which is really
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Figure 4.1: Block diagram of a traditional RNN by Salloun [53]

Figure 4.2: The system diagram of the HeartID CNN model of Zhang et al [59]

long with many features. These models are usually definitely deep and request a complicated

pre-processing task. Of course, they could strengthen their models by cooperating to others

machine learning techniques. HeartID [59] model is one of the specific examples. Published

on 2017 by Zhang et al, HeartID is an ECG classifier for sequential database. It is not only

a deep CNN model, but also a ”wide” CNN model. Combining with wavelet transform and

autocorrelation, their framework is able to improve the efficient of deep learning model when

wavelet transform interprets the ECG signal on different time frequency patterns. Besides,

auto-correlation has a function of filter and provides more data presentation.

In this study, aim to develop a DL model for only single ECG pulse which is fast on training

and high accuracy, we proposed a simple CNN model on section IV.3.b and use the QTc

augmentation to deal with ECG features at different heart rates. Furthermore, we also would
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like to experiment the impact of the augmentation when apply QTc to each pulse of sequential

data on classification by RNN.

4.2.2 QT correction model for ECG biometric

Heart rate variation has an important affect to the structure of the ECG signal. Israel et

al [28] is one the first study interpreting the phenomenon of the invariance to variable heart

rate. They experimented and proposed to normalize the features related to P and T waves.

Besides that, they assumed that QRS complex is invariable under heart rate alteration. Similar

to what Labati et al [33] has proposed, QRS complexes are effcient components for biometric.

In their study, they extracted QRS complex as the prime feature for their Deep-ECG CNN

model to handle the ECG identification. Although, a combination between a flexible ability of

P and T waves and a stable QRS complex is a promising characteristic to advance the ECG

biometric achievement.

The most prominent QT interval correction method is proposed by Bazett [6]:

QTcB = QT (RR)−0.5 (IV.1)

That QT as a QT interval and RR as an interval between two R peaks. After many years,

Framingham formulation, which is a linear bas model, was proposed [52]

QTcF = QT + 154(1−RR) (IV.2)

The Hodges’s formula:

QTcF = QT + 105(
1

R
− 1) (IV.3)

In 2004,S.Luo et al [39], after evaluating many of QTc formulas, has concluded that Hodges

QT interval correction formula is the most appropriate method for a large scale ECG database

which is essential and useful point to have an achieved deep learning classifier.

4.2.3 Guided for ECG biometric

Guided filter (GF) is the popular method in computer vision for many problems such as

filtering, artifact analysis and data sampling [24]. It performs edge-preverving smoothing on

a input signal , and using the information of another signal to conform the filter. Recently,

Chun [13] proposed a method to utilize a 1D GF for ECG authentication. The user template

guided filter employed the enrolled ECG guide signal t which is a template to filter a single
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Figure 4.3: An example of single ECG pulse with QTc Augmentation.

ECG pulse. For a user template t as a guide signal with low noise and a noise signal g, we

denote this GF as:

ĝ = GF (g; t) (IV.4)

After guided filtering, the ĝ is the new database for our experiments.

4.3 Results

4.3.1 Experiment Settings

The ECG recording used in this work is from the public Physionet dataset ECG-ID [21]. The

database is a collection of ECG records from 89 healthy subjects using one-lead ECG sensor.

Each raw ECG record was obtained for about 20 second with the sampling rate frequency

500Hz, 12-bit resolution.All of these ECG signals were pre-processed to denoise.

First of all, to segment ECG pulses separately from a whole record, the R peak, which is

a noticeable feature of ECG waveform, was detected by the Pan-Tompkins method [47]. To

generate a database with all of single pulses, from the R peak sample, a desirable number

of samples before and after the R point were extracted. In this case, each ECG record were

segmented to a plethora of single pulses with 320 samples corresponding to 0.64 second each
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Figure 4.4: Our CNN Architecture

pulse which included 134 samples before R peak and 185 samples after R peak. Lastly, each

record is composed of 1068 single ECG pulses with 12 pulses for each subject .Besides, based

on the information of ECG-ID database, the records were divided into sets of database. Two

records of each subject are called ECG Set S that were different sessions of acquisitions of a

same day. ECG Set A, which is four records of ECG pulses, includes two records from ECG

Set S and 2 other records with 25 subjects.

In our simulation studies, there are two main parts. On the first part, one record of ECG

Set S is the training database in order to apply to classifier for learning. Another is the testing

set to evaluate the efficiencies of classifiers. Then, the training set and test set are swapped

together to cross-validate the dataset. This study aims to show the efficiency of classifiers when

they work on the less intrapersonal data. On the second part, the experiments realized with

two additional records with the similar process as the first one.

Moreover, in this study, there are three tasks for ECG classification. The first task is the

original ECG database classification. In second, a user template guided filter is applied to

denoise both sets of ECG signal before classifying. Finally, a Qtc augmentation with a user

template guided filter is utilized to process these ECG sets. In these tasks, the training is

from ECG Set S and testing database ECG Set A for the interpersonal experiments. For the

non interpersonal cases, the training is one record of ECG Set S and another is testing set.

Cross-validation is applied.

4.3.2 Biometric Classifier Models

In this section, we experiment for the behavior of a great deal of machine learning models

as well as deep learning architectures to evaluate efficiency of them on classifying ECG signal

with and without interpersonal database that corresponding to ECG Set S and ECG Set A

. Besides that, CNN and RNN were chosen to classify out ECG data sets. The CNN model

is defined as Fig 4.4. The RNN models are built up with three different hidden layer units:
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Table IV.1: Performance summary of baseline, RNN models, and CNN model with original
ECG sets.

Data Set Method Accuracy(%)

Data Set S Baseline 89.1
Traditional RNN 88

GRU RNN 89.5
LSTM RNN 90.5

CNN 87.5

Data Set A Baseline 64.8
Traditional RNN 52

GRU RNN 60
LSTM RNN 54

CNN 54.8

the traditional unit, the LSTM unit, and the GRU unit. Both of these deep learning models

use Adam algorithm [32] to optimize their loss function. The implementations of them are

performed on Tensorflow [1].

All of the results deep learning models are comparable to the baseline which is the classifier

model using Euclidian algorithm.

4.3.3 Experimatal Results

Table IV.1 shows the performances of baseline and deep learning models. These ECG sets

were preprocessed to denoise the base line drifting, power line interference, and other high

frequency noise. In this task, the baseline is one of the highest accuracy method with 89.1

percent for ECG Set S and 64.8 percent for ECG Set A, while CNN model shows the low

performance for both of ECG sets about 87.5 percent and 54.8 percent. Besides, the LSTM

RNN with 90.5 percent achieved the best performance among RNN models as well as all of

experiments on ECG Set S identification, but for interpersonal circumstances, the baseline with

64.8 percent is the most precise method for ECG biometric. In general, the performances of

deep learning methods as well as baseline on ECG classification could not be improved by using

the user template guided filter. There are no many considerable changes in Table IV.2.

In final experiment, the ECG data sets were augmented by QTcH algorithm. According to

the Table IV.3, the deep learning models showed a significant improvement on their Data Set

A classification. Although, the performances of RNN models on Data Set S experiments just

slightly increase from 88 (Table IV.2) to 88.4 percent for traditional RNN, 89.5 (Table IV.2) to

90 percent for GRU CNN, on Data Set A experiments, RNN models jump rapidly from 53 to
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Table IV.2: Performance summary of baseline, RNN models, and CNN model with the user
template guided filter ECG sets

Data Set Method Accuracy(%)

Data Set S Baseline 89.1
Traditional RNN 88

GRU RNN 89.5
LSTM RNN 90.5

CNN 88.5

Data Set A Baseline 64.6
Traditional RNN 53

GRU RNN 59
LSTM RNN 54

CNN 54.7

Table IV.3: Performance summary of baseline, RNN models, and CNN model with the QTc
correction ECG sets

Data Set Method Accuracy(%)

Data Set S Baseline 90
Traditional RNN 88.4

GRU RNN 90
LSTM RNN 90.4

CNN 91.7

Data Set A Baseline 64.9
Traditional RNN 75.9

GRU RNN 75
LSTM RNN 77.7

CNN 70.7

75.9 percent, 59 to 75 percent, and 54 to 77.7 percent for traditional, GRU, and LSTM RNN.

Besides that, CNN model also shows a obvious accuracy growth for both experiment tasks. It

is conspicuous that QTc augmentation is an effective method to improve performance of deep

learning models on the intra-personal database classification.

If we compare the confusion matrices of RNN models which are shown as Figure 4.5, in

all of three models, there are some subject databases that are too difficult to classify such as:

subject 9, 11, 12, .etc.
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Figure 4.5: Confusion matrix comparison among RNN models of Experiment 3

4.3.4 Discussion

In this section, we proposed a new technique to improve the performance of deep learning

models by using QTc augmentation. Specially, for intrapersonal data sets, while the deep

learning models without QTc augmentation on Table IV.1 and IV.2 showed the lower-powered

abilities to classify ECG Set A, with QTc augmentation, they becomes more powerful techniques

to solve the identification problem.
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CHAPTER V

Conclusion

In this study, we investigated a framework using deep learning and k-means clustering to

analyze and improve the quality of skin cancer dataset. From that, it significantly advances

the performance of CNN model with smaller but higher quality database on skin cancer early

detection. It does not only increase the accuracy of model, but also speed up the training task.

Furthermore, this method is also a potential candidate to analyze many other databases.

Moreover, we propose an advantageous technique to improve the quantity of ECG database.

This method has shown a good performance when it contributed to the obvious enhancement

on the activity of deep learning models even on the specific challenging intrapersonal problem

of ECG signal. The CNN model was yielded up from 88 percent to 91.7 percent for the non-

intrapersonal dataset as well as 54.7 percent to 70.7 percent for the intrapersonal dataset.

Besides, RNN models could increase their accuracy up to 24 percent for LSTM RNN case. This

determines the efficiency of QTc augmentation on solving the intrapersonal problem.

All in one, this study aims to develop new methods to improve the performance of deep

learning on biomedical data processing. Although, deep learning has achieved many state-of-the-

art performances in numerous fields, on medical data processing, there are still many challenges

such as variant database, noisy features, limitations on quality and quantity of database, etc.
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The impact of segmentation on the accuracy and sensitivity of a melanoma classifier based

on skin lesion images. In SIIM 2017 scientific program: Pittsburgh, PA, June 1-June 3,

2017, David L. Lawrence Convention Center, pages 1–6, 2017. 14

[10] Chun-Lang Chang and Chih-Hao Chen. Applying decision tree and neural network to

increase quality of dermatologic diagnosis. Expert Systems with Applications, 36(2):4035–

4041, 2009. 2

[11] Chuang-Chien Chiu, Chou-Min Chuang, and Chih-Yu Hsu. A novel personal identity

verification approach using a discrete wavelet transform of the ecg signal. In Multimedia

and Ubiquitous Engineering, 2008. MUE 2008. International Conference on, pages 201–

206. IEEE, 2008. 20
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Recurrent neural network based language model. In Eleventh Annual Conference of the

International Speech Communication Association, 2010. 9

[43] Ikenna Odinaka, Po-Hsiang Lai, Alan D Kaplan, Joseph A O’Sullivan, Erik J Sirevaag, and

John W Rohrbaugh. Ecg biometric recognition: A comparative analysis. IEEE Transac-

tions on Information Forensics and Security, 7(6):1812–1824, 2012. 20
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