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ABSTRACT 

Brain machine interface (BMI) is the interface which converts the neural signal recorded from the 

subject into the intention such as arm movement or grasping. One of the key topic in the BMI research 

area is to decode the neural signal from the motor cortex in the brain and extract information related 

with the movement such as velocity, position and speed of arm. By interpreting the signal, the tetraplegia 

can get a chance to overcome the obstacle by controlling the robot arm according to their intention 

interacting with the environment. 

To achieve these goal, several algorithms such as Kalman Filter or optimal linear estimation have been 

used. Further, modern machine learning algorithms such as Long Short-Term Memory(LSTM) 

However, most of the decoders have focused on the decoding of the velocity parameter even though 

there were evidences that the neural activity of the primary motor cortex encodes the directional 

information and speed information differently.  

The developed decoder in this research reconstructed the velocity of an arm movement with two 

separate LSTM decoder, which is designed for individual decoding of speed and direction. Because 

there is neural evidence that the direction is encoded nonlinearly in the motor cortex and the speed 

variable has nonlinear characteristics, the nonlinear prediction algorithm, which is LSTM, was used as 

the predictor. Also, velocity Kalman filter (VKF) and velocity LSTM (VLSTM) were compared with 

the decoder. The performance was measured for the data provided from the Collaborative Research in 

Computational Neuroscience - Data sharing (CRCNS). The task was center – out reaching movement 

and the primary motor cortex signal of macaque monkey was recorded. Specifically, the correctness of 

the velocity reconstruction was tested with following measurements: angular difference, correlation 

coefficient, mean absolute error. Further, the correctness of the position reconstruction was tested with 

following measurements: Euclidean distance with true trajectory. Also, the effectiveness of the 

reconstructed trajectory was measured with following indexes: Euclidean distance with straight line 

from home to target, hit rate, distance to target according to the movement time, movement directional 

change (MDC), orthogonal directional change (ODC). 

The results in aspects of how accurately the decoder predicted the kinematics showed that the new 

decoder predicts the movement direction accurately than the other two decoders. The quality of position 

reconstruction of the SDLSTM was significantly better than the velocity Kalman filter and was similar 

with the VLSM. Also, the SDLSTM’s trajectory could be acquired the target in highest frequency. Also, 

the model complexity of the speed and direction predictor in the SDLSTM were different with each 

other. It implies that the encoding strategy of the two variables in the motor cortex can be different. 

Finally, we could identify that the SDLSTM increased the overall decoding performance.  
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1.1 Introduction to Brain Machine Interface 

Brain Machine Interface (BMI) indicates devices that decode intention of organism such as monkey or 

human from brain signal and transfer the decoded intention into other useful control signal such as 

motor control signal. For example, monkey can take water using robot hand controlled with brain signal. 

It can be achieved from intracortical signal or extracortical signal. Extracortical signal, such as 

Electroencephalogram(EEG), could be acquired without surgery. It has characteristic that has low 

temporal resolution, high noise level. In the other hand, the intracortical signal that records the signal 

from the population of neurons directly has small amount of noise and high temporal resolution although 

it records only very small cortex area.  

The research of BMI using intracortical signal have been progressed with the neural and behavioral data 

recorded in the macaque monkey. In general, the center-out task is given to the monkey.  

 

 

In the task, the monkey places his own hand to the home position in a specific duration. Then, a specific 

outer target which is placed in radial around the center with fixed radius is given on the screen. The 

monkey performing the task moves the hand to the outer target and if the hands are placed around the 

target in a duration, the trial is regarded as the success trial. The targets are distributed with the fixed 

interval of angle (Figure 1). 

During the monkey perform the center-out task, the neural signal from the cortex of the monkey is 

recorded. Matching the recorded signal with the behavioral data make it possible to extract the 

kinematic information such as arm movement from the neural signal. Especially, the neural signal in 

the motor cortex is known as encoding the information related with the arm movement direction. 

According to the movement direction, the firing rate which is the number of action potential of a neuron 

Figure 1 Center out task. (A) a monkey moves the endpoint of finger from home position which is at 

the center to the target position which is outer position (B) Trajectory of the task. The target positions 

were marked as the red square. (Cynthia A. Chestek, 2007) 
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in a unit time change based on the cosine relation with the movement direction (Bagrat Amirikian et al., 

2000) The Figure 2 indicates the encoding example increase or decrease according to the movement 

direction. Each black dot shows the mean firing rate in the direction and the error bar indicates the 

standard deviation of the firing. This tuning property is called as the cosine tuning and the movement 

direction shows the maximum firing rate is the preferred direction. 

 

Figure 2 The directional information encoding of the motor cortex neuron (Bagrat Amirikian, 2000). 

  

1.2 Kinematic information encoding in the motor cortical activity  

Motor cortical ensemble activity encodes kinematic parameters of arm movement such as velocity, 

speed and direction with the number of action potential in a unit time, which is called as firing rate. 

Especially, there are neurons encoding the arm movement direction with firing rates in the primary 

motor cortex. These neurons’ firing has relation with the movement direction, which is expressed with 

the cosine function (Georgopoulos AP et al., 1982). The 𝜃𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 is the preferred direction that has 

peak firing rate and the fr indicates the mean firing rate during the movement.  

 fr = b + k cos(𝜃 − 𝜃𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑) (1) 

Bagrat’s work showed that the directional information was encoded nonlinearly in the cortex with 

model similar with the von Mises distribution (Bagrat Amirikian, 2000). 

 𝑓𝑟 =  𝑎0 +  exp (𝑎1 cos( 𝜃 − 𝜃𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑)) (2) 

The results showed that the nonlinear tuning model explained better than standard cosine tuning model.  

There is research shows that the directional information is encoded stronger than the speed information 

in the motor cortex (Golub, M. D. et al., 2013). In the research, they measured the mutual information 

between the single neuron’s firing activity in the motor cortex and the kinematic variables, direction 
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and speed in 50ms window shifting the window on the task time. They found when the directional 

information and the speed information becomes maximum on the movement. The Figure 3.A shows 

that the maximum directional information(MDI) and maximum speed information(MSI) of each 

recorded neuron. When the MDI was larger, it was marked as blue. For the opposite case, it was marked 

as the red color. Black indicates there were no significant difference. The result shows that there exist 

more number of the motor cortical neurons that encodes the direction stronger than the speed. The 

authors suggested several interpretations. One of them is that the speed information is encoded robustly 

in the motor cortex and the analysis in the research didn’t catch the robust information. 

 

 

 

 

 

 

 

 

 

Figure 3 (Left) Motor cortical neuron’s maximal directional information (MDI) and the maximal 

speed information (MSI) comparison. (Right) The histogram of the number of cells according to the 

difference between MDI and MSI (Golub, M. D. et al., 2013)  
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Also, the Zheng Li’s research showed that the velocity information is encoded nonlinearly in the motor 

cortex ensemble activity. They claimed the nonlinear relation with the use of the unscented Kalman 

filter (UKF) as the neural decoder. 

The Kalman Filter is the linear prediction algorithm. The state vector at time t has linear relation with 

the state vector at time t+1. The encoding model representing the relation between the state vector and 

neural activity has also linear relation. However, Zheng Li showed the nonlinear quadratic model could 

capture the neural activity pattern according to the velocity and position of arm movement better than 

the linear model (see Figure 4) and based on this finding, they used the unscented Kalman filter (UKF), 

which used nonlinear encoding model, as the neural decoder (Z Li et al., 2009).  

 

 

 

 

 

Figure 4 Comparison of linear and quadratic tuning models of 

movement velocity (Z Li et al., 2009) 
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1.3 Nonlinearity of the speed variable 

The speed variable has nonlinear characteristic in the center-out reaching task. The figure 5 shows that 

the speed profile in the trials of the reaching task which was performed the Northwestern university (R. 

D. Flint et al., 2012). Each color represents the target direction. The speed increases or decreases 

drastically in the movement. In other words, the arm movement speed has nonlinear characteristic in 

the center out reaching task. 

 

 

 

 

 

 

 

 

Figure 5 Speed profile in the center-out reaching task. Each profile is that of each trial and the 

color represents the target direction 
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1.4 Neural decoder 

1.4.1 Kalman Filter 

The Kalman filter is an algorithm that predict the state variable, such as position, velocity, acceleration, 

with prediction step and correction step. The prediction step predicts the state of next time with current 

state with linear equation. The correction step corrects the predicted state using measured state. How 

much the measured state will be reflected to the predicted state is determined with the Kalman gain. As 

the neural decoder, the Kalman filter can be expressed with following equations:  

 𝑍𝑘 = 𝐻𝑘𝑋𝑘 + 𝑞𝑘 (3) 

   

 𝑋𝑘+1 = 𝐴𝑘𝑋𝑘 + 𝑤𝑘 (4) 

The 𝑍𝑘 means that the mean firing rate of N number of neurons in a specific time window, thus it has 

N dimensional vector. The 𝑋𝑘 is state variable, such as position and velocity of arm endpoint. The 𝑞𝑘 

is noise from normal distribution of zero mean. The distribution has covariance matrix as 𝑄𝑘. The 𝑤𝑘 

is noise from the normal distribution of zero mean, which has covariance matrix 𝑊𝑘. The matrix 𝐴 

represents the relation between kinematic variables of time k and time k-1. The matrix H represents 

how the kinematic variables were encoded into the neural activity. The A,H,W, Q can be estimated 

with least mean square solution. 

The prediction step is processed with following process. First, the priori,  𝑋̂𝑘
− , is acquired with the 

transition matrix 𝐴 and error covariance matrix of priori, 𝑃𝑘
− , is computed.  

 𝑋̂𝑘
− =  𝐴𝑋̂𝑘−1 (5) 

   

 𝑃𝑘
− =  𝐴𝑃𝑘−1𝐴

𝑇 +𝑊 (6) 

In the correction step, the priori is corrected taking into the neural response. Also, the posterior error 

covariance matrix, 𝑃𝑘  ,is updated. The  𝐾𝑘  is the Kalman gain matrix. The full explanation of the 

Kalman filter was introduced in the works of Wu, Wei (Wu, Wei et al., 2003) 

 𝑋̂𝑘 = 𝑋̂𝑘
− +  𝐾𝑘(𝑧𝑘 −  H𝑋̂𝑘

−) (7) 

   

  𝑃𝑘 = (𝐼 −  𝐾𝑘𝐻)𝑃𝑘
− (8) 

   

  𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑄)−1 (9) 

The important assumption of the Kalman filter is that the kinematic variable is encoded into the cortical 

neural activity of motor cortex with a linear relation. However, as shown in the previous literature survey, 
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the relation between neural activity and the kinematic variable is not linear. Thus, to improve the 

decoding performance, the nonlinear prediction algorithm, such as unscented Kalman filter and 

feedforward neural network, have been tried. 

1.4.2 Feedforward Neural Network (FNN) 

The Feedforward neural network is the prediction algorithm which is consisted with input layer, hidden 

layer, output layer, and activation function. The input data is linearly summed with the parameter 

‘weight’ and it is delivered into the activation function. The following diagram explain the process: 

 

The activation function and net inputs are called as the hidden node. The layer which is consisted only 

with the hidden node is called as the hidden layer. After concatenating several hidden layers, the output 

layer is added after the last hidden layer. The output layer represents the variable predicted. The network 

structure is called as the Feedforward Neural Network. The following diagram explain the process: 

 

 

Figure 6 Neural network input processing 

Figure 7 Structure of the feedforward neural network 
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The fully connected (FC) layer is the structure that the two layers are concatenated. Also, the error 

trying to minimize with the network is called as the loss function. In general, the Mean Squared Error 

(MSE) is used as the loss function in the regression problem: 

 E =  
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑖

 (10) 

The n is the number of samples. The 𝑦𝑖 is the i-th observation and the 𝑦̂𝑖 is the i-th prediction. The 

weight 𝑤 is updated to minimize the loss function to make the accuracy of prediction better. It can be 

given with following equation. 

 𝑊𝑡 = 𝑊𝑡−1 −  𝜀
𝑑𝐸

𝑑𝑤
 (11) 

The error can be expressed with weights and the negative gradient with respect to weights represents 

the direction that decrease the error. It is weight updating strategy called as the gradient descent. 

 

1.4.3 Long Short-Term Memory (LSTM) 

Long Short-Term Memory was firstly developed by Sepp Hochreiter and Jurgen Schmidhuber in 1997 

(Sepp Hochereiter et al., 1997) It has advantages that it can extract information in the time-structured 

data. It was designed for handling the ‘long-term dependency’ problem that the transferred information 

from the past became week when the timing between input and predicted output became long 

Basically, the LSTM is consisted with a module that has cell state, explicitly saving the information 

from the past input, and the hidden state, representing the information inferenced from the current input 

and the cell state of the previous time step. The module can be expressed with following diagram: 

 

Figure 8 LSTM block (K. Greff et al., 2015). 
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The 𝐂 represents the cell state, the ℎ represents the hidden state at time t and the 𝒇 is the output of 

the ‘forget gate’. The ‘forget gate’ decides how much information from the cell state at time t-1 will be 

passed to the cell state at time t. The 𝒊 is the output of the ‘input gate’. The ‘input gate’ decides how 

much information from the newly estimated cell state is saved to the cell state at time t. The cell state 

at time t is estimated with the linear sum of previous cell state and newly estimated cell state. Finally, 

the 𝑜𝑡 is the output of the ‘output gate’. It decides how much information from the cell state at time t 

become hidden state at time t. The ℎ𝑡 indicates the hidden state at time t. Further, the estimated cell 

state and hidden state at time t is passed to the next module that handling the input data at time t+1. 

Also, the ℎ𝑡 is given to the fully connected layer, which is combination of the input layer and another 

layer. In here, the ℎ𝑡 becomes the input layer and it is transferred to the nonlinear output layer. This 

process can be represented with following diagram: 

 

 

 

 

 

 

 

Figure 9 LSTM block sequence. Input vector X at each time step is given to the LSTM cell 

LSTM block LSTM block LSTM block

  ,
  

  − ,
  − 

  + 

Fully connected layer
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  + 

  +     − 
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1.5 Parameter update algorithm  

To update the weights of a network, the gradient descent algorithm is used, which updates the weights 

in a direction of decreasing the error of prediction, which is expressed with following equation: 

 𝑊𝑡 = 𝑊𝑡−1 −  𝜀 ∇𝜃𝑓𝑡(𝜃𝑡−1) (12) 

The stochastic gradient descent (SGD) is the strategy that calculating the ∇𝜃𝑓𝑡(𝜃𝑡−1)  ,which is 

gradient of the loss function 𝑓(θ) with respect to the weights θ on the parts of training sample instead 

of calculating on full training set. It has advantage that can avoid local minima of the loss function.  

There are lots of variations of the SGD. First one is the momentum method. It is the updating algorithm 

using the momentum of pervious updates.  

 

In the figure, the gradient step is the updating direction of weights acquired from current training batch. 

The momentum step is the averaged previous updating directions of weights. The final updating 

direction becomes the blue arrow. With the momentum algorithm, the networks can reach to the optimal 

performance faster.  

 𝑣𝑡 =  γ𝑣𝑡−1 +   𝜂∇𝜃𝑓𝑡(𝜃𝑡−1) (13) 

   

 𝜃𝑡+1 = 𝜃𝑡 − 𝑣𝑡 (14) 

The equations explain the momentum algorithm that it accumulates the previous gradients to the 𝑣𝑡 

affected by the momentum step to the current weights 𝜃𝑡. The algorithm can go to the optimal loss 

faster with less inefficient weight update (David E. Rumelhart et al., 1986).  

Another variant is the Adam (Adaptive Momentum Estimation) algorithm that combines the RMSProp 

and the momentum algorithm (Diederik P. Kingma et al., 2014). The algorithm is expressed with 

Figure 10 Moment updates (CS231n) 
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following equation: 

 
𝑚𝑡 = 𝛽1𝑚𝑡−1 +  (1 − 𝛽1)∇𝜃𝑓𝑡(𝜃𝑡−1) 

 
(15) 

 𝑣𝑡 = 𝛽2𝑣𝑡−1 +  (1 − 𝛽2)(∇𝜃𝑓𝑡(𝜃𝑡−1))
2 (16) 

The 𝑚𝑡 and 𝑣𝑡 accumulates the previous weights updates in similar way of the momentum algorithm.  

 𝑚̂𝑡 = 
𝑚𝑡

1 − 𝛽1
𝑡 (17) 

 𝑣𝑡 = 
𝑣𝑡

1 − 𝛽2
𝑡 (18) 

 

 θ𝑡 = θ𝑡−1 −  
𝜂

√𝑣𝑡 + 𝜀
𝑚̂𝑡 (19) 

The 𝑚̂𝑡 and 𝑣𝑡 are acquired from the 𝑚𝑡 and 𝑣𝑡 to reduce the bias of initial updates. The 𝑚̂𝑡 , 

which is accumulated gradient, is scaled by 𝑣𝑡 to update the weight θ𝑡 . The scaling strategy is similar 

with that of the RMSProp algorithm (G hinton et al., 2012). In the RMSProp algorithm, the size of 

squared previous gradient is used to scale the updates without the momentum equation (18). We used 

the Adam algorithm to update the velocity LSTM and the SDLSTM 

 

1.6 Parameter searching algorithm 

The nonlinear prediction algorithm introduced in the previous section has different performance 

according to the set of parameters, such as the number of hidden nodes, the number of epochs, batch 

size and learning rate. Thus, to find the optimal parameter is important issue. There are methods to 

search the optimal parameter. The basic method is the grid search. The strategy is to find the optimal 

parameter from the all of combination in the specified hyperparameter subset. Another strategy is the 

random search that tests the parameter combination randomly sampled from the specified distribution, 

such as uniform distribution. The James Bergstra and Yoshua Bengio argued that the random search is 

better than the grid search in empirical and theoretical way. Because not all the parameter does not have 

same amount of importance on the performance of the network, when the parameters are tested in 

equally spaced grid, the parameter combination of high performance could be missed. The following 
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diagram shows the relation (James Bergstra et al., 2012). 

In the figure 11, the white square represents the subspace of two parameters, x and y. The green and 

yellow plot represents the effectiveness of x and y for optimizing the network. Because the green plot 

has more larger value than the yellow plot, the parameter x is regarded as the important parameter. The 

grid search strategy can miss the optimal parameter set. In the other hand, the random search has more 

chance to get better set of parameters by unevenly searching the parameter space. In our work, the 

random search strategy was used to optimize the Velocity LSTM and the Speed-Direction LSTM 

 

1.7 Performance comparison of the linear and nonlinear decoder 

In the previous section, the neurobiological grounds for separating the direction and speed parameter 

was introduced. Also, several neural decoding algorithms for predicting the kinematic parameters was 

reviewed. Further, the parameter updating and searching algorithms are introduced. In this section, the 

performance of linear and nonlinear decoder is reviewed. 

The nonlinear neural decoder has better decoding performance in general than the linear one. It implies 

that the kinematic parameters are nonlinearly encoded in the motor cortical ensemble activity. In this 

section, some researches that used nonlinear prediction algorithm as neural decoder and improved the 

decoding performance are reviewed although the velocity parameter was directly decoded instead of 

explicitly decoding the direction and speed. A work was that of the Joshual I. Glaser (Joshual I. Glaser, 

2017). In this paper, lots of decoder such as Wiener Filter, Wiener Cascade, Kalman Filter, Support 

Vector Regression, XGBoost, Feedforward Neural Net, Recurrent Neural Net, GRU, LSTM, Ensemble 

model was tested on the decoding of kinematic parameters from the motor cortex and somatosensory 

cortex of a monkey and from the hippocampus of a rat. The Weiner Filter, Wiener Cascade, Kalman 

Figure 11 Concept diagram of grid search and random search (James Bergstra et al., 2012) 
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Filter is linear decoding algorithm. In the other hand, the other decoders are nonlinear. The results 

showed that the nonlinear decoding algorithm has better performance than the linear (Figure 12). 

Another work is that comparing the linear and nonlinear decoding algorithm for motor cortical activity 

decoding to predict the arm movement trajectory (Kai Xu et al., 2011). It compared the linear algorithm, 

Kalman filter, with the nonlinear algorithm, general regression neural network (GRNN) and support 

vector regression (SVR). The results showed that the nonlinear algorithm performed better than the 

linear one. The GRNN and SVR showed lower RMSE than that of Kalman filter (Figure 13) 

 

Figure 12 Velocity decoding from the neuronal activity of the motor cortex (Joshual I. Glaser, 2017) 
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Figure 13 Comparison between linear and nonlinear decoding algorithm (Kai Xu et al., 2011) 
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1.8 Research aim 

As introduced in the section 1.1, the BMI has goal to achieve overcoming the physical disability such 

as tetraplegia by transferring the brain signal into the intended movement of the robot arm. Many neural 

decoders have been developed to improve the accuracy of the kinematic variable prediction of the arm 

movement starting from the Kalman filter to the LSTM (section 1.4 and section 1.7). In this research, 

we tried to improve the decoding performance by developing the new neural decoder, which is called 

as the speed-direction LSTM. 

In the section 1.2, we introduced a research showing the directional information is strongly encoded in 

the motor cortical activity than the speed information is encoded. It implies that the speed information 

is encoded in more robust way that the analysis in the research could not capture. These results give the 

evidence that the speed and direction could be encoded differently in the aspects of time scale or the 

encoding method such as spike timing and firing rate. It requires the independent decoding methods for 

each variable to make each algorithm fit to each encoding method of those variables. Thus, we tried to 

decode the neural activity with separate decoding model into the direction and speed variable.  

In the section 1.1, we introduced the center-out reaching task and the characteristics of the ensemble 

neurons in the motor cortex that is called as the cosine tuning property. The property modulates the 

firing activity of the motor cortex neuron according to the movement direction. It implies that the 

directional information can be explained with the linear equation of directional component of arm 

movement (Georgopoulos AP et al., 1982). Further, another research showed that the direction can be 

explained better with nonlinear model (section 1.2). Thus, we tried to predict the direction variable with 

nonlinear algorithm. Also, the speed variable was predicted with the nonlinear algorithm because the 

variable showed nonlinear characteristic in the reaching task (section 1.3).  

In the section 1.7, we introduced a research that compares the decoding performance of the decoders 

previously applied in the arm movement prediction, especially velocity parameter. The figure 12 and 

13 shows that the nonlinear prediction algorithm was better than the linear prediction algorithm. Among 

the nonlinear neural decoder, LSTM showed best performance except the Ensemble method. Thus, we 

developed the neural decoder, speed-direction LSTM, that predicts speed and direction variable 

separately with the LSTM algorithm. We didn’t consider the ensemble method as the neural decoder 

for predicting the variables because the ensemble method is the coupled decoder combining the FNN 

with the other decoders except that the KF and thus, the LSTM predictor is simpler model than the 

ensemble method. The goal of this research was to identify whether the proposed decoder improve the 

decoding performance when it is compared with that of neural decoders previously suggested. The 

decoding performance can be measured in two aspects, accuracy and effectiveness. In this research, we 

regarded the aspects of accuracy as more important criteria. 
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2.1 Data description 

The open data provided from the Collaborative Research in Computational Neuroscience –Data sharing 

(CRCNS) was used to the analysis. The data was recorded in the Northwestern University.   

Two rhesus monkeys participated to the experiments, which was center-out task and random-target task. 

We only analyzed the data recorded in the center-out task. In the eight-target center-out task, monkey 

grasped and moved the two-link manipulandum to control the cursor. The eight targets were placed 

around a circle with radius of 10 cm with 45 degree interval. The home position at which the monkey 

starts each trial was placed at the center of the circle. In each trial, the monkey holds the home position 

with a duration randomly given between 0.5 ~ 0.6s. Then, the randomly selected outer target, which 

was 2cm square, was brighten and the center position became darken. The monkey had to reach to the 

outer target and hold for random duration between 0.2 s and 0.4 s for the success of the trial. The eight 

targets were given equally in random order. The data of first experiment recorded from the monkey C 

was analyzed.  

 

Figure 14 shows the behavioral data of the center-out task. The monkey didn’t reach to the target 

completely because the target was 2 cm square. The total number of trials was 194. In the trials, success 

trials that acquired the target were analyzed. The number of trials that were analyzed is 175. We used 

the 60 % of total number of trials as the train data for the neural decoders. The remained 40 % was 

Figure 14 Center out task profile. The red dot indicated the center position of eight targets. 

The blue dot at the center indicated the home position. The black dashed line represents 

the reaching trajectory of the monkey C. 
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equally divided into the validation and test data.  

The silicon microelectrode array (96-channel, Blackrock, Inc) was implanted within the arm area of the 

contralateral primary motor cortex (M1). The total number of recorded neurons were 196. The neurons 

were sorted in descending order according to the number of firing rates and the neurons that made firing 

in the level of causing the singular matrix in the prediction process of the Kalman filter decoder were 

removed in the analysis. The 158 number of neurons are used. 

 

2.2 Data analysis 

2.2.1 Network design 

In this section, the network structure of suggested neural decoder, which is speed-direction 

LSTM(SDLSTM), is explained. Also, velocity Kalman filter (VKF) and velocity LSTM (VLSTM) were 

compared with the SDLSTM to verify the performance of the new decoder. The reason of selecting 

those decoders as reference is that both Kalman filter and LSTM are state based decoder. The Kalman 

filter estimate the state with the observation of the neural data and the LSTM also estimate the hidden 

state including the state information from the neural data observation. The structure of VKF and 

VLSTM were copied from the works of Joshual I. Glaser (Joshual I. Glaser et al., 2017). The VKF had 

same algorithm with that implemented by W. Wu (W. Wu, 2003) except that it had scaling variable 

configuring the noise matrix of the kinematic states. We didn’t configure the variable in our analysis 

because it was reported as the variable made only small improvements in the decoding quality of motor 

cortex signal. The firing rates in 50ms window consisted a bin. For each decoder, 3 bins were used as 

input.  

Figure 15 Input schematic for neural decoders 
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Figure 15 shows that each B number of bins were used to predict the kinematic variable at a specific 

time. Also, the window size was same with the size of time shift and thus, there were no overlap between 

each bin. Each bin is N dimensional vector representing the firing rates of N number of neurons (Figure 

16).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 Firing rates in a bin of N number of neurons 
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2.2.1.1 Velocity Kalman Filter (VKF) 

  

 

The figure 17 show the input structure of the velocity Kalman filter. The N is the number of neurons 

and the B is the number of bins used for the decoder. Also, The K indicates the number of samples for 

train, validation or test. We used the 159 number of neurons and the 3 number of bins with 50ms window. 

Each bin had 159 dimension and it was concatenated as a single input for predict an observation. The 

105 trials were used for train. The length of the train data was 2105. Also, the 35 trials were used for 

validation and test. The number of samples was 700 and 713 for validation and test. The number of 

features were 477, which was three times of the number of selected neurons. Also, although the velocity 

Kalman filter of the research of Joshual I. Glaser predicted position, velocity and acceleration, we only 

predicted the velocity parameter without prediction of the other parameter. The reason was that the other 

decoder, velocity LSTM and speed-direction LSTM, predicted only the velocity parameter. The figure 

18 shows the structure of the velocity Kalman filter. 

 

Figure 17 Input schematic for the velocity Kalman filter (Joshual I. Glaser et al., 2017)  
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The 𝑍𝑡 is the number of firings of 158 neurons in 50ms time bin at the time t. The velocity Kalman 

filter got inputs concatenated from the time t-2 to the time t for predicting the 𝑉𝑡,𝑥 and 𝑉𝑡,𝑦.   

 

 

 

 

 

Figure 18 Structure of velocity Kalman filter 
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2.2.1.2 Velocity LSTM (VLSTM) 

 

Figure 19 represents the structure of the velocity LSTM. The 𝑍𝑡 is the number of firings of 158 neurons 

in 50ms time bin at the time t. The velocity LSTM got inputs serially from the time t-2 to the time t for 

predicting the 𝑉𝑡,𝑥 and 𝑉𝑡,𝑦. Each Z was processed in the LSTM cell and updated the previous cell 

state. It was passed to the LSTM cell of next time step. After processing the three number of Z 

sequentially, the final hidden state is passed to the fully connected layer which has two number of output 

units, the 𝑉𝑡,𝑥 and 𝑉𝑡,𝑦. We used the Adam optimizer to update the parameters in the network. The 

learning rate was 0.0001 and the 𝛽1 was 0.9 and 𝛽2 was 0.999. Also, the random search was used to 

find the optimal parameter set. The parameter of the number of hidden nodes, the batch size, the number 

of epoch was searched in specified boundary. The boundaries were from 10 to 50 for the number of 

hidden nodes and the batch size and from 10 to 100 for the number of epoch. The boundaries were 

selected heuristically. 

 

 

 

 

Figure 19 The structure of the velocity LSTM 
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2.2.1.3 Speed-Direction LSTM (SDLSTM) 

Figure 20 represents the structure of SDLSTM. The model has two parts of estimator. One part of the 

model estimates the arm movement speed and the other part estimates the arm movement direction by 

predicting the cosine and sine of the degree. Each model passed the hidden state to the fully connected 

layer which had one output unit for speed estimation and two number of output units for direction 

estimation. The velocity 𝑉𝑡,𝑥 and 𝑉𝑡,𝑦 were acquired with the estimated speed and degree. The reason 

that predicting cosine and sine instead of directly predicting the degree is because the degree has the 

property of periodicity. Because of the periodicity, the degree parameter has lots of discontinuous points 

in the recorded data while the trigonometrical function is continuous. These tricks have been used in 

previous researches (Rhys Heffernan, 2017 and James Lyons, 2014). When predicting the association 

angle of protein backbone, the deep neural-network had output units for predicting cosine and sine of 

the angle (James Lyons, 2014). Also, the bidirectional LSTM which had output units predicting cosine 

and sine for estimating the protein secondary structure was developed by Rhys Heffernan (Rhys 

Heffernan, 2017). The learning rate was 0.0001 and the 𝛽1  was 0.9 and 𝛽2  was 0.999. Also, the 

random search was used to find the optimal parameter set. The parameter of the number of hidden nodes, 

the batch size, the number of epoch was searched in specified boundary. The boundaries were from 10 

to 50 for the number of hidden nodes and the batch size and from 10 to 100 for the number of epoch. 

The boundaries were selected heuristically. 

Figure 20 The structure of speed-direction LSTM 
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2.2.2 Measurement index 

The quality of the reconstruction need to be measured quantitively to measure how accurate the neural 

decoders were. The measurement index of the reconstructed velocity and position is introduced in this 

section. All the indexes were averaged The measurement indexes of angular difference, correlation 

coefficient, mean absolute error, Euclidean distance were averaged on each trial and then those averaged 

indexes are compared according to the decoding method. The repeated measure ANOVA (rmANOVA) 

was performed on the indexes of each decoders. Also, the Mauchly’s test was used to check the violation 

of the sphericity. If the sphericity was violated, the significance of the rmANOVA was corrected by 

Greenhouse-Geisser method if the epsilon estimated by the Greenhouse-Geisser method was less than 

0.75, the p-value of rmANOVA corrected by Greenhouse-Geisser method was used and if the epsilon 

was larger than 0.75, the p-value of rmANOVA corrected by Huynd-Feldt method was used. When the 

p-value was corrected, the epsilon was noticed as ε. Also, the multiple comparison test corrected by 

bonferonni was performed as a post hoc test.  

 

2.2.2.1 Measuring the accuracy of velocity reconstruction 

2.2.2.1.1 Angular difference 

Angular difference (AD) is the difference of the angle between true velocity vector and predicted 

velocity vector in radian. It measures the quality of the directional information decoding.  

In the diagram, the 𝑉𝑡+1 is true velocity vector at time t+1, 𝑃𝑡+1 is true position at time t+1, 𝑉̂𝑡+1 is 

the decoded velocity vector at time t+1, 𝑃̂𝑡+1 is the decoded position at time t+1. Using the following 

equation, 𝜃𝑡+1 can be acquired.  

 𝜃𝑡+1 = cos
−1

𝑉𝑡+1 ∙ 𝑉̂𝑡+1

|𝑉𝑡+1| |𝑉̂𝑡+1|
 (20) 

Figure 21 Angular difference between predicted and behavioral data 
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The averaged AD of a single trial is acquired with following equation: 

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝐴𝐷 = 
1

𝑛
∑𝜃𝑡

𝑛

𝑡=0

 (21) 

The n is the number of samples in a trial. 

 

2.2.2.1.2 Correlation coefficient 

Pearson correlation coefficient(CC) is a measure of linear correlation of two variables, X and Y. It 

measures the quality of the velocity reconstruction. It is acquired with the covariance of the two 

variables. 

 ρ𝑋,𝑌 =  
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 (22) 

The 𝑐𝑜𝑣(𝑋, 𝑌) is the covariance between X and Y. The 𝜎𝑋 and 𝜎𝑌 is the standard deviation of X and 

Y. It was acquired in a single trial with following equation: 

 
r =   

∑ (𝑣𝑥,𝑖 − 𝑣𝑥̅̅ ̅)(𝑣𝑦,𝑖 − 𝑣𝑦̅̅ ̅)
𝑛
𝑖=1   

√∑ (𝑣𝑥,𝑖 − 𝑣𝑥̅̅ ̅)
2𝑛

𝑖=1   √∑ (𝑣𝑦,𝑖 − 𝑣𝑦̅̅ ̅)
2𝑛

𝑖=1   

 
(23) 

The n is the number of samples in a trial. 

 

2.2.2.1.3 Mean absolute error 

The mean absolute error (MAE) indicates the averaged error of the velocity prediction. It was acquired 

in a single trial with following equation: 

 MAE of velocity x and y =  
𝑀𝐴𝐸 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑥 + 𝑀𝐴𝐸 𝑜𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑦

2
 (24) 

 

 MAE of velocity x =  
∑ |𝑣𝑥,𝑖 − 𝑣𝑥,𝑖|
𝑛
𝑖=1

𝑛
  (25) 

 

 MAE of velocity y =   
∑ |𝑣𝑦,𝑖 − 𝑣𝑦,𝑖|
𝑛
𝑖=1

𝑛
 (26) 

The n is the number of samples in a trial. 
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2.2.2.2 Measuring the accuracy of position reconstruction 

2.2.2.2.1 Euclidian distance with true trajectory 

 ED = 
1

𝑛
∑√(𝑝𝑥,𝑖 − 𝑝̂𝑥,𝑖)

2 + (𝑝𝑦,𝑖 − 𝑝̂𝑦,𝑖)
2

𝑛

𝑖=1

 (27) 

The Euclidean distance with true trajectory measures that how accurately the trajectory was 

reconstructed by each decoder. . It was acquired in a single trial. The n is the number of samples in a 

trial. 𝑝𝑥,𝑖 is the position of x axis at i-th sample. 𝑝̂𝑥,𝑖 is the reconstructed position of x axis at the 

sample. 

 

2.2.2.3 Measuring the effectiveness of position reconstruction 

Although the reconstructed trajectory is not completely accurate, the decoded trajectory will be 

meaningful if it is efficient to acquire a given target. The following indexes measure that kind of aspects 

of the decoding results. 

In the BMI paradigm, interpreting the neural information accurately is important because it’s final goal 

is making the interface that transfer the subject’s intention to the device that wants to control without 

distortion and making natural movement with the interface. However, if the interface could not fully 

interpret the intention, it can be another important aspect for evaluating the BMI interface that how 

effectively the BMI helps to achieve the goal of the intention such as reaching to the target direction. 

 

2.2.2.3.1 Euclidian distance with ideal trajectory 

The Euclidean distance (ED) with ideal trajectory represents how efficiently the reconstructed 

movements reached to the target. When the hand moves to the target, it can be said that the target was 

acquired in most efficient movement if the trajectory is on the straight line connecting between the 

home and target. The straight line is the ideal trajectory. The Figure 22 represents the concept of the 

index. The orange line represents the reconstructed trajectory and the black line indicates the ideal 

trajectory. The dashed black line shows the distance between the position of the trajectory and the 

straight line. 
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The index was acquired on each trial and compared for each decoding method. For each trial, the 

following equation was used. 

 𝐸𝐷 𝑤𝑖𝑡ℎ 𝑖𝑑𝑒𝑎𝑙 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 =   
1

𝑛
∑sin(cos−1(

𝑝̂𝑖 ∙ 𝑑

|𝑝̂𝑖||𝑑|
))

𝑛

𝑖=1

 (28) 

   

 𝑝̂𝑖 = (𝑝̂𝑥,𝑖 − 𝑝𝑥,ℎ𝑜𝑚𝑒 , 𝑝̂𝑦,𝑖 − 𝑝𝑦,ℎ𝑜𝑚𝑒) (29) 

 

 d = (𝑝𝑥,𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑥,ℎ𝑜𝑚𝑒 , 𝑝𝑦,𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑦,ℎ𝑜𝑚𝑒) (30) 

 

The 𝑝̂𝑥,𝑖 , 𝑝̂𝑦,𝑖 is the predicted x and y position of i-th sample. The 𝑝𝑥,𝑡𝑎𝑟𝑔𝑒𝑡, 𝑝𝑦,𝑡𝑎𝑟𝑔𝑒𝑡 is the x and 

y position of given target. The 𝑝𝑥,ℎ𝑜𝑚𝑒 , 𝑝𝑦,ℎ𝑜𝑚𝑒 is the x and y position of home. With the angle 

between the 𝑝̂𝑖 and d, the length of the perpendicular line from the decoded position to the straight 

line was calculated. 

 

2.2.2.3.2 Hit rate 

The hit rate index measure how many times the movement trajectory reached to the target. The square 

box surrounding the target that has edge length of 0.4 cm was accepted as safe boundary for a hit trail. 

The hit rate was acquired by dividing the number of hit trials with the total number of trials. 

 

2.2.2.3.3 Distance to target according to time 

This index measure how accurately the reconstructed trajectory approach to the target in a trial. If the 

trajectory is predicted accurately, the graph of distance according the time is similar with that of the true 

trajectory. Because the time consumed by a trial was different between trials, the distance was measured 

Figure 22 Euclidean distance with ideal trajectory 
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for every 10 % of the duration consumed in each trial. The collected distances on each percentage were 

averaged and the standard error was indicated. 

 

2.2.2.3.4 Movement directional change (MDC) 

The MDC index measure the smoothness of the reconstructed trajectory. It counts how many the 

trajectory changes the movement direction relative to the straight line between home and target position. 

The MDC value is larger than 0. If a trajectory has small MDC, it means that the trajectory has smooth 

path. It was acquired in a single trial. 

 

 

2.2.2.3.5 Orthogonal directional change (ODC) 

The ODC index also measure the smoothness of the reconstructed trajectory. However, it counts the 

direction change parallel to the orthogonal line of the straight line between the home and target. The 

ODC value is larger than 0. If a trajectory has small ODC, it means that the trajectory has smooth path. 

The MDC and ODC index were calculated with at least 100ms and 200ms interval because we don’t 

want to regard the oscillating trajectory in short time step as the directional change. It was acquired in 

a single trial.  

Figure 23 Movement Direction Change 

Figure 24 Orthogonal direction change  
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3.1 Reconstructed velocity 

 

Figure 25 An example of velocity x profile in the test data reconstructed from each neural decoder. The 

true velocity profile was indicated as a black line. 

 

The figure 25 shows that an example of the velocity x profile in test data predicted from each neural 

decoder. All decoders look like following the true velocity profile. The SDLSTM showed better 

prediction in the peak of velocity while the other decoders made insufficient prediction to follow the 

peak velocity of the true data. However, the SDLSTM showed poor prediction than the other decoders 

when the amplitude should be small. 
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Figure 26 An example of velocity y profile in the test data reconstructed from each neural decoder. The 

true velocity profile was indicated as a black line. 

 

The figure 26 shows the example profile of the velocity y reconstructed by each neural decoder. The 

SDLSTM and VLSTM predicted the bell shape of velocity in high accuracy while the KF showed noisy 

prediction at the same moment. Also, the SDLSTM predicted the velocity with less error when the 

velocity should be small while it was noisy in the prediction of x velocity.  
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3.2 Reconstructed trajectory 

 

Figure 27 An example of reconstructed trajectory and the true trajectory in the test data. The target was 

indicated as red diamond and the home was indicated as the blue diamond. The shaded box implied the 

safe area that if the trajectory ends in the boundary, it was regarded as the success trial. 

 

Figure 27 shows an example of the reconstructed trajectory of trials to the target direction of -45 degrees. 

The trajectory reconstructed by the VKF and the VLSTM didn’t reach to around the target. In the other 

hands, that of the SDLSTM reached to the end of the shaded box although it didn’t the acquire the target. 
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3.3 Measuring the accuracy of velocity reconstruction 

3.3.1 Angular difference 

 

Figure 28 Angular difference in the movement direction. (Left) the averaged AD according to the target 

direction. (Right) the averaged AD of the whole test data. Standard errors were indicated as a thin bar.  

 

The figure 28 shows that the angular difference (AD) of each decoder. The SDLSTM predicted the 

movement direction in higher accuracy that the other decoders at most of the target direction (figure 28, 

left). Specifically, the one-way repeated measure ANOVA on the averaged AD of the whole test data 

revealed that the effect of decoders were significant, F(2,68) = 12.683, p <0.001. The post hoc test 

corrected with bonferroni revealed that angular difference of the VKF (M= 1.104, SE = 0.0943) was 

not significantly different that of the VLSTM (M = 0.9587, SE = 0.0808) at p = 0.13544. The AD of 

SDLSTM (M = 0.6994, SE = 0.0852) was significantly different with that of the VKF at p<0.001 and 

with that of VLSTM at p<0.05 
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3.3.2 Correlation coefficient 

 

Figure 29 Correlation coefficient of the reconstructed velocity on the x axis. (Left) the averaged CC 

according to the target direction. (Right) the averaged CC of the whole test data. Standard errors were 

indicated as a thin bar.  

 

It can be found that the CC of the velocity on the x axis was low in several specific direction (Figure 

29). For example, CC of all decoders became poor at the target direction of -90 degree and 90 degrees. 

The CC in the other direction were similar between the decoders (Figure 29, left). Thus, the CC averaged 

on the whole trial became affected by the direction of -90 and 90 degree and the VLSTM showed best 

CC in the velocity prediction in the x axis. Specifically, the one-way repeated measure ANOVA on the 

averaged CC of the whole test data revealed that the effect of decoders was marginally significant, 

F(2,68) = 2.6833, p = 0.076. Further, the post hoc tests corrected with bonferroni revealed that the CC 

of VKF (M = 0.8047, SE = 0.0408) was not significantly different with that of VLSTM (M = 0.813, SE 

= 0.0353) at p = 1. Also, that of VKF and that of SDLSTM (M = 0.755, SE = 0.0464) was not 

significantly different with each other at p = 0.33267. The CC of VLSTM was marginally significant 

different with that of SDLSTM at p = 0.1033. 
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Figure 30 Correlation coefficient of the reconstructed velocity on the y axis. (Left) the averaged CC 

according to the target direction. (Right) the averaged CC of the whole test data. Standard errors were 

indicated as a thin bar.  

 

The CC of y velocity was poor in the SDLSTM and the VKF at the target direction of 0 degree. 

Specifically, the one-way repeated measure ANOVA on the averaged CC of the whole test data revealed 

that the effect of decoders was marginally significant, F(2,68) = 3.057, p = 0.059, ε = 0.898 . The 

HuynhFeldt correction was used. Further, the post hoc tests corrected with bonferroni revealed that 

there was significant difference between that of VKF (M = 0.8316, SE = 0.0249) and that of VLSTM 

(M = 0.9036, SE = 0.0111) at p <0.05. The difference between the VLSTM and VKF was not significant 

at p = 1. Also, the difference between the VLSTM and the SDLSTM (M = 0.8458, SE = 0.038) was not 

significant at p = 0.30815. 
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3.3.3 Mean absolute error 

 

The mean absolute error on x axis was smallest at the VLSTM. Specifically, the one-way repeated 

measure ANOVA on the averaged MAE of the whole test data revealed that the effect of decoders were 

significant, F(2,68) = 4.9134, p < .05, ε = 0.795. The HuynhFeldt correction was used. Further, the post 

hoc tests corrected with bonferroni revealed that there was significant difference between that of VKF 

(M = 0.028, SE = 0.0019) and that of VLSTM (M = 0.0231, SE = 0.0012) at p < .01. The SDLSTM (M 

= 0.755, SE = 0.0464) didn’t showed any significant difference with the other decoders.  

 

 

 

 

 

 

 

 

 

Figure 31 Mean absolute error of predicted velocity on x axis. (Left) the averaged MAE according to 

the target direction. (Right) the averaged MAE of the whole test data. Standard errors were indicated 

as a thin bar.  



42 

 

 

The mean absolute error on y axis was smallest at the SDLSTM. Specifically, the one-way repeated 

measure ANOVA on the averaged MAE of the whole test data revealed that the effect of decoders were 

significant, F(2,68) = 32.536, p < .001, ε = 0.87. The HuynhFeldt correction was used. Further, the post 

hoc tests corrected with bonferroni revealed that there was significant between the VKF (M = 0.0434, 

SE = 0.0026) and the VLSTM (M = 0.0288, SE = 0.0015) at p < .001. The VKF showed significant 

difference with the SDLSTM (M = 0.0253, SE = 0.0013) at p < .001. 

 

 

 

 

Figure 32 Mean absolute error of predicted velocity on y axis. (Left) the averaged MAE according to 

the target direction. (Right) the averaged MAE of the whole test data. Standard errors were indicated 

as a thin bar.  
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Figure 33 Mean absolute error of predicted velocity averaged on x and y axis. (Left) the averaged MAE 

according to the target direction. (Right) the averaged MAE of the whole test data. Standard errors were 

indicated as a thin bar.  

 

To figure out the overall correctness of the velocity prediction, the averaged MAE on the both axis was 

compared between the decoders. The results showed that the SDLSTM and VLSTM were in similar 

level of the index and they were better than the that of VKF. Specifically, the one-way repeated measure 

ANOVA on the averaged MAE of the whole test data revealed that the effect of decoders were 

significant, F(2,68) = 34.73, p < .001, ε = 0.758. The HuynhFeldt correction was used. Further, the post 

hoc tests corrected with bonferroni revealed that there was significant difference between the VKF (M 

= 0.0361, SE = 0.0016) and VLSTM (M = 0.026, SE = 0.001) at p < .0001 and between the VKF and 

the SDLSTM (M = 0.0253, SE = 0.0011) at p < .0001 in the MAE. The difference between the VLSTM 

and the SDLSTM was not significant. 
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3.4 Measuring the accuracy of position reconstruction 

3.4.1 Euclidean distance with true trajectory 

 

Figure 34 Averaged Euclidean distance between true and reconstructed trajectory. Standard errors were 

indicated as a thin bar. Red (Left) the averaged ED according to the target direction. (Right) the averaged 

ED of the whole test data. 

 

Figure 34 shows the averaged Euclidean distance of each decoders. Specifically, the one-way repeated 

measure ANOVA on the averaged ED of the whole test data revealed that the effect of decoders were 

significant, F(2,68) = 14.726, p <0.0001. The post hoc test corrected with bonferroni revealed that the 

Euclidean distance of VKF (M = 0.017, SE = 0.0016) was significantly higher than that of VLSTM (M 

= 0.0118, SE = 0.0011) at p < .01 and that of the VKF was significantly higher than that of SDLSTM 

(M= 0.0103, SE = 8.4455e-04) at p < .0001. However, the difference between the VKF and SDLSTM 

was not significant at p = .48712.  
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3.5 Measuring the effectiveness of position reconstruction 

3.5.1 Euclidean distance with ideal trajectory 

 

Figure 35 Averaged Euclidean distance with ideal trajectory of the reconstructed trajectory. (Left) the 

averaged ED according to the target direction. (Right) the averaged ED of the whole test data. Standard 

errors were indicated as a thin bar.  

 

The reaching movement was close to the ideal straight line to the target although the trajectory had 

curved shape which was natural movement of reaching. In the other hand, the decoded trajectories were 

far from the ideal. Specifically, the distances were bigger in some direction such as -180 degrees or 45 

degrees and were became small in the neighboring direction of the direction. this pattern could be 

observed in the Euclidean distance with true trajectory. It implies that the error in reconstructing the 

trajectory made the trajectory far from the ideal straight line. Specifically, the one-way repeated measure 

ANOVA on the averaged ED of the whole test data revealed that the effect of decoders was not 

significant, F(2,68) = 4.7436, p < 0.05. Further, the post hoc tests corrected with bonferroni revealed 

that the ED of VLSTM (M = 0.0078, SE = 8.2349e-04) was significantly lower than that of VKF (M = 

0.0109, SE = 0.0014) at p < 0.05. The difference between that of the VKF and the SDLSTM (M = 

0.0078, SE = 8.8148e-04) was not significant (p = 0.087). Also, the difference between the VLSTM and 

the SDLSMT was not significant (p = 1). Also, the true data has mean of 0.004 and standard error of 

2.777e-04. 
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3.5.2 Hit rate 

 

Figure 36 Hit rate of the reconstructed trajectory. (Left) the hit rate according to the target direction. 

(Right) the hit rate of the whole test data.  

The hit rates performance was in the order of SDLSTM, VLSTM and VKF. At most of the target 

directions, the SDLSTM was better than the other decoders. The hit rates in 90 and 135 degrees were 

100% in the SDLSMT.  

 

The Figure 37 showed the reason that the hit rate of the behavioral data was not 100 %. The monkey 

didn’t fully reach to the target because he knew that he only had to put the endpoint of hist arm in the 

boundary box around the target in which the trial is regarded as a hit trail. It made the most of reaching 

finish near the edge of the boundary box. An example of trajectory ends before it safely goes into the 

box although it was marked as hit trial (see Figure 37).  

 

Figure 37 The trial fail to reach the target, but marked as true trial 
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3.5.3 Distance to target according to time 

The figure 38 shows that the SDLSTM and the VLSTM approached to the target faster than the VKF 

implying the decoders’ accuracy of trajectory reconstruction was better than that of the VKF. The reason 

that the distance of the VKF became larger after 80 % progress of the trial is that the decoded trajectory 

of the VKF frequently go through the target. The statistical test was performed only at the 100 % of the 

time progress. Specifically, the one-way repeated measure ANOVA on the distance to the target of the 

whole test data revealed the effect of decoders on the index, F(2,68) =8.556, p < .001. The post hoc tests 

corrected with bonferroni revealed that there was no difference between that of SDLSTM (M = 0.0256, 

SE = 0.0018) and that of VLSTM (M = 0.0284, SE = 0.0028) at p = 1. The distance of VKF (M = 0.0366, 

SE = 0.0034) was significantly different with that of the VLSTM at p< .05 and that of SDLSTM at 

p< .01. Also, the true data has mean of 0.012 and standard error of 8.56e-04. 

 

 

 

 

 

Figure 38 Distance to target according to task time percentage. The standard error of each decoder 

was indicated as a filled color which is same with that of each decoder.  

 

m

SDLSTM
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3.5.4 Movement directional change (MDC) 

 

Figure 39 Movement direction change of reconstructed trajectory. * indicates the significant difference 

between two decoders.  

The figure 39 showed the MDC in each neural decoder. Specifically, the one-way repeated measure 

ANOVA on the MDC of the whole test data didn’t revealed the effect of decoders, F(2,68) = 0.516, p 

= .60. The post hoc tests corrected with bonferroni revealed that there was no difference between the 

neural decoders. The significance level was p = 1 in the all combination among the VKF (M = 3.257, 

SE = 0.294), VLSTM (M = 3.571, SE = 0.233) and SDLSTM (M = 3.4, SE = 0.214). The behavioral 

data showed mean of 3.857 and standard error of 0.227. 
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3.5.5 Orthogonal directional change (ODC) 

 

Figure 40 Orthogonal direction change of reconstructed trajectory. * indicates the significant difference 

between two decoders.  

 

The figure 40 showed the ODC in each neural decoder and the SDLSTM showed most smooth 

trajectories in the orthogonal direction to the target. Also, VKF was better than the VLSTM in the index. 

Specifically, the one-way repeated measure ANOVA on the ODC of the whole test data revealed the 

marginally significant effect of decoders, F(2,68) = 2.777, p = .069. The post hoc tests corrected with 

bonferroni revealed that there was no difference between the VKF (M = 1.3143, SE = 0.1465) and the 

other decoders, in which the p-value was 0.44 at the comparison with that of VLSTM (M = 1.5429, SE 

= 0.1253) and it was 1 at the comparison with that of SDLSTM (M = 1.1429, SE = 0.1306). The 

difference between SDLSTM and VLSTM was marginally significant at p = 0.074. Also, the true data 

has mean of 1.4 and standard error of 0.137 
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3.6 Summary of the results 

In the section of 3.1.1 and 3.1.2, we showed that each neural decoder follows the velocity profile in 

overall and the reconstructed trajectory reached to the around of the target although the SDLSTM 

reached to the nearer to the target than that of the other decoders.  

Table 1 The summary of the index of velocity prediction performance 

Angular difference CC (x axis) CC (y axis) 

Mean absolute 

error averaged on 

x and y axis 

VKF < SDLSTM 

VLSTM < SDLSTM 

SDLSTM<VLSTM 

(marginally 

significant) 

No significant 

difference 

VKF < VLSTM 

VKF < SDLSTM 

 

The table 1 shows the summary of performance in the velocity prediction. The SDLSTM predicted the 

movement direction accurately than the other decoders. And the velocity prediction was better than that 

of VKF and it was similar level with that of VLSTM. At the CC on x axis, the VLSTM was better than 

the SDLSTM and at the CC on y axis, there were no significant difference between the decoders. 

However, the CC was not important because it didn’t affect actual movement trajectory. It will be 

discussed in the next chapter.  

Table 2 The summary of the index of position prediction performance (part 1) 

Euclidean distance with 

true trajectory 
Hit rate 

Distance according to 

time 

VKF < VLSTM 

VKF < SDLSTM 
VKF < VLSTM < SDLSTM 

VKF < VLSTM 

VKF < SDLSTM 

 

Also, the performance of the position prediction was reported in the table 2 and table 3. The SDLSTM 

and the VLSTM predicted the trajectory in higher accuracy than the VKF predicted. Also, the efficiency 

of approaching to the target was in similar level between VLSMT and SDLSTM and they were better 

than the VKF. However, because the prediction of the movement direction was best in the SDLSTM, 

the SDLSTM could acquire the target in highest hit rate (Table 2). 
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Table 3 The summary of the index of position prediction performance (part 2) 

Euclidean distance with 

ideal trajectory 
MDC ODC 

VKF < VLSTM No significant difference VLSTM < SDLSTM 

 

The table 3 shows that how smooth the trajectory was (MDC and ODC) and how straightly the 

trajectory goes to the target (ED with ideal trajectory). The trajectory of the VLSTM was closer to 

the straight line from the home to target than the trajectory of VKF. 
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4. Discussion and conclusion 
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The aim of this research was to improve the decoding performance by designing new neural decoder 

based on the characteristics of the data. The literature survey showed that (1) The directional 

information is explained better with the nonlinear model than with the linear model, (2) There is 

research implying that the speed and direction is represented differently in the ensemble activity of the 

motor cortex with the time scale difference or encoding strategy difference. (3) The speed profile has 

nonlinear characteristics that increase or decrease drastically. If there is difference of the kinematic 

variables encoding in the motor cortex, it should be decoded differently. Thus, we designed the neural 

decoder with separate model for predicting speed and movement direction based on the (2). Also, each 

predictor selected the nonlinear prediction algorithm, LSTM, as the decoding algorithm based on the 

(1) and (3), which is nonlinearity.  

The developed neural decoder, which is speed-direction LSTM (SDLSTM), was compared with the 

velocity Kalman filter (VKF) and the velocity LSTM (VLSTM). The CRCNS open data was used for 

training, validating and testing the decoders. We measured the quality of the reconstruction of each 

decoder in two aspects of accuracy and effectiveness.  

Among the accuracy measurement indexes, the SDLSTM showed the poor performance of the 

correlation coefficient in the velocity prediction at some specific target direction. However, it didn’t 

affect much to the decoded trajectory in two reasons. First, the mean absolute error of the velocity 

prediction according to the target direction didn’t showed any similar pattern with that of the CC graph 

on the velocity at each axis. For example, the figure 29 showed poor CC on the 90 and -90 directions 

for all neural decoders. In the other hands, the figure 31 shows that all the decoder’s prediction errors 

were similar between the neural decoders in most of the target direction and didn’t showed any specific 

pattern. In the case of y axis, the pattern of CC graph and the MAE graph were not similar with each 

other (see figure 30, 32). Thus, the SDLSTM’s trajectory could properly reached to the target with 

highest accuracy of the movement direction prediction and showed highest hit rate regardless of the 

result of the CC on velocity. 

The VKF and VLSTM predicted the speed and the direction together getting the profit from the mutual 

information between the two variables to predict the variables. The SDLSTM predicted the two 

variables independently making richer computational complexity could be assigned to each prediction 

algorithm. Predicting the movement direction independently improved the performance of the 

movement direction prediction. Thus, it can be thought as that the gain from computational complexity 

resource was larger than the that from the mutual information. The neural evidence that the variables’ 

encoding method could be different with each other also supports that the weak gain from the mutual 

information 

The number of hidden nodes of the speed predictor in the SDLSTM selected from the random searching 
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was 13 and that of direction predictor was 36. It implies that the prediction of the direction requires 

more complexity than that of the speed. Also, the number of epoch and batch sample, which is 76 and 

14 in the direction predictor and 57 and 29 in the speed predictor, shows that the prediction of the 

direction required much more training time and weights update than that of the speed predictor. It 

implies that the neural encoding complexity in the contralateral primary motor cortex is much higher in 

the direction variable than in the speed variable because the optimal direction predictor has more 

complexity than the complexity of the speed predictor.    

In conclusion, it was identified that the movement direction could be predicted accurately and target 

could be acquired with high hit rate by decoding the direction and speed separately with the SDLSTM 

gaining the profit from the model complexity resource. The velocity reconstruction quality 

outperformed that of the VKF. Also, in the other accuracy measurement index, the SDLSMT was similar 

level with the VLSTM and both were better than the VKF. Thus, we identified that the suggested 

decoder, SDLSTM, could work as the proper neural decoder by improving the overall decoding 

performance. Further, the results implies that the neural evidence of different encoding strategy of those 

variables in the motor cortex.  
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