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Abstract 

The portability of emerging computing systems demands further reduction in the power consumption 

of their components. Approximate computing can reduce power consumption by using a simplified or 

an inaccurate circuit.  

In this paper, we exploit the approximate computing to improve the energy efficiency of a finite 

impulse response (FIR) filter. We propose an approximate synthesis technique for an energy-efficient 

FIR filter with an acceptable level of accuracy. We employ the common subexpression elimination (CSE) 

algorithm to implement the FIR filter and replace conventional adder/subtractors with approximate ones. 

While yielding an acceptable rate of accuracy, the proposed flow can attain a maximum energy saving 

of 50.7% in comparison with conventional FIR filter designs. 

Further, we propose the approximate synthesis flow for the Convolutional Neural Networks (CNN) 

to exploit the error resiliency of neural networks. Recently CNN is showing an outstanding performance 

in the field of image recognition and its application is expected to be widely expanded. However, the 

intensive computational requirement limits the practical use of CNN hardware.  

Proposed approximate synthesis flow is applied to Multiply-and-Accumulate (MAC) operations of 

CNN to improve energy efficiency. Our proposed flow can find an energy-efficient approximate MAC 

module with acceptable error rate. Energy consumption of the MAC modules for convolution of 3 × 3 

and 5 × 5 matrices are improved 46.4 % and 43.4 % while output quality degradation of the handwritten 

digit recognition was negligibly low. 
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Chapter Ι 

Introduction 

As semiconductor technologies continue to develop, electronic devices are becoming smaller and 

more portable. Consequently, as the battery size of Internet of Things (IoT) devices decreases and power 

consumption increases, the urgent need for energy-efficient systems has generated research interests in 

approximate computing techniques. Approximate computing can be applied to vision, search, and image 

processing, which do not require a 100% of accurate results.  

In this paper, we apply approximate computing to a digital filter for image processing. The digital 

filter can be implemented through an infinite impulse response (IIR) filter and a finite impulse response 

(FIR) filter. The FIR filter shows better phase linearity and stability than the IIR filter. However, it 

consumes more power because of its complex design, and hence reduces the overall energy efficiency 

of the system. To improve the energy efficiency of the FIR filter, several proposals have sought to reduce 

their design complexity [1–5]. However, these approaches only focused on reducing the number of 

adder steps [1–3], providing an accuracy estimation model [4], or developing an approximate adder [5], 

separately. 

 

Figure 1.1: Structure of the conventional FIR filter and the proposed approximate FIR filter 
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Figure 1.1 shows the conventional multiply-and-accumulate (MAC) structure of the FIR filter. A 

popular idea for complexity reduction here is a multiplier-less FIR filter [1], where multiplication is 

implemented with shifters and adders rather than multipliers. Integer coefficients are transformed into 

a proper one for shift and addition operations. In conventional FIR filters, all coefficients are expressed 

in signed-power-of-two (SPT) space rather than signed binary, since SPT can reduce the number of 

nonzero digits. In the SPT codes, a canonical signed digit (CSD) code is well known to effectively 

reduce the complexity of FIR filters. 

Another key idea in conventional FIR filters is a common subexpression elimination (CSE) algorithm. 

Chia et al. [2] proposed a CSE algorithm to reduce redundancy among CSD coefficients. Choi et al. [3] 

analyzed the criticality of each coefficient of a FIR filter and applied tighter constraints on more critical 

coefficients during the CSE algorithm. Choi’s FIR filter yielded 25%-30% power saving at low voltages 

with minor passband/stopband ripples. Kahng et al. [4] implemented a FIR filter using an approximation 

at the synthesis level. They replaced certain modules with approximated ones based on lookup tables in 

order to reduce power consumption with only a small degradation in the quality of output. Gupta et al. 

[5] implemented a FIR filter using an approximated circuit. They proposed mathematical models for 

error and the power consumption of the approximate adders.  

Chia et al. [2] and Malcolm et al. [1] only focused on reducing the number of adder steps. Choi et al. 

[3] considered voltage scaling to save power, but the errors incurred along the critical path were 

observed to usually be more critical than those due to approximations. Kahng et al. [4] and Gupta et al. 

[5] applied approximate computing to a FIR filter but did not provide any automated synthesis flow for 

the approximation. If the size of the design of the FIR filter becomes larger, it becomes difficult to find 

optimum configurations for the approximate adders. 

In this paper, we propose a novel approximate synthesis technique that reduces energy consumption 

by replacing conventional adders/subtractors in the FIR filter with approximated adders/subtractors 

with automated synthesis flow, as shown in Figure 1.1. The following are the main contributions of our 

paper: 

  An accuracy-configurable adder/subtractor is proposed, which is energy efficient 

and has relatively high accuracy. 

  The maximum error due to the configurations of the proposed adder/subtractor is 

analyzed to estimate output quality. 

  A novel approximate synthesis flow for the FIR filter is proposed. Using the 

proposed approximate synthesis flow, we can save energy/power consumption and improve 

performance to yield a reasonable level of accuracy. 
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The rest of the thesis is organized as follows. In Chapter II, the CSE algorithm and previous 

approximate computing techniques are briefly introduced. In Chapter III, our proposed approximate 

adder/subtractor is introduced and its accuracy is analyzed. The proposed approximate synthesis flow 

is also described here. Chapter IV contains a description of the experimental setup and a discussion of 

the results. In Chapter V, approximate synthesis flow for the convolutional neural networks is described, 

and we offer a summary of our work in Chapter VI. 
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Chapter ΙΙ 

Related Work 

2.1 Common Subexpression Elimination (CSE)  

As discussed in Chapter I, the CSE algorithm can reduce the design complexity of the FIR filter. In 

this Chapter, we briefly introduce the CSE algorithm proposed in [2]. The following terms are used to 

explain CSE algorithm.  

 Adder Step (AS) : the number of adders that are used to implement the coefficients of the 

FIR filter. 

 Filter Adder Step (FAS) : the number of adders along the critical path of the FIR filter. FAS 

is always greater than or equal to max (log2k) where k is the number of non-zero bits of the 

coefficients. 

At the beginning of the CSE algorithm, all coefficients are converted into canonical signed-digit 

codes and their consecutive zeros are eliminated using a right-shift operation. Set CN is constructed 

from the converted coefficients, and another set NC is constructed by decomposing CN. At the first 

iteration of the CSE algorithm, each value in CN is checked to determine if it is decomposable by the 

other values in CN ∪{1}. If the value is decomposable, it moves into a set CP. Otherwise, the algorithm 

checks if the value is decomposable using values in CN ∪NC ∪{1}, and the decomposed value moves 

to CP. The values in NC, which are used in the decomposition, are moved to CN. These procedures are 

repeated until CN is empty. Following the CSE algorithm, the CSD values in CP are used to synthesize 

the multiplier block in Figure 1.1. 

For further explanation, we use an example. Let FAS = 4; the coefficients are 

h0 = 105(10) = 10101001(2)  h1 = 831(10) = 10101000001(2) 

h2 = 621(10) = 1010010101(2)  h3 = 815(10) = 10101010001(2) 

For simplicity, the CSD coefficients are expressed in integer format. Prior to the first iteration, 

CP = φ 

CN = {105, 831, 621, 815} 

NC = {3, 5, 7, 9, 13, 15, 17, 19, 23, 27, 31, 39, 47, 51, 63, 67, 97, 109, 113, 123, 125, 127, 129, 137, 

155, 159, 193, 209, 257, 273, 493, 497, 509, 513, 625, 637, 641, 751, 767, 1007, 1023, 1071, 1087} 
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At the first iteration, 815 and 621 are decomposed by 831 and 105, respectively: 815 = 831 − 1 × 24, 

621 = 831 − 105 × 21. At the next step, 105 and 831 are decomposed. The result of the decomposition 

is 105 = 15 × 23 − 15 and 831 = 15 × 26 − 129, respectively. At the last step, 15 and 129 are decomposed: 

15 = 1×24 −1 and 129 = 1×27 +1. Following the iteration, CP = {105, 831, 621, 815, 15, 129} 

CN = φ 

NC = {3, 5, 7, 9, 13, 17, 19, 23, 27, 31, 39, 47, 51, 63, 67, 97, 109, 113, 123, 125, 127, 137, 155, 159, 

193, 209, 257, 273, 493, 497, 509, 513, 625, 637, 641, 751, 767, 1007, 1023, 1071, 1087} 

The iterations terminate when CN is empty. The synthesized FIR filter from the CSE algorithm is 

shown in Figure 2.1. 

 

2.2 Approximate Computing 

Approximate computing generates sufficiently good results with low power rather than exact results. 

It can be used for noise-tolerant applications. Various approximate arithmetic designs have been 

proposed in past research. Lu et al. [7] introduced a fast adder with shorter carry chains that considers 

only the previous k bits of input in computing a carry bit. Verma et al. [8] proposed a variable-latency 

speculative adder (VLSA), which is a reliable version of the Lu adder [7] with error detection and 

correction. Shin et al. [9] also proposed a data path redesign technique for various adders that reduces 

the lengths of critical paths in the carry chain. Zhu et al. [6] proposed three approximate adders—ETAI, 

ETAII, and ETAIIM. ETAI is divided into an accurate part and an inaccurate part to achieve approximate 

 

Figure 2.1: Schematic of the FIR filter. The coefficients of the FIR filter are (105, 831, 621, 815), 

and FAS = 3. 
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results. ETAII reduces carry propagation to speed up the adder, and ETAIIM modifies ETAII by 

connecting carry chains in accurate MSB parts. Gupta et al. [5] conducted approximations at the 

transistor level, and proposed approximate full adder cells to design multi-bit adders for video 

applications to save power and area. Kahng et al. [10] proposed an accuracy-configurable approximate 

(ACA) adder. In an approximate mode, it carries out approximations by cutting carry chains. In an 

accurate mode, it recovers accuracy by error detection and correction circuits. The ACA adder can save 

power consumption in the approximate mode and provide precise results in the accurate mode. 

Venkatesan et al. [11] proposed a systemic design methodology for approximation computing that 

eliminates certain nodes from the original set of nodes, and analyzes how the eliminated nodes affect 

accuracy and power consumption through approximation. 

Several studies have been devoted to approximate multipliers [12–17]. For DSP applications, fixed-

width approximate multipliers have been proposed in [13–15]. They eliminate (W-1) LSBs of (2W - 1) 

partial products obtained from a W × W multiplication. Cho et al. [13] and Wand et al. [15] proposed 

carry approximation techniques in multiplication. Lu et al. [16] proposed a broken-booth multiplier, but 

this has a low probability of yielding the correct result rate. Kulkarni et al. [12] introduced an 

approximate multiplier based on 2×2 approximate multiplication with an error probability of 1/16. The 

simplified 2×2 approximate multiplier only has five unit cells, whereas the accurate one has eight unit 

cells. Not only does the simplification reduce the lengths of the critical paths of approximate multipliers, 

it also consumes less power and outperforms accurate multipliers. 
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Chapter ΙIΙ 

APPROXIMATE SYNTHESIS FLOW FOR FIR FILTER 

3.1 The Proposed Approximate Adder/Subtractor  

For the approximation of the FIR filter, we propose an accuracy configurable adder/subtractor. The 

basic principle of the proposed adder/subtractor is similar to that underlying Zhu’s adder [6] shown in 

Figure 3.1. This adder detects carry generation conditions and generates "1" in all lower-sum bits 

without carry propagation to upper bits. To implement MAC circuits, both adders and subtractors are 

required. XOR gates are added in front of the adder to switch between it and the subtractor. For exact 

subtract operations, we should take 2’s complement of the subtrahend by adding "1" to the 1’s 

complement. The proposed approximate adder/subtractor, however, takes the 1’s complement of the 

subtrahend as input because a carry in the approximate part is not propagated to the accurate part. 

 

 

Our proposed adder is divided into two parts: an accurate part and an approximate part, as shown in 

Figure 3.2. The bit width of the adder is N and that of the approximate part is AP. The operating principle 

of the accurate part is identical to that of conventional adders. The structure of the approximate part is 

shown in Figure 3.3. It consists of AP-bit carry generators and AP-bit sum generators. As shown in 

Figure 3.3, the carry in the approximate parts is propagated from the most significant bit (MSB) of the 

approximate part to the least significant bit (LSB). The direction of carry propagation is the reverse of 

that in conventional adders. 

 

Figure 3.1: Addition Arithmetic proposed in [6] 
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Figure 3.4 shows a schematic diagram of the carry generator and the sum generator. If the carry is 

generated from previous carry generators, it passes to the next one. Otherwise, two input operands are 

compared, and the carry is generated if both are "1." The sum generator receives a carry from the carry 

generator. If a carry exists, the sum generator returns "1." Otherwise, it adds two input operands and 

 

Figure 3.2: Proposed approximate adder/subtractor. 

 

Figure 3.3: Structure of the approximate part. 

 

Figure 3.4: Schematic of the k-th carry generator and the sum generator in the approximate 

part. 
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returns the sum value. The accuracy of the adder/subtractor is configurable by changing parameter AP, 

the bit width of the approximate part. AP can be configured from 0 to N. If AP is 0, the result of the 

proposed adder/subtractor is identical to that of the conventional adder/subtractor. If AP increases, the 

accuracy of the output is degraded while power consumption is reduced or performance is improved. 

However, if AP is larger than a certain value, the propagation delay of the approximate part becomes 

that of the accurate part, and the benefits of further approximation are diminished. Hence, the AP should 

be appropriately configured during approximate synthesis flow.  

The maximum error in approximation occurs when all input bits in the approximate part are "1." In 

this case, the two input operands are 2AP −1. The outputs from the conventional adders are (2AP −1) × 2, 

whereas the approximate adder returns 2AP −1. In the results, the maximum error that can occur in the 

approximate adder is 2AP − 1. On the contrary, if the approximate part is truncated, the maximum error 

is (2AP −1) × 2, which is twice that incurred by the proposed adder. For example, if N, AP, and the two 

inputs are 8, 4, 01101111(2), and 00011111(2), respectively, four MSBs are computed in the conventional 

part and four LSBs are added in the approximate part. The outputs from the accurate and approximate 

parts are 0111(2) × 24 and 1111(2), respectively, and the result is 01111111(2), 127(10). Since the golden 

result of this addition is 10001110(2), 142(10), the error is 15, which is equal to 24 −1. From the results, 

the amount of error can be reduced by using approximate adders when it compares to the truncation of 

some input bits. 

To verify the quality of the output obtained by approximate computing, we use the accuracy metric 

proposed in [6], defined as follows: 

 

where M is the number of input patterns. The resultk is an approximate result generated from the k-th 

input pattern, and refk is the correct result.  

 

3.2 Approximate Synthesis Flow 

In this section, we describe the proposed approximate synthesis flow. The purpose of the synthesis 

flow is to find the optimum AP configurations of approximate adders. Using these optimum 

configurations, we can save energy/power consumption and improve performance while maintaining a 

higher accuracy than a certain minimum constraint, accuracymin. However, finding the optimally 

configured APs of the adders is difficult because the number of possible combinations of configurations 

is proportional to NMadder, where Madder is the number of adders and N is the bit width of the adders. For 
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further explanation, we use the example in Figure 2.1. The bit width of the input, the coefficients, and 

the output in the example are 15, 12, and 28 bits, respectively. The coefficients are (105, 831, 621, 815), 

synthesized from the CSE algorithm introduced in Section 2.1, with FAS = 3. If the Madder is 6 and N is 

28 bits, the number of possible combinations of the APs is approximately 4.82 × 108. Since the size of 

the design of the example is small and the number of adders is conventionally greater than six, there are 

too many possible combinations of AP configurations in conventional FIR filters to analyze in this 

example. Searching all combinations is time and resource consuming, and is nearly impossible in cases 

of larger designs. 

To handle this problem, we make two assumptions. First, the delays in the adders are comparable to 

those in the subtractors. Second, the actual arrival time of an adder/subtractor is comparable to that of 

another adder/subtractor with the same AS. Hence, we can conclude that changing APs in only one path 

is less effective than simultaneously changing the APs of adders. The number of possible combinations 

is then proportional to NFAS. Considering that the FAS of the FIR filter is much smaller than that of Madder, 

we can significantly reduce design space. Assuming FAS is 3 and N is 28 bits, the number of possible 

combinations of APs is 21,952. During approximate synthesis flow, AP is usually less than the half N, 

where the practical design space is approximately (N/2)FAS (2,744 in this case), which is a more 

reasonable value than the number of all possible combinations, 4.82 × 108. 

Algorithm 1 describes the procedure of our proposed approximate synthesis flow. The flow finds an 

approximate design with the minimum delay and the required accuracy (i.e., higher than accuracymin). 

In the first step, all adders in the baseline design are classified according to their AS (Line 2). All APs 

of the AS are then set to 0 (Line 2). Following this, the AP in each AS is perturbed by adding 1 (Line 5). 

The perturbed Verilog design is synthesized, and the delay in the design is calculated (Lines 6-7). Using 

the synthesized design, a gate-level simulation and static timing analysis are performed to calculate the 

power and accuracy (Lines 8-11). From the slack and accuracy, the sensitivity factor (SF) is calculated 

(Lines 12). The SF is defined as  

 

where accuracy is defined in Equation (1). The calculated SFi is added to the SF list. Following 

calculations, the perturbed design is reverted to the original one (Line 13). If all perturbations and SF 

calculations are complete from the SF list, the design with the highest SF is selected (Line 15). The 

selected design is used as a seed for the next iteration (Line 16). If the highest SF is zero or negative, 

the flow returns a final solution, and ends. The proposed synthesis flow is summarized in Figure 3.5. 

Low-power or highly energy-efficient design, which are our main concerns here, can be achieved by 
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re-synthesizing the final solution of the synthesis flow with an appropriate clock constraint, i.e., the 

minimum available clock of the baseline design. 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Classify adders according to AS 

APi ← 0, where i = 1, …, FAS  

while SFbest > 0 do 

for i := 1 to FAS do 

  APi ← APi + 1 

   Synthesis {newAP0, newAP1, …, newAPFAS} 

Calculate delayi 

Gate level simulation 

Calculate accuracyi 

Power analysis 

Calculate poweri 

Calculate SFi 

Recover design APi ← APi - 1 

end for 

SFbest = max(SF1, SF2, …, SFFAS) 

if SFbest > 0 then 

Select {AP1, AP2, …, APFAS}best 

end if 

end while 

Return {AP1, AP2, …, APFAS} 

 

Algorithm 1. Sensitivity-based approximate synthesis flow 
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Figure 3.5: Proposed synthesis flow. 
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Chapter ΙV 

EXPERIMENTAL RESULTS 

4.1 Experimental Setup 

The proposed synthesis flow is written in Tcl (Tool Command Language) and executed on a 2.6 GHz 

Intel Xeon E7-4860 Linux workstation. The FIR filter is implemented using the worst corner library of 

the TSMC 65nm technology node and an RTL compiler [18]. A tight timing constraint is used to 

synthesize the approximate design with minimum delay. Following the synthesis, the minimum delay 

in the FIR filters is calculated by the summation of the worst negative slack and the clock period.  

For accuracy simulations, Cadence NC-Verilog is used [19]. We generate 10,000 random patterns for 

RTL simulations and compare the output patterns with the correct ones. The accuracy value is calculated 

according to Equation (1). We set accuracymin to 95%.  

Power consumption is reported using Synopsys PrimeTime-PX [20]. We calculate total power 

consumption, which includes static and dynamic power. The value change dump file generated from 

the previous gate-level simulation is used to calculate the switching activity of each net and the 

minimum clock period for each design is used to report the dynamic power.  

4.2 FIR Filter Implementation 

We implement a FIR filter using our proposed approximate synthesis flow. We synthesize a four-tap 

FIR filter with the coefficient set {105, 831, 621, 815}. Figure 2.1 shows the structure of the 

implemented FIR filter. In this experiment, the bit width of the coefficients is set to 12. Since the largest 

coefficient is 831 in the four-tap FIR filter, 12 bits are sufficient to represent four coefficients in SPT. 

The bit widths of the input and output are set to 15 bits and 28 bits, respectively. For addition, 28-bit 

adders are used. The four given coefficients are implemented using six adders according to the 

previously introduced CSE algorithm. The AS of each coefficient is different. The ASs of {15, 129} are 

1, those of {105, 831} are 2, and the ASs of {621, 815} are 3. In the first iteration of the synthesis flow, 

the accuracy configurations of the adders with the same AS are perturbed one by one. The perturbed 

designs ({1,0,0}, {0,1,0}, and {0,0,1}) are synthesized and simulated. {0,0,1}, which have the highest 

SF, is selected and set as seed of the following iteration. After several iterations, the final output is 

{11,16,14}. Figure 4.1-3 show an implemented design space using the proposed synthesis flow. The 

black dots are generated by randomly but separately configuring the AP of all adders. The red dots 

represent the results from iterations of the approximate synthesis flow. The white space shows the 

reachable design space with higher accuracy than accuracymin by configuring the APs of each adder. 
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Figure 4.1: Accuracy vs. delay domain of the proposed synthesis flow (red) and the exhaustive 

research of FIR Filter (black) 

 

Figure 4.2: Accuracy vs. power domain of the proposed synthesis flow (red)and the exhaustive 

research of FIR Filter (black) 

 

Figure 4.3: Accuracy vs. Energy domain of the proposed synthesis flow (red) and the exhaustive 

research of FIR Filter (black) 
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As shown in Figure 4.1, the proposed synthesis flow can successfully follow the minimum delay 

design. Moreover, it can be shown that the proposed synthesis flow can effectively reduce power and 

energy consumption. 

Since the main concern of our work is obtaining high energy efficiency, we re-synthesize the design 

acquired from the synthesis flow and implement it using different timing constraints. We then select the 

result with the lowest energy consumption with a delay not exceeding that of the baseline design. In 

Figure 4.1, due to EDA tool noise, one design with close to 97.5% accuracy shows slightly lower delay 

and power consumption than the final solution design. Following re-synthesis, however, the energy 

consumption of the point is greater than that of the final solution.  

 

 

 Delay [ps] Power [uW] Energy [fJ] 

Baseline 1199 2796 3352 

Flow result 1076 1687 1815 

Min. Energy design 1198 1379 1652 

 
Improvement [%] 

Delay Power Energy 

Flow result 10.3 39.7 44.7 

Min. Energy design 0.0 50.7 50.7 

 

Table 4.1: Approximation results in 4-tap FIR filter with FAS = 3. 

 

 Delay [ps] Power [mW] Energy [pJ] 

Baseline 1988 10.7 21.3 

Flow result 1876 8.9 16.7 

Min. Energy design 1983 8.2 16.3 

 
Improvement [%] 

Delay Power Energy 

Flow result 5.6 16.8 21.6 

Min. Energy design 0.0 23.3 23.5 
 

 

Table 4.2: Approximation results in 25-tap filter with FAS = 4. 
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Table 4.1 summarizes the results of the approximate synthesis flow. Performance improves by 10.3%, 

and power consumption is reduced by 39.7% over conventional FIR filter design. The energy is 

calculated by multiplying delay and power. Energy consumption per operation is reduced by 44.7%. To 

achieve further energy reduction, we change the timing constraint and find the minimum energy design 

for which delay is shorter than the baseline design. In this way, we achieve up to 50.7% reduction in 

energy consumption. The runtime of the proposed synthesis flow is 84 minutes for the four-tap FIR 

filter. 

We apply the approximate synthesis flow to a 25-tap FIR filter, the coefficients of which are {-2423, 

-113, 1564, 762, -1816, -1517, 2276, 3140, -2434, -6205, 2726, 20680, 30093, 20680, 2726, -6205, -

2434, 3140, 2276, -1517, -1816, 762, 1564, -113, -2423}. The results are shown in Table 4.2. In the 25-

tap case, we can improve the performance by 5.6% with power and energy savings of up to 16.8% and 

21.6%, respectively. The runtime of the proposed synthesis flow is 407 minutes for the 25-tap FIR filter. 

To verify our methodology, we apply the proposed synthesis flow to five different FIR filters [21–

25]. The specifications of the FIR filters are summarized in Table 4.3. The delay, power, and energy 

information of the baseline designs of the FIR filters are also summarized in Table 4.3.  

FIR Filter Tap FAS Delay [ns] Power [mW] Energy [pJ] 

[21] 15 3 0.98 5.68 5.5 

[22] 15 4 1.27 4.06 5.1 

[23] 28 4 1.15 11.6 13.4 

[24] 34 3 1.17 13.4 15.7 

[25] 39 3 1.20 18.4 22.1 

 

Table 4.3: Specifications of the experimented FIR filters.  

 

FIR Filter Accuracy [%] Delay [ns] Power [mW] Energy [pJ] Energy Reduction [%] 

[21] 97.83 0.93 4.34 4.06 26.9 

[22] 95.32 1.14 3.17 3.62 29.5 

[23] 96.03 1.15 8.13 9.34 30.1 

[24] 95.66 1.15 8.34 9.59 38.9 

[25] 95.19 1.12 13.60 15.27 30.8 
 

 

Table 4.4: Experimental results of FIR filters with the approximate synthesis flow. 
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The FIR filters are synthesized using the proposed synthesis flow, whereas the bit width of the inputs, 

the coefficients, and the output width are set to eight, 16, and 24 bits, respectively. The results of the 

synthesis flow are shown in Table 4.4. The accuracies of the filters are higher than the threshold of 95%. 

The energy consumptions of the FIR filters are reduced by up to 38.9% and 31.2% on average. 

 

4.3 Image FIR filter Experiment 

A FIR low-pass filter is implemented in [23] for blurred images. Since the image used is two-

dimensional, we apply the FIR filter first in the vertical direction, and divide the output by filter gain. 

Following this, the FIR filter is applied in the horizontal direction, and the output is divided by filter 

gain once again. Figure 4.4 (a) shows the original image and Figure 4.4 (b) shows the blurred image 

processed by the baseline FIR filter. Figure 4.4 (c) shows the image processed by the proposed FIR 

filter. To verify the output quality of the processed image, peak signal-to-noise-ratio (PSNR) is used. 

PSNR is defined as 

PSNR = 10 × log(
2552

 σ2
noise

) 

where σ2
noise is the variance of the difference between Figure 4.4 (b) and others. FIR filters with varying 

accuracies are simulated. As accuracy decreases, the image becomes dark. This is because the proposed 

adder approximates the previous carry and the approximation error renders the result lower in value 

than the exact result. If the approximation error continues to increase, the results assume negative values, 

which are expressed as white dots. We find that we can achieve 30.8% energy saving with 46.3 dB 

PSNR. 
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Figure 4.4: Filtered images using optimized FIR filters. 
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Chapter V 

APPROXIMATIONS SYNTHESIS FLOW FOR CONVOLUTIONAL 

NEURAL NETWORKS 

Neuromorphic computing is an emerging computing method inspired by the human brain. Neural 

network is one of the most actively studied areas of neuromorphic computing. The computations of the 

neural networks can be trained to operate as intended and this fact facilitates the application of 

approximation techniques to neural networks. Computation effort can be effectively reduced and the 

output quality loss caused by the approximation techniques can be significantly degraded. In this 

Chapter, we briefly introduce convolutional neural network (CNN) and previous researches about 

approximate technique for CNN. Then, we propose novel approximate synthesis flow for the CNN to 

implement energy-efficient CNN hardware and experimentally verify that the approximate synthesis 

flow can efficiently reduce the power consumption with acceptable accuracy. 

5.1 Convolutional Neural Network (CNN) 

Convolutional Neural Network (CNN) is an artificial neural network showing an outstanding 

performance in analyzing visual image (e.g. object localization/detection, scene classification, etc.). 

Figure 5.1 shows the general architecture of the CNN. In the convolution layer, the element-wise 

multiplication of the input feature map matrix and kernel matrix is taken, and partial sums are 

accumulated to produce an element of output feature map. Output feature map contains the features of 

the input image/feature map specified by the kernel. These output feature maps are fed to the pooling 

layers to subsample the feature map to leave only meaningful results. It also reduces the size of the 

feature map and consequently reduce the amount of data to be computed. Passing through convolution 

layers and pooling layers extract high-level feature of the input image. The extracted feature data are 

fed to the fully-connected layer to compute final output results. CNN's output usually comes in the form 

 

Figure 5.1: General architecture of convolutional neural network 
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of probability, and the output of the highest probability is the result of image recognition. Figure 5.2 

describes the computation in convolution layer and Table 5.1 is shape parameters of convolution layer 

in Figure 5.2. A kernel of C channels is convolved with an input feature map of C channels to produce 

a single channel of the output feature map. Thus, M kernels produce M channel of output feature map 

through the convolution layer. The number of output feature map is same as the number of inputs feature 

map. After additional processes like subsampling, computed output feature maps are fed to the next 

convolution layer as input feature map. 

 

 

 

Figure 5.2: Computation of convolution layer [26] 

 

Shape Parameter Description 

N batch size of 3D fmaps 

M # of 3D kernels / # of ofmap channels 

C # of ifmap/kernel channels 

H/W ifmap plane height/width 

R/S kernel plane height/width 

E/F ofmap plane height/width 
 

 

Table 5.1: Shape parameters of convolution layer [26] 
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5.2. Related Work 

 Despite CNN's outstanding image recognition capabilities, CNN's high computational intensity is 

one of the biggest obstacles to CNN's hardware implementation. One of the main computational efforts 

are multiply-and-accumulate (MAC) in the convolution layer. Many previous researches have attempted 

to reduce the computational cost of MAC through approximations. Sarwar et al. [27] proposed 

multiplier-less artificial neurons. They replaced the multiplier with shifters and adders to reduce the 

computational cost caused by the multiplier. Figure 5.3 shows the working principle of the proposed 

multiplier-less artificial neuron with 8-bit weight for neural networks. They split the weight in 4-bit 

units and round up/down the binary numbers of each unit considering the minimum loss output. These 

rounded up/down binary numbers in each unit have only 1 non-zero bit and it is regarded as the shifting 

factor of input data. When their multiplier-less neuron is applied to CNN, accuracy loss caused by the 

approximation was ~0.5 % while the power improvement was about 35%. 

5.3. Approximate Synthesis Flow for MAC module 

In the previous section, [27] showed low accuracy loss despite replacing the multiplier with shifters 

and adders. Since the working principle with shift and addition is similar to the FIR filter shown in 

Figure 2.1. Similar scheme of approximate synthesis flow for the FIR filter also can be applied to the 

multiplier-less artificial neuron. Figure 5.4 shows the structure of the approximate MAC module with 

FAS = 5 for the convolution with 3 × 3 kernel. This MAC module can compute element-wise 

multiplication of two 3 × 3 matrices. Each artificial neuron was designed based on the multiplier-less 

artificial neurons proposed in [27] except that adder is replaced with approximate adder/subtractor 

explained in Section 3.1. Each neuron gests 8-bit input image/feature data and an 8-bit weight. The 

partial sums produced by neurons are accumulated through the adder steps to produce a 20-bit 

approximate output feature data. As in the case of the FIR filter, the adders belonging to the same adder 

step have the same AP-bit of the approximate adder / subtractor to reduce the number of combinations 

to a computable level. 

 

Figure 5.3: Working principle of an 8-bit Multiplier-less Artificial Neuron [27] 
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Our proposed approximate synthesis flow described in Section 3.2 finds an optimal approximate 

design of MAC module with the minimum delay and the required accuracy. The structure of MAC 

module for 5 × 5 kernel also can be designed in similar way to the MAC module for 3 × 3 kernel. It has 

25 multiplier-less artificial neurons and each output is accumulated through 6 adder steps to produce 

21-bit approximate output feature data. 

 

5.4 Experimental Results 

5.4.1 Experimental Setup 

The MAC module for 3 × 3 kernel and 5 × 5 kernel are designed using Verilog to verify the power 

and energy consumption of the approximate MAC modules obtained by the proposed synthesis flow. 

Experimental setup for the analysis of power consumption was same as that of FIR filter. 

 

Figure 5.4: Structure of the approximate MAC module for the convolution with 3 × 3 kernel 
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Layer name Parameter 

Input image 

Convolution 

Max pooling 

ReLU 

Convolution 

Max pooling 

ReLU 

Fully connected 

ReLU 

Fully connected 

Softmax 

size: 28x28, channel: 1 

kernel: 5x5, channel: 20 

kernel: 2x2, stride: 2 

 

kernel: 5x5, channel: 50 

kernel: 2x2, stride: 2 

 

channel: 500 

 

channel: 10 

 

 

Table 5.2: Network parameter of CNN for MNIST 

For the analysis of the output quality of the proposed approximate CNN, we implemented CNN 

model using C++ to evaluate the classification accuracy of approximate CNN. The network parameters 

of CNN model to be trained and tested are described in Table 5.2.  

MNIST database is used for the evaluation of implemented CNN model. MNIST [29] is a database 

of handwritten numbers commonly used to train various image processing systems. The purpose is to 

determine what numbers grayscale 28 × 28 pixel image represents for numbers from 0 to 9. MNIST 

database contains 60,000 training images and 10,000 testing images. Figure 5.5 shows the exemplary 

MNIST images. 

 

5.4.2 Power Consumption 

MAC modules for convolution with 3 × 3 kernel and 5 × 5 kernel are implemented using Verilog and 

approximated through the proposed synthesis flow to calculate the power consumption. At the end of 

the flow, MAC module for 3 × 3 kernel had AP of {9,8,9,10,11} for each adder steps. The AP of MAC 

 

Figure 5.5: MNIST handwritten numbers database 
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module for 5 × 5 kernel was {9,7,10,9,11,12}. Figure 5.6-8 show the design space of MAC modules 

obtained by following the proposed synthesis flow. The black dots represent the results obtained by 

randomly configuring the APs and red dots represent the results from the proposed synthesis flow. The 

white area shows attainable design space by configuring APs within error budget. The fact that the red 

dots successfully follow the parabolic bottom line of white area prove that proposed flow help to find 

configurations of APs for the energy-efficient design.   

  

Figure 5.6: Accuracy vs. delay domain of the proposed synthesis flow (red) and the exhaustive 

research (black) of MAC modules for (a) 3×3 kernel and (b) 5×5 kernel 

 

Figure 5.7: Accuracy vs. power domain of the proposed synthesis flow (red)and the exhaustive 

research (black) of MAC modules for (a) 3×3 kernel and (b) 5×5 kernel 
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Table 5.3 summarizes the final results from the approximate synthesis flow. Critical path delays of 

MAC modules for 3 × 3 kernel and 5 × 5 kernel are decreased 10.9% and 5%, respectively. Power 

consumption is improved 39.8% and 40.4%, respectively. The energy per operation is calculated by 

multiplying delay and power consumption. We achieved energy improvements up to 46.4% and 43.4% 

respectively compared to the baseline of MAC modules. 

 

Table 5.3: Approximation results of MAC module 

 Delay [ps] Power [mW] Energy [pJ] 

3 × 3 kernel 

Baseline 1775 8.76 15.55 

Flow result 1582 5.27 8.34 

5 × 5 kernel 

Baseline 1987 13.9 27.62 

Flow result 1889 8.28 15.64 

5.4.3 Classification Accuracy 

To verify the effect of approximation, we implemented the C++ CNN model and evaluated with 

10,000 MNIST image samples. Weights are found by training the CNN model. To consider the worst 

error case, minimum accuracy of MAC operations in convolution layer is assumed. The image 

 

Figure 5.8: Accuracy vs. Energy domain of the proposed synthesis flow (red) and the exhaustive 

research (black) of MAC modules for (a) 3×3 kernel and (b) 5×5 kernel 
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classification result is shown in Table 5.4. The classification accuracy of the baseline model is 98.2%. 

The classification accuracy of our proposed approximate CNN model is 97.9 % and the output quality 

degradation caused by approximation is 0.3%. Considering the energy saving is up to 46.4%, it would 

be reasonable degradation when low energy consumption is needed. 

CNN model 
Classification Accuracy 

(%) 

Baseline  98.2 

Approximate 97.9 

 

Table 5.4: Classification accuracy of baseline and approximate C++ CNN model  
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Chapter VΙ 

CONCLUSION 

In this paper, we apply approximate computing to a FIR filter to enhance efficient energy. The FIR 

filter has a MAC structure, and multipliers are replaced by shifters and adders/subtractors that are 

approximated.  

For the approximation, we propose an approximate adder/subtractor in order that the accuracy of the 

approximate adder/subtractor is configurable and switching between the adder and the subtractor is 

possible. The error in the proposed approximate adder is analyzed.  

Moreover, we propose a novel approximate synthesis flow that can find the optimal configurations 

of approximate adders. Using the proposed synthesis flow, we achieve up to 10.3% in terms of 

performance improvement and 50.7% in terms of power and energy saving over conventional FIR filter 

design.  

For further research, we apply the approximate synthesis flow to Convolutional Neural Networks 

(CNN). We design multiplier-less MAC modules for the convolutional computation and find the optimal 

approximate design. We also verify the impact of approximation on output quality degradation in 

MNIST handwritten digits recognition. 

Our proposed approximate synthesis flow improved energy consumption of approximate MAC 

modules for multiplication of 3 × 3 and 5 × 5 matrices up to 46.4 % and 43.4 % respectively while 

output quality degradation of the MNIST handwritten digit recognition was lower than 1 %. 
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