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ABSTRACT This paper develops deep learning (DL) based beamforming approaches for multi-antenna
interference channels where several base stations (BSs) individually optimize their own beamforming vectors
in a decentralized manner. By exploiting the optimal beam structure, we propose an efficient method for
beam decisions and coordination among BSs based solely on local information. Moreover, we show that
the proposed approach allows a scalable design with respect to the number of users. We also present
novel training strategies for the proposed deep neural networks, validating its potential as an innovative
decentralized beamforming methodology. Consequently, the proposed DL based decentralized beamforming
framework can achieve various optimal beamforming strategies. Numerical results demonstrate the
advantages of the proposed framework over conventional methods.

INDEX TERMS Deep learning, decentralized beamforming, interference channel.

I. INTRODUCTION
Multi-antenna signal processing has become essential for
wireless communications systems owing to its ability of
enhancing the channel capacity [1]. For decades, there have
been intensive studies for multiple-input multiple-output
(MIMO) transceiver optimization in multi-user systems
[2], [3], interference channels (ICs) [4], [5], [6], [7], [8], and
multi-cell multi-user networks [9], [10], [11], [12]. However,
most works considered a centralized system, which requires
a central unit for coordination, and research on decentralized
MIMO signal processing algorithms remain insufficient.
In this paper, we present a novel decentralized beamforming
optimization based on deep learning (DL) framework.

A. MOTIVATION
For future wireless networks, it is desirable to adopt
a decentralized multi-antenna signal processing algorithm
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at individual base stations (BSs) which determines their
beamforming policies based only on local channel state
information (CSI) [5], [6], [9]. However, the local CSI
may result in a performance loss compared to centralized
approaches that optimize MIMO transceivers based on all
CSI collected from the BSs. In [9], the weighted minimum
mean-squared-error (WMMSE) solution was offloaded to
individual BSs with the help of interaction between BSs and
users. The decentralized beamforming methods in [5] and [6]
employed iterative exchanges of information among BSs
through backhaul coordination channels, leading to high
communication overheads and computation latency.

Furthermore, the variety of services in future wireless
networks requests the manageability which can control the
throughput of individual devices according to their desired
quality-of-service (QoS) levels. This issue can be addressed
in line of the Pareto optimal beamforming methods [6],
[13], [14], [15]. At the Pareto optimal boundary of the
achievable rate region, increasing the rate of a certain device
must sacrifice the performance of others. Thus, the complete
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characterization of the Pareto optimal rate tradeoff enables
us to design optimized networks consisting of devices with
heterogeneous QoS requirements.

Multi-antenna techniques identifying the Pareto optimal
rate tradeoff have been studied in multi-cell systems [6], [13],
[14], [15] by determining a proper beamforming solution
that satisfies arbitrary QoS requirements. Such a task can be
formulated as the weighted sum-rate (WSR) maximization
[9], [15], [16] and the weighted minimum rate (WMR)
maximization [17], [18]. However, most of these works have
been confined to the centralized architecture. Although a
decentralized beamforming optimization algorithm with the
guaranteed Pareto optimality was also presented in [6], its
iterative procedure poses excessive backhaul communication
overhead.

B. RELATED WORKS
Recently DL techniques have been extensively applied
to address the aforementioned challenges. Research has
revealed that deep neural networks (DNNs) can shift the
calculations of optimization algorithms to the offline training
phase. As the real-time inference of trained DNNs can
be implemented by simple matrix multiplications, iterative
computation steps of beamforming optimization algorithms
can be avoided.

DL-based beamforming strategies have been proposed
for various network configurations such as single user
multiple-input single-output (MISO) systems [19], multi-
user broadcasting channels [20], [21], [22], [23], [24], [25],
and multi-cell networks [26], [27], [28]. DL models were
trained to yield efficient beamforming vectors that enhance
the performance while reducing complexity compared to
traditional beamforming algorithms [19], [20]. However,
a direct beamforming learning (DBL) strategy [20] may be
inefficient in large networks as the output dimension of the
DNNs should scale up with the network size. These difficulty
has been resolved by the feature learning methods [21], [22],
[23], [24], [26], [27], [28] which inject the expert knowledge
about the optimal beamforming solutions into a design of
DNN models. Instead of learning complex beam weights
directly, these approaches aim at producing low-dimensional
sufficient statistics of the optimal beamforming, which is
referred to as beam features. These model-driven learning
approach enables lightweight DNN architectures and results
in improved performance compared to native DBL methods.

Albeit their successes, existing works have been restricted
to a centralized DL policy which collects CSI from all
BSs for the training and execution of DNNs. Such a
strategy is particularly infeasible for multi-cell systemswhere
multi-antenna BSs are separated over the network and can
only get access to local CSI. Recently, there have been
several studies on establishing decentralized DNN models
for resource management problems of distributed wireless
devices [29], [30], [31]. A key enabler of the decentralized
learning strategy is to split the central DNN unit into several

component DNNs to be installed at individual BSs. These
DNN modules are designed to process local CSI inputs only
and are trained to take solutions of associated BSs. To further
improve the performance, the exchange of communication
messages generated by neighboring DNN units can be
allowed so that the BSs can get the knowledge of others.

These approaches have been extended for decentralized
beamforming optimization tasks using the graph neural
network (GNN) frameworks [25], [28], [32], [33]. Energy-
efficient beamforming solutions for single-cell MISO sys-
tems were considered in [25], which facilitates decentralized
coordination amongmultiple users. By doing so, the resulting
GNN becomes scalable to the number of users. However,
these works are based on the single-cell system model and
cannot be extended to the multi-cell networks. In multi-cell
systems, [32] presents a GNN-based algorithm for decen-
tralized beamforming in multi-user MISO IC that utilizes
dedicated DNNs for both local beam decision-making and
coordination processes. Such features have been investigated
for MIMO intelligent reflecting surfaces [33] and cell-free
MIMO systems [28]. However, existing GNN models invoke
multiple backhaul uses among BSs and users due to recursive
computational architectures, and thus would need intensive
overhead and latency.

C. CONTRIBUTIONS AND ORGANIZATION
In this paper, we propose a decentralized learning framework
for identifying the beamforming strategy that improves
the achievable rate-region trdeoff of multi-user MISO IC
networks. Unlike existing learning-based beamforming opti-
mization techniques [20], [21], [22], [23], [24], [25] which
are confined to the single-cell system, our paper considers
multi-cell setup.We assume that each BS can only get its local
channel information. To execute centralized beamforming
DNNs backhaul signaling overheads become prohibitive.
This necessitates the development of a novel decentralized
learning approach where individual DNNs installed at BSs
determine their beamforming vectors based only on limited
information sharing.

First, we determine the Pareto optimal rate tradeoff based
on arbitrary QoS requirements. Inspired by the Pareto optimal
beamforming solution [6], a feature learning architecture
is newly presented where a DNN learns sufficient statistics
for creating the optimal beamforming vectors. The Lagrange
duality analysis of the MISO IFC problem reveals that
the optimal beamforming vector can be retrieved from two
distinct beam features, namely interference temperature (IT)
constraints and dual variables. These features are respectively
obtained by dedicated component DNN units: ITNet and
DualNet. This leads to a novel collaborative feature learning
policy where individual BSs can identify their beam features
by exchanging scalar coordination messages. The ITNet
generates the IT constraint values which are shared among
BSs by using the local CSI only. Also, the DualNet is
responsible for inferring the optimal dual variables based on
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the IT constraint messages obtained from other BSs. The
resulting dual variables act as final beam features. By doing
so, each BS can determine its beamforming solution in
a decentralized manner with limited information sharing.
Notably, component DNN units can be reused at all BSs since
the computation processes of the optimized IT constraints and
the dual variables are identical for all BSs. Thus, a sole set of
component DNNs is sufficient to produce the beamforming
vectors of the entire MISO IC networks. As a result, the
proposed feature learning can achieve the decentralization
of beamforming optimization as well as the scalability with
respect to the number of the BSs.

Conventional joint training strategies of the ITNet and
DualNet fail to learn valid beam features since it cannot inject
the optimal behavior of each beam feature. To address this
challenge, we propose an alternative training strategy which
train ITNet and DualNet with distinct training objective
functions. This algorithm is inspired by the primal-dual
method [34] which optimizes primal and dual variables in an
alternatingmanner. The IT constraints computed by the ITNet
become the primal variable that identifies the beamforming
vector. Thus, it is trained to maximize the desired network
utility performance. On the contrary, the training of the
DualNet is supervised by the dual function evaluated by the
IT constraints. It is optimized to solve the dual problem of
the decentralized beamforming optimization. The proposed
alternating training algorithm can also be decentralized
using backhaul coordination among BSs. The viability
of the proposed decentralized learning-based beamforming
framework is demonstrated through numerical simulations.

The remainder of this paper is organized as follows:
Section II introduces a system model for MISO IC networks
and formulates a Pareto boundary characterization task of an
achievable rate region. A novel beamforming optimization
DL structure is proposed in Section III, and its training
strategy is provided in Section IV. In Section V, we present
numerical simulations to assess the proposed framework. The
paper is terminated with concluding remarks in Section VI.
Notation:We employ uppercase boldface letters, lowercase

boldface letters, and normal letters for matrices, column
vectors, and scalar quantities, respectively. Also, EX [·]
represents an expectation operator over a random variable X .
The sets of complex and real vectors of length m are denoted
by Cm and Rm, respectively, and Cm×n indicates the set of
m-by-n complex matrices. All-zero column vector is written
by 0 and an identity matrix is expressed by I.

II. SYSTEM MODEL
Consider a MISO IC where each of K BSs withMT antennas
serves their own single-antenna receiver. Let wk ∈ CMT

be the beamforming vector at BS k (k = 1, . . . ,K ). The
power constraint for BS k is imposed as ∥wk∥ ≤ P where
P is the transmit power budget. Denoting hkj ∈ CMT as the
channel vector from BS k to receiver j. By using standard
channel acquisition processes [4], BS k can attain its local
CSI vector hk which collects the channel vectors between all

users. It is defined as

hk ≜ {hkj : ∀j}. (1)

The achievable rate Rk (H,W) of receiver k is given by

Rk (H,W) = log2

(
1+

|hHkkwk |
2∑

j̸=k |h
H
jkwj|

2 + σ 2

)
, (2)

where H ≜ {hk : ∀k} ∈ CMTK×K stands for the global CSI
matrix,W ≜ {wk : ∀k} ∈ CMT×K indicates the beamforming
matrix, and σ 2 is the noise variance.
In the MISO IC, mutual interference incurs a nontrivial

tradeoff among achievable rates. Such an issue can be
formalized as the identification of the Pareto boundary of
the achievable rate region, which is defined as a set of
rate tuples R(H,W) ≜ (R1(H,W), · · · ,RK (H,W)) over all
feasible beamforming vectors ∥wk∥

2
≤ P, ∀k . The rate tuple

R(H,W) is referred to as the Pareto optimal point if there is
no other rate tuple R(H,W′) withW′ such that Rk (H,W′) ≥
Rk (H,W), ∀k . Therefore, at the Pareto boundary point, rates
cannot be improved without sacrificing others. A set of the
Pareto optimal points collectively form the Pareto boundary
containing upper-right boundary points of the rate region.

We aim to determine the Pareto boundary of the achievable
rate region. This invokes a multi-objective optimization
(MOO) task which maximizes a group of achievable rates
R(H,W) simultaneously. This can be formulated as

max
W∈W

R(H,W) (3)

where W ≜ {W : ∥wk∥
2
≤ P,∀k} indicates the feasible

set of beamforming vectors. The MOO problem (3) requires
tackling the vector-valued objective functionR(H,W), which
is nontrivial for existing scalar objective optimization algo-
rithms. To address this difficulty, various parameterization
techniques were proposed which transform the vector-valued
objective into equivalent single objective optimization tasks.
In what follows, we discuss conventional approaches to
solve (3).

A. SCALARIZATION METHODS
The scalarization approaches [35] reformulate the MOO
task (3) by employing a scalar utility function u(·). Defining
µ ≜ {µk : ∀k} with non-negative weights µk ≥ 0, ∀k ,
an equivalent single objective optimization task of (3) can be
formulated as

max
W∈W

u(R(H,W),µ). (4)

Popular candidates of u(·) include the WSR uWSR(·) and
WMR uWMR(·), which are respectively defined as

uWSR(R(H,W),µ) =
K∑
k=1

µkRk (H,W), (5)

uWMR(R(H,W),µ) = min
k
µkRk (H,W). (6)

VOLUME 11, 2023 140855



M. Kim et al.: DL Based Decentralized Beamforming Methods for Multi-Antenna ICs

In both utility functions, the weight µk can be interpreted as
the QoS requirement of receiver k . Receiver k can increaseµk
to request a higher rate Rk (H,W) as its contribution to the
utility function grows. On the contrary, low-rate receivers
decrease their weights so that interference toward other
receivers can be reduced. Therefore, the beamforming vectors
achieving an arbitrary rate tradeoff R(H,W) would be
identified by controlling the weight vector µ. It has been
revealed that the WSR utility fails to characterize the Pareto
boundary points for nonconvex rate regions [15], whereas the
WMR utility guarantees the complete characterization of all
Pareto optimal points [35].

Solving (3) invokes centralized calculations by col-
lecting the global CSI H at a central computing unit
[36], [37], [38]. Such a centralized beamforming optimization
process is, however, impractical due to high system
complexity. Thus, decentralized signal processing is desirable
where each BS decides its own beamforming vector based
only on local CSI and coordination messages obtained from
other BSs.

B. PARAMETERIZATION USING INTERFERENCE
TEMPERATURE
A decentralized beamforming method [6] parameterizes the
Pareto optimal beamforming vector wk by using IT vectors
ĉk ≜ {ckj : ∀j ̸= k} ∈ RK−1 and čk ≜ {cjk : ∀j ̸= k} ∈
RK−1. These parameters control signal powers of inter-
fering links and interfered links of BS k , respectively.
They decompose the centralized optimization problem (3)
into K subproblems each dedicated to the beamforming
optimization for BS k . The corresponding subproblem is
written as

rk (hk , čk , ĉk ) =max
wk

log2

(
1+

|hHkkwk |
2∑

j̸=k cjk + σ
2

)
(7a)

subject to |hHkjwk |
2
≤ ckj,∀j ̸= k (7b)

∥wk∥
2
≤ P, (7c)

where the IT constraint (7b) restricts the interfering signal
power to unintended receiver j. The optimal value of
problem (7) rk (hk , čk , ĉk ) indicates the achievable rate of
receiver k for given IT constraints ĉk and čk . A particular
Pareto boundary point can be attained by solving K
subproblems in parallel across the BSs by fixing {ckj : ∀j, k}.
Unlike the scalarization technique in (4) which can

proactively control the rate tradeoff among the receivers
using their QoS requirements µ, this parameterization fails
to incorporate such receiver-centric features. Consequently,
the resulting beamforming vectors lead to undesired rate per-
formance, and thus it cannot characterize the complete Pareto
boundary. Therefore, (7) should employ numerous initializa-
tions of čk and ĉk which requests intensive computations.

III. DECENTRALIZED BEAMFORMING INFERENCE
To address the aforementioned challenges, we propose a
novel DL-based beamforming optimization frameworkwhich

consolidates the advantages of both the scalarization method
and the decentralized method in [6]. Our design goal is to
build a proper DNNmodel Vθ (·) with a trainable parameter θ
that maps a tuple (H,µ) to the beamforming matrixW as

W = Vθ (H,µ). (8)

The DBL approach employs several fully-connected
layers Vθ (·) with the output activation 5Wk (wk ) =

minx∈Wk ∥wk − x∥2 that forces the beamforming vector wk
to lie in the feasible setWk . The DNN Vθ (·) requires a central
process by means of centrally collected global CSIH and the
weight vector µ. For this reason, the central processing unit
is required to execute both the training and inference steps.
Also, the DNNmodel has fixed input and output dimensions,
thereby lacking the adaptability to networks with arbitrary
numbers of BSs K . Furthermore, it has been reported from
[21], [24], and [28] that the DBL fails to learn the effective
beamforming solution from the input channel matrix H.

A. PROPOSED FEATURE LEARNING ARCHITECTURE
To address these difficulties, we propose a novel feature
learning policy which exploits the expert knowledge of the
decentralized beamforming formalism (7) in constructing the
DNN Vθ (·). To this end, we first analyze the optimal solution
to (7). Let dkj ≥ 0 and dkk ≥ 0, ∀j ̸= k , respectively
denote dual variables associated with (7b) and (7c). For given
local CSI hk and IT constraints čk and ĉk , the Lagrangian is
expressed as

L(wk ,dk ;hk , čk , ĉk )

= log2

(
1+

|hHkkwk |
2∑

j̸=k cjk + σ
2

)
−

∑
j̸=k

dkj
(
|hHkjwk |

2
− ckj

)
− dkk

(
∥wk∥

2
− P

)
, (9)

where dk ≜ {dkj : ∀j} ∈ RK . The dual function is given by

g(dk ;hk , čk , ĉk ) = max
wk

L(wk ,dk ;hk , čk , ĉk ), (10)

and its optimal solution can be calculated as

wk = V (hk , čk ,dk ) ≜
√
pkA−1k hkk , (11)

where V (·) indicates the beam recovery function, and Ak and
the power control value pk are respectively defined as

Ak ≜
∑
j̸=k

dkjhkjhHkj + dkkI, (12a)

pk ≜

 1
ln 2
−

∑
j̸=k cjk + σ

2

∥A
−

1
2

k hkk∥2

+ 1

∥A
−

1
2

k hkk∥2
(12b)

with (x)+ ≜ max(0, x). Also, the optimal dual variable dk
can be obtained by solving the dual problem formulated as

min
dk⪰0

g(dk ;hk , čk , ĉk ). (13)
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The optimal beam structure (11) indicates that the beam
features of wk include the IT constraint čk on the interfered
links and the dual variable dk . Also, we can see from (13)
that ĉk on the interfering links plays a key role in identifying
the optimal dual variable. Therefore, these three features
are regarded as sufficient statistics to recover the optimal
beamforming vector wk . As a consequence, the proposed
feature learning policy aims at computing 3K − 2 real
variables, which are much smaller than the number of
optimization variables of the DBL given by 2MTK . Such a
reduction in the optimization dimension leads to a lightweight
DNN with improved training performance.

The remaining work is to construct a valid beam feature
DNN Fθk (·) with a trainable parameter θk that is responsible
for yielding the efficient beam feature vector (ĉk , čk ,dk ).
With a properly trained DNN Fθk (·) at hands, BS k can
readily retrieve its beamforming vector wk using the beam
recovery operator V (·) in (11). In the following, we present
several important properties of the efficient DNN Fθk (·)
based on the underlying principles of optimization
procedures (9)-(13).
• Decentralized Computation: The Lagrangian in (9)
can be calculated only with the local CSI hk and
IT constraints čk and ĉk . This implies that these
locally observable vectors are sufficient to infer the
optimal dual variable dk in (13). This results in the
decentralized learning structure where BSs calculate
their beam features individually using local information
only.

• Parameter Sharing: It is important to note that computa-
tion processes of the Lagrangian L(·), dual function g(·),
and beam recovery operator V (·) are identical for all
BSs. Utilizing this property, we adopt the parameter
sharing techniquewhere all BSs reuse the identical DNN
modelFθ (·) to obtain their beam features. This brings up
a versatile computational architecture where a sole DNN
Fθ (·) determines the beam features of all BSs.

• Cooperative Inference: The IT constraint cjk in (7b)
is associated with the interfered channel hjk , which
is unavailable at BS k . Hence, its optimal value
cannot be directly inferred by BS k . This triggers the
development of a cooperative learning policy where
BS j computes its IT constraint cjk and forwards it to
BS k . BS k is responsible for identifying its interfering
IT constraint ĉk , whereas the interfered IT constraint
čk can be collected from other BSs through backhaul
coordination. Therefore, the beam feature DNN Fθ (·)
leverages ĉk and čk as output and input, respectively.

• Manageability: The major drawback of the IT constraint
formulation (7) is that the BSs cannot incorporate the
QoS requests from the receivers into the beamforming
optimization. Thus, it loses the manageability that
achieves a desired Pareto optimal rate tuple. To this end,
we adopt the weight µk as the side information to the
DNN Fθ (·) so that the resulting beam features become
controllable with the input weight.

Based on the above intuitions, the proposed DNN Fθ (·) can
be written by

(ĉk ,dk ) = Fθ (hk , µk , čk ). (14)

B. INFERENCE STRUCTURE
The Lagrange duality analysis in (13) reveals that we need
to determine the IT constraint ĉk before the optimization
process of the dual variable dk which maximizes the dual
function g(dk ;hk , čk , ĉk ). Inspired by this property, we split
the proposed beam feature DNN Fθ (·) into two component
DNNs, namely ITNet CθC (·) and DualNet DθD (·), each
with trainable parameters θC and θD, respectively. Such
a DNN decomposition approach leads to a decentralized
and cooperative learning architecture where individual BSs
identify their beamforming vectors separately by means of
DNN-assisted backhaul coordination strategies. The ITNet
CθC (·) is responsible for the coordination among BSs by
creating the IT constraint ckj, ∀j ̸= k , at BS k . Subsequently,
the DualNet DθD (·) infers the optimized dual variable dk
based on the IT constraint values sent by other BSs.
As illustrated in Figure 1, a group of the ITNets and DualNets
establishes the beam feature DNN Fθ (·) with θ = {θC , θD}.
These component DNNs form three inference steps: IT
constraint generation, dual variable generation, and beam
recovery. The details of each step are described in the
following.

1) IT CONSTRAINT GENERATION
BS k first creates its IT values ckj, by using the ITNet
CθC (·). Recall that ckj in (7b) regulates the interference power
|hHkjwk |

2 originated from BS k to BS j. Thus, to determine a
proper ckj, it is necessary to exploit the channel vector hkj as
an input to CθC (·). Since the main purpose ofwk is to improve
the desired link quality |hHkkwk |

2, ckj also depends on hkk as
well as the corresponding QoS requirement µk . Based on
these intuitions, an input-output relationship of the ITNet is
designed as

ckj = CθC (hkk ,hkj, µk ). (15)

Note that the input and output dimensions of the ITNet are
irrelevant to the network size K . This leads to a scalable
calculation architecture with respect to arbitrary K . Since
ckj acts as an upper bound for the interfering signal power
|hHkjwk |

2, it is bounded by ckj ∈ [0,P∥hkj∥2]. Such a
constraint can be simply imposed by employing the sigmoid
function at the output layer. The resulting output is then
multiplied by P∥hkj∥2 to ensure the feasibility of ckj.
The resulting IT constraint ckj is leveraged as a scalar

coordination message conveyed from BS k to its interfering
BS j, ∀j ̸= k . K − 1 parallel processing of (15) results in the
message vector ĉk as

ĉk = {CθC (hkk ,hkj, µk ) : ∀j ̸= k}. (16)

This backhaul coordination message is further utilized in the
subsequent dual variable generation step.
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FIGURE 1. Proposed decentralized beamforming inference structure.

2) DUAL VARIABLE GENERATION
Receiving a set of incoming messages čk leverages the
DualNet DθD (·) to create dk in the dual variable generation
step. As we can see from (9), dk consists of two types of
dual variables. More precisely, {dkj : ∀j ̸= k} are associated
with the IT constraints in (7b) for interfering BSs, while
dkk is intended to adjust the power constraint of BS k (7c).
Such heterogeneous roles of the dual variables entail different
computation procedures. To this end, the DualNet DθD (·) is
split to two subsequential DNN units DψIT (·) and DψP (·).
Their trainable parameters ψIT and ψP collectively form
θD = {ψIT , ψP}, and these DNN modules determine the dual
variables {dkj : ∀j ̸= k} and dkk , respectively.

We first focus on DψIT (·) that produces dkj associated
with the IT constraint. According to the Lagrange duality
analysis (13), the optimal dual variable minimizes the dual
function g(·). To this end, dkj can be optimized iteratively
according to the subgradient of the Lagrangian calculated as

∂dkjL(wk ,dk ;hk , čk , ĉk )|wk=V (hk ,čk ,dk )
= ckj − |hHkjV (hk , čk ,dk )|

2. (17)

It can be checked from (17) that to get the optimal dual
variable, we should exploit the IT constraint ckj, interfering
channel hkj, and the beamforming wk = V (hk , čk ,dk )
obtained from the beam recovery process (11). Therefore,
the inputs to DϕIT (·) consist of the desired channel hkk
and the aggregated incoming message

∑
j̸=k cjk , i.e., the

total interference power, which are needed to calculate (12).
Consequently, the DNN module DψIT : CMT × CMT × R ×
R→ R is designed as

dkj = DψIT

hkk ,hkj, ckj,
∑
j̸=k

cjk

 . (18)

Next, we considerDψP (·) that decides the dual variable dkk .
Note that dkk regulates the transmit power of BS k , i.e.,
∥wk∥

2, by adjusting the power control variable pk in (12b).
Thus, valid inputs toDψIT (·) should include hkk and

∑
j̸=k cjk .

In addition, we adopt the weighted sum of interfering
channels

∑
j̸=k dkjhkj required to extract latent features of

Ak in (12a). According to these insights, the DNN DψP :
CMT × CMT × R→ R is constructed as

dkk = DψP

hkk ,
∑
j̸=k

dkjhkj,
∑
j̸=k

cjk

 . (19)

The softplus activation function is employed at the output
layer of DψIT (·) and DψP (·) to ensure the non-negative
constraint on the dual variable. Finally, the DualNet DθD (·)
integrates DψIT (·) in (18) and DψP (·) in (19) into

dk = {dkj : ∀j} = DθD (hk , čk , ĉk )

≜

DψIT
hkk ,hkj, ckj,

∑
j̸=k

cjk

 : ∀j ̸= k


⋃
DψP

hkk ,
∑
j̸=k

dkjhkj,
∑
j̸=k

cjk

 , (20)

where

čk = {CθC (hjj,hjk , µj) : ∀j ̸= k}. (21)

3) BEAM RECOVERY
With component DNNs CθC (·) and DθD (·) at hands, BS k can
obtain its beam features ĉk , čk and dk with the decentralized
collaboration among other BSs. Therefore, the forward-pass
calculation of the beam feature DNN Fθ (·) in (14) can be
defined as a sequential computation of the ITNet (15) and
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DualNet (20). Along with hk , the beam recovery function
V (·) in (11) is applied to the output beam feature to
successfully retrieve the optimized wk . These decentralized
operations collectively form the final beamforming optimizer
Vθ (·) in (8) as

W = {wk : ∀k} = Vθ (H,µ) ≜ {V (hk , čk ,dk ) : ∀k}. (22)

Algorithm 1 summarizes the forward-pass computation
processes of the proposed DL-based decentralized beam-
forming strategy. In the IT constraint generation step, BS k ,
individually determines ĉk by carrying out the ITNet CθC (·)
K − 1 times. BSs can facilitate parallel calculations to
enhance the computational efficiency. These are forwarded
to interfering BSs j, ∀j ̸= k , through interconnected backhaul
links. This backhaul coordination step invokes K (K − 1)
channel uses to share the set of backhaul messages ĉk among
all BSs k . As a result, the backhaul signaling overhead of the
proposed method is much lower than that of the centralized
beamforming methods that need 2MTK 2 channel uses to
exchange all local CSI vectors. Notice that the backhaul
coordination is needed at each coherence time block during
which the channel vectors remain unchanged. After the
backhaul coordination, in the dual variable generation step,
BS k , employs the DualNet DθD (·) to calculate the dual
variable dk in parallel. It is then followed by the decentralized
beam recovery step where BS k obtains its beamforming
vector wk using V (·) in (11).

Algorithm 1 Proposed Decentralized Beamforming
Inference
1: 1) IT constraint generation
2: for k = 1 : K
3: for j ̸= k
4: BS k calculates ckj from (15).
5: BS k sends ckj to interfering BS j.

6: 2) Dual variable generation
7: for k = 1 : K
8: for j ̸= k
9: BS k calculates dkj from (18).

10: BS k calculates dkk from (19).
11: 3) Beam recovery
12: for k = 1 : K
13: BS k calculates wk from (11).

IV. PROPOSED TRAINING STRATEGY
This section presents a training mechanism of the proposed
DL-based beamforming techniquewhich optimizes the ITNet
and DualNet. To identify the Pareto optimal boundary
points, the training objective function J (θ ) is chosen as the
scalarization utility (4) expected over realizations of the
global CSI H and the QoS requirement µ as

J (θ ) = EH,M [u(R(H,Vθ (H,µ)),µ)] , (23)

where Vθ (·) is defined in (22) and H ≜ {H} and M
indicate mini-batch datasets containing training samples of
H andµ, respectively. The inclusion of the weight vector into
M ensures the manageability of the trained DNN so that it
can yield the Pareto optimal beamforming vectors achieving
the desired rate tradeoff performance according to arbitrary
QoS requirement µ. Consequently, by controlling the weight
input µ to the DNN Vθ (H,µ), we can obtain multiple Pareto
optimal boundary points simultaneously. The training process
for maximizing J (θ ) can be readily realized using stochastic
gradient descent (SGD) methods. At the t-th epoch, the DNN
parameter θ [t] can be calculated as

θ [t]← θ [t−1] + η∇θ [t−1]J (θ
[t−1]), (24)

where ∇Z stands for the gradient operator with respect to the
variable Z and η > 0 indicates the learning rate.

The aforementioned training strategy updates the ITNet
and DualNet jointly in an end-to-end manner. This con-
ventional training mechanism has been adopted in existing
beam feature learning methods [21], [22], [28]. However, the
conventional training algorithm did not inject the underlying
principles of the IT constraint and dual variable into the
DNN Vθ (·). The feasibility of the IT constraint (7b) is
regulated by the dual variable dkj. To this end, the optimal dual
variable should be a minimizer of the dual function, i.e., it is
given by the optimal solution to the dual problem (13). The
conventional training (24) cannot guarantee these important
properties, since the ITNet and DualNet are simply trained to
maximize the utility performance. For this reason, the learned
beam features ĉk , čk and dk would converge to unintended
suboptimal points.

A. ALTERNATING TRAINING ALGORITHM
To handle such an issue, we propose a novel training
algorithm that guides the ITNet and DualNet to learn the opti-
mality conditions of the beam features. A key idea is to design
dedicated training objective functions for each component
DNN by exploiting the Lagrange duality analysis (9)-(13).
By doing so, the optimal behaviors of the IT constraint and
the dual variable are readily involved in the training phase.
The ITNet needs to produce effective IT constraint values
that determine the primal optimal beamforming vector wk
which maximizes the utility function u(·) in (4) measured
by the optimal value of problem (7). In addition, the dual
variable generated by the DualNet should be the solution
to the dual problem (13). According to these intuitions, the
training objective functions of the ITNet and DualNet are
designed individually to achieve their dedicated goals. Such
decomposed training objectives lead to an alternating training
process that updates the ITNet and DualNet sequentially by
fixing each other. The details of each update rule are given in
the following.

1) ITNET UPDATE
We first discuss the ITNet update step which optimizes the
ITNet CθC (·) by fixing the DualNet DθD (·). It is noted that
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J (θ ) in (23) leverages the rate Rk (H,Vθ (H,µ)) achieved by
the end-to-end beamforming DNN W = Vθ (H,µ). Thus,
the IT constraints čk and ĉk , can only be indirectly examined
through the dual variable dk obtained by the DualNet (20).
This poses a challenge in calculating valid gradients with
respect to the ITNet parameter θC . To this end, we develop a
new training objective function dedicated to the ITNet so that
it can characterize the relationship between the IT constraints
and the system performance.

A key enabler is to exploit the objective function of (7)
that has a closed-form mapping from the IT constraint to
the achievable rate. At the t-th training epoch, the proposed
training objective J [t]C (θC ) of the ITNet is expressed as

J [t]C (θC ) = EH,M
[
u({r [t−1]k (hk , čk , ĉk ) : ∀k},µ)

]
, (25)

where r [t]k (hk , čk , ĉk ) stands for the optimal value of prob-
lem (7) computed at the t-epoch as

r [t]k (hk , čk , ĉk ) = log2

(
1+
|hHkkV (hk , č

[t−1]
k ,d[t]k )|2∑

j̸=k c
[t]
jk + σ

2

)
.

(26)

Here, the dual variable d[t]k at the t-th epoch is fixed as

d[t]k = Dθ [t]D (hk , č
[t−1]
k , ĉ[t]k ), (27)

where č[t]k ≜ {c[t]jk : ∀j ̸= k} with c[t]kj being the IT constraint
as

c[t]kj = Cθ [t]C (hkk ,hkj, µk ). (28)

Unlike (23), the proposed objective function J [t]C (θC ) in (25)
can measure the impact of the IT constraints čk and ĉk
directly. By doing so, we can obtain a valid gradient for the
ITNet parameter θC . At the t-th epoch, the SGD update rule
for the ITNet becomes

θ
[t]
C ← θ

[t−1]
C + ηC∇θ [t−1]C

J [t]C (θ [t−1]C ). (29)

2) DUALNET UPDATE
The DualNet update step aims at minimizing the dual
function g(dk ; čk , ĉk ). According to (10), the dual function
can be calculated by using the Lagrangian L(wk ,dk ; čk , ĉk )
with wk = V (hkk , čk ,dk ) in (11). Thus, the dual function at
the t-th epoch is written by

G[t](hk ,dk ) ≜ g(dk ;hk , č
[t]
k , ĉ

[t]
k )

= r [t−1]k (hk , čk , ĉk )+ q[t](hk ,dk ), (30)

where q[t](hk ,dk ) is defined as

q[t](hk ,dk ) ≜ −
∑
j̸=k

dkj
(
|hHkjV (hk , č

[t]
k ,d

[t−1]
k )|2 − c[t]kj

)
− dkk

(
∥V (hk , č

[t]
k ,d

[t−1]
k )∥2 − P

)
. (31)

As the first term in (30) is a constant with respect to
the DualNet parameter θD, the training loss function of the

DualNet J [t]D (θD) can be established as

J [t]D (θD) =
1
K

K∑
k=1

EHk ,Mk

[
q[t](hk ,dk )

]
≜

1
K

K∑
k=1

Q[t]
k (θD), (32)

where Hk and Mk stand for the dataset containing the
local CSI hk and weight µk , respectively, and Q

[t]
k (θD) ≜

EHk ,Mk

[
q[t](hk ,dk )

]
represents the average dual function

of BS k . As a consequence, the DualNet update strategy to
minimize J [t]D (θD) is obtained as

θ
[t]
D ← θ

[t−1]
D − ηD∇θ [t−1]D

J [t]D (θ [t−1]D ) (33)

with ηD > 0 being the learning rate.

Algorithm 2 Proposed Alternating Training Algorithm

1: Initialize θ [0]C and θ [0]D .
2: for epoch t = 1, 2, · · · ,Tmax
3: 1) Dataset preparation
4: for k = 1 : K
5: BS k samplesHk andMk .
6: 2) ITNet update
7: for k = 1 : K
8: BS calculates d[t−1]k from (27).

9: BSs update θ [t]C from (29).
10: 3) DualNet update
11: for k = 1 : K
12: for j ̸= k
13: BS k calculates c[t]kj from (28).

14: BS k sends c[t]kj to BS j.

15: BSs update θ [t]D from (33).

The proposed training policy is summarized in Algorithm 2
which adjusts theDNNparameters θC and θD in an alternating
manner. At the beginning of each training epoch, BS k
randomly samples its local mini-batch sets Hk = {hk} and
Mk = {µk}. The local CSI is generated using the Rayleigh
fadingmodel, whereas the weights are evenly distributed over
the bounded range µk ∈ [0, 1]. Then, BS k individually
computes the dual variable d[t−1]k by leveraging the previous
DualNet parameter θ [t−1]D . Similar to Algorithm 1, this
forward-pass procedure can be realized in parallel across
individual BSs. It is then followed by the ITNet update in (29)
to maximize the training objective function J [t]C (θC ) in (25)
evaluated over the global mini-batchH andM. Next, the IT
constraint č[t]k is derived from (28) along with the backhaul
coordination presented in Algorithm 1. Finally, we can carry
out the DualNet update in (33). These processes are repeated
until the maximum number of epochs Tmax. After the training
is performed in the offline domain, trainedDNNs are installed
at the BSs for the decentralized decision of the beamforming
vectors.
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Unlike the conventional joint training algorithm (24)
which backpropagates gradients from the DualNet to the
ITNet, in the proposed alternating process, these component
DNNs interplay with each other by means of the training
objective functions J [t]C (θC ) and J

[t]
D (θD) evaluated from the

optimized IT constraints and dual variables. The DualNet
controls the feasibility of the beamforming vector wk by
solving the dual problem (13). The resulting dual variables
help the ITNet obey the maximum allowable interference
power threshold (7b). It is further optimized to improve
the optimal value of problem (7) for given dual variables.
This alternating procedure leads to the converged point with
the zero duality gap. This will be proved in Section V via
numerical results.

B. DECENTRALIZED IMPLEMENTATION
Now we discuss the decentralized implementation strategy
of Algorithm 2 in which individual BSs execute the SGD
updates in (29) and (33) in parallel. To this end, it is
essential to develop a proper backhaul coordination protocol
to allow BSs to share local information vectors relevant to the
decentralized training. Notice that most parts of the proposed
training algorithm can be readily realized in a decentralized
manner except for the SGD update steps, i.e., lines 9 and 15 of
Algorithm 2. More precisely, the gradient computations in
(29) and (33) invoke centralized operations. With a careful
investigation of the training objective functions, these SGD
updates can be decoupled across the BSs by means the
backhaul coordination.

We first focus on the ITNet update step (29). For simplicity,
we remove the epoch index and arguments of the function
r [t]k (hk , čk , ĉk ). After some manipulations, the (sub)gradient
vector ∇θC JC (θC ) can be attained as

∇θC JC (θC ) =


EH,M

[
K∑
k=1

µk∇θC rk

]
for uWSR(·),

EH,M
[
min
k
µk∇θC rk

]
for uWMR(·),

(34)

where the gradient ∇θC rk is derived as

∇θC rk =
∂ ĉk
∂θC
∇ĉk rk +

∑
j̸=k

∂cjk
∂θC

∂rk
∂cjk

. (35)

The first term in (35) can be obtained locally by each
BS via the backpropagation through the ITNet CθC (·).
Likewise, upon receiving cjk from BS j, BS k can readily
calculate the derivatives ∂rk

∂cjk
in a closed-form expression

as

∂rk
∂cjk
=

−|hHkkV (hk , č
[t−1]
k ,d[t]k )|2

ln 2
(
1+

|hHkkV (hk ,č
[t−1]
k ,d[t]k )|2∑

j̸=k c
[t]
jk +σ

2

)(∑
j̸=k c

[t]
jk + σ

2
)2 .
(36)

However, as this derivative cannot be acquired by BS k , this
should be calculated at BS j and be forwarded to BS k .
By collecting these derivatives, BS k successfully recovers
the gradient vector∇θC rk of its achievable rate rk . This vector
is then multicast to all other BSs so that individual BSs can
retrieve the entire gradient vector ∇θC J (θC ) in (34). With this
at hands, each BS carries out the ITNet update policy (29) in
a decentralized manner.

Next, to split the DualNet update step (33), we leverage
the fact that BS k can determine its average dual function
Qk (θD) in (32) as well as its gradient ∇θDQk (θD) by means of
the local mini-batch setsHk andMk . Then, BS k propagates
∇θDQk (θD) to others in order to aggregate the gradient vector
∇θDJD(θD) as

∇θDJD(θD) =
1
K

K∑
k=1

∇θDQk (θD). (37)

Finally, the BSs can proceed the DualNet update (33)
individually.

The proposed decentralized training policy combines
and enhances key operations of vertical and horizontal
federated learning algorithms. In the ITNet update, the
gradient exchanges (36) among BSs are inspired by the error
backpropagation process of the vertical federated learning
method [39]. However, the proposed algorithm differs from
the vertical federated learning method in that we train a
common model with partitioned data and further refine
the gradient exchange process to minimize the overhead.
Although the gradient aggregation (37) in the DualNet
update step has been adopted in the horizontal federated
learning [40], it can be performed individually without a
central server. As a consequence, the BSs can successfully
train the ITNet and DualNet in a decentralized manner by
enhancing the federated learning algorithms.

C. SCALABILITY TO NETWORK SIZE AND LINK QUALITY
As discussed, the proposed framework has a versatile
computation structure in terms of the number of BSs K
since the identical ITNet and DualNet are shared at all
BSs. To further improve the scalability to the network size,
Algorithm 2 can be modified as follows: At each training
epoch, we uniformly select K within a predefined range
[Kmin,Kmax] for each training data sample. Thanks to the
parameter sharing policy, a sole set of CθC (·) and DθD (·)
can handle these mini-batch samples with different K . The
training computations can also be readily extended to an
arbitrary K , since the training objective functions J (t)C (θC )
and J (t)D (θD) are irrelevant to K . By doing so, the proposed
DNN can be optimized over various BS populations, thereby
enhancing the scalability.

Also, we can improve the adaptability of the proposed
approach to varying link quality such as the pathloss. In our
setup, this can be abstracted into the signal-to noise ratio
(SNR) P/σ 2. Changes in the link quality request a new
beamforming strategy for determining the power control
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variable pk in (12b). As reported in [21] and [41], this issue
can be tackled by taking the SNR as side information of the
ITNet and DualNet. Thus, we involve P/σ 2 into the training
dataset, and the trained DNN can be applied to any given SNR
regime.

V. NUMERICAL RESULTS
This section validates the proposed DL-based decentral-
ized beamforming framework through numerical results.
To exploit standard real-valued DNNs, the channel vector
input hk ∈ CMT is represented by an equivalent real-valued
vector [ℜ{hk}T ,ℑ{hk}T ]T ∈ R2MT , where ℜ{·} and ℑ{·}
respectively stand for real and imaginary parts. The Input
dimensions of CθC (·), DψIT (·), DψP (·) are respectively given
by 4MT + 1, 4MT + 2, and 4MT + 1. Both the ITNet and
DualNet have four fully-connected hidden layers each with
800, 400, 100, and 30 neurons. The batch normalization
technique is applied to each hidden layer along with the
rectified linear unit (ReLU) activation. The Adam algorithm
carries out the SGD updates (29) and (33) with the mini-batch
size of 3 × 103 and the learning rates ηC = 5 × 10−4 and
ηD = 5 × 10−3. The Rayleigh fading model is considered
for the generation of training, validation, and test samples.
The channel vectors for the desired links and interfering links
are generated as hkk ∼ CN (0, I) and hkj ∼ CN (0, αI),
respectively, where α = 0.2 indicates the average pathloss
of the interfering links [42]. The proposed DNNs are trained
over 105 epochs, resulting in total 3 × 108 training samples.
The validation and test performance are evaluated over
3× 103 independent channel realizations. Assuming the unit
noise variance σ 2

= 1, the SNR is defined as P. To achieve
the scalability, the proposed DNN is trained over K ∈ [2, 4]
and P ∈ {−5, 0, · · · , 25} dB.
Figure 2 shows the convergence of the proposed alternating

training strategy in Algorithm 2 for MT = K = 2. For
comparison, we also plot the WSR performance of the
conventional training algorithm (24) which updates the ITNet
and DualNet simultaneously. Figure 2(a) exhibits the primal
convergence by evaluating the training and validation WSR
performance with respect to the training epochs. Both the
proposed and conventional training strategies show almost
identical training and validation performance, indicating
that no over-fitting issues occur. The conventional approach
improves the WSR performance fast, but eventually gets
stuck to a suboptimal point after 4000 epochs. On the
contrary, the performance of the proposed algorithm mono-
tonically increases and outperforms the conventional training
algorithm at the convergence. Such a performance gain can
be explained from Figure 2(b) which depicts the convergence
of the average duality gap calculated as E[g(dk ;hk , čk , ĉk )−
L(wk ,dk ;hk , čk , ĉk )]. It can be checked that the proposed
training algorithm achieves the zero duality gap after
4000 epochs, i.e., the strong duality holds at the output
beamforming vector. This implies that the DualNet DθD (·)
produces a valid dual variable dk that minimizes the dual
function. On the contrary, a non-negative duality gap remains

FIGURE 2. Convergence behavior of various training algorithms for
MT = K = 2.

in the conventional method, meaning that it cannot learn
the nature of the optimal dual variable. This results in the
degraded WSR performance as observed from Figure 2(a).
Therefore, we can conclude that the proposed alternating
training method is more effective than conventional joint
training strategies. This numerically shows the optimality of
the proposed alternating training algorithm that achieves the
zero duality gap.

Next, we provide the achievable rate region of various
beamforming techniques in Figure 3 for MT = K = 2 and
P = 15 dB. Cases 1 and 2 respectively correspond to
scenarios where the rate regions are given by convex and
nonconvex sets, respectively. The black solid line represents
the optimal rate tradeoff curve generated by the Pareto opti-
mal beamforming method [14], which requires exhaustive
search to determine the beamforming vectors. In contrast, the
proposed approach can find efficient beamforming solutions
with simple linear matrix multiplications. The rate tuple
achieved by the proposed framework with the WMR utility
uWMR(·) in (6) and the WMMSE method [9] as dots and
plus sign markers, respectively. We consider two cases which
correspond to convex and nonconvex rate regions in Figure 3.
In both cases, the proposed method successfully identifies a
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FIGURE 3. Achievable rate region for MT = K = 2 and P = 15 dB.

FIGURE 4. Sum-rate and min-rate performance with respect to K with
MT = 8 and P = 0 dB.

variety of boundary points on the Pareto-optimal rate region
with little performance loss. However, the conventional
WMMSE demonstrates limitations in encompassing the
entire rate region, especially evident in nonconvex rate region
scenarios. Under these conditions, it is observed that the
rate tradeoff points obtained by the WMMSE exhibit a bias
towards a particular range.

FIGURE 5. Sum-rate and min-rate performance with respect to P with
K = 6 and MT = 8.

Next, we assess the scalability in terms of the number
of BSs K . Figure 4 presents the performance of various
schemes with different K for MT = 8 and P = 0 dB.
The sum-rate and min-rate maximization tasks are tackled
by the WSR and WMR utility functions, respectively.
As benchmarks, we consider the naive feature learning
(NFL), DBL [28], maximum ratio transmission (MRT), and
zero-forcing (ZF) beamforming strategies. The NFL baseline
establishes a naive fully-connected neural network for the
beam feature DNN Fθ (·) which produces the beam features
directly. We can see that the proposed method is superior
to other baseline methods. It is noted that the NFL, DBL
has fixed input/output dimensions, and thus it should be
trained at each given K . On the contrary, the proposed
scheme trained over K ∈ [2, 4] outperforms the NFL
and DBL method, especially for unseen BS populations
K ≥ 5. This proves the viability of the scalable structure
of the proposed DL method. In addition, the proposed
decentralized approach exhibits almost identical performance
to the centralized WMMSE method [9] which requires
extensive calculations. We can attain similar observations
from Figure 4(b) where the proposed framework shows little
performance loss to the global optimal beamforming solution
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TABLE 1. Min-rate.

produced by the iterative algorithm [7]. The performance gap
between the DBL and other benchmark schemes increases
as the number of K gets larger, especially in the min-rate
performance. DBL presents worse performance than the
ZF beamforming solution. These results validate that the
proposed DL approach can identify an efficient decentralized
beamforming mechanism for an arbitrary K .
Figure 5 examines the scalability with respect to the SNR

P for K = 6 and MT = 8. The proposed training strategy
adopts uniformly generated SNR P ∈ {−5, 0, · · · , 25} dB.
In contrast, the NFL and DBL are required to be optimized at
each givenP. Nevertheless, the proposed scheme outperforms
the DBL and other schemes both in terms of the sum-rate
and min-rate performance. Again, the DBL fails to achieve
the simple ZF beamforming solutions in all simulated P. It is
clear that a direct learning approach is notably inefficient for
addressing the complex-valued problem since the number of
optimizing variables increases especially in large systems.
This proves the effectiveness of the proposed architecture
compared to simple fully-connected structures. Thus, we can
conclude that the proposed feature learning policy is crucial to
learn efficient beamforming vectors in the MISO IC systems.

Table 1 demonstrates the generalization ability of the
proposed approach for variousK and P. The relative sum-rate
and min-rate are defined as the ratio of achieved by the
proposed framework to that of the WMMSE and the optimal
algorithm performance, respectively. Notice that the results
with K = 6 correspond to those shown in Figure 5.
It is observed that the proposed method performs well over
arbitrary combinations of P and K with reduced complexity,
thereby proving the scalability. It is interesting to see that for
small K and high SNR, the proposed method performs better
than the WMMSE method which offers a locally optimum

FIGURE 6. Comparison of the average CPU running times.

solution for the WSR maximization problem. This indicates
the effectiveness of the proposed learning approach to address
the nonconvexity of the WSR utility function.

Figure 6 represents the average CPU execution time of
various beamforming schemes with different K and P for
MT = 8. For all P and K , the proposed DL method shows
almost the same running time, and achieves a substantial
reduction in the computation time compared to existing
optimization algorithms. The CPU time complexity of the
proposed scheme is comparable to that of DBL, owing to the
parallel computation ability inherent in the proposed scheme.

VI. CONCLUSION
This paper has proposed a novel DL-based decentralized
beamforming framework in MISO IC networks. The pro-
posed learning architecture has been designed such that IT
constraint values and dual variables are extracted as the beam
features. To learn these parameters, we have leveraged two
component DNNs, which are ITNet and DualNet. The ITNet
determines the IT constraints that are utilized as backhaul
coordination messages among BSs. Utilizing the received
messages, the DualNet creates optimized dual variables to
control the direction of the beamforming vectors. These
component DNNs have been reused at all BSs without
loss of optimality, which guarantees the scalability in terms
of the number of BSs. We have presented a collaborative
training algorithm of the ITNet and DualNet as well as
its decentralized implementation strategy. Numerical results
have demonstrated the superiority of the proposed framework
over existing DL approaches and classical optimization
algorithms. For future work, the development of the scalable
DNN model with respect to the number of transmit antennas
is worth pursuing. One viable approach is to employ GNNs
for building component DNNs so that they can process
channel vectors of arbitrary length.
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