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Abstract 
 

 

 Graphene, a single sheet of carbon atoms, is an attractive two-dimensional material due to electronic 

characters described with massless Dirac equation and has been widely studied in various field, such as 

semiconductor, photonics, and biotechnology. In particular, graphene has emerged as a leading 

candidate for electronic and spintronic device application because of the high electron mobility and 

very weak spin-orbit coupling. For electronics, graphene can replace silicon-based transistor due to high 

mobility, structural stability, and outstanding thermal conductivity if the band gap of graphene can be 

engineered. Graphene is also promising spin transporting channel because it has a long spin relaxation 

length and time. In addition, the disordered graphene with vacancy, adatom, and proximity effect by 

substrate can have unique electronic characteristics, such as a strong localization, a magnetic ordering, 

a large spin-orbit coupling, and topological edge state. These properties can lead to unprecedented spin-

dependent transport features. Therefore, understanding spin and charge transport properties in 

disordered graphene is very important for the graphene spinrtonics and electronics.  

In this thesis, I studied the spin and charge transport properties in graphene with adatoms and focusing 

on the spin Hall effect originated from the implanted spin-orbit interaction. In Au-clustered graphene, 

the dominance of the spin Hall effect which induced nonlocal resistance was observed at the particular 

carrier concentration. The presence of the spin-Hall induced nonlocal resistance was further confirmed 

through the Hanle curve and its temperature dependence. The behavior of spin relaxation time obtained 

from Hanle curves is consistent with the determined spin-orbit coupling symmetry, which is asymmetric 

near the Dirac point and symmetric at higher concentrations. Based on these results, I suggest that spin-

valley relation in Au-decorated graphene can cause the gate-dependent spin current from the spin Hall 

effect with the enhanced spin-orbit coupling. Also, I researched localization and quantum edge state of 

disordered graphene prepared with doping with magnetic impurity Fe. The disordered graphene 

displayed strong localization and quantum spin edge state with splitting of Landau zeroth level. These 

phenomena could be understood with topological Anderson insulator state.  

This thesis is organized as follows:  

In chapter I, II and III, I reviewed a basic knowledge for graphene, graphene spintronics and spin Hall 

effect from the text book and related papers for transport study in doped graphene.   

In chapter IV, I described fabrication of the graphene Hall bar device together with graphene growth, 

wet-transfer, e-beam and photo lithography, and measurement methods.   

In chapter V, I discussed gate dependent nonlocal spin Hall resistance in Au-clustered graphene and 

discussed the behavior of nonlocal resistance and magneto-conductivity in the sample.    

Finally, I presented metal insulator transition and quantum Hall edge state based on the gate voltahe 

dependent resistivity magneto-transport properties, especially at charge neutral point in Al2O3 / Fe / 

graphene system and discussed the results in chapter VI. 
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I. Graphene 
 

 

Graphene, which is one of major two-dimensional materials, is a single layer of carbon atoms bound 

in a hexagonal lattice structure. The band structure of graphene was first predicted with tight binding 

approximation by P.R. Wallace at 19471, and he showed the unusual semimetal behavior with linear 

energy-momentum dispersion. For a long time, scientist have considered the existence of two-

dimensional material to be impossible because of quantum fluctuation. However, a group led by A. K. 

Geim from the University of Manchester successfully isolated graphene in 20042. Since then, the 

graphene has been extensively studied in a wide range of scientific communities and technological 

applications. Unlike normal semiconductor, the low-energy fermionic excitations of graphene revealed 

to behave as massless Dirac particle3-4. For a contribution to graphene science, the 2010 Nobel Prize in 

Physics was awarded to A. K Geim and K. Novoselove. 

 In this chapter, I will shortly review the band structure, typical electron transport, spin-orbit coupling, 

and weak localization of graphene from textbook and papers. I will also briefly summarize how band 

structure of graphene change in the presence of an ununiform strain.     

 

 

1.1 Band structure and electrical properties.  
 

 

 As shown in figure 1(a,b), graphene is made up of carbon atoms arranged in honeycomb structure and 

contains a triangular lattice with a basis of two atoms (A, B) per unit cell. The lattice vectors can be 

written as 

a1 =
𝑎

2
(3, √3),          a2 =

𝑎

2
(3, −√3)                          (1) 

 

where a ~0.142 nm is the carbon-carbon distance, and graphene lattice constant is about 0.246 nm.  

The reciprocal-lattice vectors are given by  

 

b1 =
2𝜋

3𝑎
(1, √3),          b2 =

2𝜋

3𝑎
(1, −√3).                        (2) 

 

In the first Brillouin zone, there is the two points K and K’ at the corners. Their position in momentum 

space are given by   

 

𝐾 = (
2𝜋

3𝑎
,

2𝜋

3√3𝑎
)         𝐾′ = (

2𝜋

3𝑎
, −

2𝜋

3√3𝑎
)                        (3) 

 

and the three nearest-neighbor vectors in real space are given by 
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𝛿1 =
𝑎

2
(1, √3),      𝛿2 =

𝑎

2
(1, −√3),   𝛿3 = 𝑎(1,0)                  (4) 

  

The conduction and valence bands consisting of  states touch at the two points as shown in figure 1 

(c), where the Fermi level is located, and electronic properties are determined by the state near the K 

and K’ point. So, these points called Dirac points are important for physics of graphene. 

 

 

 

Figure 1. Graphene band structure. (a) the lattice structure of graphene. The lattice unit vectors are 

denoted by a1 and a2. The nearest-neighbor vectors are i, i = 1, 2, 3. (b) the first Brillouin zone. The 

Dirac cones are located at the K and K’ points. b1 and b2 are reciprocal lattice vectors. (c) electronic 

dispersion in the graphene honeycomb lattice. Since the  band is half-filled in graphene, Fermi energy 

goes through the band touching point, which is called Dirac point 3. 

 

The tight-binding Hamiltonian for electrons in graphene considering that electrons can hop to both 

nearest- and next-nearest-neighbor atoms has the form  

 

𝐻 = −𝑡 ∑ (𝑎𝜎,𝑖
+ 𝑏𝜎,𝑗 + 𝐻. 𝑐)<𝑖,𝑗>,𝜎 − 𝑡′ ∑ (𝑎𝜎,𝑖

+ 𝑎𝜎,𝑗 + 𝑏𝜎,𝑖
+ 𝑏𝜎,𝑗 + 𝐻. 𝑐)≪𝑖,𝑗>>,𝜎          (5) 

 

where 𝑎𝜎,𝑖(𝑎𝜎,𝑖
+ ) annihilates (creates) an electron with spin  on site Ri on sublattice, t and t’ are the 

nearest- and next-nearest-neighbor hopping energy, respectively. The energy bands derived from this 

Hamiltonian have the form  

 

𝐸±(𝐤) = ±𝑡√3 + 2 cos(√3𝑘𝑦𝑎) + 4cos (
√3

2
𝑘𝑦𝑎) cos (

3

2
𝑘𝑦𝑎) − 𝑡′2 cos(√3𝑘𝑦𝑎) + 4cos (

√3

2
𝑘𝑦𝑎) cos (

3

2
𝑘𝑦𝑎) (6) 

 

where the plus sign applies to the upper () and the minus sign is the lower band (). The full band 

structure of graphene is shown in figure 1 (c). For the electronic dispersion close to Dirac point, the 

two-component electron wave function (r) obeys the 2D Dirac equation3-5,  

 

−i𝑣𝐹𝝈 ∙ 𝛁𝜓(𝐫) = 𝐸𝜓(𝐫)                            (7) 
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where vF ~106 m/s is Fermi velocity and given by vF = 3ta/2.  

The equation (7) means that the low-energy fermionic excitations of graphene behave as massless 

Dirac particle. The wave functions at K and K’ are related by time-reversal symmetry. Because of its 

unique band structure, graphene exhibits unusual electronic behavior and novel transport effects, such 

as helicity (or chirality)3, Klein paradox6-8, FET (Field effect transistor)2, 9-10, and QHE (quantum hall 

effect)4, 11. Now, I will briefly describe the properties. 

Helicity is defined as the projection of the momentum operator along the pseudospin direction. The 

quantum-mechanical operator for the helicity can be written as ℎ̂ = (1/2) ∙ 𝝈 ∙ 𝒑/|𝒑| . The wave 

functions of equation (7) are also eigenstates of ℎ̂. Namely,  has its two eigenvalues either in the 

direction or against the momentum p. This property says that the states of the system close to the Dirac 

point have well defined chirality or helicity and indicates the existence of pseudospin quantum number 

for the charge carriers. Therefore, the helicity values are good quantum number of graphene system.  

 The Klein paradox is the perfect tunneling of relativistic Dirac fermions through arbitrary high and 

wide barriers. In stark contrast to the conventional quantum tunneling where transmission probability 

exponentially decays with increasing barrier potential, transmission probability of Klein paradox 

increases with increasing barrier height when the particles are governed by Dirac equation. In the case 

of graphene, the chirality leads to a varying transmission probability depending on the angle of 

incidence to the barrier with simplified equation (8) as shown in figure 2.   

 

𝑇(∅) ≅
cos2∅

1−cos2(𝐷𝑞𝑥)sin2∅
                             (8) 

 

where D is wide barriers and qx is refraction angle.  

 

  

Figure 2. Transmission probability of Klein paradox in graphene. Angular behavior of 𝑻(∅) for two 

different barrier potential values, the parameters are D = 110 nm (top), D = 50 nm (bottom) E = 80 meV, 

kf=2/, and = 50 nm.3 
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Meanwhile, the symbolic characteristics of charge transport in graphene are ambipolar field effect and 

unusual quantum Hall effect (QHE). The transport properties of graphene are typically investigated 

through graphene Hall bar device as shown in figure 3 (a). For this device12, graphene is commonly 

deposited on SiO2 wafer. Other substrates are used for specific purposes, such as h-BN to obtain pristine 

graphene, magnetic insulator to induce proximity effect, etc. The figure 3 (b) shows that changing the 

electric potential of the Si as a back gate can control the carrier density and type. This carrier density 

shifts accordingly the Fermi level position in the graphene band structure. The charge-neutrality point 

(CNP) is located at the transition between the electron and hole regime, where the resistivity is 

maximized. In perfect graphene crystal, the Dirac points are coincident with overall CNP. 

Experimentally, resistivity () is measured using a standard 4-probe technique as shown in the figure 

3(a), and is given by  = (W/L)(V34/I12) where W and L are the width and the length of graphene, 

respectively. V34 is the voltage across electrode 3 and 4. I12 is current between 1 and 2. Then, from the 

Drude model, the conductivity  is given by  = ne, where n is the carrier density, e is the electron 

charge, and  is the carrier mobility. The net carrier density n approaches the gate-induced (Vg) carrier 

density, n= (cg/e)(Vg-Vd), where cg is gate capacitance and Vd is the gate voltage corresponding to CNP. 

Therefore, the field-effect mobility is given by  

 

𝜇𝐹𝐸 =  
1

𝑒

𝑑𝜎

𝑑𝑛
=

1

𝑒

𝑑𝜎

𝑑(𝛼|𝑉𝑔−𝑉𝑑|)
                            (9) 

 

In the case of Si substrate with 300 nm SiO2 layer,  (cg/e) is about 7.2×1014 /m2V. Typically, mobility 

of graphene on SiO2 ranges from 2000 to 10000 cm2/Vs at room temperature.  

The electron mean free path l can be derived from the conductivity as follows, the Einstein relation is  

 

σ = 𝑒2𝐷(휀𝐹)𝐷𝑑                               (10) 

 

where D(F) is the density of states at the Fermi level F and Dd is the diffusion constant for d-

dimensional system. For two-dimensional system (d = 2) 

 

𝐷2 =  
1

2
𝑣𝐹

2𝜏 =  
1

2
𝑣𝐹𝑙                            (11) 

 

Here,  = l/ vF is the mean scattering time. For monolayer graphene, the Fermi energy is 

  

휀𝐹 = ℏ𝑣𝐹𝑘𝐹                                (12) 
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where kF is the Fermi wavenumber. The carrier density n is given by 

𝑛 = 𝑔𝑠𝑔𝑣
𝜋𝑘𝐹

2

(2𝜋)2 =
𝑘𝐹

2

𝜋
=

𝜀𝐹
2

𝜋(ℏ𝑣𝐹)2                        (13) 

 

where 𝑔𝑠 = 2, 𝑔𝑣 = 2 are the spin and valley degeneracies, respectively. The graphene’s density of 

states becomes 

 

𝐷(휀𝐹) =  
𝑑𝑛

𝑑𝜀
=

2𝜀𝐹

𝜋(ℏ𝑣𝐹)2
=

4𝜀𝐹

ℎ𝑣𝐹
=

2

ℏ𝑣𝐹
√

𝑛

𝜋
                    (14) 

 

Substitution of the expression for D2 and D(F) into the Einstein relation gives 

 

𝜎 =
2𝑒2

ℎ
𝑘𝐹𝑙                               (15) 

 

Thus, the mean free path is given by 

𝑙 =
ℎ

2𝑒2

𝜎

√𝑛𝜋
                                (16) 

 

In gneral, the mean free path of graphene on SiO2 substrate far from the CNP is around 100 nm.  

When a strong perpendicular magnetic field is applied to conventional two-dimensional electron 

system, the Hall conductivity have quantized values. This property is caused by the cyclotron motion 

of electrons, which results in a Landau quantization of the energy levels.  

In the case of graphene system, the equation (7) with magnetic field is given by 

 

±𝑣𝐹(𝑷 + 𝒆𝑨) ∙ 𝝈𝜓(𝐫) = 𝐸𝜓(𝐫)                        (17) 

 

where 𝑷 = −𝑖ℏ∇, A is the magnetic vector potential, and 𝜓(𝐫) is two-component vector. Here the 

Landau gauge A: 𝐀 = −𝐵𝑦𝑥 is used for a constant magnetic field B perpendicular to the x-y plane. 

Then, taking only the + sign in (17), this equation relates two-component vector:   

 

𝑣𝐹(𝑃𝑥 − 𝑖𝑃𝑦 − 𝑒𝐵𝑦)𝜓2(𝐫) = 𝐸𝜓1(𝐫) and 𝑣𝐹(𝑃𝑥 − 𝑖𝑃𝑦 − 𝑒𝐵𝑦)𝜓1(𝐫) = 𝐸𝜓2(𝐫)  (18) 

 

Substituting the first to the second equations above, we obtain the equation for 𝜓2(𝐫) only 

 

 𝑣𝐹
2(𝑃2 − 2𝑒𝐵𝑦𝑃𝑥 + 𝑒2𝐵2𝑦2 − ℏ𝑒𝐵)𝜓2(𝐫) = 𝐸2𝜓2(𝐫)                 (19) 
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The eigenenergies of (19) can be found by comparing this equation with a massive carrier Landau 

system: 𝐸𝑛
2 = 2𝑛ℏ𝑒𝐵𝑣𝐹

2 where n = 1,2,3, … the constant -ℏ𝑒𝐵 shifts the Landau level’s by half of the 

equal spacing between the adjacent Landau levels, and it also guarantees that there is a Landau level at 

E = 0, which has the same degeneracy as the other Landau levels. Putting these expressions together, 

the eigenenergy for a general Landau level can be written as 13-14 

 

𝐸𝑛 = sgn(𝑛)√2|𝑛|ℏ𝑒𝐵𝑣𝐹
2                            (20) 

 

where n > 0 corresponds to electron-like Landau levels and n < 0 corresponds to hole-like Landau levels. 

There is a single Landau levels sitting exactly at E = 0, corresponding to n = 0, because of the chiral 

symmetry and the particle-hole symmetry as shown in figure 4 (a)15. The square root dependence of the 

Landau level energy on n can be understood if we consider the density of state for the relativistic 

electron15-16.  

In the magnetic field, the Hall conductivity xy of graphene can be determined by counting the number 

of occupied levels above the charge neutral point, and is given by  

 

𝜎𝑥𝑦 =
4𝑒2

ℎ
(𝑛 +

1

2
)                               (21) 

 

The factor 1/2 in equation (21) appears because the 0-th Landau level is half-filled when the system is 

charge neutral. And the constant 4 means for 2 by the spin degeneracy and 2 by valley degeneracy under 

a magnetic field3-4, 17.  

 The figure 4 (b) shows that the observed QHE in graphene is distinctively different from the 

conventional QHEs due to the additional half-integer4, 15. This unusual quantization condition is a result 

of the topologically exceptional electronic structure of graphene. The sequence of half-integer multiples 

of quantum hall plateaus has been predicted by several theories which combine relativistic Landau 

levels with the particle-hole symmetry of graphene3, 10, 15, 17. 
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Figure 3. Ambipolar electric field effect in graphene. (a) Schematic representation of common graphene 

Hall bar device. (b) gate dependent field effect transistor property of graphene. The inserts of (b) show 

the changes in the position of Fermi level in response to the applied gate voltage.10  

 

 

 

 

 

 

 

Figure 4. Integer quantum Hall effect in graphene. (a) schematic representation of the formation of 

Landau level in graphene with strong magnetic field.15 (b) The hallmark of massless Dirac fermions is 

QHE plateau. Hall conductivity σxy and longitudinal resistivity ρxx of graphene as a function of their 

concentration at B = 14 T and T = 4 K.4   
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1.2 Spin-orbit coupling of graphene. 
 

 

In orbital motion around nucleus, the electron in an atom feels the electric field because of positively 

charged nucleus. As a result, a magnetic field appears in the rest frame of the electron through a Lorentz 

transformation. According to Einstein’s relativity theory, the magnetic flux density associated with this 

magnetic field is   

 

𝐁 =
𝒗×𝑬

𝟐𝑐𝟐√1−𝑣𝟐/𝑐𝟐
                             (22) 

 

where E is the electric field seen by the electron, v is its orbital velocity and c is the speed of light in 

vacuum18-19.  

For a non-relativistic electron, we can consider that the electron is sitting at the center of a circulating 

charged nucleus as current loop. The current in this loop is given by I = − Zev. Where the nucleus has 

charge Ze and is moving with velocity v relative to the electron. Coulomb’s electrostatic law can be 

used to give the electric field felt by the electron due to the nucleus, E = (Ze/4r3)r. From Biot-Savart 

law, the magnetic field due to this current is given by 𝐁 = (𝜇0/4𝜋 𝑟3)(𝑰 × 𝒓). And then, the magnetic 

field that electron feels by circulating charged nucleus can be rewritten as   

 

𝐁 = −𝜇0𝜖0𝒗 × 𝑬 = −
𝟏

𝐜𝟐 𝒗 × 𝑬                       (23) 

 

where we have used the relationship 0 =1/c2.  

Because the electron has a spin magnetic momentum, there will be a potential energy associated with 

this magnetic field. Then, we can introduce the Hamiltonian H in term of the spin angular momentum 

operator.  

  

�̂� =  −
𝑒

2𝑚
�̂� ∙ 𝐁 = −

𝑒

2𝑚𝑐2 �̂� ∙ 𝒗 × 𝑬                        (24) 

 

The force felt by electron due to the electric field is 𝐅 = −(d𝑉(r)/d𝑟)�̂�. Therefore, equation (24) can 

be rewritten as  

 

�̂� =  −
1

2𝑚𝑐2 �̂� ∙ 𝒗 × 𝐅 =  −
1

2𝑚𝑐2

1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
�̂� ∙ 𝒗 × 𝐫                 (25) 

 

Now, we can substitute 𝐿 = m𝑣 × 𝑟. and we replace the classical angular momentum vector with 

quantum mechanical angular momentum operator. Finally, we have 
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�̂� =  −
1

2𝑚𝑐2

1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
�̂� ∙ �̂�.                           (26) 

 

This is the well-known expression for spin-orbit coupling (SOC) in atomic scale20.  

In atomic scale, spin-orbit coupling enhances with increasing atomic number. So, spin-orbit coupling 

of graphene consisted of carbon atoms is predicted to be weak because carbon is light element with 

relatively weak spin-orbit coupling. 

However, in graphene, the spin-orbit coupling depends strongly on the bands. At K point, earlier tight-

binding studies based on s and p orbital predicted the spin-orbit-induced gap of graphene as small as 1 

eV21. All-electron first-principle calculation give the value of the gap in the range between 25 and 50 

eV22-23. This gap originates from the spin-orbit coupling of d and higher orbital. The energy spectrum 

of Dirac electrons in graphene in the presence of spin-orbit coupling was first introduced by McClure 

and Yafet24. The Hamiltonian in modern notation reads H = Izsz, where I is the intrinsic SOC 

parameter,  is 1 and -1, z is the Pauli matrix of sublattice space A and B, and sz is the spin Pauli matrix. 

As shown in figure 5, this intrinsic spin-orbit coupling opens a gap in the Dirac spectrum with 

magnitude = 2 I
24.  

Meanwhile, Kane and Mele predicted25-26 the quantum spin hall effect in graphene with intrinsic spin-

orbit coupling. Unfortunately, the weak spin-orbit coupling makes its direct experimental observation 

hard. 

 

 

 

 

 

Figure 5. Simple band structure of graphene with SOC. (a) Touching Dirac cones exist only when SOC 

is negligible. (b) With the presence of SOC, the orbital degeneracy at the Dirac point is lifted and the 

gap appears24.  
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1.3 Weak localization and weak anti-localization. 
 

 

 In diffusive regime, we can consider electron transport of two type as shown in figure 6. One is the 

semiclassical diffusion (figure 6 (a)) given by Drude conductivity. This diffusion occurs when the phase 

coherence length (l) by inelastic scattering is less than mean free path (l). The other one is the quantum 

diffusive regime that appears as l >> l. In this regime, the quantum interference between time-reversed 

scattering loops give rise to a correction to the conductivity. If there is constructive interference of 

electron along time reversal path, weak localization appears. If there is destructive interference, weak 

anti-localization occurs27-28.  

 Quantum interference in graphene is different from conventional two-dimensional system due to 

chirality of pseudospin having Berry phase of . This Berry phase of  inverts the constructive 

interference to destructive interference. Then, the quantum interference of graphene can expect weak 

anti-localization and a positive magnetoresistance. However, the trigonal warping in valley suppresses 

antilocalization, and intervalley scattering of graphene tends to restore WL. When the intervalley time 

shorter than the decoherence time(𝜏𝜑), the quantum correction to the conductivity has WL behavior. 

The corresponding magnetoresistance can be expressed as29   

 

∆𝜌(𝐵) = −
𝑒2𝜌2

𝜋ℎ
[𝐹 (

𝐵

𝐵𝜑
) − 𝐹 (

𝐵

𝐵𝜑+2𝐵𝑖
) − 2𝐹 (

𝐵

𝐵𝜑+𝐵𝑡
)]               (27) 

 

        𝐹(z) = ln 𝑧 + 𝜓 (
1

2
+

1

𝑧
)         𝐵𝜑,𝑖,𝑡 =

ℏ𝑐

4𝐷𝑒
𝜏𝜑,𝑖,𝑡

−1       𝜏𝑡
−1 =  𝜏𝑖

−1 + 𝜏∗
−1 + 𝜏𝑤

−1  

 

where  is digamma function, D is the diffusion coefficient, 𝜏𝑖
−1 is intervalley scattering rate, 𝜏∗

−1is 

intravalley scattering rate, and 𝜏𝑤
−1 is trigonal warping relaxation rate.  

In graphene/SiO2 device, it was experimentally demonstrated that both WL and WAL could be 

observed in graphene under the proper conditions as shown in figure 7 30. The increasing temperature 

reduce decoherence time of the electron because of thermal fluctuations, And the decreasing carrier 

density increases the intervalley and intravalley elastic scattering times. Thus, it is observed that the 

decoherence time is not the only parameter controlling WL behavior in graphene. Therefore, the ratios 

𝜏𝜑/𝜏𝑖 and 𝜏𝜑/𝜏∗ should be considered for localization behavior as shown in figure 7 (b). According 

to this study30, the favorable condition for the observation of WAL are small ratios. 

 In graphene, the quantum correction to the conductance survive at much higher temperature than for 

two-dimensional electron gas semiconductor structure because the electron-phonon scattering is 

expected to be weak in the system3, 17, 30-31.  
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Figure 6. The signature of weak and weak-anti localization. (a), (b) schematic illustration of different 

electron transport in materials. (c) the magnetoconductivity for weak localization and weak-anti 

localization. (d) temperature dependent of the magnetoconductivity. B is magnetic field and T is 

temperature27-28.   

 

 

 

 

 

Figure 7. The localization of graphene. (a) Resistivity as a function of the carrier density in graphene 

hall bar device. The magnetoconductance is studied at three different regions. Inset: the results of 

quantum hall effect measurement. (b) A diagram of the scattering times related to quantum interference 

in graphene. The solid curve separates the regions of the anti-localization and localization. Points are 

experimental values found from the fitting of the magnetoconductivity using equation (27) at three 

different regions30.  
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1.4 Strained graphene. 
 

 

In nowadays nanotechnology, understanding the effect of strain, especially at reduced dimension is 

important to improve performance of device. The random strain in material lead to a modification of 

the hopping energy and can be modeled by a fictitious gauge field which can then act as an effective 

magnetic field3, 17. In graphene, it was predicted32 that this effective magnetic field can have an intensity 

as high as 10T in some condition, and suggested to a pseudomagnetic quantum Hall effect. 

Experimentally, the presence of strain-induced pseudomagnetic field greater than 300T was observed 

using scanning tunneling microscopy33. Also, the coexistence of the pseudomagnetic fields and external 

magnetic field can split valley-polarized Landau level in the quantum Hall regime34. Therefore, the 

strain in graphene can give rise to a rich structure in the electronic and transport properties of the 

material35.  

Recently, it was theoretically reported36 that the coexistence of pseudo and real magnetic field can 

induce a gap difference between two valley points (K and K’) in honeycomb lattice of graphene system 

as shown figure 8. The gap difference between two valleys can be obtained within the perturbation 

theory. The figure 8 (b) shows that this valley gap difference depends on both magnetic field and applied 

strain in strained graphene. Valley gap difference defined as ∆𝐸𝑉𝐺𝐷 = 𝐸𝐾
𝑔𝑎𝑝

− 𝐸𝐾′
𝑔𝑎𝑝

(figure 8 (b)) can 

be written as 

 

∆𝐸𝑉𝐺𝐷 =
𝑒𝑣𝑓𝐵𝐿2

2
∑ (ℳ+𝜂 − ℳ−𝜂) ≠ 0𝜂                       (28) 

 

where ℳ+𝜂 = 𝐶+𝜂 + 𝐶+𝜂
∗  , ℳ−𝜂 = 𝐶−𝜂 + 𝐶−𝜂

∗   and 𝐶𝜂 = 𝛼𝜂𝛽𝜂
∗ . The B is external magnetic field and L 

stands for the size of the system. The  and  are the components of the unperturbed Dirac Hamiltonian 

eigenvector.  

A valley Hall current can be generated by the population imbalance because of the valley gap 

difference and expressed in terms of Berry curvature.  

 

𝜎𝑥𝑦 = ∑
𝑒2

2𝜋ℎ
∬ 𝑑𝑘𝑥𝑑𝑘yΩ𝑘𝑥𝑘𝑦

𝜂
𝜂                         (29) 

 

where 휂 is valley index for K(K’). The Berry curvature Ω𝑘𝑥𝑘𝑦

𝜂
 of strained graphene in presence of 

magnetic field is,  

 

Ω𝑘𝑥𝑘𝑦

𝜂
=

𝜂𝑚𝑣𝑓
2

(𝑣𝑓
2𝜋𝑥

2+𝑣𝑓
2𝜋𝑦

2+𝑚2)

3
2

                         (30) 
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where 𝜋𝑥 = 𝑘𝑥 + 𝑒𝐴𝑚𝑥
+ 휂𝐴𝑠𝑥

, 𝜋𝑦 = 𝑘𝑦 + 𝑒𝐴𝑚𝑦
+ 휂𝐴𝑠𝑦

, 𝐴𝑚 is the real magnetic field, and 𝐴𝑠 is 

the gauge field from the strain. Berry curvature depends on magnetic and pseudomagnetic field as 

shown in figure 8(c-e). In the absence of the strain (figure 8 (c,d)), Berry curvature of different Dirac 

point are opposite. So, the total valley hall conductivity vanishes exactly. However, the presence of 

magnetic field in strained graphene induces a gap difference between two valley point (figure 8 (b)) and 

leads population imbalance in two inequivalent Dirac point36. 

 

 

 

 

 

 

 

 

 
Figure 8. the band structure of graphene at k, k’ in the presence of magnetic field and ununiform strain. 

(a) a schematic proposal for the valley Hall current and valley polarization in graphene. A ferromagnetic 

metal with z direction of magnetization has been placed on top. The S and D are the source and drain. 

W and L are the width and length of strained graphene, respectively. (b) in the absence of magnetic 

field, the strain alone could not generate any gap difference between k and k’. however, applying a 

magnetic field in strained graphene, a gap difference can be induced between the valleys. (c-e) It is 

indicated that Berry curvature (c) in the absence of stain and magnetic field, (d) in the presence of 

magnetic field, (e) in the presence of magnetic field and strain36.  
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II Graphene spintronics 
 

 

 Spintronics aim to study the properties of the electron spin with a view to improve the efficiency of 

electronic devices and to enrich them with new functionalities of information storage and logic device37.  

In spin logic device, the major challenge is to develop suitable spin transport channel with long spin 

life time and relaxation length for high-speed, low power operation, and spin transistor38-39. 

 Graphene is a very promising spin channel material due to the achievement of spin transport with long 

spin diffusion length of several micrometer at room temperature40-43. Moreover, graphene has many 

interesting properties that also make it very attractive for spintronics, including gate-tunable carrier 

concentration44, high electronic mobility45, and valley degree of freedom46-47. 

In this chapter, I will shortly introduce nonlocal spin valve device, spin-orbit scattering and spin 

relaxation mechanism for graphene. I will also briefly review the local magnetic moment and proximity 

effect of graphene based on a recent trend of research 

 

 

2.1 Nonlocal spin valve device of graphene. 
 

 

 The nonlocal spin valve is widely used for the measurement of spin transport properties in 

nonmagnetic materials (NM), such as semiconductor, graphene and organic, with ferromagnetic 

material (FM). This measurement method was first proposed by Aronov 48 and experimentally 

demonstrated by Johnson and Silsbee49 in metallic channel. As shown in figure 937, 41, 50, a current source 

is applied between electrode 1 and 2. At this time, electrode 2 acts as spin injector from spin-dependent 

chemical potential of FM metal. After spin injection, the spins in channel underneath 2 can diffuse in 

both ways. A spin current along with a charge current flows in the direction of 1, and spin current 

without a charge current diffuses in the direction of 3. Then, the spin density can be detected by 

measuring the voltage across 3 and 4. This method is called nonlocal measurement because the voltage 

probe lies outside the charge current loop. The measured voltage is positive or negative depending on 

whether the magnetization configurations of 2 and 3 are parallel or antiparallel to each other. To generate 

the parallel and antiparallel magnetization alignments of 2 and 3, an in-plane magnetic field is applied 

as shown figure 9. Here, the widths of electrode 2 and 3 are different each other to make difference for 

coercivity field. Then, the difference of nonlocal resistance between parallel and antiparallel state is 

nonlocal magnetoresistance(MR) and is a result of the spin diffusion from electrode 2 to 3. 

 Nonlocal MR in graphene at room temperature was first demonstrated in 2007 by the van Wees group40.  

As shown in figure 10, it is observed that nonlocal spin signals reflecting the magnetization direction 

of all four electrodes. They also showed that no significant changes in the spin signals occur between 

4.2 K, 77K and room temperature. The estimated spin relaxation length in their study was in between 
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1.5 and 2 m at room temperature. The spin polarization of the injected carrier, which corresponds to 

the spin injection efficiency, is calculated to be around 10%. 

 Recently, M. Venkata Kamalakar et al43. demonstrates the long-distance (16 m) spin transport 

capability of CVD (chemical vapor deposition) graphene at room temperature. The nonlocal 

measurement with spin precession (Hanle effect) in such long channel give rise to a spin relaxation time 

of 1.2 ns and spin relaxation length of 6 m at 300K (figure 11).  

 

 

 

 

 

 

 

 

 

  

 
 

Figure 9. Schematic representation of the four terminal nonlocal spin valve devices with parallel and 

antiparallel magnetization of the spin injector and detector. With the spin injection at 2, the spins can 

diffuse in both direction of 1 and 3. This non-local spin diffusion is usually described by spin dependent 

chemical potential. When the spins diffuse toward 3, the spin density decays because of spin-flip 

scattering. The measured voltage between 3 and 4 is positive or negative depending on whether the 

magnetization configuration of 2 and 3 are parallel or antiparallel to each other. This nonlocal 

magnetoresistance is defined as ∆𝑹𝑵𝑳 = (𝑽𝒑 − 𝑽𝑨𝑷)/𝑰.41  
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Figure 10. Spin transport of graphene in a four-terminal spin valve device. (a) Scanning electron 

microscopy image of a four-terminal single-layer graphene spin valve. (b) The non-local spin valve 

geometry. A current I is injected from electrode 3 through the Al2O3 barrier into graphene and is 

extracted at contact 4. The voltage difference is measured between contacts 2 and 1. (c) Nonlocal spin 

valve signal of graphene at 4.2K. The sweep directions of the magnetic field are indicated (red or green 

arrows).40   

 

 

 
 

Figure 11. A CVD graphene spin valve device for pure spin transport. (a) Optical microscope image of 

a fabricated long channel CVD graphene device on SiO2/Si substrate with multiple ferromagnetic tunnel 

contacts of Co/TiO2 patterned by the e-beam lithography. The nonlocal measurement configuration is 

presented for 16 m channel with current and voltage circuits. (b) Nonlocal spin valve signal with in-

plane magnetic field sweep. The blue and red colors indicate the direction of magnetic field sweep. (c) 

Nonlocal Hanle spin precession signal obtained by a perpendicular magnetic sweep. s and Ds are spin 

relaxation time and spin diffusion constant, respectively.43  
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2.2 Spin relaxation mechanism and spin-orbit scattering in graphene. 
 

 
 In graphene, two mechanisms of spin relaxation have been widely applied to explain experimental 

trends. The two mechanisms are Elliott-Yafet (EY)51 and Dyakonov-Perel (DP)52 mechanisms. Both 

have their roots in metal and semiconductor spintronics18. 

 EY mechanism 51is a result of the fact that Bloch states, which are solution of the Schrodinger equation 

in the periodic potential, are not spin eigenstates in the presence of spin-orbit coupling. The spin 

polarization depends slightly on the wavevector of electron. If two spin orientation of electron is slightly 

different in two wavevector states (k1 and k2) in arbitrary band structure, each wavevector has two 

possible spin orientation that can have arbitrary angle between them. Then, because the up-spin state at 

k1 and the down-spin state at k2 are not strictly orthogonal and anti-parallel, any collision with 

nonmagnetic scattering that changes the wavevector of an electron from an initial state k1 to a state k2 

can couple the spins and flip an electron’s spin. This spin relaxation is always accompanied by some 

degree of momentum relaxation because the wavevector must change to change the spin orientation. 

The approximate expression for EY spin relaxation with temperature T by thermal distribution is18  

 

1

𝜏𝐸𝑌
= 𝐴 (

𝑘𝑏𝑇

𝐸𝑔
)

2

𝑅2 (
1−𝑅/2

1−𝑅/3
)

2 1

𝜏𝑚
                          (31) 

 

where Eg is the band gap, R = /(Eg+ ),  is the spin-orbit splitting of valence band, m is the 

momentum relaxation time, and A is a constant depending on the dominant scattering mechanism for 

momentum relaxation. This relation shows that EY spin relaxation rate is directly proportional to the 

momentum relaxation rate. Therefore, EY mechanism is caused by momentum relaxation. Also, this 

expression shows that the spin and momentum relaxation rates have different temperature dependences. 

If the momentum relaxation rate is independent of temperature, the spin relaxation rate should increase 

quadratically with temperature. 

 DP spin relaxation mechanism52 is a result of the Dresselhaus and/or Rashba spin-orbit interaction. In 

an inversion asymmetry solid system, an electron will experience strong spin-orbit interaction. If there 

is crystallographic inversion asymmetry known as bulk inversion asymmetry, Dresselhaus spin-orbit 

interaction is given. If there is the structure inversion asymmetry caused by an external or built-in 

electric field, Rashba spin-oribi interaction exist in there. These interactions lift the degeneracy between 

up-spin and down-spin states at any non-zero wavevector, so that these two spin states have different 

energies in the same wavevector state. Therefore, these two interactions truly behave like effective 

magnetic field because magnetic field also lifts the degeneracy between two spin states at any 

wavevector with Zeeman interaction. The effective magnetic field causes an electron’s spin to undergo 

Larmor precession. In this effective magnetic field, if electron velocity changes randomly with time 
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because of scattering, each electron would have processed by different angles because they have 

different scattering histories. Then, after all electrons is injected with the same spin polarization, their 

spin polarizations gradually go out of phase with each other. This is the basis of DP spin relaxation. The 

approximate expression for spin relaxation rate due to DP mechanism is18 

 

 
1

𝜏𝐷𝑃
= 𝑄 (

4𝑅

√3−𝑅

𝑚∗

𝑚0
)

2 (𝑘𝐵𝑇)3

ℏ2𝐸𝑔
𝜏𝑚                          (32) 

 

where Q is a dimensionless quantity depending on the dominant momentum relaxation, m0 is the free 

electron mass, m* is the electron effective mass and R was defined in EY mechanism (31). DP 

mechanism shows that the spin relaxation rate is inversely proportional to the momentum relaxation 

rate and have a strong temperature dependence. 

 In graphene, experimental studies have been performed to investigate the spin relaxation mechanism 

through spin valve device. As shown in figure 12, W. Han and R. K. Kawakami 53 reported different 

spin relaxation mechanism in single and bi-layer graphene. For single-layer graphene, it was observed 

that the spin relaxation time increases with increasing momentum relaxation time (proportional relation 

with diffusion constant) when the carrier concentration is changed by back gate, which suggests that 

the EY relaxation mechanism is dominant. For bilayer graphene, it was found that spin relaxation time 

decreases with increasing momentum relaxation time, suggesting a DP spin relaxation mechanism.  

 

 

 

 

Figure 12. spin relaxation time s and diffusion constant D from nonlocal magnetoresistance of (a) 

single-layer and (b) bi-layer graphene. In a single-layer graphene, both s and D increases with 

increasing with carrier concentration. This correlation implies a linear relation between s and m 

because of D~ m. This indicates the dominance of the EY spin relaxation mechanism. On the other 

hand, in bi-layer graphene, the opposite behaviors of s and D is observed upon increasing gate voltage. 

This suggests that DP spin relaxation mechanism is dominant in bi-layer graphene53.  
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Meanwhile, the two types of spin-orbit scattering related to spin relaxation mechanism are suggested 

in graphene system. The first is intrinsic spin-orbit scattering (SOS) described as Kane and Mele 

model25-26. The second is spin-orbit scattering of Bychkov-Rashba type 18, 54 when inversion symmetry 

is broken due to substrate or external electric field. These spin-orbit scattering have different spin 

relaxation mechanism. The spin-orbit scattering of KM type causes spin relaxation through the EY 

mechanism. However, Bychkov-Rashba spin-orbit scattering produce the DP spin relaxation29. E. 

McCann and V.I. Fal’ko29 investigated the influence of these spin-orbit scattering on the weak 

localization effect for electron in graphene and found that a disordered graphene with asymmetric spin-

orbit scattering should display a weak antilocalization behavior at low temperature, while symmetric 

spin-orbit scattering of KM type lead to weak localization effect. Namely, weak localization and weak 

antilocalization in the graphene can be determined by spin-orbit scattering as well as valley scattering. 

In the absence of an in-plane field, the derived equation for the corresponding low-field 

magnetoresistance (MR) is given by29  

 

 

∆𝜌(𝐵) = −
𝑒2𝜌2

2𝜋ℎ
[𝐹 (

𝐵𝑧

𝐵𝜑
) − 𝐹 (

𝐵𝑧

𝐵𝜑+𝐵𝑎𝑠𝑦
) − 2𝐹 (

𝐵𝑧

𝐵𝜑+𝐵𝑆𝑂
)]               (33) 

 

𝐹(z) = ln 𝑧 + 𝜓 (
1

2
+

1

𝑧
) , 𝐵𝜑,𝑆𝑂 =

ℏ𝑐

4𝐷𝑒
𝜏𝜑,𝑆𝑂

−1  , 𝐵𝑎𝑠𝑦 =
ℏ𝑐

2𝐷𝑒
𝜏𝑎𝑠𝑦

−1  , 𝜏𝑆𝑂
−1 =  𝜏𝑠𝑦𝑚

−1 + 𝜏𝑎𝑠𝑦
−1  

 

 
where  is digamma function, D is the diffusion coefficient, 𝜏𝑆𝑂

−1 is spin-orbit scattering rate, 𝜏𝑎𝑠𝑦
−1  is 

asymmetry spin-orbit scattering rate, and 𝜏𝑠𝑦𝑚
−1  is symmetry spin-orbit scattering rate.  

 As shown figure 13, low-field MR would describe negative MR corresponding to weak localization 

in the absence of the spin-orbit coupling. And in the presence of symmetric spin-orbit coupling only, 

the contribution of the third term in equation 33 is declined, leading weak localization. If symmetry is 

broken, the second and third terms in equation 33 become negligible, leaving the first term to determine 

weak antilocalization behavior with positive magnetoresistance.  

 Recently, it was experimentally reported 55 that low-field MR in iridium-clustered graphene exhibited 

a weak localization with EY spin relaxation mechanism and the spin-orbit coupling strength of KM type 

therein was over 5.5 meV (figure 14 (a)). In other hand, for graphene/transition metal dichalcogenides 

(TMDC) heterostructure56, the weak antilocalization of Bychkov-Rashba spin-orbit coupling type 

appeared with spin-orbit coupling value ~15 meV (figure 14 (b)). 
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Figure 13. Weak localization in graphene due to spin-orbit scattering. The low-field magnetoresistivity 

in the presence of symmetric or asymmetric z direction (out of plane to graphene surface) spin-orbit 

scattering as compared to the absence of spin-orbit scattering. Solid curves show the influence of spin-

orbit scattering with Zeeman energy29.  

 

 

 

 

 

Figure 14. Weak localization and weak antilocalization of graphene heterostructure. (a) Weak 

localization of Ir-cluster-decorated graphene at various charge concentrations55. (b) Negative 

magnetoconductivity due to weak antilocalization in monolayer graphene on MoS2 substrate at various 

temperature56.  
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2.3 Local magnetic moment from point defect and adatoms on graphene. 
 

 

The pristine graphene is relatively strong diamagnetic material because of Landau orbital 

diamagnetism. So, the possibility of making magnetic graphene has attracted much interest because the 

magnetic moment in graphene could meet the demands of ever increasing magnetic information storage 

density by engineering ultimately thin or two-dimensional magnetic material. For magnetic moments 

of graphene, there have been many theoretical57-58and experimental59-62 studies by implanting vacancy 

defects and light adatoms. Theoretically, the existence of localized magnetic moments can be explained 

as a Lieb’s theorem63-64. This theorem states that the ground state has magnetic moment with sublattice 

site on a bipartite lattice. Then, to substitute a site by an adatom or a vacancy should lead to a magnetic 

moment in the  band if the defect does not strongly couple with  and  band63.  

 R.R. Nair 61et al showed that point defects, such as fluorine adatoms and vacancies induced by 

irradiation could accommodate moments with spin 1/2. Figure 15 shows the paramagnetism due to 

fluorine adatoms and vacancies in graphene. The magnetization of the fluorinated (figure 15 (a)) and 

vacancies defects (figure 15 (b)) graphene increases with increasing F/C ratio or defect density, 

respectively. The measured magnetization curves can be all described by the Brillouin function 

 

𝑀 = N𝑔𝐽𝜇𝐵 [
2𝐽+1

2𝐽
ctnh (

(2𝐽+1)𝑧

2𝐽
) −

1

2𝐽
ctnh (

𝑧

2𝐽
)]                (34) 

 
where z=gJBH/kBT, g is the g-factor, J is the angular momentum number and N is the number of spins. 

By  fitting the experimental results with different values of J, it was found that only J = S = 1/2 (free 

electron spin) produced well matched Brillouin function fit.  

 

 
 

Figure 15. Paramagnetism due to (a) fluorine adatoms and (b) Vacancy. (a) Magnetic moment as a 

function of parallel field H for different F/C ratios. Solid curves are fits to equation (34) with S=1/2. (b) 

Magnetic moment normalized by the concentration of vacancies. Inset: magnetic moment as a function 

of parallel field H due to vacancy61. 
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In hydrogenated graphene, McCreary et al60, showed that magnetic moment formation can be detected 

via spin transport with spin valve device. The hydrogen doping was achieved by exposing graphene 

spin valve samples to atomic hydrogen at 15 K in an ultrahigh-vacuum chamber and performing the 

spin transport measurement in situ. the non-local magnetoresistance curves exhibit a dip centered at 

zero magnetic field after hydrogen exposure as shown in figure 16. This is associated with magnetic 

moment formation in graphene. The underlying mechanism is spin scattering from exchange coupling 

with local magnetic moments. Also, the sharpening of the Hanle curve after hydrogen exposure 

indicates the formation of magnetic moments (figure 16 (b)) because the presence of exchange field can 

significantly enhance spin precession. They also observed a similar behavior with vacancy defects by 

argon sputtering, 

 

 

 

 

 

 

Figure 16. The effect of hydrogen exposure on spin transport in graphene from spin valve measurement. 

(a), (b) Nonlocal spin transport measurements after atomic hydrogen exposure for 2 and 8 s, respectively. 

Both curves exhibit a dip in nonlocal magnetoresistance at zero field. This means spin relaxation 

induced by localized magnetic moment. (c), (d) The dramatic narrowing of the Hanle precession peak 

is observed in 8 s hydrogenated graphene than pristine graphene. The sharpening of the Hanle curve 

results from the presence of an exchange field due to the atomic hydrogen in graphene60. 
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2.4 Proximity effect on ferromagnetic substrate. 

 

 
 The magnetism in graphene can be induced by proximity effect with ferromagnetic insulator substrate 

as well as point defects of vacancies and adatoms. Because the hybridization between  orbital of 

graphene and the spin-polarized d orbital of magnetic insulator gives rise to the exchange interaction 

required for long-range ferromagnetic ordering, an electron in graphene/ferromagnetic insulator 

heterostructure is predicted to experience strong exchange field65-70. Therefore, the magnetic exchange 

field induced by an adjacent ferromagnetic insulator substrate enables to control local spin generation 

and spin modulation in graphene without the delicate material structure.  

 Recently, a large exchange field was observed in graphene/ferromagnetic insulator heterostructure65. 

As shown figure 17, the anomalous Hall effect(AHE) was emerged from the heterostructure with 

yttrium iron garnet (YIG). The AHE occurs with broken time-reversal symmetry as a consequence of 

SOC in a ferromagnetic phase. Also, Wei et al68. demonstrated that EuS/graphene system produced a 

substantial magnetic exchange field (~14T) which lead to orders-of-magnitude enhancement of spin 

signal originating from the Zeeman spin Hall effect as shown ib figure 18 (a). Furthermore, it was 

observed to the quantized spin-polarized edge transport expected because of the strong magnetic 

exchange field (figure 18(b)). Wu et al67. fabricated the BiFeO3/graphene heterostructure and 

demonstrated the magnetic proximity effect of transport properties. With increasing external 

perpendicular magnetic field, the N=0 Landau level of graphene was converted from a ferromagnetic 

phase to a canted antiferromagnetic phase (figure 19), and the magnetic exchange field was estimated 

up to ~280T. 

 

 

Figure 17. The anomalous Hall effect in graphene/YIG heterostructure. (a) Schematic drawing of the 

graphene/YIG device with top gate. (b) Magnetic hysteresis loops of YIG thin film in perpendicular and 

in-plane magnetic field. Inset: the AFM image of YIG film surface. (c) Quantum Hall effect of 

graphene/YIG device in an 8T perpendicular magnetic field at 2K. (d) the nonlinear Hall resistivity after 

the linear background is removed, indicating anomalous Hall effect65.  
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Figure 18. Zeeman spin Hall effect in graphene/EuS heterostructures. (a) Nonlocal resistance (this 

nonlocal signal will be discussed in next chapter “spin Hall effect” in detail) as a function of gate voltage 

under different magnetic field for CVD graphene/EuS heterostructure at 4.2K. The inset is a TEM cross-

section image of the device. (b) Comparison of nonlocal resistance versus magnetic field at charger 

neutral point. (c), (d) the extra dip is observed at v = 0 and v = +4 and -4. The v = 0 state originates from 

the splitting of n = 0 Landau level and can either be a valley-polarized spin singlet or a spin-polarized 

valley singlet depending on the relative strength of valley versus spin splitting68.  

 

 

 

 
 

Figure 19. The proximity effect in graphene coupled to a BiFeO3 nanoplate. (a) Back-gate voltage 

dependence of resistivity of the BFO/graphene heterostructure device. The inset is optical image of the 

device. The scale bar is 2m. (d) the resistivity via magnetic field at charger neutral point. (c) transverse 

conductivity and longitudinal resistivity measured under 14T. (d)-(f) illustrations of the 

antiferromagnetic, canted antiferromagnetic, and ferromagnetic phase67.  
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III Spin Hall effect 
 

 

Spin Hall effect (SHE)71-72 is a relativistic spin-orbit coupling phenomena. This effect converts charge 

currents into transverse spin current and vice versa in nonmagnetic conductor. In 1971, D’yakonov and 

Perel73 predicted it based on the idea of asymmetric Mott scattering. Hirsch74 rediscovered it and 

proposed an extrinsic SHE in 1999. Experimentally, the first measurement of SHE was performed on 

n-GaAs with magneto-optical Kerr microscope by Kato75et al in 2004. They demonstrated the presence 

of a spin accumulation close to the edge when electric field was applied along the channel. Valenzuela 

and Tinkham76 showed an electrical detection of the spin hall effect in a diffusive metallic conductor 

using a nonlocal detection technique with lateral spin valve. The spin hall effect has become one of the 

promising ways to create pure spin currents in nonmagnetic materials without external magnetic field 

and ferromagnets. 

In this chapter, I will briefly introduce what is the spin hall effect and review their origins based on 

both intrinsic and extrinsic mechanism. Lastly, I introduce the spin hall effect in graphene.  

 

 

3.1 Spin Hall effect. 
 

 

 In 1879, the American physicist Edwin H. Hall observed a phenomenon that the electron receives the 

force, called the Lorentz force, against one side of the conductor when a current-carrying conductor is 

placed in perpendicular magnetic field77. The Lorentz force is given by 𝐅 = 𝑞(𝑬 + 𝒗 × 𝑩), where v is 

the velocity of the particle and q the charge of the particle. The voltage difference between the two 

edges of the conductor is called Hall voltage VH, and the ratio of the voltage to the electric current is 

Hall resistance RH = VH / I which is linear in the magnetic field. This phenomenon is named as Hall 

effect. Later, Edwin H. Hall reported78 that Hall resistance was ten times larger in ferromagnetic metal 

than in nonmagnetic conductor. This stronger Hall effect that Hall observed in ferromagnetic conductor 

became to be kwon as the anomalous Hall effect (AHE). An empirical behavior of anomalous Hall 

effect is given by  

 

𝑅𝐻 =  𝑅𝑂𝐵 + 𝑅𝐴𝑀                             (35) 

 

which has been applied to many materials over a broad range of external magnetic field. The second 

term represents the Hall effect (anomalous Hall effect) contribution from the spontaneous magnetization 

of ferromagnetic conductor. This means that Hall resistance can be detected in the absence of an external 

magnetic field in ferromagnetic conductor. This anomalous Hall effect cannot be simply understood as 

a result of the Lorentz force on charge current.  
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In 1954, Karplus and Luttinger (KL)79 proposed a theory for the anomalous Hall effect and showed 

that electrons acquire an additional contribution to their group velocity when an external electric field 

is applied to a solid. KL’s anomalous velocity was perpendicular to electric field and could contribution 

to the Hall resistance. The anomalous velocity can be expressed in terms of Berry phase and Berry 

curvature in moment space due to modified phase of Bloch state wave packets. Therefore, it has recently 

been referred to as the intrinsic contribution to the anomalous Hall effect because this contribution 

depends only on the band structure without impurity scattering. In the presence of disorder scattering 

in solid, the origin of anomalous Hall effect can have either skew scattering from impurities caused by 

spin-orbit coupling or side jump mechanism under influence of the electric field due to an impurity. 

These are extrinsic contribution to the anomalous Hall effect.  

Here, upon applying electric field along the nonmagnetic conductor instead of ferromagnetic materials, 

generated transverse spin current only (no charge current) without external magnetic field is referred as 

the spin hall effect71-72. As shown in figure 20 (c), the separated spins induce either a pure spin current 

resulting in spun accumulation at the lateral sample edges. The reciprocal phenomenon of spin Hall 

effect is inverse spin Hall effect (ISHE) where pure spin current generates charge current or voltage. 

The mechanisms of the spin Hall effect have naturally emerged from the origins of anomalous Hall 

effect. 

 

 

 

 

 

 
 

Figure 20. From the Hall effect to spin Hall effect. (a) Ordinary Hall effect due to Lorentz force. Only 

charge current is generated. (b) Anomalous Hall effect in ferromagnetic material. Both charge and spin 

current are generated. (c) Spin Hall effect in non-magnetic material. Only spin current is generated.  
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In 1971, the spin version of hall effect was first proposed by the Russian physicists Dyakonov and 

Perel73 based on relativistic spin-orbit coupling. In their picture, spin-orbit coupling induces spin Hall 

effect via the Mott scattering of electrons on unpolarized impurities which results in spatial separation 

of electrons with opposite spins. Concepts for the experimental detection of spin Hall effect were 

introduced by Hirsch and Zhang in 199974 and 200080, respectively. Hirsch proposed a device in which 

a spin current is generated by spin Hall effect in one part and injected into another part where it is 

detected by inverse spin Hall effect. Zhang suggested that the edge spin accumulation produced by spin 

Hall effect could be detected electrically using a ferromagnetic probe.  

The first measurement of spin Hall effect was observed with magneto-optical Kerr rotation microscope 

by Kato et al. as shown figure 2175. In this technique, the laser beam was linearly polarized, and the 

polarization axis of the reflected beam was determined. The rotation angle is proportional to the net 

magnetization along the beam direction. For this experiment, they used unstrained n-GaAs and strained 

n-InGaAs three-dimensional epilayers, which were patterned into 300 × 77 𝜇𝑚2 and 300 × 33 𝜇𝑚2 

channels, respectively. The wafers were doped to low electron density of 𝑛 = 3 × 1016𝑐𝑚−3  to 

achieve long spin relaxation time of s ~ 10 ns. This corresponds to spin diffusion length of Ls ~ 10 m. 

An electric field was applied along the channel while a magnetic field B could be applied perpendicular 

to it in the sample plane. As shown figure 21 (g), a two-dimensional scan of sample demonstrates the 

existence of spin accumulation close to the edges. The amplitude of the measured edge spin 

polarizations reached ~0.1%.  

 

 

 

Figure 21. The spin Hall effect in unstrained GaAs. (a) schematic of the unstrained GaAs sample and 

the experimental geometry. (b) The measurement of Kerr rotation as a function of magnetic field. (c) 

Kerr rotation as a function of position. (d), (e) Spatial dependence of peak Kerr rotation A0 and spin 

lifetime s across the channel, respectively. (f) Reflectivity R as a function of position. (g) Two-

dimensional image of spin density ns and reflectivity R for the unstrained GaAs sample75.   
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The electrical detection of spin hall effect was elusive because the transverse spin currents do not lead 

to different chemical potential. Therefore, the first experiment for electrical detection focused on the 

charge signal from inverse spin Hall effect. Valenzuela and Tinkham76 performed experiments in which 

a spin current injected from a ferromagnetic electrode into a nonmagnetic metal strip was detected by 

ISHE and by the nonlocal spin valve using a ferromagnetic probe electrode as shown figure 22. A spin-

polarized current from CoFe(80% Co) electrode is injected in a Al strip. The spin current propagates to 

both side away from the injection point and decays within the spin diffusion length. Then, a laterally 

voltage VISHE induced from inverse spin Hall effect is measured using a Hall-cross structure. In this case, 

the total change in nonlocal spin Hall resistance (RISHE) in given by 

 

∆𝑅𝑆𝐻 =
𝑝

𝑡Al

𝜎𝑆𝐻

𝜎𝑐
2 𝑒𝑥𝑝 (−

𝐿𝑆𝐻

𝜆𝑠𝑓
)                           (36) 

 

where P is the polarization of the electrically injected current, t is the thickness of Al, 𝜆𝑠𝑓 is the spin 

diffusion length, SH and c are spin and charge conductivity, respectively. By fitting the measured Hall 

resistance RISHE with equation (36) for the injected pure spin current, spin Hall angle (SH/c) is 

estimated to be 0.01~0.03 %,  

 

 

 

 

Figure 22. Electrical measurement of spin Hall effect in Al. (a) SEM image of device and the 

measurement scheme for non-local spin diffusion. (b) Hanle curve as a function of perpendicular 

magnetic field. The arrows indicate the relative orientation of the magnetization F1 and F2. (c) SEM 

image of device and the measurement scheme for inverse spin Hall effect. (d) Spin Hall resistance RSH 

versus perpendicular magnetic field76.   
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3.2 Intrinsic mechanism of spin Hall effect. 
 

 

The spin-dependent Hall effect that are AHE, SHE, ISHE originate from the intrinsic, skew, and/or 

side jump mechanism, Intrinsic mechanism can be explained by an anomalous velocity arising from a 

Berry phase in momentum space. Berry phase is similar to the Aharonov-Bohm phase of a charged 

particle traversing a loop in the presence of a magnetic flux81.  

Consider a physical system described by Hamiltonian that depends on time through a set of parameters, 

denoted by R = (R1, R2, …),  

 

𝐻 = 𝐻(𝐑), 𝑹 = 𝑹(t)                           (37) 

 

If R(t) moves slowly along a path C in the parameter space (in the adiabatic evolution of the system), 

it is useful to introduce an instantaneous orthonormal basis from the eigenstates of H(R) at each value 

of the parameter R.  

 

𝐻(𝑹)|𝑛(𝑹)⟩ = 휀𝑛(𝑅)|𝑛(𝑹)⟩                       (38) 

 

 However, this equation does not completely determine the basis function |𝑛(𝑹)⟩  because of the 

phase uncertainty. It still allows an arbitrary R-dependent phase factor of |𝑛(𝑹)⟩. One can make a phase 

choice to remove this arbitrariness. Here, we can require that the phase of the basis function is smooth 

and single valued along the path C in the parameter space. According to the quantum adiabatic theorem, 

a system initially in one of its eigenstates will stay as an instantaneous eigenstate of the Hamiltonian 

throughout the process. The eigenstate at time t can be written as 

 

|𝜓𝑛(𝑡)⟩ = 𝑒𝑖γ𝑛(𝑡)𝑒𝑥𝑝 [−
𝑖

ℏ
∫ 𝑑𝑡′휀𝑛(𝑹(𝑡′))

𝑡

0
] |𝑛(𝑹(𝑡))⟩               (39) 

 

where the second exponential is known as the dynamical phase factor. Inserting equation (39) into the 

time-dependent Schrodinger equation 

 

𝑖ℏ
𝜕

𝜕𝑡
|𝜓𝑛(𝑡)⟩ = 𝐻(𝑹(𝑡))|𝜓𝑛(𝑡)⟩                       (40) 

and  

⟨𝑛(𝑹(𝑡))|𝑖ℏ
𝜕

𝜕𝑡
|𝜓𝑛(𝑡)⟩ = ⟨𝑛(𝑹(𝑡))|𝐻(𝑹(𝑡))|𝜓𝑛(𝑡)⟩ 

 

One finds that 𝛾𝑛 can be expressed as a path integral in the parameter space. 
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𝛾𝑛 = ∫ 𝑑𝑅 ∙ 𝛢𝑛(𝑹)
𝐶

,            𝛢𝑛(𝑹) = 𝑖 ⟨𝑛(𝑹)|
𝜕

𝜕𝑹
|𝑛(𝑹)⟩             (41) 

 

This vector 𝛢𝑛(𝑹) is called the Berry connection or the Berry vector potential, and gauge dependent.  

 In addition to the dynamical phase, equation (41) shows that the quantum state will acquire an 

additional phase 𝛾𝑛 during the adiabatic evolution. 

 If we make a gauge transformation 

 

|𝑛(𝑹)⟩ → 𝑒𝑖𝜁𝑛(𝑡)|𝑛(𝑹(𝑡))⟩                          (42) 

 

the phase 𝛾𝑛 will be changed by 휁𝑛((𝑹(0)) − 휁𝑛((𝑹(𝑇)) for initial and final points of the path C 

after transformation. For a cyclic evolution of the system along a closed path C with R(T) = R(0), the 

single-valued condition of 𝑒𝑖𝜁𝑛(𝑡) on the basis function |𝑛(𝑹)⟩ implies 

 

휁𝑛((𝑹(0)) − 휁𝑛((𝑹(𝑇)) = 2𝜋 × 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                   (43) 

 

This shows that 𝛾𝑛 can be only changed by an integer multiple of 2 under the gauge transformation 

and it cannot be removed. Therefore, for a closed path C, 𝛾𝑛  becomes a gauge-invariant physical 

quantity. Now, it is well known as the Berry phase or geometric phase81-82. In general, it is given as  

 

𝛾𝑛 =  ∮ 𝑑𝑅 ∙ 𝛢𝑛(𝑹)                            (44) 

 

By using the Stokes’ theorem, 𝛾𝑛 can be expressed as an area integral 

 

𝛾𝑛 =  ∫ 𝑑𝑆 ∙ (𝛁𝑹 × 𝛢𝑛(𝑹))
𝑆

                       (45) 

 

where we can define the Berry curvature from the Berry connection as  

 

𝛀𝑛(𝑹) = 𝛁𝑹 × 𝛢𝑛(𝑹)                          (46) 

 

This Berry curvature is like the magnetic field in moment space, and the integral of the curvature over 

closed surfaces is known to be topological and as Chern number quantized as integer (quantum Hall 

effect)81.  

Now, consider a crystal under the perturbation of a weak electric field81. In the presence of 

electromagnetic fields, the Hamiltonian is given by 
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𝐻 =
[𝑷+𝑒𝑨(𝒓)]2

2𝑚
+ 𝑉(𝒓) − 𝑒∅(𝒓)                        (47) 

 

where V(r) is the periodic lattice potential, and A(r) and (r) are the electromagnetic potential. The 

approximate Hamiltonian that wave packet feels can be obtained by linearizing the perturbations about 

the wave-packet center rc as 𝐻 ≈  𝐻𝑐 + ∆𝐻 

 

𝐻𝑐 =
[𝑷+𝑒𝑨(𝒓𝒄)]2

2𝑚
+ 𝑉(𝒓𝒄) − 𝑒∅(𝒓𝒄),            ∆𝐻 =

𝑒

2𝑚
[𝑨(𝒓) − 𝑨(𝒓𝒄), 𝒑] − 𝑒𝑬 ∙ (𝒓 − 𝒓𝒄)  (48) 

 

where [,] is the anticommutator. The wave packet can be written as  

 

|𝑊(𝒌c, 𝒓c)⟩ = 𝑒−(𝑖𝑒/ℏ)𝑨(𝒓𝒄)∙𝒓|𝑊0(𝒌c, 𝒓c)⟩                  (49) 

 

where |𝑊0⟩ is the wave packet constructed using the unperturbed Bloch functions. The wave-packet 

dynamics can be obtained from the time-dependent variational principles. The Lagrangian is obtained 

with wave packet as  

 

𝐿 = ⟨𝑊|𝑖ℏ
𝜕

𝜕𝑡
− 𝐻|𝑊⟩                           (50) 

 

And then, by the Euler-Lagrange equation 

 

𝜕

𝜕𝑡

𝜕𝐿

𝜕�̇�
−

𝜕𝐿

𝜕𝒌
= 0    𝑎𝑛𝑑  

𝜕

𝜕𝑡

𝜕𝐿

𝜕�̇�
−

𝜕𝐿

𝜕𝒓
= 0                   (51) 

 

Equation of motion can be obtained as 

 

�̇� =
𝜕𝜀(𝒌)

ℏ𝜕𝒌
− �̇� × 𝛀(𝒌)                          (52) 

and 

ℏ�̇� = −𝑒𝑬 − 𝑒�̇� × 𝑩                          (53) 

 

 

In equation 52, the electron velocity gains an extra velocity term proportional to the Berry curvature81. 

This is called anomalous velocity. Equation 53 is well known as Lorentz force. 

 The anomalous velocity has physical significance. Berry curvature is often proportional to the spin S. 

Then, in the presence of an electric field, the anomalous velocity is proportional to �̇� × 𝑺 , and the 
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trajectories of spin-up and spin down are separated toward opposite directions transverse to the electric 

field. If the populations of spin-up and down are different, a net transverse current can exist. Then, this 

leads to the anomalous Hall effect in a ferromagnet. If the populations of spins are equal, the net electric 

Hall current is zero. However, the spin Hall current can still be nonzero. This is the intrinsic mechanism 

of spin Hall effect (SHE)71, 81.   
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3.3 Extrinsic mechanism of spin Hall effect. 
 

 

In addition to the intrinsic mechanism from anomalous velocity, impurity scattering is another source 

for SHE in the presence of strong spin-orbit coupling72, 74. There are the skew scattering83 and the side 

jump mechanism84. The skew scattering defined by Smit83 to explain anomalous Hall conductivity is 

asymmetry scattering of spin up and down due to spin orbit coupling. it is also known as Mott skew 

scattering. As mentioned in section 1.2, the coupling between the orbital and spin of electrons is a 

relativistic effect described formally by the non-relativistic expansion. However, the spin-orbit coupling 

can be also extracted from the semi-classical analysis85 that usually invokes the interaction of the 

electron magnetic dipole moment associated with spin. In the instantaneous rest frame of an electron, 

an effective magnetic field can be obtained by Lorentz transforming the electric field from the 

laboratory frame. Then, an electric dipole moment in laboratory frame is given by85 

 

𝑷𝑙𝑎𝑏 = 𝒗 ×
𝝁

𝑐2                              (54) 

 

where c is light velocity,  is magnetic dipole with velocity v, and the right-hand side is evaluated in 

the electron rest frame. The potential energy of spin-orbit coupling from electric dipole and Thomas 

precession is given as 

 

 𝑈𝑆𝑂 = 𝑈𝐷𝑖𝑝𝑜𝑙𝑒 + 𝑈𝑇ℎ𝑜𝑚𝑎𝑠 =
−𝐏𝑙𝑎𝑏∙𝐄𝑙𝑎𝑏

2
                 (55) 

 

 

where Elab is external electric field in the lab frame.  

 Because the electric dipole feels the force 𝐹 = (𝑷𝑙𝑎𝑏 ∙ ∇)𝑬𝑙𝑎𝑏  in the lab frame, the impurity 

scattering of electrons with spin-orbit coupling deflects the spin up and down particle in opposite 

direction. This classical picture can only explain aspect of the spin-orbit dependent interaction with 

impurity85-86. 

 Now, consider spin-orbit coupling in quantum mechanics87.  

 

𝑉𝑒𝑓𝑓 = 𝑉(𝑟)  +
1

2𝑚𝑐2

1

𝑟

𝑑𝑉(𝑟)

𝑑𝑟
�̂� ∙ �̂�                    (56) 

 

This equation (56) indicates potential energy for electron scattering from impurity, where V(r) is 

potential energy without spin-orbit coupling, and the second term is spin-orbit coupling term introduced 

in section 1.2. As shown figure 23 (a), the �̂� ∙ �̂� is added to non-spin orbit coupling potential energy 
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V(r) when spin-up is scattered upward by impurity because �̂� ∙ �̂�  term become positive value. 

 

 

 

Figure 23. Extrinsic mechanism of spin Hall effect. (a) Skew scattering mechanism by spin dependent 

scattering at impurity center. (b) Side jump mechanism from change of Berry phase around impurity87.   

 

 

If spin-up is scattered downward by impurity, the �̂� ∙ �̂� is subtracted from non-spin orbit coupling 

potential energy V(r). On the other hand, when spin-down is scattered downward by impurity, the �̂� ∙ �̂� 

adds to non-spin orbit coupling potential energy V(r) because �̂� ∙ �̂� term become positive value. Then, 

the spin-up scattered upward has the larger value of scattering angle then spin-up scattered downward, 

and the spin-down scattered downward has the larger value of scattering angle then spin-down scattered 

upward. Therefore, the spin-up(down) is more scattered upward(downward), and spin splitting occur. 

This mechanism (equation (55,56)) is referred to as skew scattering mechanism. The spin Hall 

resistivity from skew scattering is directly proportional to the longitudinal charge resistivity and 

dependent of impurity concentration.  

 Figure 23 (b) show the side-jump mechanism87. The basic semiclassical argument for this mechanism 

can be stated that a wave of electron with incident wave vector k will experience a displacement 

transverse to k when considering the scattering of a Gaussian wave packet from a spherical impurity 

with spin-orbit coupling (equation 26). This effect was first noticed by Smit in 195588 but discarded and 

reintroduced by Berger89 in 1964 to explain anomalous Hall effect. 

 Also, this mechanism can be explained with the additional phase (Berry phase)81-82 of the wave-packet 

due to gradient potential energy around the impurity as shown figure 23 (b). When the wave-packet is 

scattered by the impurity, the momentum of the wave-packet changes from initial ki to final kf. At this 

time, the Berry phase from impurity transforms the position of the wave-packet dependent on spin state 

and only generate displacement transverse between spin-up kf and spin-down kf without a change of the 

progress of wave-packet.   
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 The common conception for side jump mechanism can be generally computed by considering the spin-

orbit coupling of the disorder scattering potential. This can only be justified in a weak spin-orbit coupled 

system. However, when addressing materials with strong spin-orbit coupling, there are always two 

sources of side jump scattering71.  

 One is extrinsic side jump that is the contribution arising from thee non-spin orbit coupled part of the 

wave-packet scattering off the spin orbit coupled disorder. The other is intrinsic side jump that is the 

contribution arising from the spin orbit coupled part of the wave-packet formed by Block electrons 

scattering off the scalar potential alone without spin orbit coupling. Both can be independent of each 

other and dependent on the crystalline and the type of scattering impurity71.   
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3.4 Spin Hall effect in graphene. 

 
 

Graphene has attracted great attention for two dimensional spintronics because of the achievement of 

spin transport with long spin diffusion length of several micrometer from weak intrinsic spin orbit 

coupling at room temperature as discussed in section 1.2. However, controlling spin orbit coupling in 

graphene allows us to realize the topological state, such as quantum spin hall effect and spin hall effect 

in addition to spin channel.  

 Castro Neto and Guinea90 theoretically studied the effect of impurities, such as hydrogenation, in 

inducing spin-orbit coupling in graphene and argued that the impurities can lead to a strong 

enhancement of spin-orbit coupling due to the sp3 distortion induced by an impurity as shown figure 24. 

They considered Hamiltonian with  band and  band of flat graphene, and local change in the hopping 

energies due to the presence of sp3 distortion induced by an impurity.  

 The local value of the spin orbit coupling can be estimated as90  

 

∆𝑆𝑂
𝐼 (𝐴)

∆𝑆𝑂
𝑎𝑡 ≈ A√3(1 − 𝐴2)                           (57) 

 

where ∆𝑆𝑂
𝑎𝑡  is atomic spin orbit coupling, ∆𝑆𝑂

𝐼  is spin orbit coupling from impurity and A is a degree 

of distortion. For the sp2 case(A=0), this term vanishes and atomic spin orbit coupling only contributes 

for ~10 eV. However, the value of SOC can be as high as ~7meV for the sp3 case(A=1/2).   

 

 

 

 

Figure 24. Induced spin-orbit coupling in graphene due to impurity. (a) the graphene lattice with its 

orbital. The sp3 orbital at impurity position and the sp2 orbital of the flat graphene lattice. (b) Relative 

value of the spin-orbit coupling at the impurity site and the atomic value in carbon as a function of A in 

equation 57 90. 
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Also, Weeks and coworker91 proposed that the strength of the intrinsic spin-orbit coupling can be 

largely enhanced in single-layer graphene by heavy adatom such as indium (In) and thallium (Tl). The 

enhancement is due to second-neighbor hopping that is mediated by the p orbitals of the adatoms, which 

strongly hybridize with the unoccupied  level of graphene. The enhancement of the intrinsic spin-orbit 

coupling can lead to a band gap of the ~20 meV, and they demonstrated that dilute heavy adatoms can 

stabilize a robust quantum spin Hall state in graphene, theoretically91.  

 In 2013, the spin Hall effect in hydrogenated graphene92, which has been used as a model system to 

enhance spin orbit coupling in graphene, was observed with non-local measurement. Here, the non-

local measurement is method to find spin Hall effect with inverse spin hall effect in an H-bar device 

proposed by Hankiewicz et al. similarly to the Mott double-scattering experiment. As shown in figure 

25 (a), the charge current generates a transverse spin current due to spin Hall effect, and the spin current 

injected into channel generates an electrical voltage across the second leg from inverse spin Hall effect. 

Balakrishnan and co-worker introduced small amounts of covalently bonded hydrogen atoms to the 

graphene lattice by the dissociation of hydrogen silsesquioxane resist, and the extent of hydrogenation 

was ~0.05%. With increasing hydrogenation, non-local resistance (RNL) at charge neutral point (carrier 

density(n) = 0) showed increase as shown figure 25 (c). Whether the non-local resistance is spin signal 

or not was confirmed by the non-monotonic oscillatory behavior of the non-local signal in an applied 

in-plane magnetic field. Figure 25 (d) shows the in-plane field dependence of non-local resistance for 

the device with 0.01% hydrogenation at T=4K, and a fitting oscillating non-local signal using93  

 

𝑅𝑁𝐿 =
1

2
𝛾2𝜌𝑊𝑅𝑒 [(√1 + 𝑖𝜔𝐵𝜏𝑠/𝜆𝑠)𝑒−(√1+𝑖𝜔𝐵𝜏𝑠/𝜆𝑠)|𝐿|]             (58) 

 

where  is the spin Hall angle, L is length of spin channel, W is width of channel and 𝜔𝐵 is Larmor 

frequency. The spin Hall angle of the graphene device with 0.01% hydrogenation was 0.18. this 

oscillatory behavior of non-local resistance can be a direct signature of spin Hall effect arising from the 

enhancement of spin orbit coupling due to hydrogenation. 

 Besides, in same group94, they showed that the CVD (chemical vapour deposition) graphene from Cu 

foil can have a spin orbit coupling larger than that of pristine graphene because of the presence of 

residual Cu adatoms introduced during the growth and transfer process as shown figure 26. From a non-

monotonic oscillatory dependence of the non-local signal with equation 58, the spin Hall angle of the 

CVD graphene was  ~ 0.2 at room temperature. Also, they reported that Au and Ag can be used to 

induce the strong spin orbit coupling in pristine graphene.  

 However, these experiments for spin hall effect in graphene with H type device cause controversy 

whether non-local resistance is signal from spin hall effect or any other mechanism.   
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Figure 25. The spin Hall effect in hydrogenated graphene. (a) Measurement schematics for the non-

local spin Hall resistance. Insert is schematics showing the deformation of the graphene hexagonal 

lattice due to hydrogenation. (b). Nonlocal resistance versus carrier density for pristine graphene and 

hydrogenated graphene. Ohmic contribution is considered in both samples. (c) Dependence of the 

nonlocal resistance on the percentage on hydrogenation. The dark grey dashed lines are the Ohmic 

contribution for this sample. The inset is SEM image of hydrogenated graphene Hall bar device. Scale 

bar is 5 m. (d) Magnetic field dependence of nonlocal resistance for the device with 0.01% 

hydrogenation at 4K92.   

 

 

 

 

 

 

Figure 26. The spin Hall effect in CVD graphene. (a) AFM three-dimensional surface topography of a 

spin Hall device with details of actual measurement configurations. (b) Nonlocal resistance versus 

carrier density for pristine graphene and CVD graphene. Ohmic contribution is considered in both 

samples. (c) the in-plane magnetic field dependence of the non-local signal for CVD graphene. The 

inset is magnetic field dependence of pristine exfoliated graphene94.  
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In 2015, Kaverzin and van Wees95 modified Hall bar-shaped graphene samples by covering them with 

a hydrogen silsesquioxane film to hydrogenate into graphene and measured non-local resistance as 

shown figure 27 (a-c). They also observed reproducibly and consistently a presence of non-local 

resistance at charge neutral point in a number of different devises. However, the spin hall angle of  ~ 

1.5 was obtained from channel length dependence. This high value is unrealistic because the 100% 

conversion between the charge and spin currents means  ~ 1. Moreover, spin precession was not 

observed with the applied in-plane magnetic field up to 7T. Therefore, they argued that the non-local 

resistance at charge neutral point in hydrogenated graphene is an effect of unknown origin and an 

alternative interpretation is required. 

 Wang and coworker96 reported that the non-local resistance in the Au or Ir-decorated graphene was 

observed reproducibly but the evidence of spin signal induced spin hall effect cannot be found in the 

in-plane magnetic field up to 6T as shown figure 27 (f). They suggested the possibility of neutral Hall 

effect from disorder induced valley Hall effect in that system, not spin Hall effect.   

 

 

 

 

 

 

 

Figure 27. No spin Hall effect in hydrogenated (a-c)95 and adatom-decorated graphene(d-f) 96. (a) SEM 

image of hydrogenated graphene. The inset is schematic of the measuring circuit and the measured 

region of the sample. (b) The nonlocal resistance as a function of gate voltage for different exposures. 

(c) The nonlocal resistance at charge neutral point along with the corresponding values of Ohmic 

contribution. (d) AFM image of adatom-decorated graphene. (e) Nonlocal resistance versus gate voltage 

curves for pristine graphene and Au-decorated graphene. (f) Nonlocal resistance as a function of parallel 

magnetic field. The red lines are calculated Hanle precession.  
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IV. Experimental method 
 

 

In this chapter, I will describe my experimental method and process for the experiment of spin Hall 

effect in graphene. Briefly, a monolayer graphene was prepared by a chemical vapor deposition (CVD) 

and transferred onto a SiO2 substrate using wet transfer technique97. The graphene Hall bar device was 

made with photo and E-beam lithography, and spin and charge transport properties were measured from 

DC measurement in the chamber of PPMS (physical properties measurement system). 

 

 

4.1 Material preparation and device fabrication. 
 

 

Synthesis and transfer of graphene.  

 

A monolayer graphene was grown on a polycrystalline Cu foil using a chemical vapor deposition 

method demonstrated elsewhere. Shortly, 25 μm copper foil (Alfa Aesar, 99.8% purity) was 

electropolished in phosphoric acid for 15 min and rinsed with distilled water followed by isopropyl 

alcohol (IPA). The copper foil was loaded into a quartz tube 3-zone furnace and the temperature was 

increased to 1050 °C in the H2 environment for removal of native oxides in the copper with surface 

reconstruction. The graphene was synthesized by introducing CH4 gas under H2 gas insertion with a 

ratio of 10:5 (sccm) for 15 min, and transferred onto the Si/SiO2 (300 nm) subatrate using a polymethyl 

methacrylate (PMMA) wet transfer process as shown in figure 28. To remove possible resist residues, 

samples were annealed in low vacuum at 300 oC97.  

 

 

Figure 28. The process of graphene wet transfer. (a) the graphene on Cu foil from CVD. (b) Coating 

PMMA on a graphene with spin coating. (c) to remove the Cu foil, the sample is etched in       

solution. (d) a transference of graphene on SiO2 substrate in water. (e), (f) Finally, the PMMA on 

graphene is removed by acetone. (g) A Raman spectroscopy of graphene for single layer and the quality 

of CVD graphene.  
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The fabrication of graphene Hall bar device. 

 

 

 

Figure 29. The preparation of the substrate with large electrode before graphene transfer. To facilitate 

the making graphene Hall bar device with E-beam lithography. The substrate is prepared with large 

electrode (Au) from photolithography. The AZ 5214 photoresist was used for electrode pattern.  

 

 

Before the monolayer graphene grown from CVD method is transferred onto this substrate using wet 

transfer technique, the base substrate with a large electrode is prepared by photolithography for the 

short process of e-beam lithography. The figure 29 shows a process of manufacture for the substrate 

with large electrode. Next, the graphene on the substrate is covered with Au of small electrode by 

employing electron beam lithography and using auto-CAD software as shown figure 30. The Au (60 

nm)/ Cr (3nm) was thermally deposited for electrodes. The thin layer of Cr is used as a buffer layer for 

Au electrodes on graphene because Au does not adhere to the surface of graphene alone without Cr. 

And then, Hall bar geometry of graphene was defined via oxygen plasma etching (figure 30 (c.d)).  

Finally, Au nanoparticle (~ 1nm) is deposited by thermal evaporation for enhancement of spin-orbit 

coupling in graphene. The details for Au coverage will be discussed in next chapter.  

 

 

 

 

Figure 30. the optical microscopy image of fabrication process and a device design with CAD software. 

(a) the base substrate in figure 29. (b) the small electrode design by CAD. Au/Cr is deposited between 

(b) and (c) process. (d) the final device after oxygen plasma etching. In this graphene Hall type device, 

I measure the field effect transistor properties and nonlocal spin resistance. 



 

- 45 - 

 

4.2 Measurement. 
 

 

Electrical measurements are performed in a Quantum Design Physical Property Measurement System 

(PPMS) with the Keithley series. Figure 31 shows the schematic for charge transport and nonlocal spin 

resistance. First, the graphene devices are characterized for electrical transport. The electrical 

measurement is performed employing a four-terminal configuration to ignore the contact resistance of 

electrode. As shown figure 31, the voltage (𝑉𝑥𝑥 = 𝑅𝑥𝑥/𝐼) between additional two leads is detected when 

charge current (black ±I) is applied widthwise. To measure the Hall effect and magnetoresistance in 

graphene, magnetic field is applied perpendicular to graphene plane. For nonlocal spin resistance, a 

charge current through the first leg (red ±I) of the H-bar generate transverse spin current if there is 

strong spin-orbit coupling, and then the nonlocal voltage (V𝑁𝐿 = 𝑅𝑁𝐿/𝐼) on second leg is detected from 

the inverse spin Hall effect. The precession of spin current generated from spin Hall effect is confirmed 

in an applied in-plane magnetic field. 

The figure 32 shows the measurement set-up for transport measurement. The indium(In) with copper 

wire was used for the electrical contacts to Au pads of the device as shown figure 32 (a,b). The samples 

are loaded to a vacuum chamber of PPMS which can control a variable temperature (2K ~ 400K) and 

magnetic field (-9T~+9T). The 4-terminal non-local measurements for spin and charge transport are 

performed by using a Keithley source meter (K2636) and a nano-voltmeter (K2182) as shown in figure 

32 (c). The electrical transport properties of the CVD graphene H-bar device is shown in figure 33. The 

figure 33 (a) indicates the typical field effect property, and figure 33 (b), (c) show quantum Hall effect 

in graphene. 

 

 
 

Figure 31. Schematic of the graphene H-bar geometry with 6-terminals for spin and charge transport. 

In this type, it is possible to measure both graphene field effect properties and spin Hall induced nonlocal 

resistance. As shown in figure, for quantum Hall effect and quantum interference of graphene, the out 

of plane magnetic field is applied. For spin precession with spin Hall effect, the in-plane field is applied.  
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Figure 32. The measurement setup for charge and spin transport. (a) The wiring of graphene H-bar 

device on sample puck for quantum Hall effect and magnetoresistance. (b) The wiring of graphene H-

bar device on sample puck for spin precession from spin Hall effect. (c) The wiring sample is loaded in 

sample chamber of PPMS. The Ever-Cool system of PPMS serve low temperature (2K~400K) and high 

magnetic field (-9T~9T). The transport measurements are performed with standard 4-terminal DC 

techniques by using Keithley series. The Keithley 2636A is the equipment for field effect transistor as 

source meter. And, the Keithley 2182 is the nano-volt meter for spin current. This nano-volt meter can 

detect electrical potential up to 10-8 V.   
 

 

 

 

 

 
 

Figure 33. Field effect property and quantum Hall effect in graphene H-bar device. (a) The resistivity 

as a function of gate voltage at 10K. the mobility is 5300 cm2/Vs from equation (9). The charge neutral 

point is around 2V. (b), (c) The resistivity and Hall resistivity as a function of gate voltage with 8.8T at 

2K. The quantum Hall effect in CVD graphene is shown by quantized plateau in Hall resistivity with 

vanishing resistivity in the corresponding gate voltage.   
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V. Spin Hall induced nonlocal resistance in Au-clustered graphene 
 

 

 Engineering the electron dispersion of graphene to be spin-dependent is crucial for the realization of 

spin-based logic devices. Enhancing spin-orbit coupling in graphene can induce spin Hall effect, which 

can be adapted to generate or detect a spin current without a ferromagnet. Recently, both chemically 

and physically decorated graphenes have shown to exhibit large nonlocal resistance via the spin Hall 

and its inverse effects. However, these nonlocal transport results have raised critical debates due to the 

absence of field dependent Hanle curve in subsequent studies. Here, I introduce Au-clusters on graphene 

to enhance spin-orbit coupling and employ a nonlocal geometry to study the spin Hall induced nonlocal 

resistance. My results show that the nonlocal resistance highly depends on the applied gate voltage due 

to various current channels. However, the spin Hall induced nonlocal resistance becomes dominant at 

a particular carrier concentration, which is further confirmed through Hanle curves. The obtained spin 

Hall angle is as high as ~ 0.09 at 2 K. Temperature dependence of spin relaxation time is governed by 

the symmetry of spin-orbit coupling, which also depends on the gate voltage: asymmetric near the 

charge neutral point and symmetric at high carrier concentration. These results inspire an effective 

method for generating spin currents in graphene and provide important insights for the spin Hall effect 

as well as the symmetry of spin scattering in physically decorated graphene.  

This chapter is organized as follows: In section 5.1, I introduce a research trend of graphene spin Hall 

effect. In section 5.2, I describe the details of experimental methods including device fabrication and 

characterization. In section5.3, I discuss our results starting from the behavior of nonlocal resistance in 

our Au-clustered graphene and then show how we determined gate-dependent SHE induced nonlocal 

resistance. I then discuss behavior of magneto-conductivity in Au-clustered graphene, which displays 

gate dependent variation on the symmetry of spin orbit coupling. Finally, Section 5.6 is for the 

conclusion and discussion. 

 

 

5.1 Introduction  
 

 

 Graphene is a two-dimensional honeycomb crystal with an atomic AB site symmetry, which yields a 

linear dispersion around the K- and K’-points with a chirality for the quasiparticle’s “isopin”3, 10. The 

sublattice asymmetry when patching graphene with a hexagonal boron nitride can cause a Berry 

curvature leading to the separation of isospins via the valley Hall effect46. While the isospin quantum 

number adds another dimension, the manipulation of the real “spin” of an electron in graphene remains 

as a frontier of spintronics40, 50, 53. A mandatory requirement for exploiting electron spins in graphene is 

the facile control of spin-orbit coupling (SOC). Instilling spin-orbit coupling into graphene allows 

splitting and detecting electron spins via the spin Hall effect (SHE) and its inverse effect71, 92. In addition, 
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spin-orbit coupling arisen from broken inversion symmetry, i.e., Rashba spin-orbit coupling allows a 

gate controllable spin precession54, 98. The original Datta-Das concept of the spin-field-effect transistor 

(spin-FET) can be achieved only through a channel with an exceptionally long mean free path99-101. 

Developing practical methods for enhancing spin-orbit coupling in graphene will make it to be an ideal 

material at the forefront of spintronics. Thus far, several methods have been explored to enhance spin-

orbit coupling in graphene. For example, chemisorbed hydrogen and fluorine atoms in graphene have 

been predicted to induce strong spin-orbit coupling (~ 10 meV) through the distortion of its planar 

structure via sp3 hybridization102-103. Further, theoretical calculations determined that physically 

decorated adatoms in graphene could also induce strong spin-orbit coupling without breaking sp2 

hybridization and the sublattice symmetry104-105. In particular, Au intercalation at the graphene/Ni 

interface can cause a giant spin-orbit splitting as large as ~ 100 meV near the Dirac point106. Recently, 

Balakrishnan et al. reported SHE induced nonlocal resistances (𝑅𝑁𝐿
𝑆𝐻𝐸𝑠) in hydrogenated, CVD, and 

physically decorated graphene in sequence92, 94. They showed a large symmetric 𝑅𝑁𝐿
𝑆𝐻𝐸𝑠 peak near the 

charge neutral peak, which displayed field dependent precession signature (i.e., a Hanle curve). The 

appearance of large RNL peak itself often was attributed to the presence of spin Hall effect in graphene107. 

However, these nonlocal transport results have raised critical debates95-96, 108. Wang et al. reported that 

large nonlocal resistances (RNLs) were observed in Au- or Ir-decorated graphenes, but no evidence of 

Hanle signature was detected96. Kaverzin et al. also reported the absence of the field-induced effect in 

RNL for hydrogenated graphene and questioned the origin of previously reported 𝑅𝑁𝐿
𝑆𝐻𝐸𝑠95. Further, a 

recent theoretical study showed the presence of a large RNL in Au-decorated graphene even in the 

absence of spin-orbit coupling109. They also reported that the spin Hall angle (SH) in Au-clustered 

graphene can significantly fluctuate according to the applied gate voltage109. 

Here, I report gate dependent 𝑅𝑁𝐿
𝑆𝐻𝐸𝑠 in Au-clustered graphene. A Hall-bar like (H-bar) geometry is 

employed to generate a transverse spin-polarized current via the SHE, which in turn can be detected 

owing to the inverse spin Hall effect. A significant gate-dependent fluctuation in RNL is observed at low 

temperature. However, 𝑅𝑁𝐿
𝑆𝐻𝐸 become dominant at a particular carrier concentration, where the Hanle 

curves are consistently observed at various temperatures. The temperature dependence of the spin 

relaxation time (s) suggests that the Elliot-Yafet (EY) mechanism prevails at that specific carrier 

concentration. Further study on magneto-conductance (MC) reveals that asymmetric spin-orbit 

scattering (SOS) prevails near the charge neutral point, while symmetric spin-orbit scattering dominates 

at a higher carrier concentration. These results provide an alternative approach for effective spin-charge 

conversion in graphene and important insights for 𝑅𝑁𝐿
𝑆𝐻𝐸 as well as the symmetry of spin-orbit scattering 

therein. 
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5.2 Experimental methods  
 

 

Graphene used for our device was grown on a polycrystalline Cu foil using a chemical vapor 

deposition method demonstrated elsewhere97. A 25 μm copper foil (Alfa Aesar, 99.8% purity) was 

electropolished in phosphoric acid for 15 min and rinsed with distilled water and isopropyl alcohol 

(IPA). The copper foil was loaded into a quartz tube 3-zone furnace and the temperature was increased 

to 1050 °C in the H2 environment for the removal of native oxides in the copper with the surface 

reconstruction. Graphene was synthesized by introducing CH4 gas and H2 gas with a ratio of 10:5 (sccm) 

for 15 min, and transferred onto the SiO2 (300 nm)/p-Si subatrate using a polymethyl methacrylate 

(PMMA) wet transfer process. Then, the sample was annealed in high vacuum at 300 oC in order to 

remove possible resist residues. The devices were fabricated by employing the electron beam 

lithography. Thermally deposited Au (60 nm)/Cr (3 nm) layers were used for electrodes. A Hall bar 

geometry of the nonlocal graphene device was defined by using the oxygen plasma etching. For 

enhancement of spin-orbit coupling (see figure 34), an ultrathin Au layer (~ 1 nm) was deposited by the 

thermal evaporation. Prior to the measurements, the fabricated devices were annealed in N2/H2 gas at 

300 oC to remove residual resists. Electrical measurements were performed in a Quantum Design 

Physical Property Measurement System (PPMS). Indium with a copper wire was used for the electrical 

contacts to Au pads of the device. The 4-terminal nonlocal measurements were performed by using a 

Keithley source meter (K2636) and a Nano-voltmeter (K2182). Gate voltage was applied through the 

contact to the bottom of SiO2 (300 nm)/p-Si substrate. XPS was performed by employing a Thermo 

Scientific spectrometer (K-Alpha) with a monochromatic Al Kα X-ray source (1486.6 eV). The spot 

size of the incident x-ray was 400 m diameter. Alpha 300R spectrometer (WITec) with a 532 nm laser 

source was used for the Raman spectroscopy. 

 

 
Figure 34. The enhancement of SOC in Au-clustered graphene. (a) Magneto-conductance measured for 

both CVD graphene and Au-clustered CVD graphene at n = 0.93×1012 cm-2 (VG -VD = –13 V). Solid 

lines are fits of equation (33) to the measured data displaying the increased spin-orbit scattering rate (s
-

1) by the Au patch. The inset shows SEM image of fabricated device with 1 m width of the Hall bar 

line. (b) Magneto-conductance measured for both CVD graphene and Au-clustered CVD graphene at 

1.65ⅹ1012 cm-2 (VG -VD = –23 V). 
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5.3 Local and non-local electric transport 
 

 

 Figure 35 (a) shows a schematic of the nonlocal graphene device in order to study 𝑅𝑁𝐿
𝑆𝐻𝐸 . In the 

presence of spin orbit coupling, a charge current flowing across the vertical line of the H bar generates 

a transverse spin current through the central channel line via the direct SHE. If the spin current persists 

through the channel, it can produce the nonlocal voltage via the inverse spin Hall effect. In fact, I have 

studied this non-local geometry device for a series of CVD, Au-decorated (0.05-0.2 nm deposition of 

Au), and Au-clustered graphene (1 nm deposition of Au) in order to investigate 𝑅𝑁𝐿
𝑆𝐻𝐸 as shown in 

figure 37. All devices displayed large RNL signal. However, other than Au-clustered graphene, I was not 

able to detect field-dependent Hanle curve, similar to the reports in reference 95-96, 108. Thus, I discuss 

results only from the Au-clustered graphene device in this report. Figure 35(b) displays a scanning 

electron microscopy (SEM) image of the fabricated Au-clustered graphene device A with a channel 

width (w) of 1 m and lengths (Ls) of 2, 3, and 4 m. The thermally deposited ultrathin Au layer (~ 1 

nm) formed randomly distributed Au clusters with typical size of the order of 10 nm as shown in 

enlarged figure of 35(b). The determined Au coverage based on SEM image is ~ 41.92% as shown in 

figure 37 (a). CVD graphene used in our device was a monolayer as confirmed by its Raman spectrum. 

XPS result showed that Au atoms did not form chemical bonds with the carbon atoms of graphene as 

shown in figure 36. Figure 35(c) displays ambipolar field-effect behavior at 300 K using back-gate. The 

upper x-axis displays the estimated carrier concentration. This FET characteristic is nearly similar to 

that observed in a typical graphene FET indicating that charge carriers mainly transport through the 

graphene layer. The gate voltage of the maximum resistivity, a charge neutral point, is located at around 

5 V. The estimated mobility at the neutral point is 1000 cm2 / V∙s at 300 K. The rounding of a maximum 

resistivity region and the decrease in mobility of the Au-clustered graphene compared to that of the as-

grown CVD graphene imply that the Au clusters introduces considerable charged impurity scatterings110. 

Typical resistivities of Au-clustered graphene devices near the charge neutral point were ~ 5 k with 

slight sample to sample variation. These resistivity values were nearly similar to that of our as-grown 

CVD graphene. Both ambipolar field-effect behavior and the estimated resistivity suggest the charge 

carriers in our Au-clustered graphene devices mainly transport through the graphene. 

Figure 35(d) displays a gate-dependent RNL measured at 300 K for L/w = 2, 3, and 4 channels of the 

device A. Similar to the local FET curve, RNL for all channels of the device A displayed maximum value 

near the charge neutral point. The dashed line in Figure 35(c) is the simulated nonlocal Ohmic resistance 

(𝑅𝑁𝐿
𝑂ℎ𝑚), which is given as 𝑅𝑁𝐿

𝑂ℎ𝑚  =  exp (-L/w), where  is the resistivity of the material111. The 

observed RNL for all channels (L/w =2, 3, and 4) were much higher than the 𝑅𝑁𝐿
𝑂ℎ𝑚. Similar to previous 

reports95-96, this unidentified large RNL does not display an in-plane field-dependent spin precession 

signature.  
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Figure 35. Nonlocal device geometry and RNL measured for the device A. (a) Schematic of the H-bar 

geometry of the graphene device. (b) A SEM image of a graphene H-bar device. Randomly distributed 

Au clusters can be observed on enlarged figure at the right panel. The determined Au coverage based 

on SEM image is ~ 41.92%. (c) Gate-dependent local resistance of the Au-clustered device A displaying 

ambipolar field effect behavior. (d) RNL as a function of applied gate voltage for different L/w ratios of 

the device A at 300 K.  
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Figure 36. (a) Raman spectra of CVD graphene. Dominance of the 2D peak over the G peak was 

observed, suggesting the studied CVD graphene was mainly a single layer. (b) Raman spectra of Au-

patched CVD graphene. The G peak of Au-patched graphene did not shift, but the 2D peak was shifted 

by 3 cm-1 (blue shift). Results show that Au patch does not form chemical bonding (e.g, sp3-type) with 

the carbon atoms of graphene. A slight shift of the 2D peak suggests a partial strain is applied on the 

graphene layer due to the top Au patch. (c) XPS result of Au-clustered graphene. The observed spectrum 

exhibited unoxidized Au atoms. 

 

 

 

 

 

 

 

Figure 37. (a) SEM image of Au-clustered graphene (1 nm deposition). Right panel shows Au coverage 

of 41.92%. (b) SEM image of Au-clustered graphene (0.2 nm deposition). Right panel shows Au 

coverage of 12.13%.  

 



 

- 53 - 

 

In general, RNL in the H-bar geometry of a graphene device can arise from various mechanisms. The 

total RNL can be expressed as 𝑅𝑁𝐿 = 𝑅𝑁𝐿
𝑆𝐻𝐸 + 𝑅𝑁𝐿

𝑂ℎ𝑚 + 𝑅𝑁𝐿
𝑍𝑒𝑒𝑚𝑎𝑛 + 𝑅𝑁𝐿

𝑉𝑎𝑙𝑙𝑒𝑦
+ 𝑅𝑁𝐿

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 + 𝑅𝑁𝐿
𝐵𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐 + ⋯ 

Here, 𝑅𝑁𝐿
𝑂ℎ𝑚  can be significantly reduced as long as L/w ≥ 3. In the presence of a perpendicular 

magnetic field, Zeeman splitting separates electron and hole with opposite spins near the Dirac point 

leading to giant 𝑅𝑁𝐿
𝑍𝑒𝑒𝑚𝑎𝑛 112. The valley Hall effect due to global AB asymmetry can produce 𝑅𝑁𝐿

𝑉𝑎𝑙𝑙𝑒𝑦
 

46. 𝑅𝑁𝐿
𝐵𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐 can produce negative resistance in the ballistic limit, i.e., e >> w (where e is the electron 

mean free path)111. The estimated e values of our devices were typically less than 100 nm. Nonetheless, 

theoretical and experimental studies suggested that the nonlocal resistance could produce negative 

signal even in the quasi-ballistic limit of e < w109, 111. Thus, the relevant contributions in our experiment 

are 𝑅𝑁𝐿
𝑆𝐻𝐸, 𝑅𝑁𝐿

𝐵𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐, 𝑅𝑁𝐿
𝑇ℎ𝑒𝑟𝑚𝑎𝑙 , and other non-intuitive channels. Especially, the observed large positive 

RNL in L/w = 2 and 3 might be associated with unidentified channels, as suggested in previous 

experimental reports95. Suppression of this non-intuitive RNL as well as 𝑅𝑁𝐿
𝐵𝑎𝑙𝑙𝑖𝑠𝑡𝑖𝑐 could be achieved by 

increasing L/w. 

To strongly suppress the unidentified nonlocal signal, we further increased L/w. Figure 39 (a) displays 

the local FET characteristics measured for the Au-clustered device B, which has L/w = 5.6. The inset 

in Figure 39 (a) displays a SEM image of the device B. The charge neutral point for the device B is 

located at around 33 V. The estimated mobility near the neutral point is ~ 1000 cm2 / V∙s at 300 K. 

Figure 39 (b) displays the gate-dependent RNL measured at 300 K. The maximum positive RNL is located 

near the Dirac region. The blue line in Figure 39 (b) indicates the simulated 𝑅𝑁𝐿
𝑂ℎ𝑚𝑖𝑐. Note that the 

previously reported 𝑅𝑁𝐿
𝑆𝐻𝐸 exhibited a large symmetry peak around the Dirac point92, 94. However, the 

observed RNL in our device displays something similar to the derivative of the FET peak near the Dirac 

point. The current in local probes introduces joule heating and temperature gradient along the central 

channel line. Then, the thermoelectric voltage given by Seebeck coefficient can induce offset 

voltage in nonlocal probes as shown in figure 38. Because the Seebeck coefficient has opposite sign 

for electron and hole majority carriers, it changes sign near the charge neutral point, so does the 

subsequent offset voltage in nonlocal probes113. This thermoelectric offset voltage is proportional to 

I2. Thus, the nonlocal I-V curves originated from such a thermal effect should display quadratic behavior. 

RNLs of the device B as lowering temperature are displayed in Figure 39 (c). A significant fluctuation 

in RNL can be observed. And this fluctuation become stronger with lowering temperature. We note that 

recent theoretical simulation of SH in graphene with Au adatoms and/or clusters also showed a gate 

dependent fluctuation109. In general, conductance fluctuations in graphene can also occur at low 

temperature due to the quantum interference of carriers, which is largest near the Dirac point due to the 

presence of random electron and hole puddles114-115. The quantum interference of spins in graphene can 

also induce a large gate-dependent fluctuation116. Because conductance fluctuations are dependent on 

variations in Fermi energy, gate-dependent RNLs, especially at 2 K and 5 K (Figure 39 (b)) display 
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similar fluctuation pattern. Thus, the observed gate dependent fluctuation in RNL is likely associated 

with the fluctuation in both SH and conductance fluctuation. In short, the observed gate-dependent RNL 

could be a consequence of entangled 𝑅𝑁𝐿
𝑇ℎ𝑒𝑟𝑚𝑎𝑙, 𝑅𝑁𝐿

𝑆𝐻𝐸, and conductance fluctuations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Characteristic nonlocal voltage induced by the thermoelectric effect. (a) The nonlocal 

voltage induced by a heat gradient due to a joule heating. The inset is an optical microscopy image 

(scale bar, 5 m) of the graphene device. The charge current through the Au electrode functions as a 

heat source. The generated heat gradient along the graphene channel produced a thermoelectric voltage 

due to the Seebeck effect. The offset of a thermoelectric voltage can be loaded on the nonlocal probes, 

which changes its sign depending on the charge of majority carriers. (b) Nonlocal voltage as a function 

of applied current. The plot displays that the measured nonlocal voltage was proportional to the joule 

heating power (~I2). 
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Figure 39. The local and nonlocal resistance of the Au-clustered graphene device B at various 

temperatures. (a) Local resistance as a function of applied gate voltage for the Au-clustered device B at 

T = 2 and 300 K. The Dirac point is located at around 33 V. The inset displays a SEM image of the 

device B, which has L/w = 5.6. (b) RNL vs. VG of the device B at 300 K. The blue dashed line indicates 

the calculated 𝑅𝑁𝐿
𝑂ℎ𝑚𝑖𝑐. (c) RNL vs. VG of the device B at 2, 5, 10, 20, and 50 K. 
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5.4 Gate-dependent spin Hall effect. 
 

 

 An effective method to determine 𝑅𝑁𝐿
𝑆𝐻𝐸 is to examine the spin precession signature. Here, the SHE 

induces a spin current along the bridging channel with a polarization perpendicular to the plane. Thus, 

the in-plane magnetic field causes the Larmor precession of carriers’ spins40, 92. This nonmonotonic 

oscillatory signal can be fitted with93 

 

𝑅𝑁𝐿 =
1

2
𝛾2𝜌𝑊𝑅𝑒 [(√1 + 𝑖𝜔𝐵𝜏𝑠/𝜆𝑠)𝑒−(√1+𝑖𝜔𝐵𝜏𝑠/𝜆𝑠)|𝐿|]             (58) 

 

where SH is the spin hall angle, s is the spin relaxation time, s is the spin relaxation length. B = B// 

is the Larmor frequency,  is the gyromagnetic ratio and B// is the applied in-plane magnetic field. The 

in-plane field-dependent RNL for various gate voltages at 2 K is displayed in Figure 40 (a)-(d). The insets 

in Figure 40 (a)-(d) show the nonlocal I-V curve for each applied gate voltage. Among the various gate 

voltages, only at VG−VD = −33 V, RNL(B//) exhibits a precession signature similar to that given by 

equation (58). In addition, the nonlocal I-V curve only at VG−VD = −33 V exhibits monotonic linear 

behavior as predicted in 𝑅𝑁𝐿
𝑆𝐻𝐸. The behaviors of the nonlocal I-V curves at different gate voltages can 

be interpreted as a combination of the nonlocal signal from various fluctuations and from the thermal 

effect (~ I2). Thus, it can be inferred that 𝑅𝑁𝐿
𝑆𝐻𝐸 is dominant at a particular bias of VG−VD = −33 V. And 

the field dependent RNL at VG−VD = −33 V can be fitted well with equation (58). The observed gate 

voltage dependent fluctuation of nonlocal resistance (RNL) and dominance of spin Hall effect driven 

RNL (𝑅𝑁𝐿
𝑆𝐻𝐸) at a particular gate voltage (Fermi level) should be further confirmed with many samples. 

we show the reproducibility of the gate voltage dependent dominance of 𝑅𝑁𝐿
𝑆𝐻𝐸 in other devices. As 

discussed in the manuscript, the behavior of RNL(B//) curve strongly depends on the doping level for 

the studied Au-patched graphene devices. Figure 41 (a)-(d) displays RNL(B//) at 3 K measured at 

various gate voltages for the channel of L/w = 4 in the device A (introduced in main text). Figure 41 

(e)-(h) displays RNL(B//) at 3 K measured at various gate voltages for the channel of L/w = 4 in the 

device C, which has the same geometry as the device A. Both devices display spin precession 

signature at a particular gate voltage (VG−VD = −17 V for the device A and VG−VD = −21 V for the 

device C). In particular, slight variations in the gate voltage (~ 1 V) are enough to suppress the Hanle 

signature. The absence of Hanle curve near the charge neutral point and it appearance at a particular 

gate voltage could be attributed to following reasons. First, the fluctuation of nonlocal resistance could 

overcast 𝑅𝑁𝐿
𝑆𝐻𝐸  and Hanle signal. Second, the SH and thus 𝑅𝑁𝐿

𝑆𝐻𝐸  could themselves have significant 

gate-dependent fluctuation. I note that the Fermi level dependence of the SHE was also found in 
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other Dirac fermionic systems117. In order to confirm whether RNL at a particular gate bias (VG−VD = 

−33 V) originates from 𝑅𝑁𝐿
𝑆𝐻𝐸, we further examined field-dependent RNL at various temperature. 

 

 

 

Figure 40. Gate voltage dependence of RNL vs. B// curves measured for the device B. (a) RNL vs. B// of 

the device B at T = 2K measured at VG−VD = −33 V. The red line is a fitting curve with Eq. (1). Black 

and blue symbols are data measured during negative-to-positive and positive-to-negative field scan, 

respectively. The inset displays nonlocal I-V curves. The red line in the inset is a linear fit. (b-e) RNL vs. 

B// of the device B at T = 2K measured at various VG−VD = −23, −13, −7, and 0 V. The insets display 

nonlocal I-V curves measured at various applied gate voltages.  

 

 

 

 

 

Figure 41. RNL as a function of in-plane magnetic field measured at various gate voltage and at T = 3K. 

(a)-(d) RNL measured for the channel of L/w = 4 in the device A. (e)-(f) RNL measured for the channel of 

L/w = 4 in the device C. 
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Figure 42 (a) shows RNL(B//) measured at temperatures T = 2, 5, 10, 20, and 50 K. All curves exhibit 

oscillatory signatures with increasing width as the temperature is increased. For the conventional Hanle 

curve, the width of the curve approximately corresponds to the spin scattering rate (s
-1). The broadening 

of the width with increasing temperature is likely associated with reduced s at higher temperatures. 

Thus, the observed RNL(B//) at various temperatures is consistent with the behavior of 𝑅𝑁𝐿
𝑆𝐻𝐸. The red 

lines in Figure 42 (a) are fits of equation (58) to the measured data. At 2 K, the estimated parameters 

are SH  8.8%, s  10 ps, and s ~ 2.2 m. Figure 42 (b) displays the temperature dependence of the 

extracted parameters RNL, SH, and s obtained by fitting with equation (58). All parameters exhibit 

general trend of reduction with increasing temperature. One might suspect that the observed 𝑅𝑁𝐿
𝑆𝐻𝐸 and 

its field dependence is originated from the Au bypass. However, the spin in Au could not transport over 

5.6 m and the observed FET characteristics clearly support that the charge carriers mainly transport 

through the graphene. I note that this temperature-dependent broadening of the precession signature at 

a particular gate voltage is consistently observed in our Au-clustered graphene devices as shown in 

figure 43. The appearances of Hanle curve in other devices also accompany with the linear I-V curve at 

the same gate bias. Figure 42 (c) displays the temperature dependence of s
-1, which exhibits a nonlinear 

increase with temperature. Conversely, p obtained from the FET results is nearly independent of 

temperature, as shown in Figure 42 (c). This implies that the charged impurities in our studied sample 

introduce considerable Coulomb scattering, which prevails over phonon scattering even at relatively 

high temperature118. In contrast to p, s in graphene is expected to have a strong temperature dependence. 

The two main processes attributed to the spin relaxation in graphene are D’yakonov-Perel’ (DP)52 and 

EY51 mechanisms. Within the DP mechanism originated from a broken inversion symmetry, s
-1 is 

inversely proportional to p
-1 and proportional to T3, leading to the relation18  

 

1

𝜏𝐷𝑃
= 𝑄 (

4𝑅

√3−𝑅

𝑚∗

𝑚0
)

2 (𝑘𝐵𝑇)3

ℏ2𝐸𝑔
𝜏𝑚                                              (32)  

 

For the EY mechanism, s
-1 is directly proportional to p

-1 and T2, as given by18  

 

1

𝜏𝐸𝑌
= 𝐴 (

𝑘𝑏𝑇

𝐸𝑔
)

2

𝑅2 (
1−𝑅/2

1−𝑅/3
)

2 1

𝜏𝑚
                      (31) 

 

If p is independent of temperature, then s
-1 of either the DP or EY mechanism should be proportional 

to T3 or T2, respectively. My results show that s
-1 is proportional to T2, indicating that EY spin relaxation 

prevails over DP spin relaxation. This results thus suggest that the observed 𝑅𝑁𝐿
𝑆𝐻𝐸 in our device is likely 
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induced by the spin charge conversion from the extrinsic spin Hall effect. When EY spin relaxation is 

dominant, the strength of spin-orbit coupling can be inferred from 119-120 

 

∆SOC= 휀𝐹√𝜏𝑝/𝜏𝑠                              (59) 

 

where F  is the Fermi energy given by nvkv  FFFF  == .  

At VG−VD = −33 V (n = 2.37×1012 cm-2), meV 0.9SOC  . The spin diffusion coefficient 
s

2

ss /=D  

is estimated to be ~ 0.5 m2·s-1 at 2 K and this value is about 10 times larger than p

2

Fc vD = . We note 

that this inequality of 
cs DD   is often found in low-dimensional systems121. 

 

 

 

Figure 42. Temperature dependence of RNL(B//) and s measured for the device B. (a) RNL vs. B// of the 

device B measured at Vg−VD = −33 V for various temperatures (2, 5, 10, 20, and 50 K). The red lines 

are fits of Eq. (1) to the measured RNLs. (b) Temperature dependence of the parameters extracted from 

fitting with Eq. (1). RNL, SH, and s are displayed from top to bottom. (c) Temperature dependence of 

s
-1 (▲) and p (●). The green and the red line are the predicted temperature dependences for DP and 

EY spin relaxation mechanisms, respectively. 
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Figure 43. RNL as a function of in-plane magnetic field measured at various temperatures. (a)-(d) RNL 

measured at VG-VD = - 17 V for the channel of L/w = 4 in the device A. (e)-(f) RNL measured at VG-VD = 

- 21 V for the channel of L/w = 4 in the device C. 
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5.5 Symmetry spin-orbit scattering 
 

 

The spin relaxation mechanisms can be further studied through the quantum interference effect on the 

diffusive transport56, 122-123. The presence of spin-orbit coupling affects the phase coherence of electrons, 

leading to reduced weak localization (WL) or even weak anti-localization (WAL). A recent theoretical 

study showed that the symmetry of spin-orbit coupling in graphene can also be inferred from magneto-

conductivity122. Here, we further investigate the symmetry of spin-orbit coupling in Au-clustered 

graphene. According to Ref 122, asymmetric spin-orbit coupling causes DP spin relaxation and 

symmetric spin-orbit coupling induces EY spin relaxation, which leads to the following expression for 

magneto-conductivity.  

 

∆𝜎(𝐵) = −
𝑒2

2𝜋ℎ
[𝐹 (

𝐵𝑧

𝐵𝜑
) − 𝐹 (

𝐵𝑧

𝐵𝜑+𝐵𝑎𝑠𝑦
) − 2𝐹 (

𝐵𝑧

𝐵𝜑+𝐵𝑆𝑂
)]               (33) 

 

𝐹(z) = ln 𝑧 + 𝜓 (
1

2
+

1

𝑧
) , 𝐵𝜑,𝑆𝑂 =

ℏ𝑐

4𝐷𝑒
𝜏𝜑,𝑆𝑂

−1  , 𝐵𝑎𝑠𝑦 =
ℏ𝑐

2𝐷𝑒
𝜏𝑎𝑠𝑦

−1  , 𝜏𝑆𝑂
−1 =  𝜏𝑠𝑦𝑚

−1 + 𝜏𝑎𝑠𝑦
−1  

 

where  is the digamma function, ћ is the Planck constant, 
-1 is the inelastic de-phasing and asy

-1 is 

the SOS rate associated with asymmetric spin-orbit coupling. s
-1 is the total spin-orbit scattering rate, 

and thus, s
-1 = asy

-1+sy
-1 (where sy

-1 is the symmetric spin-orbit scattering rate). The solid lines in 

Figure 44 (a) are the fits of Equation (33) to the measured MCs of the device B. Similar to previous 

reports30, the estimated phase coherence time is in order of 10-12 s, which gradually increased as the 

carrier concentration was increased. Near the charge neutral point (VG−VD = 0 V), estimated asy
-1 and 

sy
-1 were 7  1012 and 1  1012 s-1, respectively. In contrast, estimated asy

-1 and sy
-1 at VG−VD = −33 V 

were 5  1011 and 3  1012 s-1, respectively. Thus, asymmetric spin-orbit scattering prevails near the 

charge neutral point, which is gradually reduced as the concentration is increased. At VG−VD = −33 V, 

the ratio of sy
-1 / s

-1 was ~85% (Figure 44(b)). This dominance of symmetric spin-orbit scattering leads 

to EY spin relaxation rather than DP spin relaxation at higher carrier concentrations. This result is 

consistent with the spin relaxation mechanism deduced from the temperature-dependent behavior of the 

measured 𝑅𝑁𝐿
𝑆𝐻𝐸. Here, the estimated s using weak localization and weak antilocalization theory is much 

shorter than that obtained from non-local measurements. I note that the estimation of s using weak 

localization and weak antilocalization theory typically produces reduced lifetime by one order of 

magnitude as studied elsewhere56. 
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Figure 44. Gate voltage dependence of MC and the symmetry of the SOS rate. (a) The MC of the Au-

clustered graphene device at 2 K measured for various gate voltages (VG−VD = −33, −23, −13, and 0 V). 

All curves display a WL behavior. The solid lines are fits of Eq. (2) to the measured data. (b) Gate 

dependence of the extracted 
-1, sy

-1, and asy
-1. 
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5.6 Summary and discussion. 
 

 

In conclusion, I showed the generation of a spin current by the spin Hall effect and the spin detection 

by the inverse spin Hall effect in Au-clustered graphene hall bar device. The observed non-local 

resistance exhibits significant fluctuation with applied gate voltage, which is likely due to in part 

conductance fluctuation and spin Hall angle fluctuation. The dominance of spin Hall effect induced 

nonlocal resistance was observed at particular carrier concentration, which was further confirmed 

through the Hanle curve and its temperature dependence. The behavior of s(T) obtained from Hanle 

curves is consistent with the determined spin-orbit coupling symmetry, which is asymmetric near the 

Dirac point and symmetric at higher concentrations.  

Here, the reason why the spin Hall effect appear at particular charge density in this Au-clustered 

graphene can be inferred from following papers109, 124-125. 

Dink Van Tuan and coworker theoretically reported that the mixing between spin and pseudospin-

related Berry’s phases results in fast spin dephasing with increasing relaxation times away from Dirac 

point in adatom-decorated graphene124. According to their paper, the presence of non-magnetic adatoms 

randomly adsorbed on the graphene sheet (in figure 45 (a)) introduces additional spin-orbit coupling 

terms defined as124  

 

𝐻 = −𝛾0 ∑ 𝑐𝑖
†𝑐𝑖 +

<𝑖𝑗>

2𝑖

√3
𝑉I ∑ 𝑐𝑖

†𝑠 ∙ (𝑑𝑘𝑗 × 𝑑𝑖𝑘)𝑐𝑗

≪𝑖𝑗≫∈𝑅

 

 

+ 𝑖𝑉𝑅 ∑ 𝑐𝑖
†𝑧 ∙ (𝑠 × 𝑑𝑖𝑗)𝑐𝑗

<𝑖𝑗>∈𝑅

− 𝜇 ∑ 𝑐𝑖
†𝑐𝑖

𝑖∈𝑅

                                             (60) 

 

where 𝛾0  is hopping parameter with 2.7 eV, 𝑐𝑖
†  and 𝑐𝑖  indicate the annihilation and creation 

operators of one electron at site i, respectively, 𝑑𝑘𝑗 and 𝑑𝑖𝑘 are the unit vectors along the two bonds 

connecting second neighbors, 𝑠 is the Pauli matrices, 𝑉I is the intrinsic spin-orbit coupling strength, 

and 𝑉R is Rashba spin-orbit coupling. The first term of equation (60) indicates the nearest neighbor 

hopping term. The second term is the complex next-nearest-neighbor hopping term which represents 

the intrinsic spin-orbit coupling induced by adatoms. The third term describes the Rashba spin-orbit 

coupling with z-asymmetry normal to the graphene plane. The last term denotes a potential shift  

associated with the carbon atoms in the random plaquettes adjacent to adatoms as shown in figure 45 

(a).  

With this Hamiltonian, they explored the spin relaxation time as a function of the adatom density and 

adatom-induced local potential shift, and focused on the expectation value of the spin z-component.      
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Figure 45. Spin dynamics in adatom-decorated graphene. (a) A random distribution of adatoms on 

graphene. (b) Time-dependent projected spin polarization Sz of charge carriers in adatom density  = 8% 

at Dirac point (red) and at 150 meV. (c) spin (symbol) and momentum (dotted in line) relaxation time 

as function of energy. Black (red) solid symbols indicate spin relaxation time for  =0.1𝜸𝟎( =0.2𝜸𝟎). 

(d) Experimental result of charge carrier dependent spin relaxation time and length124.  

 

 

 

 

 

 

 

Figure 46. Spin Hall angle of Adatom-decorated graphene. (a) Schematic view of a six-terminal 

graphene employed to compute the nonlocal resistance and the spin Hall angle. (b) Nonlocal resistance 

for six-terminal graphene with scattered Au adatoms. Channel width is W=50 nm, channel lengths are 

L=10 nm (main), 100 nm (left inset), and 300 nm (right inset). Dotted lines are nonlocal resistance 

without spin-orbit coupling. (c) Spin Hall angle obtained from Landauer-Buttiker formulas for scattered 

graphene and clustered (inset) graphene109.  
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Figure 45 (b) shows the behavior of spin dynamics investigated by computing the time dependence of 

the spin polarization for two selected energies (Dirac point and 150 meV) and adatom density  = 8%. 

The spin relaxation time s extracted from the fits of spin dynamics is shown in figure 45 (c). From this 

result, the spin relaxation time exhibited a significant energy dependence, and a V-shape was obtained 

for low energy with minimal spin relaxation time at Dirac point. The V-shaped spin relaxation time as 

functional of Fermi energy are experimentally observed as shown in figure 45 (d)  

Dink Van Tuan and coworker explained the reason for this behavior by the entangled dynamics of 

spin and pseudospin from spin-orbit coupling, leading to the faster spin relaxation at Dirac point. Also, 

they suggested that spin could be manipulated by inducing psedomagnetic fields by straining graphene 

in this system124. 

Meanwhile, in the same group109, the nonlocal spin Hall resistance of H-bar was numerically studied 

with equation (60) in adatom-decorated graphene system as shown in figure 46. They applied Kubo and 

Landauer-Buttiker formulas to the system (figure 46 (a)) to obtain the nonlocal resistance, the spin Hall 

conductivity, and angle. Consequently, the spin Hall angle in multiterminal graphene device was 

dependent on Fermi level, and the large spin Hall angle was observed at particular energy not Dirac 

point as shown in figure 46 (b), (c). These theoretical results are consistent with my experimental result 

in chapter 5.  

Now, I am going to review the other tight-binding Hamiltonian reported by Zibo Wang and 

coworkers125 for four-terminal graphene system without intrinsic spin-orbit coupling and potential shift 

 due to adatoms on graphene.  

They considered Rashba spin-orbit coupling to Hamiltonian, then the tight-binding Hamiltonian can 

be written as125 

 

𝐻 = ∑ 𝜖𝑖𝑐𝑖
†𝑐𝑖 +𝑖 𝑡 ∑ 𝑐𝑖

†𝑐𝑗<𝑖𝑗> + 𝑖𝜆𝑅 ∑ 𝑐𝑖
†(𝑠 × 𝑑𝑖𝑗)𝑐𝑗<𝑖𝑗>             (61) 

 

where 𝑐𝑖
†  and 𝑐𝑖  indicate the annihilation and creation operators, and 𝜆𝑅  is the strength of the 

external Rashba effect. They calculated the current flowing through the four-terminal system from the 

Landauer-Buttiker formula similar to Dink Van Tuan and coworkers. 

Figure 47 shows the nonlocal resistance (red line) and local resistance (blue line) as function of the 

Fermi energy from calculation. The maximum nonlocal resistance was located at Dirac point both 

without (figure 47 (a)) and with (figure 47 (b)) Rashba effect. Just, the negative nonlocal resistance in 

figure 47 (a) becomes disappeared with the increase of Rashba spin-orbit coupling. Namely, this means 

that spin Hall effect with Rashba spin-orbit coupling do not affect the value of nonlocal resistance 

around Dirac point, mainly. This theoretical result also supports my experimental nonlocal resistance 

in Au-clustered graphene system, indirectly.   
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Figure 47. The local (blue line) and nonlocal (red line) resistance of 4-terminal graphene geometry (a) 

without and (b) with Rashba effect. In order to make the comparison clear enough, the value of nonlocal 

resistance is amplified 7.5 times125. 

 

 

The difference between Hamiltonian (60) and (61) is intrinsic spin-orbit coupling and local potential 

shift terms from adatoms on graphene. And my results indicated that nonlocal resistance in Au-

decorated graphene H-bar device came from the symmetry spin-orbit scattering like Kane and Mele 

type than asymmetry Rashba spin-orbit coupling, corresponding to the expected results from 

Hamiltonian (60) with Landauer-Buttiker formula. Thus, we can infer that the intrinsic spin-orbit 

coupling and local potential shift terms due to adatoms on graphene paly important role to nonlocal spin 

Hall resistance in decorated graphene system. As shown in figure 45, the adatom-induced local potential 

shift influenced the spin relaxation with mixing pseudospin-related Berry phase. Therefore, the results 

of nonlocal resistance in decorated graphene system can be summarized as follows; 

 

1. The gate-dependent nonlocal resistance in graphene H-bar type is not directly associated with spin 

Hall effect and inverses spin Hall effect. 

 

2. The spin Hall effect occurred at the particular gate voltage due to large spin Hall angle in the gate 

voltage. This means it can overcome the other factors contributed to nonlocal resistance in H-bar type.   

 

3. The possible explanation why the spin Hall effect appear at the particular charge density is spin-

valley relation with the influence of adatom-induced local potential shift 

 

These results provide important insights for the spin Hall effect in physically decorated graphene and 

inspire an alternative route for generating and detecting spin currents in valley systems as well as 

graphene. 



 

- 67 - 

 

VI. Metal insulator transition and the splitting of zeroth Landau level in 

AlO2/Fe/graphene system. 

 

 

The pristine graphene described with massless Dirac fermion3 can be evolved into topological state or 

ferromagnetism by engineering the band structure of graphene through various adatoms and proximity 

effect of substrate26, 65, 68. For example, graphene on the magnetic insulator acquires strong exchange 

interaction, and quantized spin-polarized edge transport is expected therein68. The various adatoms on 

graphene give rise to strong spin-orbit coupling91, 126-128 and spin scattering related Berry’s phases124. 

The strong spin orbit coupling of graphene can lead to spin Hall effect126 and quantum spin Hall state25. 

Also, it was predicted129 that the Anderson metal insulator transition can be achieved by changing the 

carrier density in doped graphene. 

In this study, I designed Al2O3/Fe (0.5 nm)/graphene structure to apply strain and exchange interaction 

to graphene and observed strong localization around charge neutral point and metal insulator transition 

with changing carrier density. Despite strong localization with disorder, quantum Hall edge state existed 

in the sample. Furthermore, the splitting of resistivity at charge neutral point was showed under the 

magnetic field. These phenomena could be understood with topological Anderson insulator state 

This chapter is organized as follows: In section 6.1, I introduce a research trend of disordered graphene 

including proximity effect. In section 6.2, I show resistivity via gate voltage, quantum hall effect and 

metal insulator transition of Al2O3_Fe_graphene system. In section 6.3, the splitting of zeroth Landau 

level in resistivity with magnetic field is investigated. Finally, I discuss the behavior of 

magnetoresistance and the splitting of zeroth Landau level in section 6.4.  

 

 

6.1 Introduction  

 

 

Electron band structure of pristine graphene have been extensively studied in recent years because of 

its unusual transport properties3-4, 8, 10-11, and it has been shown that the properties can be strongly 

modified when graphene is functionalized with various adatoms58, 91, 102, 105, 110, 127, proximity effect from 

substrate56, 65, 67-68, 123, 130, and molecules attached to surface and edge state131. As results, various 

properties were observed including spin Hall effect by spin-orbit coupling126, valley Hall effect with 

broken inversion symmetry46-47, anomalous Hall effect65, ferromagnetism62, strong exchange 

interaction67-69, spin modulation132, and ferroelectric field effect transistor behavior with ferroelectric 

substrate130. 

For a decade, there have been many studies about electronic band structure of graphene modified by 

adatoms (physisorption) on its surface, theoretically58, 90-91, 105, 127, 133-134. Chao Cao and co-workers133 
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predicted magnetic properties of graphene due to adsorbed Fe, Co, Ni and Cu atoms. In magnetic 

properties, Fe and Co adatoms on graphene caused local magnetic moment. Xiaojie Liu and co-workers 

reported134 that transition metal (Fe, Co and Ni) adsorption on graphene exhibited strong covalent 

bonding with graphene, which caused large in-plane lattice distortion in graphene layer with strong 

magnetic moment and spin polarized density of state. Also, it was theoretically reported that adatom 

(disorder) on graphene can give rise to Anderson localization and transition (metal insulator transition 

with changing carrier density)129, 135-136.  

In this study, I deposited Fe (0.5 nm) particle on graphene surface to explore carrier transport on Fe- 

adatoms/graphene system and covered Al2O3 to protect Fe from oxidizing. Electrical transport 

measurements displayed strong localization around charge neutral point and metal insulator transition 

with changing carrier density in low temperature, which can be attributed to Anderson transition. 

Despite strong localization with disorder, quantum Hall edge state existed in the sample. Furthermore, 

the splitting of resistivity at charge neutral point appeared under the magnetic field. These phenomena 

will be discussed in the final last section. 

 

 

6.2 Metal Insulator Transition   
 

 

 Figure 48 (a) shows the illustration of Al2O3/Fe/graphene system. Fe ~ 0.5 nm was deposited with e-

beam deposition on graphene Hall bar device with a channel width (w) of ~ 1 m and lengths (Ls) of ~ 

3 m. Then, the device was covered with Al2O3 ~ 20 nm by using E-beam deposition to protect Fe from 

oxidizing. Resistivity (xx) as function of gate dependent is shown in figure 48 (b). Inset is optical 

microscopy image of the device. Temperature dependence of field effect displayed two different 

regimes as in figure 48 (b). Around charge neutral point, the resistance increases with decreasing 

temperature, whereas metallic behavior appears at the gate voltage away from the charge neutral point. 

In this metallic regime of gate voltage, metal insulator transition was also observed around 55K as 

shown in figure 49. The estimated mobility around the charge neutral point is about 600 cm2 / V∙s at 2 

K. The mobility of the Al2O3/Fe/graphene device dramatically decreased in comparison to the pristine 

graphene (~5000 cm2 / V∙s, see chapter 4). This indicates that Fe adatoms give rise to significant 

disorder for graphene.  

Figure 50 shows magnetoresistance upon applying perpendicular magnetic field. All results display 

negative magneto-resistance is negative. The SdH oscillation can be observed at high charge carrier 

density. To find the influence of quantum interference in insulator region (at charge neutral point), I fit 

obtained results according to a localization theory developed for graphene, where the correction to the 

semiclassical resistivity is given by  
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∆𝜌(𝐵) = −
𝑒2𝜌2

𝜋ℎ
[𝐹 (
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1

𝑧
)         𝐵𝜑,𝑖𝑛𝑡𝑒𝑟,𝑖𝑛𝑡𝑟𝑎 =

ℏ

4𝐷𝑒
𝜏𝜑,𝑖𝑛𝑡𝑒𝑟,𝑖𝑛𝑡𝑟𝑎

−1            (61) 

 

where  is digamma function, D is the diffusion coefficient, 𝜏𝑖𝑛𝑡𝑒𝑟
−1   is intervalley scattering rate, 

𝜏𝑖𝑛𝑡𝑟𝑎
−1 is intravalley scattering rate, and 𝜏𝜑

−1 is dephasing rate.   

Fitting curves with equation (61) are shown in figure 50 (a). Here, I plot ∆𝜌 = 𝜌(0) − 𝜌(𝐵) from 

experimental data. The dotted blue line indicates typical weak localization of graphene on SiO2 substrate 

(𝜏𝜑 = 0.3 𝑝𝑠 , 𝜏𝑖𝑛𝑡𝑒𝑟  =  0.14  𝑝𝑠, 𝜏𝑖𝑛𝑡𝑟𝑎 =  0.05  𝑝𝑠  ). Without changing phases coherence time (𝜏𝜑), 

the dotted red line appears when both inter- and intra- valley scattering increase (𝜏𝜑 =  0.3 𝑝𝑠 , 𝜏𝑖𝑛𝑡𝑒𝑟  =

 0.01 𝑝𝑠, 𝜏𝑖𝑛𝑡𝑟𝑎 =  0.014 𝑝𝑠 ) as shown in figure 50 (a). Then, we can extract a value for phases 

coherence length 𝐿𝜑 = √𝜏𝜑𝐷 around charge neutral point, where diffusion coefficient (D) ~0.01 was 

estimated from field effect properties (figure 48 (b)) with equation (11).  

 

 

 

Figure 48. Hall bar geometry and charge transport for the Al2O3/Fe/grapehen device. (a) Schematic of 

the H-bar geometry of the graphene device. (b) Resistivity as function of gate voltage at various 

temperatures. Inset is optical microscopy of the device. (c) Resistivity at charge neutral point (CNP) 

measured at temperature between 2K and 100K, indicating insulator state. (d) Resistivity at charge 

neutral point (CNP) measured at temperature between 2K and 100K under the magnetic field of 9 T, 

indicating metallic state. 
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Figure 49. Metal insulator transition measured at various gate voltage for the Al2O3/Fe/grapehen device 

without magnetic field (a-f). 

 

 

 

 

 

Figure 50. Magnetoresistance under the perpendicular magnetic field. (a) Negative magnetoresistance 

at charge neutral point (a), Vg−VD= -10V (b), and Vg−VD= -42.5V. The dot line indicates fitting curve 

with equation (61). The dotted red and blue lines are fitting curves based on equation (61).  

 

 

  



 

- 71 - 

 

The estimated phases coherence length around charge neutral point is ~ 57 nm. The localization length 

given by  

 

𝜉𝐷 ≅ 𝐿𝑒𝑒𝑥𝑝 (
𝜎𝐷

𝑒2/ℎ
)                               (62) 

 

where, Le is the elastic length from Le = 𝜎𝐷ℎ/2𝑒2(𝜋𝑛)1/2, D is Drude conductivity, and n is charge 

carrier density.  

The estimation of localization length around the charge neutral point is ~3.2 nm. Thus, phases 

coherence length is larger than localization length, reflecting strong localization regime.  

In disordered graphene, it has been already reported that the strong localization exhibits around charge 

neutral point. Previous works showed that disorder of sp3-type obtained by hydrogenation and exposing 

ozone give rise to strong localization in low carrier density region. However, metal insulator transition 

was not observed by changing carrier density as observed in my study.  

To compare influence of Fe adatom on graphene, I introduced Al2O3/graphene structure excluding Fe 

layer. Experimentally, there was reported 137-139 that evaporation of aluminum oxide on graphene give 

rise to defect in graphene. 

Figure 51 (a) indicates gate dependent resistivity (xx) in control device measured at various 

temperatures. Unlike Al2O3/Fe/graphene system, insulator behavior was observed exhibited in all region. 

Giant negative magneto resistance is observed as shown in figure 51 (b), and resistivity increase with 

decreasing temperature at charge neutral point with B = 9T as shown in figure 51 (c), indicating insulator 

state. However, in Al2O3/Fe/graphene sample, metallic state appeared at charge neutral point when B 

=9 T, whereas insulating state existed at charge neutral point without magnetic field. And quantum Hall 

effect was not observed due to defects (figure 51 (d)).  

However, the Al2O3/Fe/graphene device exhibits quantum Hall state, as shown in figure 52. Figure 52 

(a) shows resistivity versus gate voltage under B = 9T. The inset of figure 52 (a) indicates Hall resistivity 

at gate 10 V. Quantum Hall state corresponding to filling factor  = 2 of Landau level is clearly visible 

at the magnetic field of 3T. Figure 52 (b) shows traces of  = ± 2 state upon varying magnetic field, 

indicating that orbital effect induced by Fe adatom is negligible. 

The possible scenario to explain strong localization with metal insulator transition and quantum Hall 

state is Anderson transition140. Yun Song and coworkers 129 theoretically predicted that the Anderson 

metal insulator transition can be introduced by the presence of quenched random disorder from the 

Anderson tight-binding model in doped graphene, and four mobility edges can be observed for the 

honeycomb lattice with specific disorder strength and impurity concentration. 
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Figure 51. Transport properties of Al2O3/graphene device. (a) Resistivity as function of gate voltage at 

various temperatures. Insulator behavior can be observed in all region. (b) Giant negative 

magnetoresistance at CNP. (c) Temperature resistivity under magnetic field of 9 T at CNP, indicating 

insulator state. (d) Resistivity as functional of gate voltage under B = 9 T at 2K, showing no clear 

quantum Hall effect.  
  

 

 

 

Figure 52. Quantum Hall effect of Al2O3/Fe/graphene device. (a) resistivity as functional of gate voltage 

under B = 9 T at 2K. The inset is Hall resistivity measured at gate 10 V. (b) Magnetic field dependence 

of the gate voltage (Vg−VD) for = ±2 states.  
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6.3 The splitting of zeroth Landau level 
 

 

In high magnetic field, the = 0 and = ±1states in quantum Hall region is known as arising from the 

spin and valley degeneracy of the zeroth Landau level, respectively141-143. And, the = 0 state from the 

splitting of zeroth Landau level can be a spin-polarized state with gapless chiral edge mode, a valley- 

polarized state without gapless chiral edge mode or the intermediate state between spin and valley 

polarized69, 144.  

Figure 53 shows resistivity as function of gate voltage in Al2O3/Fe/graphene device at 2 K. The charge 

neutral point is located at 3.5 V without magnetic field. In contrast to the single peak without magnetic 

field, the main peak of resistivity around charge neutral point develops double-peak features at 5 T as 

shown in figure 53 (b). The new peak appeared at 7.5 V. However, an unprecedented phenomenon is 

observed with increasing magnetic field. The magnitude of new peak is no big difference between 5 T 

and 9T, but the magnitude of peak observed at 3.5 V decreases with increasing magnetic field. Finally, 

the peak observed at 3.5 V disappears at 9 T as shown figure 53 (d). Namely, the charge neutral point 

shift from 3.5 V to 7.5 V with high field.  

As mentioned in section 2.4, it was experimentally reported that strong interfacial magnetic exchange 

field in the graphene/EuS heterostructure can generate the splitting of zeroth Landau level and may give 

rise to quantized spin-polarized edge transport68. Also, it was theoretically predicted that Fe adatom on 

graphene has spin polarized density of state and Anderson localization from localized electron and 

plaquette potential at impurity site129, 136.  

In my study, Fe layer on graphene cause strong (Anderson) localization around charge neutral point 

including metal insulator transition with changing carrier density. And quantum Hall state is present 

with metallic state at charge neutral point although insulator behavior was exhibited point without 

magnetic field at that point. Furthermore, the splitting of zeroth Landau level is being considered as 

spin or valley polarized edge transport state. As for these experimental results, Al2O3/Fe/graphene 

system is similar to topological Anderson insulator135, which can be obtained by introducing impurities 

in a two-dimensional metal. This disorder cause metal insulator transition and extended edge state (like 

quantum spin Hall effect) in system. Finally, it can be explained that the charge neutral point shifts with 

increasing magnetic field because of Berry curvature imbalance of two k and k’ point from strain and 

perpendicular magnetic field (see section 1.4)34-35, 145-146.  
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Figure 53. The splitting of zeroth Landau level in Al2O3/Fe/graphene device. The resistivity as a 

function of gate voltage measured at 2K for 0T (a), 5T (b), 7T (c), 9T (d). The splitting around charge 

neutral point was observed for B = 5T.  
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6.4 Summary and discussion  
 

 

In summary, I have studied the influence of Fe(0.5nm) adatoms on graphene at low temperature and 

high magnetic field up to 9T.  

Based on these experimental results, I summarize as follows; 

 

1. The mobility of the Al2O3/Fe (0.5nm)/graphene device (~600 cm2 / V∙s) dramatically decreased in 

comparison with the pristine graphene (~5000 cm2 / V∙s) at low temperature, meaning that Fe adatoms 

give rise to disorder for graphene. 

 

2. It was observed that metal insulator transition with changing carrier density and strong localization 

around charge neutral point, indicating Anderson transition  

 

3. With Anderson localization, spin polarized edge state was exhibited with metallic states under 

magnetic field. This phenomenon could be understood with topological Anderson insulator. 

 

4. It was exhibited that the charge neutral point shift with increasing magnetic field, which can be 

explained as Berry curvature imbalance of two k and k’ point from strain and perpendicular magnetic 

field. 

 

Therefore, Al2O3/Fe (0.5nm)/graphene system will be good candidate for Anderson transition or 

topological Anderson insulator.  

 

 

 

 

 

 

 

 

 

 

 



 

- 76 - 

 

VII. Conclusion 
 

 

I have studied the influence of metal (Au, Fe) adatom on graphene because the pristine graphene can 

be empowered to spin hall state and topological insulator from adatom. Especially, the nonlocal 

resistance of the adatom-decorated graphene has given rise to controversy whether it is from spin 

Hall effect or unknown origin.  

So, I studied spin Hall effect in Au-clustered graphene Hall bar device to find origin of nonlocal 

resistance. Based on experimental results, I summarize the conclusion for nonlocal signal of disordered 

graphene as following;  

1. The gate-dependent nonlocal resistance in graphene H-bar type is not directly associated with spin 

Hall effect because nonlocal signal can contain many contributions such as valley Hall, Ohmic potential, 

off-set voltage and ballistic limits.   

2. The spin current is only generated at the particular gate voltage because of large spin Hall angle, 

overcoming the other factors contributed to nonlocal resistance.   

3. The possible explanation why the spin Hall effect appear at the particular charge density is spin-

valley relation with the influence of adatom-induced local potential shift 

Also, I explored the transport properties of Al2O3/Fe (0.5nm)/graphene system under high magnetic 

field up to 9T at low temperature. As the results, metal insulator transition with changing carrier density, 

Anderson localization around charge neutral point, and spin polarized edge state with metallic state 

appeared. These phenomena could be understood with topological Anderson insulator. Therefore, I 

suggest that Al2O3/Fe/graphene system is good candidate for Anderson transition or topological 

Anderson insulator state. 

These results provide important insights for spin Hall effect and topological state of graphene with 

metal adatom. 
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