

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master's Thesis

A Novel Approximate Synthesis Flow for

Convolutional Neural Networks

Jaewoo Kim

Department of Electrical Engineering

Graduate School of UNIST

2018

[UCI]I804:31001-200000108371[UCI]I804:31001-200000108371

A Novel Approximate Synthesis Flow for

Convolutional Neural Networks

Jaewoo Kim

Department of Electrical Engineering

Graduate School of UNIST

A Novel Approximate Synthesis Flow for

Convolutional Neural Networks

A thesis

submitted to the Graduate School of UNIST

in partial fulfillment of the

requirements for the degree of

Master of Science

Jaewoo Kim

 06 / 14 / 2018

Approved by

Advisor

Seong-Jin Kim

A Novel Approximate Synthesis Flow for

Convolutional Neural Networks

Jaewoo Kim

This certifies that the thesis of Jaewoo Kim is approved.

06 / 14 / 2018

Abstract

The portability of emerging computing systems demands further reduction in the power consumption

of their components. Approximate computing can reduce power consumption by using a simplified or

an inaccurate circuit.

In this paper, we exploit the approximate computing to improve the energy efficiency of a finite

impulse response (FIR) filter. We propose an approximate synthesis technique for an energy-efficient

FIR filter with an acceptable level of accuracy. We employ the common subexpression elimination (CSE)

algorithm to implement the FIR filter and replace conventional adder/subtractors with approximate ones.

While yielding an acceptable rate of accuracy, the proposed flow can attain a maximum energy saving

of 50.7% in comparison with conventional FIR filter designs.

Further, we propose the approximate synthesis flow for the Convolutional Neural Networks (CNN)

to exploit the error resiliency of neural networks. Recently CNN is showing an outstanding performance

in the field of image recognition and its application is expected to be widely expanded. However, the

intensive computational requirement limits the practical use of CNN hardware.

Proposed approximate synthesis flow is applied to Multiply-and-Accumulate (MAC) operations of

CNN to improve energy efficiency. Our proposed flow can find an energy-efficient approximate MAC

module with acceptable error rate. Energy consumption of the MAC modules for convolution of 3 × 3

and 5 × 5 matrices are improved 46.4 % and 43.4 % while output quality degradation of the handwritten

digit recognition was negligibly low.

.

Acknowledgements

It's been three years since I joined SoC Design Laboratory. During that time, I was able to grow

significantly both academically and personally. In particular, I would like to express my deep

gratitude to Professor Seokhyeong Kang, my advisor. Thanks to his encouragement and guidance, I

was able to finish master’s course. He is one of the most personally good person I have ever met, and

he is a knowledgeable and insightful researcher. I think it is a great luck in my life to meet Professor

Kang.

I would also like to thank my fellow members of SoCDL. Thanks to the help and cooperation of

Yesung Kang, I was able to successfully carry out the projects I undertook. I also thank Sunmean

Kim, Taeho Lim, and SangGi Do, who worked on the projects together, and Seungwon Kim, Mingyu

Woo, Daeyeon Kim, and Juyeon Choi for making a good atmosphere so that I can concentrate on

research.

I also really appreciate Prof. Seong-jin Kim and Prof. KyungRok Kim, the committee members of

master thesis review, giving me the advice and encouragement.

Finally, I would like to thank my family who have always understood and supported my choices. I

give them all my glory.

The materials in this thesis is based on the following publications

From Chapter Ⅰ to Chapter Ⅳ is based on:

– Yesung Kang, Jaewoo Kim and Seokhyeong Kang, “A Novel Approximate Synthesis Flow for the

Energy-Efficient FIR filter”, Proc. IEEE International Conference on Computer Design, 2016, pp. 96-

102.

VITA

1991 Born, Daegu, South Korea

2016 B.S., Electrical and Computer Engineering,

Ulsan National Institute of Science and Technology, Ulsan, South Korea

• Yesung Kang, Jaewoo Kim, and Seokhyeong Kang, “A Novel Approximate Synthesis Flow for the

Energy-Efficient FIR filter”, Proc. IEEE International Conference on Computer Design, 2016.

• Yesung Kang, Jaewoo Kim, Sunmean Kim, Sunhae Shin, E-san Jang, Jae Won Jeong, Kyung Rok

Kim, and Seokhyeong Kang, “A Novel Ternary Multiplier based on Ternary CMOS Compact Model”,

Proc. IEEE International Symposium on Multiple-Valued Logic, 2017.

Contents

I. Introduction .. 1

II. Related Works ... 4

2.1 Common Subexpression Elimination (CSE) .. 4

2.2 Approximate Computing ... 5

III. Approximate Synthesis flow for FIR filter ... 7

3.1 The Proposed Approximate Adder/Subtractor ... 7

3.2 Approximate Synthesis Flow ... 9

IV. Experimental Setup and Results ... 13

4.1 Experimental Setup .. 13

4.2 FIR Filter Implementation ... 13

4.3 Image Filter Experiment .. 17

V. Approximate Synthesis Flow for Convolutional Neural Networks 19

5.1 Convolutional Neural Network (CNN) .. 19

5.2 Related Work .. 21

5.3 Approximate Synthesis Flow for MAC module .. 21

5.4 Experimental Setup and Results .. 22

5.4.1 Experimental Setup .. 22

5.4.2 Power Consumption ... 23

5.4.3 Classification Accuracy .. 25

VI. Conclusion .. 27

List of Figures

Figure 1.1 Structure of the conventional FIR filter and the proposed approximate FIR filter.

Figure 2.1 Schematic of the FIR filter. The coefficients of the FIR filter are (105, 831, 621, 815), and

FAS = 3.

Figure 3.1 Proposed Addition Arithmetic in [6]

Figure 3.2 Proposed approximate adder/subtractor.

Figure 3.3 Structure of the approximate part.

Figure 3.4 Schematic of the k-th carry generator and the sum generator in the approximate part.

Figure 3.5 Proposed synthesis flow.

Figure 4.1 Accuracy vs. delay domain of the proposed synthesis flow and the exhaustive research of

FIR Filter

Figure 4.2 Accuracy vs. power domain of the proposed synthesis flow and the exhaustive research of

FIR Filter

Figure 4.3 Accuracy vs. Energy domain of the proposed synthesis flow and the exhaustive research of

FIR Filter

Figure 4.4 Filtered images using optimized FIR filters.

Figure 5.1 Architecture of convolutional neural network [26]

Figure 5.2 Computation of convolution layer [26]

Figure 5.3 Working principle of an 8-bit Multiplier-less Artificial Neuron [27]

Figure 5.4 Structure of the MAC module for the convolution of 3 × 3 filter

Figure 5.5 MNIST handwritten numbers database

Figure 5.6 Accuracy vs. delay domain of the proposed synthesis flow and the exhaustive research of

MAC modules for (a) 3×3 filter and (b) 5×5 filter

Figure 5.7 Accuracy vs. power domain of the proposed synthesis flow and the exhaustive research of

MAC modules for (a) 3×3 filter and (b) 5×5 filter

Figure 5.8 Accuracy vs. Energy domain of the proposed synthesis flow and the exhaustive research of

MAC modules for (a) 3×3 filter and (b) 5×5 filter

List of Tables

Table 4.1 Approximation results in 4-tap FIR filter with FAS = 3.

Table 4.2 Approximation results in 25-tap filter with FAS = 4.

Table 4.3 Specifications of the experimented FIR filters.

Table 4.4 Experimental results of FIR filters with the approximate synthesis flow

Table 5.1 Shape parameters of convolution layer

Table 5.2 Network parameter of CNN for MNIST

Table 5.3 Approximation results of MAC module

Table 5.4 Classification accuracy of baseline and approximate CNN with 3 × 3 kernel

List of Algorithms

Algorithm 1. Sensitivity-based approximate synthesis flow

Nomenclature

IoT Internet of Things

IIR Infinite Impulse Response

FIR Finite Impulse Response

MAC Multiply-and-Accumulate

SPT Signed-Power-of-Two

CSD Canonical Signed Digit

CSE Common Subexpression Elimination

AS Adder Step

FAS Filter Adder Step

MSB Most Significant Bit

LSB Least Significant Bit

TCL Tool Command Language

RTL Register Transfer Level

EDA Electronic Design Automation

PSNR Peak Signal-to-Noise Ratio

CNN Convolutional Neural Network

1

Chapter Ι

Introduction

As semiconductor technologies continue to develop, electronic devices are becoming smaller and

more portable. Consequently, as the battery size of Internet of Things (IoT) devices decreases and power

consumption increases, the urgent need for energy-efficient systems has generated research interests in

approximate computing techniques. Approximate computing can be applied to vision, search, and image

processing, which do not require a 100% of accurate results.

In this paper, we apply approximate computing to a digital filter for image processing. The digital

filter can be implemented through an infinite impulse response (IIR) filter and a finite impulse response

(FIR) filter. The FIR filter shows better phase linearity and stability than the IIR filter. However, it

consumes more power because of its complex design, and hence reduces the overall energy efficiency

of the system. To improve the energy efficiency of the FIR filter, several proposals have sought to reduce

their design complexity [1–5]. However, these approaches only focused on reducing the number of

adder steps [1–3], providing an accuracy estimation model [4], or developing an approximate adder [5],

separately.

Figure 1.1: Structure of the conventional FIR filter and the proposed approximate FIR filter

2

Figure 1.1 shows the conventional multiply-and-accumulate (MAC) structure of the FIR filter. A

popular idea for complexity reduction here is a multiplier-less FIR filter [1], where multiplication is

implemented with shifters and adders rather than multipliers. Integer coefficients are transformed into

a proper one for shift and addition operations. In conventional FIR filters, all coefficients are expressed

in signed-power-of-two (SPT) space rather than signed binary, since SPT can reduce the number of

nonzero digits. In the SPT codes, a canonical signed digit (CSD) code is well known to effectively

reduce the complexity of FIR filters.

Another key idea in conventional FIR filters is a common subexpression elimination (CSE) algorithm.

Chia et al. [2] proposed a CSE algorithm to reduce redundancy among CSD coefficients. Choi et al. [3]

analyzed the criticality of each coefficient of a FIR filter and applied tighter constraints on more critical

coefficients during the CSE algorithm. Choi’s FIR filter yielded 25%-30% power saving at low voltages

with minor passband/stopband ripples. Kahng et al. [4] implemented a FIR filter using an approximation

at the synthesis level. They replaced certain modules with approximated ones based on lookup tables in

order to reduce power consumption with only a small degradation in the quality of output. Gupta et al.

[5] implemented a FIR filter using an approximated circuit. They proposed mathematical models for

error and the power consumption of the approximate adders.

Chia et al. [2] and Malcolm et al. [1] only focused on reducing the number of adder steps. Choi et al.

[3] considered voltage scaling to save power, but the errors incurred along the critical path were

observed to usually be more critical than those due to approximations. Kahng et al. [4] and Gupta et al.

[5] applied approximate computing to a FIR filter but did not provide any automated synthesis flow for

the approximation. If the size of the design of the FIR filter becomes larger, it becomes difficult to find

optimum configurations for the approximate adders.

In this paper, we propose a novel approximate synthesis technique that reduces energy consumption

by replacing conventional adders/subtractors in the FIR filter with approximated adders/subtractors

with automated synthesis flow, as shown in Figure 1.1. The following are the main contributions of our

paper:

 An accuracy-configurable adder/subtractor is proposed, which is energy efficient

and has relatively high accuracy.

 The maximum error due to the configurations of the proposed adder/subtractor is

analyzed to estimate output quality.

 A novel approximate synthesis flow for the FIR filter is proposed. Using the

proposed approximate synthesis flow, we can save energy/power consumption and improve

performance to yield a reasonable level of accuracy.

3

The rest of the thesis is organized as follows. In Chapter II, the CSE algorithm and previous

approximate computing techniques are briefly introduced. In Chapter III, our proposed approximate

adder/subtractor is introduced and its accuracy is analyzed. The proposed approximate synthesis flow

is also described here. Chapter IV contains a description of the experimental setup and a discussion of

the results. In Chapter V, approximate synthesis flow for the convolutional neural networks is described,

and we offer a summary of our work in Chapter VI.

4

Chapter ΙΙ

Related Work

2.1 Common Subexpression Elimination (CSE)

As discussed in Chapter I, the CSE algorithm can reduce the design complexity of the FIR filter. In

this Chapter, we briefly introduce the CSE algorithm proposed in [2]. The following terms are used to

explain CSE algorithm.

 Adder Step (AS) : the number of adders that are used to implement the coefficients of the

FIR filter.

 Filter Adder Step (FAS) : the number of adders along the critical path of the FIR filter. FAS

is always greater than or equal to max (log2k) where k is the number of non-zero bits of the

coefficients.

At the beginning of the CSE algorithm, all coefficients are converted into canonical signed-digit

codes and their consecutive zeros are eliminated using a right-shift operation. Set CN is constructed

from the converted coefficients, and another set NC is constructed by decomposing CN. At the first

iteration of the CSE algorithm, each value in CN is checked to determine if it is decomposable by the

other values in CN ∪{1}. If the value is decomposable, it moves into a set CP. Otherwise, the algorithm

checks if the value is decomposable using values in CN ∪NC ∪{1}, and the decomposed value moves

to CP. The values in NC, which are used in the decomposition, are moved to CN. These procedures are

repeated until CN is empty. Following the CSE algorithm, the CSD values in CP are used to synthesize

the multiplier block in Figure 1.1.

For further explanation, we use an example. Let FAS = 4; the coefficients are

h0 = 105(10) = 10101001(2) h1 = 831(10) = 10101000001(2)

h2 = 621(10) = 1010010101(2) h3 = 815(10) = 10101010001(2)

For simplicity, the CSD coefficients are expressed in integer format. Prior to the first iteration,

CP = φ

CN = {105, 831, 621, 815}

NC = {3, 5, 7, 9, 13, 15, 17, 19, 23, 27, 31, 39, 47, 51, 63, 67, 97, 109, 113, 123, 125, 127, 129, 137,

155, 159, 193, 209, 257, 273, 493, 497, 509, 513, 625, 637, 641, 751, 767, 1007, 1023, 1071, 1087}

5

At the first iteration, 815 and 621 are decomposed by 831 and 105, respectively: 815 = 831 − 1 × 24,

621 = 831 − 105 × 21. At the next step, 105 and 831 are decomposed. The result of the decomposition

is 105 = 15 × 23 − 15 and 831 = 15 × 26 − 129, respectively. At the last step, 15 and 129 are decomposed:

15 = 1×24 −1 and 129 = 1×27 +1. Following the iteration, CP = {105, 831, 621, 815, 15, 129}

CN = φ

NC = {3, 5, 7, 9, 13, 17, 19, 23, 27, 31, 39, 47, 51, 63, 67, 97, 109, 113, 123, 125, 127, 137, 155, 159,

193, 209, 257, 273, 493, 497, 509, 513, 625, 637, 641, 751, 767, 1007, 1023, 1071, 1087}

The iterations terminate when CN is empty. The synthesized FIR filter from the CSE algorithm is

shown in Figure 2.1.

2.2 Approximate Computing

Approximate computing generates sufficiently good results with low power rather than exact results.

It can be used for noise-tolerant applications. Various approximate arithmetic designs have been

proposed in past research. Lu et al. [7] introduced a fast adder with shorter carry chains that considers

only the previous k bits of input in computing a carry bit. Verma et al. [8] proposed a variable-latency

speculative adder (VLSA), which is a reliable version of the Lu adder [7] with error detection and

correction. Shin et al. [9] also proposed a data path redesign technique for various adders that reduces

the lengths of critical paths in the carry chain. Zhu et al. [6] proposed three approximate adders—ETAI,

ETAII, and ETAIIM. ETAI is divided into an accurate part and an inaccurate part to achieve approximate

Figure 2.1: Schematic of the FIR filter. The coefficients of the FIR filter are (105, 831, 621, 815),

and FAS = 3.

6

results. ETAII reduces carry propagation to speed up the adder, and ETAIIM modifies ETAII by

connecting carry chains in accurate MSB parts. Gupta et al. [5] conducted approximations at the

transistor level, and proposed approximate full adder cells to design multi-bit adders for video

applications to save power and area. Kahng et al. [10] proposed an accuracy-configurable approximate

(ACA) adder. In an approximate mode, it carries out approximations by cutting carry chains. In an

accurate mode, it recovers accuracy by error detection and correction circuits. The ACA adder can save

power consumption in the approximate mode and provide precise results in the accurate mode.

Venkatesan et al. [11] proposed a systemic design methodology for approximation computing that

eliminates certain nodes from the original set of nodes, and analyzes how the eliminated nodes affect

accuracy and power consumption through approximation.

Several studies have been devoted to approximate multipliers [12–17]. For DSP applications, fixed-

width approximate multipliers have been proposed in [13–15]. They eliminate (W-1) LSBs of (2W - 1)

partial products obtained from a W × W multiplication. Cho et al. [13] and Wand et al. [15] proposed

carry approximation techniques in multiplication. Lu et al. [16] proposed a broken-booth multiplier, but

this has a low probability of yielding the correct result rate. Kulkarni et al. [12] introduced an

approximate multiplier based on 2×2 approximate multiplication with an error probability of 1/16. The

simplified 2×2 approximate multiplier only has five unit cells, whereas the accurate one has eight unit

cells. Not only does the simplification reduce the lengths of the critical paths of approximate multipliers,

it also consumes less power and outperforms accurate multipliers.

7

Chapter ΙIΙ

APPROXIMATE SYNTHESIS FLOW FOR FIR FILTER

3.1 The Proposed Approximate Adder/Subtractor

For the approximation of the FIR filter, we propose an accuracy configurable adder/subtractor. The

basic principle of the proposed adder/subtractor is similar to that underlying Zhu’s adder [6] shown in

Figure 3.1. This adder detects carry generation conditions and generates "1" in all lower-sum bits

without carry propagation to upper bits. To implement MAC circuits, both adders and subtractors are

required. XOR gates are added in front of the adder to switch between it and the subtractor. For exact

subtract operations, we should take 2’s complement of the subtrahend by adding "1" to the 1’s

complement. The proposed approximate adder/subtractor, however, takes the 1’s complement of the

subtrahend as input because a carry in the approximate part is not propagated to the accurate part.

Our proposed adder is divided into two parts: an accurate part and an approximate part, as shown in

Figure 3.2. The bit width of the adder is N and that of the approximate part is AP. The operating principle

of the accurate part is identical to that of conventional adders. The structure of the approximate part is

shown in Figure 3.3. It consists of AP-bit carry generators and AP-bit sum generators. As shown in

Figure 3.3, the carry in the approximate parts is propagated from the most significant bit (MSB) of the

approximate part to the least significant bit (LSB). The direction of carry propagation is the reverse of

that in conventional adders.

Figure 3.1: Addition Arithmetic proposed in [6]

8

Figure 3.4 shows a schematic diagram of the carry generator and the sum generator. If the carry is

generated from previous carry generators, it passes to the next one. Otherwise, two input operands are

compared, and the carry is generated if both are "1." The sum generator receives a carry from the carry

generator. If a carry exists, the sum generator returns "1." Otherwise, it adds two input operands and

Figure 3.2: Proposed approximate adder/subtractor.

Figure 3.3: Structure of the approximate part.

Figure 3.4: Schematic of the k-th carry generator and the sum generator in the approximate

part.

9

returns the sum value. The accuracy of the adder/subtractor is configurable by changing parameter AP,

the bit width of the approximate part. AP can be configured from 0 to N. If AP is 0, the result of the

proposed adder/subtractor is identical to that of the conventional adder/subtractor. If AP increases, the

accuracy of the output is degraded while power consumption is reduced or performance is improved.

However, if AP is larger than a certain value, the propagation delay of the approximate part becomes

that of the accurate part, and the benefits of further approximation are diminished. Hence, the AP should

be appropriately configured during approximate synthesis flow.

The maximum error in approximation occurs when all input bits in the approximate part are "1." In

this case, the two input operands are 2AP −1. The outputs from the conventional adders are (2AP −1) × 2,

whereas the approximate adder returns 2AP −1. In the results, the maximum error that can occur in the

approximate adder is 2AP − 1. On the contrary, if the approximate part is truncated, the maximum error

is (2AP −1) × 2, which is twice that incurred by the proposed adder. For example, if N, AP, and the two

inputs are 8, 4, 01101111(2), and 00011111(2), respectively, four MSBs are computed in the conventional

part and four LSBs are added in the approximate part. The outputs from the accurate and approximate

parts are 0111(2) × 24 and 1111(2), respectively, and the result is 01111111(2), 127(10). Since the golden

result of this addition is 10001110(2), 142(10), the error is 15, which is equal to 24 −1. From the results,

the amount of error can be reduced by using approximate adders when it compares to the truncation of

some input bits.

To verify the quality of the output obtained by approximate computing, we use the accuracy metric

proposed in [6], defined as follows:

where M is the number of input patterns. The resultk is an approximate result generated from the k-th

input pattern, and refk is the correct result.

3.2 Approximate Synthesis Flow

In this section, we describe the proposed approximate synthesis flow. The purpose of the synthesis

flow is to find the optimum AP configurations of approximate adders. Using these optimum

configurations, we can save energy/power consumption and improve performance while maintaining a

higher accuracy than a certain minimum constraint, accuracymin. However, finding the optimally

configured APs of the adders is difficult because the number of possible combinations of configurations

is proportional to NMadder, where Madder is the number of adders and N is the bit width of the adders. For

10

further explanation, we use the example in Figure 2.1. The bit width of the input, the coefficients, and

the output in the example are 15, 12, and 28 bits, respectively. The coefficients are (105, 831, 621, 815),

synthesized from the CSE algorithm introduced in Section 2.1, with FAS = 3. If the Madder is 6 and N is

28 bits, the number of possible combinations of the APs is approximately 4.82 × 108. Since the size of

the design of the example is small and the number of adders is conventionally greater than six, there are

too many possible combinations of AP configurations in conventional FIR filters to analyze in this

example. Searching all combinations is time and resource consuming, and is nearly impossible in cases

of larger designs.

To handle this problem, we make two assumptions. First, the delays in the adders are comparable to

those in the subtractors. Second, the actual arrival time of an adder/subtractor is comparable to that of

another adder/subtractor with the same AS. Hence, we can conclude that changing APs in only one path

is less effective than simultaneously changing the APs of adders. The number of possible combinations

is then proportional to NFAS. Considering that the FAS of the FIR filter is much smaller than that of Madder,

we can significantly reduce design space. Assuming FAS is 3 and N is 28 bits, the number of possible

combinations of APs is 21,952. During approximate synthesis flow, AP is usually less than the half N,

where the practical design space is approximately (N/2)FAS (2,744 in this case), which is a more

reasonable value than the number of all possible combinations, 4.82 × 108.

Algorithm 1 describes the procedure of our proposed approximate synthesis flow. The flow finds an

approximate design with the minimum delay and the required accuracy (i.e., higher than accuracymin).

In the first step, all adders in the baseline design are classified according to their AS (Line 2). All APs

of the AS are then set to 0 (Line 2). Following this, the AP in each AS is perturbed by adding 1 (Line 5).

The perturbed Verilog design is synthesized, and the delay in the design is calculated (Lines 6-7). Using

the synthesized design, a gate-level simulation and static timing analysis are performed to calculate the

power and accuracy (Lines 8-11). From the slack and accuracy, the sensitivity factor (SF) is calculated

(Lines 12). The SF is defined as

where accuracy is defined in Equation (1). The calculated SFi is added to the SF list. Following

calculations, the perturbed design is reverted to the original one (Line 13). If all perturbations and SF

calculations are complete from the SF list, the design with the highest SF is selected (Line 15). The

selected design is used as a seed for the next iteration (Line 16). If the highest SF is zero or negative,

the flow returns a final solution, and ends. The proposed synthesis flow is summarized in Figure 3.5.

Low-power or highly energy-efficient design, which are our main concerns here, can be achieved by

11

re-synthesizing the final solution of the synthesis flow with an appropriate clock constraint, i.e., the

minimum available clock of the baseline design.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Classify adders according to AS

APi ← 0, where i = 1, …, FAS

while SFbest > 0 do

for i := 1 to FAS do

 APi ← APi + 1

 Synthesis {newAP0, newAP1, …, newAPFAS}

Calculate delayi

Gate level simulation

Calculate accuracyi

Power analysis

Calculate poweri

Calculate SFi

Recover design APi ← APi - 1

end for

SFbest = max(SF1, SF2, …, SFFAS)

if SFbest > 0 then

Select {AP1, AP2, …, APFAS}best

end if

end while

Return {AP1, AP2, …, APFAS}

Algorithm 1. Sensitivity-based approximate synthesis flow

12

Figure 3.5: Proposed synthesis flow.

13

Chapter ΙV

EXPERIMENTAL RESULTS

4.1 Experimental Setup

The proposed synthesis flow is written in Tcl (Tool Command Language) and executed on a 2.6 GHz

Intel Xeon E7-4860 Linux workstation. The FIR filter is implemented using the worst corner library of

the TSMC 65nm technology node and an RTL compiler [18]. A tight timing constraint is used to

synthesize the approximate design with minimum delay. Following the synthesis, the minimum delay

in the FIR filters is calculated by the summation of the worst negative slack and the clock period.

For accuracy simulations, Cadence NC-Verilog is used [19]. We generate 10,000 random patterns for

RTL simulations and compare the output patterns with the correct ones. The accuracy value is calculated

according to Equation (1). We set accuracymin to 95%.

Power consumption is reported using Synopsys PrimeTime-PX [20]. We calculate total power

consumption, which includes static and dynamic power. The value change dump file generated from

the previous gate-level simulation is used to calculate the switching activity of each net and the

minimum clock period for each design is used to report the dynamic power.

4.2 FIR Filter Implementation

We implement a FIR filter using our proposed approximate synthesis flow. We synthesize a four-tap

FIR filter with the coefficient set {105, 831, 621, 815}. Figure 2.1 shows the structure of the

implemented FIR filter. In this experiment, the bit width of the coefficients is set to 12. Since the largest

coefficient is 831 in the four-tap FIR filter, 12 bits are sufficient to represent four coefficients in SPT.

The bit widths of the input and output are set to 15 bits and 28 bits, respectively. For addition, 28-bit

adders are used. The four given coefficients are implemented using six adders according to the

previously introduced CSE algorithm. The AS of each coefficient is different. The ASs of {15, 129} are

1, those of {105, 831} are 2, and the ASs of {621, 815} are 3. In the first iteration of the synthesis flow,

the accuracy configurations of the adders with the same AS are perturbed one by one. The perturbed

designs ({1,0,0}, {0,1,0}, and {0,0,1}) are synthesized and simulated. {0,0,1}, which have the highest

SF, is selected and set as seed of the following iteration. After several iterations, the final output is

{11,16,14}. Figure 4.1-3 show an implemented design space using the proposed synthesis flow. The

black dots are generated by randomly but separately configuring the AP of all adders. The red dots

represent the results from iterations of the approximate synthesis flow. The white space shows the

reachable design space with higher accuracy than accuracymin by configuring the APs of each adder.

14

Figure 4.1: Accuracy vs. delay domain of the proposed synthesis flow (red) and the exhaustive

research of FIR Filter (black)

Figure 4.2: Accuracy vs. power domain of the proposed synthesis flow (red)and the exhaustive

research of FIR Filter (black)

Figure 4.3: Accuracy vs. Energy domain of the proposed synthesis flow (red) and the exhaustive

research of FIR Filter (black)

15

As shown in Figure 4.1, the proposed synthesis flow can successfully follow the minimum delay

design. Moreover, it can be shown that the proposed synthesis flow can effectively reduce power and

energy consumption.

Since the main concern of our work is obtaining high energy efficiency, we re-synthesize the design

acquired from the synthesis flow and implement it using different timing constraints. We then select the

result with the lowest energy consumption with a delay not exceeding that of the baseline design. In

Figure 4.1, due to EDA tool noise, one design with close to 97.5% accuracy shows slightly lower delay

and power consumption than the final solution design. Following re-synthesis, however, the energy

consumption of the point is greater than that of the final solution.

 Delay [ps] Power [uW] Energy [fJ]

Baseline 1199 2796 3352

Flow result 1076 1687 1815

Min. Energy design 1198 1379 1652

Improvement [%]

Delay Power Energy

Flow result 10.3 39.7 44.7

Min. Energy design 0.0 50.7 50.7

Table 4.1: Approximation results in 4-tap FIR filter with FAS = 3.

 Delay [ps] Power [mW] Energy [pJ]

Baseline 1988 10.7 21.3

Flow result 1876 8.9 16.7

Min. Energy design 1983 8.2 16.3

Improvement [%]

Delay Power Energy

Flow result 5.6 16.8 21.6

Min. Energy design 0.0 23.3 23.5

Table 4.2: Approximation results in 25-tap filter with FAS = 4.

16

Table 4.1 summarizes the results of the approximate synthesis flow. Performance improves by 10.3%,

and power consumption is reduced by 39.7% over conventional FIR filter design. The energy is

calculated by multiplying delay and power. Energy consumption per operation is reduced by 44.7%. To

achieve further energy reduction, we change the timing constraint and find the minimum energy design

for which delay is shorter than the baseline design. In this way, we achieve up to 50.7% reduction in

energy consumption. The runtime of the proposed synthesis flow is 84 minutes for the four-tap FIR

filter.

We apply the approximate synthesis flow to a 25-tap FIR filter, the coefficients of which are {-2423,

-113, 1564, 762, -1816, -1517, 2276, 3140, -2434, -6205, 2726, 20680, 30093, 20680, 2726, -6205, -

2434, 3140, 2276, -1517, -1816, 762, 1564, -113, -2423}. The results are shown in Table 4.2. In the 25-

tap case, we can improve the performance by 5.6% with power and energy savings of up to 16.8% and

21.6%, respectively. The runtime of the proposed synthesis flow is 407 minutes for the 25-tap FIR filter.

To verify our methodology, we apply the proposed synthesis flow to five different FIR filters [21–

25]. The specifications of the FIR filters are summarized in Table 4.3. The delay, power, and energy

information of the baseline designs of the FIR filters are also summarized in Table 4.3.

FIR Filter Tap FAS Delay [ns] Power [mW] Energy [pJ]

[21] 15 3 0.98 5.68 5.5

[22] 15 4 1.27 4.06 5.1

[23] 28 4 1.15 11.6 13.4

[24] 34 3 1.17 13.4 15.7

[25] 39 3 1.20 18.4 22.1

Table 4.3: Specifications of the experimented FIR filters.

FIR Filter Accuracy [%] Delay [ns] Power [mW] Energy [pJ] Energy Reduction [%]

[21] 97.83 0.93 4.34 4.06 26.9

[22] 95.32 1.14 3.17 3.62 29.5

[23] 96.03 1.15 8.13 9.34 30.1

[24] 95.66 1.15 8.34 9.59 38.9

[25] 95.19 1.12 13.60 15.27 30.8

Table 4.4: Experimental results of FIR filters with the approximate synthesis flow.

17

The FIR filters are synthesized using the proposed synthesis flow, whereas the bit width of the inputs,

the coefficients, and the output width are set to eight, 16, and 24 bits, respectively. The results of the

synthesis flow are shown in Table 4.4. The accuracies of the filters are higher than the threshold of 95%.

The energy consumptions of the FIR filters are reduced by up to 38.9% and 31.2% on average.

4.3 Image FIR filter Experiment

A FIR low-pass filter is implemented in [23] for blurred images. Since the image used is two-

dimensional, we apply the FIR filter first in the vertical direction, and divide the output by filter gain.

Following this, the FIR filter is applied in the horizontal direction, and the output is divided by filter

gain once again. Figure 4.4 (a) shows the original image and Figure 4.4 (b) shows the blurred image

processed by the baseline FIR filter. Figure 4.4 (c) shows the image processed by the proposed FIR

filter. To verify the output quality of the processed image, peak signal-to-noise-ratio (PSNR) is used.

PSNR is defined as

PSNR = 10 × log(
2552

 σ2
noise

)

where σ2
noise is the variance of the difference between Figure 4.4 (b) and others. FIR filters with varying

accuracies are simulated. As accuracy decreases, the image becomes dark. This is because the proposed

adder approximates the previous carry and the approximation error renders the result lower in value

than the exact result. If the approximation error continues to increase, the results assume negative values,

which are expressed as white dots. We find that we can achieve 30.8% energy saving with 46.3 dB

PSNR.

18

Figure 4.4: Filtered images using optimized FIR filters.

19

Chapter V

APPROXIMATIONS SYNTHESIS FLOW FOR CONVOLUTIONAL

NEURAL NETWORKS

Neuromorphic computing is an emerging computing method inspired by the human brain. Neural

network is one of the most actively studied areas of neuromorphic computing. The computations of the

neural networks can be trained to operate as intended and this fact facilitates the application of

approximation techniques to neural networks. Computation effort can be effectively reduced and the

output quality loss caused by the approximation techniques can be significantly degraded. In this

Chapter, we briefly introduce convolutional neural network (CNN) and previous researches about

approximate technique for CNN. Then, we propose novel approximate synthesis flow for the CNN to

implement energy-efficient CNN hardware and experimentally verify that the approximate synthesis

flow can efficiently reduce the power consumption with acceptable accuracy.

5.1 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is an artificial neural network showing an outstanding

performance in analyzing visual image (e.g. object localization/detection, scene classification, etc.).

Figure 5.1 shows the general architecture of the CNN. In the convolution layer, the element-wise

multiplication of the input feature map matrix and kernel matrix is taken, and partial sums are

accumulated to produce an element of output feature map. Output feature map contains the features of

the input image/feature map specified by the kernel. These output feature maps are fed to the pooling

layers to subsample the feature map to leave only meaningful results. It also reduces the size of the

feature map and consequently reduce the amount of data to be computed. Passing through convolution

layers and pooling layers extract high-level feature of the input image. The extracted feature data are

fed to the fully-connected layer to compute final output results. CNN's output usually comes in the form

Figure 5.1: General architecture of convolutional neural network

20

of probability, and the output of the highest probability is the result of image recognition. Figure 5.2

describes the computation in convolution layer and Table 5.1 is shape parameters of convolution layer

in Figure 5.2. A kernel of C channels is convolved with an input feature map of C channels to produce

a single channel of the output feature map. Thus, M kernels produce M channel of output feature map

through the convolution layer. The number of output feature map is same as the number of inputs feature

map. After additional processes like subsampling, computed output feature maps are fed to the next

convolution layer as input feature map.

Figure 5.2: Computation of convolution layer [26]

Shape Parameter Description

N batch size of 3D fmaps

M # of 3D kernels / # of ofmap channels

C # of ifmap/kernel channels

H/W ifmap plane height/width

R/S kernel plane height/width

E/F ofmap plane height/width

Table 5.1: Shape parameters of convolution layer [26]

21

5.2. Related Work

 Despite CNN's outstanding image recognition capabilities, CNN's high computational intensity is

one of the biggest obstacles to CNN's hardware implementation. One of the main computational efforts

are multiply-and-accumulate (MAC) in the convolution layer. Many previous researches have attempted

to reduce the computational cost of MAC through approximations. Sarwar et al. [27] proposed

multiplier-less artificial neurons. They replaced the multiplier with shifters and adders to reduce the

computational cost caused by the multiplier. Figure 5.3 shows the working principle of the proposed

multiplier-less artificial neuron with 8-bit weight for neural networks. They split the weight in 4-bit

units and round up/down the binary numbers of each unit considering the minimum loss output. These

rounded up/down binary numbers in each unit have only 1 non-zero bit and it is regarded as the shifting

factor of input data. When their multiplier-less neuron is applied to CNN, accuracy loss caused by the

approximation was ~0.5 % while the power improvement was about 35%.

5.3. Approximate Synthesis Flow for MAC module

In the previous section, [27] showed low accuracy loss despite replacing the multiplier with shifters

and adders. Since the working principle with shift and addition is similar to the FIR filter shown in

Figure 2.1. Similar scheme of approximate synthesis flow for the FIR filter also can be applied to the

multiplier-less artificial neuron. Figure 5.4 shows the structure of the approximate MAC module with

FAS = 5 for the convolution with 3 × 3 kernel. This MAC module can compute element-wise

multiplication of two 3 × 3 matrices. Each artificial neuron was designed based on the multiplier-less

artificial neurons proposed in [27] except that adder is replaced with approximate adder/subtractor

explained in Section 3.1. Each neuron gests 8-bit input image/feature data and an 8-bit weight. The

partial sums produced by neurons are accumulated through the adder steps to produce a 20-bit

approximate output feature data. As in the case of the FIR filter, the adders belonging to the same adder

step have the same AP-bit of the approximate adder / subtractor to reduce the number of combinations

to a computable level.

Figure 5.3: Working principle of an 8-bit Multiplier-less Artificial Neuron [27]

22

Our proposed approximate synthesis flow described in Section 3.2 finds an optimal approximate

design of MAC module with the minimum delay and the required accuracy. The structure of MAC

module for 5 × 5 kernel also can be designed in similar way to the MAC module for 3 × 3 kernel. It has

25 multiplier-less artificial neurons and each output is accumulated through 6 adder steps to produce

21-bit approximate output feature data.

5.4 Experimental Results

5.4.1 Experimental Setup

The MAC module for 3 × 3 kernel and 5 × 5 kernel are designed using Verilog to verify the power

and energy consumption of the approximate MAC modules obtained by the proposed synthesis flow.

Experimental setup for the analysis of power consumption was same as that of FIR filter.

Figure 5.4: Structure of the approximate MAC module for the convolution with 3 × 3 kernel

23

Layer name Parameter

Input image

Convolution

Max pooling

ReLU

Convolution

Max pooling

ReLU

Fully connected

ReLU

Fully connected

Softmax

size: 28x28, channel: 1

kernel: 5x5, channel: 20

kernel: 2x2, stride: 2

kernel: 5x5, channel: 50

kernel: 2x2, stride: 2

channel: 500

channel: 10

Table 5.2: Network parameter of CNN for MNIST

For the analysis of the output quality of the proposed approximate CNN, we implemented CNN

model using C++ to evaluate the classification accuracy of approximate CNN. The network parameters

of CNN model to be trained and tested are described in Table 5.2.

MNIST database is used for the evaluation of implemented CNN model. MNIST [29] is a database

of handwritten numbers commonly used to train various image processing systems. The purpose is to

determine what numbers grayscale 28 × 28 pixel image represents for numbers from 0 to 9. MNIST

database contains 60,000 training images and 10,000 testing images. Figure 5.5 shows the exemplary

MNIST images.

5.4.2 Power Consumption

MAC modules for convolution with 3 × 3 kernel and 5 × 5 kernel are implemented using Verilog and

approximated through the proposed synthesis flow to calculate the power consumption. At the end of

the flow, MAC module for 3 × 3 kernel had AP of {9,8,9,10,11} for each adder steps. The AP of MAC

Figure 5.5: MNIST handwritten numbers database

24

module for 5 × 5 kernel was {9,7,10,9,11,12}. Figure 5.6-8 show the design space of MAC modules

obtained by following the proposed synthesis flow. The black dots represent the results obtained by

randomly configuring the APs and red dots represent the results from the proposed synthesis flow. The

white area shows attainable design space by configuring APs within error budget. The fact that the red

dots successfully follow the parabolic bottom line of white area prove that proposed flow help to find

configurations of APs for the energy-efficient design.

Figure 5.6: Accuracy vs. delay domain of the proposed synthesis flow (red) and the exhaustive

research (black) of MAC modules for (a) 3×3 kernel and (b) 5×5 kernel

Figure 5.7: Accuracy vs. power domain of the proposed synthesis flow (red)and the exhaustive

research (black) of MAC modules for (a) 3×3 kernel and (b) 5×5 kernel

25

Table 5.3 summarizes the final results from the approximate synthesis flow. Critical path delays of

MAC modules for 3 × 3 kernel and 5 × 5 kernel are decreased 10.9% and 5%, respectively. Power

consumption is improved 39.8% and 40.4%, respectively. The energy per operation is calculated by

multiplying delay and power consumption. We achieved energy improvements up to 46.4% and 43.4%

respectively compared to the baseline of MAC modules.

Table 5.3: Approximation results of MAC module

 Delay [ps] Power [mW] Energy [pJ]

3 × 3 kernel

Baseline 1775 8.76 15.55

Flow result 1582 5.27 8.34

5 × 5 kernel

Baseline 1987 13.9 27.62

Flow result 1889 8.28 15.64

5.4.3 Classification Accuracy

To verify the effect of approximation, we implemented the C++ CNN model and evaluated with

10,000 MNIST image samples. Weights are found by training the CNN model. To consider the worst

error case, minimum accuracy of MAC operations in convolution layer is assumed. The image

Figure 5.8: Accuracy vs. Energy domain of the proposed synthesis flow (red) and the exhaustive

research (black) of MAC modules for (a) 3×3 kernel and (b) 5×5 kernel

26

classification result is shown in Table 5.4. The classification accuracy of the baseline model is 98.2%.

The classification accuracy of our proposed approximate CNN model is 97.9 % and the output quality

degradation caused by approximation is 0.3%. Considering the energy saving is up to 46.4%, it would

be reasonable degradation when low energy consumption is needed.

CNN model
Classification Accuracy

(%)

Baseline 98.2

Approximate 97.9

Table 5.4: Classification accuracy of baseline and approximate C++ CNN model

27

Chapter VΙ

CONCLUSION

In this paper, we apply approximate computing to a FIR filter to enhance efficient energy. The FIR

filter has a MAC structure, and multipliers are replaced by shifters and adders/subtractors that are

approximated.

For the approximation, we propose an approximate adder/subtractor in order that the accuracy of the

approximate adder/subtractor is configurable and switching between the adder and the subtractor is

possible. The error in the proposed approximate adder is analyzed.

Moreover, we propose a novel approximate synthesis flow that can find the optimal configurations

of approximate adders. Using the proposed synthesis flow, we achieve up to 10.3% in terms of

performance improvement and 50.7% in terms of power and energy saving over conventional FIR filter

design.

For further research, we apply the approximate synthesis flow to Convolutional Neural Networks

(CNN). We design multiplier-less MAC modules for the convolutional computation and find the optimal

approximate design. We also verify the impact of approximation on output quality degradation in

MNIST handwritten digits recognition.

Our proposed approximate synthesis flow improved energy consumption of approximate MAC

modules for multiplication of 3 × 3 and 5 × 5 matrices up to 46.4 % and 43.4 % respectively while

output quality degradation of the MNIST handwritten digit recognition was lower than 1 %.

28

REFERENCES

[1] D. M. Malcolm and G. D. Andrew, “Multiplierless FIR Filter Design Algorithms”, Proc. SPL,

2005, pp.186-189.

[2] C. Y. Yao, H. H. Chen, T. F. Lin, C. J. Chien and X. T. Hsu, “A Novel Common-Subexpresiion-

Elimination Method for Synthesizing Fixed-Point, FIR Filters”, IEEE Trans. CAS I, 51(11)

(2004) pp.2215-2221.

[3] J. H. Choi, N. Banerjee and K. Roy, “Variation-Aware Low-Power Synthesis Methodology

for Fixed-Point FIR Filters”, IEEE. Trans. CAD, 28(1) (2009) pp.87-97.

[4] A. B. Kahng, S. H. Kang, R. Kumar and J. Sartori, “Statistical Analysis and Modeling for

Error Composition in Approximate Computation Circuits”, Proc. ICCD, 2013, pp.47-53.

[5] V. Gupta, D. Mohapatra, P. P. Sang, A. Raghunathan and K. Roy, “IMPACT:IMPrecise

Adders for Low-Power Approximate Computing”, Proc. ISLPED, 2011, pp.409-414.

[6] N. Zhu, W. L. Goh and K. S. Yeo, “An Enhanced Low-Power High-Speed Adder for Error-

Tolerant Application”, Proc. ISIC, 2009, pp.69-72.

[7] S. L. Lu, “Speeding Up Processing with Approximation Circuits”, IEEE Computer, 37(3)

(2004) pp.67-73.

[8] A. K. Verma, P. Brisk and P. lenne, “Variable Latency Speculative Addition: A New Paradigm

for Arithmetic Circuit Design”, Proc. DATE, 2008, pp.1250-1255.

[9] D. Shin and S. K. Gupta, “A Re-design Technique for Datapath Modules in Error Tolerant

Applications”, Proc. ATS, 2008, pp.431-437.

[10] A. B. Khang and S. H. Kang, “Accuracy-Configurable Adder for Approximate Arithmetic

Designs”, Proc. DAC, 2012, pp.820-825.

[11] R. Venkatesan, A. Agarwal, K. Roy and A. Raghunathan, “MACACO: Modeling and

Analysis of Circuits for Approximate Computing”, Proc. ICCAD, 2011, pp.667-673.

[12] P. Kulkarni, P. Gupta and M. Ercegovac, “Trading Accuracy for Power with an

Underdesigned Multiplier Architecture”, Proc. VLSI Design, 2011, pp.346-351.

[13] K. J. Cho, K. C. Lee, J. G. Chung and K. K. Parhi, “Design of Low-Error Fixed-Width

Modified Booth Multiplier”, IEEE Trans. VLSI, 12(5) (2004) pp.522-531.

29

[14] C. H. Chang and R. K. Satzoda, “A Low Error and High Performance Multiplexer-Based

Truncated Multiplier”, IEEE Trans. VLSI, 18(12) (2010) pp.1767-1771.

[15] J. P. Wang, S. R. Kuang and S. C. Liang, “High-Accuracy Fixed-Width Modified Booth

Multipliers for Lossy Applications”, IEEE Trans. VLSI, 19(11) (2011) pp.52-60.

[16] C. Liu, J. Han and F. Lombardi, “A Low-Power, High-Performance Approximate Multiplier

with Configurable Partial Error Recovery”, Proc. DATE, 2014, pp.95.

[17] F. Farshchi, M. S. Abrishami and S. M. Fakhraie, “New Approximate Multiplier for Low

Power Digital Signal Processing”, Proc. CADS, 2013, pp.25-30.

[18] Cadence RTL Compiler User Guide. http://www.cadence.com.

[19] Cadence NCVerilog User Guide. http://www.cadence.com.

[20] Synopsys PrimeTime User Guide. http://www.synopsys.com.

[21] D. Goodman and M. Carey, “Nine Digital Filters for Decimation and Interpolation”, Proc.

TASSP, 1977, pp.121-126.

[22] F. Xu , C. H. Chang and C. C. Jong, “Design of Low-Complexity FIR Filters based on Signed-

Powers-of-Two Coefficients with Reusable Common Subexpression”, Proc. TCAD, 2007,

pp.1898-1907.

[23] K. Johansson, “An Improved Synthesis Method for Low Power Hardwired FIR Filters”, Ph.

D dissertion, 2008.

[24] D. Shi and Y. J. Yu, “Design of Linear Phase FIR Filters With High Probability of Achieving

Minimum Number of Adders”, Proc. TCAS I, 2011, pp.126-136.

[25] S. Rosa, Vagner, E. Costa, J. C. Monteiro and S. Bampi, “An Improved Synthesis Method for

Low Power Hardwired FIR Filters”, SBCCI, 2004, pp.237-241.

[26] Chen, Y. H., Krishna, T., Emer, J. S., & Sze, V., "Eyeriss: An energy-efficient reconfigurable

accelerator for deep convolutional neural networks.", IEEE JSSC, 2017, 52.1: 127-138.

[27] Sarwar, S. S., Venkataramani, S., Raghunathan, A., & Roy, K., “Multiplier-less artificial

neurons exploiting error resiliency for energy-efficient neural computing”, Proc. DATE, 2016,

pp. 145-150

[28] Synopsys Design Compiler User Guide. http://www.synopsys.com.

[29] MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/

http://www.cadence.com/
http://www.cadence.com/
http://www.synopsys.com/
http://www.synopsys.com/
http://yann.lecun.com/exdb/mnist/

	I. Introduction
	II. Related Works
	2.1 Common Subexpression Elimination (CSE)
	2.2 Approximate Computing

	III. Approximate Synthesis flow for FIR filter
	3.1 The Proposed Approximate Adder/Subtractor
	3.2 Approximate Synthesis Flow

	IV. Experimental Setup and Results
	4.1 Experimental Setup
	4.2 FIR Filter Implementation
	4.3 Image Filter Experiment

	V. Approximate Synthesis Flow for Convolutional Neural Networks
	5.1 Convolutional Neural Network (CNN)
	5.2 Related Work
	5.3 Approximate Synthesis Flow for MAC module
	5.4 Experimental Setup and Results
	5.4.1 Experimental Setup
	5.4.2 Power Consumption
	5.4.3 Classification Accuracy

	VI. Conclusion

<startpage>15
I. Introduction 1
II. Related Works 4
 2.1 Common Subexpression Elimination (CSE) 4
 2.2 Approximate Computing 5
III. Approximate Synthesis flow for FIR filter 7
 3.1 The Proposed Approximate Adder/Subtractor 7
 3.2 Approximate Synthesis Flow 9
IV. Experimental Setup and Results 13
 4.1 Experimental Setup 13
 4.2 FIR Filter Implementation 13
 4.3 Image Filter Experiment 17
V. Approximate Synthesis Flow for Convolutional Neural Networks 19
 5.1 Convolutional Neural Network (CNN) 19
 5.2 Related Work 21
 5.3 Approximate Synthesis Flow for MAC module 21
 5.4 Experimental Setup and Results 22
 5.4.1 Experimental Setup 22
 5.4.2 Power Consumption 23
 5.4.3 Classification Accuracy 25
VI. Conclusion 27
</body>

