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a b s t r a c t

This study presents a novel ship route planning algorithm that takes into account both operational
economy and safety by integrating the A* algorithm with a collision avoidance algorithm that evaluates
the Collision Risk Index (CRI) between the own ship and the target ship. The CRI-based A* algorithm
defines a penalty zone, allowing the own ship to explore safe routes based on the International Regu-
lations for Preventing Collisions at Sea 1972 (COLREGs) and performs an adaptive and effective node
search on an extended local map grid according to various encounter situations. The proposed algorithm
is validated through simulations of head-on, fine-broad crossing, converging crossing, and overtaking
encounters, indicating an economical and safe optimum route compared to conventional ship domain-
based route planning.

© 2023 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Smart ship technologies are evolving based on Information and
Communication Technology (ICT) and Artificial Intelligence (AI)
technology, and the biggest advantages of unmanned vessels,
economics, and stability, must be considered in the development of
unmanned vessels.

The economic feasibility of ships can be improved by exploring
routes that minimize Fuel Oil Consumption (FOC), which is also
linked to marine environmental regulations; therefore, route
optimization is a very important issue. At the same time, collision
avoidance is crucial for the safety of ships, particularly in operating
systems such as autonomous vessels. It is highly important to select
safe avoidance routes by assessing the risk of collision with other
vessels based on maritime regulations such as COLREGs. To achieve
a balance between ship safety and economic considerations, it is
necessary to develop algorithms that minimize the risk of collision
while maximizing operational cost-effectiveness.
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In this study, we propose a route planning method that con-
siders both the safety and optimality of the route by applying a CRI
and adhering to COLREGs regulations using an enhanced A* algo-
rithm. The proposed algorithm explores nodes in the area suitable
for collision avoidance between ships. The CRI takes into account
factors such as Distance Closest Point of Approach (DCPA), Time
Closest Point of Approach (TCPA), relative distance, relative angle,
and relative velocity, representing the level of risk on a scale from
0 to 1. Additionally, a penalty zone is defined based on the Target
Ship (TS) to ensure that the A* algorithm adheres to the COLREGs
regulations. These two factors are incorporated in the A* algorithm
and iteratively updated, influencing the search space of the algo-
rithm. The proposed method has been validated through 2000
simulations in various encounter scenarios, and the results show
that it efficiently explores economic routes while maintaining a low
risk of collision compared to other ship domain models such as
Goodwin, Fuji, and Szlapczynski.

2. Literature survey

There have been many previous studies on technologies to find
economical routes for ships. For example, many studies proposed a
route search method that minimizes the Estimated Time of Arrival
(ETA) or traveling distances. For this, various meta-heuristic
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Nomenclature

SO Location of own ship
ST Location of target ship
VO Velocity of own ship
VT Velocity of target ship
4O Course of own ship
4T Course of target ship
DR Relative distance
VR Relative velocity
4R Relative course
qT Relative bearing
uDCPA Membership function of DCPA
uTCPA Membership function of TCPA
uDR

Membership function of relative distance
uqT Membership function of relative bearing
uε Membership function of VT / VO
s Start node

u Current node
v Next node
R Range of penalty zone
d Cost between s and u
r Binary variable about CRI
c Binary variable about COLREGs rulebt Estimated progress time

Abbreviations
CRI Collision risk index
OS Own ship
TS Target ship
SOG Speed over ground
DCPA Distance at closest point of approach
TCPA Time at closest point of approach
ETA Estimated time of arrival

C. Seo, Y. Noh, M. Abebe et al. International Journal of Naval Architecture and Ocean Engineering 15 (2023) 100551
optimization algorithms such as Genetic Algorithm (GA) (Wang
et al., 2020), simulated annealing algorithm (Vlachos, 2004), and
anti-colony algorithm (Tsou and Cheng, 2013) to find the optimal
route (see Table 1). A dynamic programming was used for a ship
voyage optimization (Zaccone et al., 2018) and combined with a
genetic algorithm to optimize ship engine powers and reduce fuel
and air emissions (Wang et al., 2021). Most representative heuristic
optimization algorithms used in path finding, A* algorithm, have
Table 1
Summary of literature surveys.

Category Algorithms

Ship route optimization Meta-heuristic
algorithm

Genetic algorithm
Anti-colony algorithm
Ant colony algorithm
Simulated annealing algorithm
NSGA-II algorithm

Heuristic algorithm A* algorithm
Improved A* algorithm
GA þ A* algorithm

Machine learning Reinforcement learning
Deep Q network algorithm

Dynamic algorithm 3D dynamic programming
GA þ Dynamic programming
GA þ Velocity obstacle

Collision avoidance Meta-heuristic
algorithm

Optimal reciprocal algorithm

Rule-based algorithm Fuzzy logic þ COLREG
Machine learning Deep reinforced learning based on C

Deep reinforced learning with LSTM
NN þ fuzzy logic
Attention-mechanism based on deep
Hybrid ARIMA-LSTM

Others Deterministic optimization algorithm
situations
Predictive probability using Kalman

Path
optimization þ Safety

Meta-heuristic
algorithm

GA þ COLREG for multi-encounter si
NSGA-II þ COLREG
Modified potential field ant colony a

Heuristic algorithm A* algorithm þ COLREG
Dynamic anti-collision A* algorithm
situations

Machine learning Deep Q þ COLREGs

Others Danger immune algorithm þ COLREG
3D ship motion model þ Beta antenn

2

been used. Water current, traffic separating, and berthing were
considered to predict FOC models for path finding (Liu et al., 2019)
and combined with 2-D grid-based Gas (Tanakitkorn et al., 2014).
Ship voyage optimization utilized dynamic programming (Zaccone
et al., 2018) and combined it with a genetic algorithm to optimize
ship engine powers, reducing fuel and air emissions (Wang et al.,
2021). In path finding, popular heuristic optimization algorithms
like the A* algorithm were employed. An improved A* algorithm
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Guo et al. (2021)
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Zhao et al. (2016)

Hu et al. (2020)
OLREG Zhao and Roh (2019), Ning et al. (2020), Chun

et al. (2021)
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reinforcement learning Jiang et al. (2022)
Abebe et al. (2022)
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considering water current, traffic separating, and berthing factors
was proposed (Liu et al., 2019) and combined with a 2-D grid-based
GA (Tanakitkorn et al., 2014).

In recent days, various studies have applied machine learning
models for ship route optimization. Zhang et al., 2021a employed
an ANN for FOC prediction and an enhanced ant colony optimiza-
tion algorithm for multi-objective ship route optimization. Shin
et al. (2020) introduced an improved A* algorithm that addresses
the limitations of traditional A* algorithms and enables smoother
route exploration. Recently, reinforced learning has emerged as a
development for ship route optimization. Guo et al. (2021) pro-
posed optimized deep Q network algorithm for coastal ship path
planning. Similarly, Moradi et al. (2022) utilized ANN for FOC pre-
diction and optimized deep Q network algorithm for ship route
optimization.

Ship safety is vital in operational planning, considering eco-
nomic feasibility and collision risks. CRIs play a key role in quan-
tifying collision risks. Studies have proposed evaluation methods
and avoidance algorithms based on CRIs and COLREGs. Kearon
(1977) introduced risk estimation methods using parameters like
DCPA and TCPA. Xu et al. (2010), Bukhari et al. (2013), and Ahn et al.
(2012) employed fuzzy methods to statistically consider various
factors affecting collision risks. Abebe et al. (2021) enhanced CRI
evaluation using the Dampster-Shafer theory and gradient boosting
regressor. In terms of collision avoidance algorithms, Zhao and Roh
(2019) proposed a strategy based on deep reinforcement learning
and COLREGs, while Zhao et al. (2016) introduced a fuzzy theory-
based CRI evaluation method and a collision avoidance algorithm
using velocity obstacles. Nguyen et al. (2018) integrated a CRI
evaluation model into AIS for small vessels. Abebe et al. (2022)
employed a hybrid ARIMA-LSTM model to predict ship trajec-
tories for collision avoidance. Additionally, Hu et al. (2020); Yu et al.
(2022); Xie et al. (2020); and Sawada et al. (2021) developed
collision avoidance algorithms for multi-ship encounters.

Previous studies focused on either economic path optimality or
collision risk assessment and avoidance. Recent research has aimed
to simultaneously consider both path optimization and safety.
Various algorithms such as fast grid-based collision avoidance
(Blaich et al., 2012), danger immune algorithms (Xu et al., 2010),
optimal collision avoidance control theory (Xie et al., 2019), GA
(Ning et al., 2020), NSGA-II (Li et al., 2019), and deep Q network
(Guo et al., 2021; Xu et al., 2022) have been proposed. A* algorithm
for dynamic anti-collision was proposed for multi-ship encounter
situations (He et al., 2022). However, many of these studies lack
consideration of both COLREGs and collision risk indices (CRIs)
together. They also do not account for weather effects and lack
general applicability due to limited simulation tests. Advanced
route optimization methods based on reinforcement learning have
potential, but their lengthy optimization process hinders real-time
route prediction.

However, most of the studies have proposed the ship's trajectory
planning considering ship collision avoidance that uses only CRI
without COLREGs or COLREGs without CRIs. They use distance-
based path cost to explore economic routes while reducing the
risk of collision, which may be difficult to calculate accurate route
costs because they do not consider weather effects such as waves
and wind. Simulation tests considering specific encounter situa-
tions and ships' operating conditions are insufficient to show the
general applicability of the proposed algorithms. Recently,
advanced route optimization methods based on reinforcement
learning have been actively developed. However, these methods
often require a significant amount of time for optimization, limiting
their practical application for real-time route prediction.

Compared to previous studies, this study makes the following
main contributions: (1) It proposes a CRI-based pathfinding
3

algorithm that incorporates the CRI and COLREGs into the improved
A* algorithm. The improved A* algorithm utilizes weather-based
ETA costs, allowing for more accurate evaluation of route costs
compared to distance-based methods by considering weather fac-
tors and providing more precise sailing times. By evaluating the CRI
and finding an economic path that adheres to COLREGs, the algo-
rithm enables the identification of economical, safe, and reliable
paths. (2) An adaptive node search method, which adjusts ac-
cording to encounter situations, reduces the computational time
required for the existing node search in the implemented A* al-
gorithm. (3) The introduction of a penalty zone prevents unnec-
essary route searches as the ship follows COLREGs. (4) By
continuously calculating CRI values during navigation, the algo-
rithm ensures a more economical and safer route compared to
other ship domain models. (5) The dataset, comprising 2000 data
points generated through Latin hypercube sampling, includes high-
risk encounter situations and operating conditions, providing
validation for the safety and economics of the proposed algorithm.

3. CRI-based A* algorithm

3.1. Overview of the proposed algorithm

When the Own Ship (OS) encounters the Target Ship (TS), it
determines whether to give way after collecting AIS data for the
target ship. According to the COLREGs, if the position of the target
ship is included within a radius of 6 nm within an angle
of �5�e112.5� based on the own ship's moving direction, the own
ship is obliged to give way. When the own ship needs to give way,
the low-resolution global map grids are subdivided into high-
resolution local map grids to define the start and end nodes in
the dense grid. Once the local map grid is generated between the
own ship and the target ship, the process of searching for avoidance
paths through the proposed CRI-based A* algorithm, as shown in
Fig. 1, begins.

Starting from the start node, the path cost (f cost) at the current
node and violations of the CRI value and COLREGs are first checked.
If the current node is not the same as the end node, an edge
relaxation process is conducted to calculate the path cost of adja-
cent nodes and update the path cost when moving to the adjacent
nodes. After checking for violations of the CRI value and COLREGs at
the adjacent node, the algorithm returns to the first step, and the
node with the smallest path cost becomes the current node.

Section 3.2 explains how to evaluate the f cost at search nodes in
the A* algorithm, where the f cost represents the ETA calculated
using the SOG model. In the A* algorithm, an adaptive node search
direction is proposed based on the avoidance situation for efficient
search for paths within the dense grid map generated during
collision avoidance. Section 3.3 explains the CRI evaluation method
based on fuzzy theory, which incorporates parameters such as
DCPA, TCPA, relative distance, relative angle, and relative speed. The
collision risk levels can be divided into low (0 � CRI<0.4), medium
(0.4 � CRI<0.7), and high (0.7 � CRI<1.0) (Zhou and Wu, 2004). A
CRI value exceeding 0.7 indicates a high risk of collision, hence 0.7
is set as the collision avoidance criterion. Users have the flexibility
to set a lower CRI value for safer collision avoidance, depending on
their preference. Section 3.4 describes the definition of the penalty
zone, which represents an areawhere the target ship is obligated to
give way based on COLREGs. The CRI values and COLREGs are uti-
lized as constraints in the route optimization process using the A*
algorithm. Section 3.5 outlines the path search process that adap-
tively avoids collisions using the CRI and penalty zones within the
A* algorithm. Section 4 introduces the ship domain models used in
previous research and compares the navigation efficiency and
safety between the proposed method and existing model-based



Fig. 1. Flow chart of collision avoidance system.
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methods through simulation tests involving various encounter
situations between the own ship and the target ship.
Fig. 2. Ship encounter situation.
3.2. A* algorithm using SOG prediction model

The A* algorithm, proposed by Hart et al. (1968), applied a cost-
evaluation methodology called "Heuristic" to address the in-
efficiency of the Djikstra algorithm, which explores all directions
equally. The heuristic method reduces the calculation of unnec-
essary nodes, enabling quicker determination of the destination.
The A* algorithm aims to find the path from a given start node to
the end node with the minimum cost, as depicted in Eq. (1).

Minimize f ðuÞ¼ gðuÞ þ hðuÞ (1)

Here, g(u) is the actual distance cost from the start node to the
current node (u), and h(u) is the minimum expected cost from the
current node to the end node as a heuristic function. The objective
function is mainly used as cost; f(u) is the distance or time. In this
study, the Estimated Time of Arrival (ETA) was used as the cost. The
ETA is defined as

ETA¼ 2� Dðu; vÞ
SOGðuÞ þ SOGðvÞ (2)

where u and v are the current and next nodes, respectively. D(u,v) is
the great-circle distance between two nodes calculated using a
4

haversine function, and SOGs need to be obtained from the ship
speeds at the current and next nodes. In this study, SOG was pre-
dicted based on AIS and weather data using XGBR, where 13 vari-
ables are used as input variables through variation inflation factor
analysis. The AIS-related variables include COG and draught; the
weather-related variables include total wave height, total wave
direction, total wave period, pressure surface, sea surface salinity,
sea surface temperature, wind speed, wind angle, current speed,
and current angle; gross tonnage was also considered as an addi-
tional variable. The XGBR was verified as accurate and robust for
predicting the speed (Chen and Guestrin, 2016; Shin et al., 2020;
Abebe et al., 2020).

Each time a node is searched in the A* algorithm, the above
calculation is repeated, and when the current node becomes the
end node, the loop ends, and the path from the end node to the
start node is derived. Among the algorithms that search for paths
using nodes, A* is the most popular because it generates a small
number of search nodes and efficiently finds the optimal path. If a
path is determined by searching for fewer nodes than that of A*, the
path may not be optimal (Dechter and Pearl, 1985).

However, traditional A* algorithms are disadvantageous in that
they present non-smooth paths in the grid node map. To solve this
problem, Shin et al. (2020) proposed a method of reducing
computational time and obtaining a smooth path by increasing the
search nodes of the existing 8-way method algorithm to 16-way.
Smooth pathfinding and fast calculation time are important for
making fast decisions and taking action in situations where there is
a real risk of collision. Therefore, this study proposes an improved
A* algorithm for collision avoidance that efficiently searches nodes
in consideration of the ship's encounter angle and maneuvering
characteristics according to COLREGs.

Fig. 2 shows various encounter situations; head-on, overtaking,
fine-broad crossing, and converging crossing, according to the
relative angles between the own ship and the target ship. According
to each encounter situation, the A* algorithm performs two types of
node searches, as shown in Fig. 3. Traditional A* algorithms search
for nodes located in 45� directions in all directions from the current
node, as shown in Fig. 3(a). However, in the case of head-on or fine-
broad crossing situations within ±60� of the relative angle, as
shown in Fig. 3(b), it is sufficient to conservatively search for nodes
only within the most extreme boundaries in fine-broad crossing.
On the other hand, for converging crossing situations, as shown in
Fig. 3(c), collisions can be avoided even if only the node is searched
up to the boundary within ±112:5�. Once the search space is
defined based on the current node, the current node selects the
node with the lowest path cost within the search space. Then, the
selected node becomes the current node and repeatedly searches



Fig. 3. Traditional node search and adaptive node searches.

Fig. 4. Diagram of the two-ship encounter geometry.
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the node with the lowest path cost until it reaches the target node.
In the case of an overtaking situation, the own ship does not
significantly change the direction; thus, the own ship only searches
for nodes within ±60� as with the head-on and fine-broad crossing
situations.

The adaptive node search, which changes the node search area
according to the encounter situation, efficiently searches nodes
toward the direction of the end node, unlike traditional path search
algorithms that search in all directions. This method is based on the
assumption that the own ship is sailing in a great sea and there are
no major obstacles between ships and non-holonomic character-
istics in ship maneuvering. In addition, it can make the path
smoother and more realistic by enabling node search at a narrower
angle than the 8-way search method. Calculating the forward-
biased area of the ship standard to reduce computational time
can allow the proposed algorithm to quickly find the optimal path
in the event of a collision risk situation. The proposed method was
developed for single-vessel collision scenarios; however, in situa-
tions involving multiple vessel encounters, the selection of the path
considers the lowest collision risk and cost based on the CRI
calculation between the own ship and target ships. Modifications to
the selected area for node exploration may be necessary.
3.3. Collision risk assessment

To avoid the collision of ships, various factors, such as relative
angles and directions, should be considered in addition to the
distance between the own ship and the target ship. The CRI eval-
uates the degree of collision risk by comprehensively considering
the DCPA, TCPA, relative distance, relative bearing, and the relative
velocity between two ships. Among these, DCPA and TCPA corre-
spond to factors with large weights in determining the CRI values.
As shown in Fig. 4, DCPA and TCPA can be obtained through geo-
metric calculations of ship encounter situations where the dashed-
dotted lines represent the extended line of the relative velocity, VR.
The location coordinates, velocity, and course of the own ship are
SOðxO; yOÞ; VO, and 4O, and those of the target ship are ST ðxT ; yT Þ;
VT , and 4T . DR, VR, and 4R are the relative distance, velocity, and
course, respectively. aT is the azimuth of the target ship, and qT is
the relative bearing.

The equations for DCPA, TCPA, DR, and qT are defined in Eqs.
(3)e(9).

DCPA¼DR � sinð4R � aT �pÞ (3)

TCPA¼DR � cosð4R � aT �pÞ =VR (4)
5

DR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxT � xOÞ2 þ ðyT � yOÞ2

q
(5)

4R ¼

8>>><>>>:
tan�1�VRx

�
VRy
�
; VRx � 0;VRy � 0

tan�1�VRy
�
VRx
�þ 90�; VRx � 0;VRy � 0

tan�1�VRx
�
VRy
�þ 180�; VRx � 0;VRy � 0

tan�1�VRy
�
VRx
�þ 270�; VRx � 0;VRy � 0

(6)

�
VRx ¼ VTx � VOx
VRy ¼ VTy � VOy

;

�
VOx ¼ VO sin 4O
VOy ¼ VO cos 4O

;

�
VTx ¼ VT sin 4T
VTy ¼ VT cos 4T

(7)

VR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VRx

2 þ VRy
2

q
(8)

qT ¼ aT � 4O (9)

The factors introduced earlier (DCPA, TCPA, DR, qT , and VR) are
important for evaluating the collision risk index. However, it is
difficult to evaluate CRI deterministically because the relationship
between each factor is complex, and ambiguous and each factor has
a different effect on evaluating the risk of collision depending on
the encounter situation. Therefore, a recent study was conducted to
predict CRI through fuzzy inference using membership functions
for various factors, including DCPA and TCPA. Fuzzy inference can
reflect the influence of each factor in CRI evaluation through
membership functions according to various encounter situations. It
has beenwidely used in recent years because the degree of collision
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risk can be expressed as a 0e1 value, which is independent of the
scales of each factor. In this study, the CRI was calculated using the
membership functions of five factors by applying the weights used
in previous studies (Xie et al., 2019).

CRI¼W $U¼ð0:4;0:367;0:133;0:067;0:033Þ

266664
uDCPA
uTCPA
uDR

uqT
uε

377775 (10)

where W is the weight vector, and the weight values above are
typically used values that are estimated based on the difficulty of
ship avoidance in various collision situations using navigation
simulations (Xie et al., 2019; Zhang et al., 2021b). U is the mem-
bership matrix, and ε is the velocity ratio of the target ship to the
own ship, ε ¼ VT=VO. The membership functions for each factor are
defined in Eqs. (11)e(15). The parameters used in these equations
are listed in Table 2 (Li and Pang, 2013; Gang et al., 2016; Hu et al.,
2020). In Table 2, d1 and d2 refer to the minimum distance and
safest encounter distance between two ships, respectively. The
factor ‘2’ between d1 and d2 reflects the instability and incoordi-
nation of the ships. t1 and t2 are the time taken by the give-away
ship from the start of avoidance action to the nearest point of
approach and the time of taking action to the target ship, respec-
tively. D1 and D2 are the distance to be avoided by the give-away
ship taking avoidance action and the safe distance for the give-
way ship to take collision avoidance action, respectively. The for-
mula for D2 is obtained by the radius of the marine power model
proposed by Davis et al. (1980) considering the relative bearing
between the own ship and target ship.

uDCPA¼

8>>>><>>>>:
1;

0:5�0:5sin
�

p

d2�d1

�
jDCPAj�d2þd1

2

	

;

0;

jDCPAj�d1
d1<jDCPAj�d2
d2<jDCPAj

(11)
Table 2
Explanation and calculation of relevant parameters.

Variables Formulas

d1 8>>>>>><>>>>>>:

1:1� 0:2qT
180

�
; 0 � qT <112:5

1:0� 0:4qT
180

�
; 112:5� � qT <18

1:0� 0:4ð360� qT Þ=180�; 180� � qT

1:1� 0:2ð360� qT Þ
180�

; 247:5� � qT �
d2 d2 ¼2d1
t1

t1

8>><>>:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
1 � DCPA2

q
VR

; jDCPAj � D1

D1 � jDCPAj
VR

; jDCPAj>D1

t2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
122 � DCPA2

p

VR
D1 ð8e12ÞL
D2 1:7 cosðqT � 19�Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:4þ 2:89 cos2ðqT

p
C

cos�1

 
VOxVTx þ VOyVTyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVOx
2 þ VOy

2ÞðVTx
2 þ VTy

2Þ
q

1CCA
L: length of the own ship.

6

uTCPA ¼

8>>>><>>>>:
1; t1 � jTCPAj�
t2 � jTCPAj
t2 � t1

	2

; t1 < jTCPAj � t2

0; t2 < jTCPAj

(12)

uDR
¼

8>>>><>>>>:
1; 0 � DR <D1�
D2 � DR

D2 � D1

	2
; D1 � DR � D2

0; D2 <DR

(13)

uqT ¼0:5

"
cosðqT �19�Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
440
289

þ cos2ðqT � 19�Þ
r #

� 5
17

(14)

uε ¼ 1
1þ 2

ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε
2þ1þ2ε sin C

p
(15)

As can be seen from Eqs. (11)e(15) above, CRI has a value be-
tween 0 and 1 for the degree of collision risk by simultaneously
reflecting various conditions for two ships. The closer it is to 1, the
higher the collision risk. Because the risk of collision is generally
considered high when the CRI is greater than 0.7 (Nguyen et al.,
2018; Gang et al., 2016), an immediate collision avoidance ma-
neuver is required when having a high CRI value in a collision sit-
uation. The CRI-based A* algorithm prevents a node having a CRI of
0.7 or more from being selected as the next node when searching
for a path. This enables a safer, more robust, and more efficient
route search than determining the safety area by considering only
the relative distance between ships. The advantage of the proposed
method over the existing ship domain-based path search is
described in detail in Section 4.

3.4. COLREGs compliant collision avoidance method

In situations where there is a risk of collision between two ships
at sea, if there is confusion in determining the direction of avoiding
each other, the risk of collision increases and can lead to accidents.
Explanation

�

0�

<247:5�

360�

Smallest encounter distance

Absolute safest encounter distance
Ship collision time

Avoidance time

Distance of last actionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 19�Þ Distance of action

Collision angle (0� � C � 180�)



i. For all nodes 2 N in graph G provided, initialize with
d(node) ¼ ∞ and r½node�, c[node] ¼ False

ii. For source s, initialize d(s) ¼ 0 and f (s) ¼ d(s) þ heuristic(s), then put into
Queue as key with value of f.

iii. Extract minimum-valued node u from Queue.
iv. Checking safety and regulation, If r½u� or c[u] is True then repeat iii.
v. Execute edge relaxation and examining CRI and COLREGs based on d at

adjacent node v, putting newly visited nodes into Queue.
vi. Repeat iii., iv., and v. until the path reaches the target node t.
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Therefore, the IMO enacted the COLREGs in 1972 to prevent this.
The COLREGs consist of five parts from A to E, of which Part B, a rule
related to navigation, is an important part of determining the di-
rection of collision avoidance. Zaccone et al. (2019) dealt with
collision avoidance decisions considering Part B. In this study, the
proposed algorithm performed a safe path search by applying the
regulations on Part B's collision avoidance direction and give-way
according to the COLREGs.

To avoid a collision between two ships, it is important to ensure
that the own ship does not enter the area (penalty zone). Here, the
encounter angle required to give way is between �5� and 112.5�

based on course over ground of the target ship, and the radius R
that determines the range of the penalty zone is 12 min away from
the SOG of the target ship. Fig. 5 shows the penalty zonewith radius
R and is defined by reference to the radius used in the look head
function of the Electronic Chart Display and Information System
(ECDIS), an electronic map used by ships at sea. The look head is a
range based on the speed of the target ship and generally uses
rectangular and cone shapes. In ECDIS, dangerous areas when
sailing are determined according to the set range of look heads.
Although the criteria for setting the range of look heads used in
ECDIS are different depending on the shipping company operated
by the ship, it is generally used based on the distance of 12 min
based on the SOG of the target ship, and the range R of the penalty
zone is also determined using the same criteria.

R¼ SOGT � 12=60 ½nm� (16)

When selectively searching for nodes in the direction of the
target node for economic operations described in Section 3.1, the
penalty zone is defined as areas where it is impossible to avoid
collisions. Because the proposed CRI-based A* algorithm selectively
searches for nodes that do not belong to the penalty zone, it
searches for paths that comply with the COLREGs.
3.5. Collision avoidance routing

Most path search algorithms, including typical A* algorithms,
Fig. 5. Penalty zone.

7

aim to find paths on a set map, and obstacles to avoid are marked
on the map in advance, making it impossible to consider dynami-
cally moving objects. However, if the path and time of the object's
movement can be known in advance, dynamic objects can be re-
flected in the path search using the tree structure of the A* algo-
rithm. This section describes how the proposed algorithm reflects
the dynamic characteristics of the target ship, excludes collision
risk nodes, and searches for safe routes.

The procedure of the proposed A* algorithm for ship collisions is
shown in Fig. 1 and described as follows:
where N is the set of all nodes, G is the map graph, and d is the ETA
between the start node (s) and a node.

In step i, d(node) is the ETA between the start node and all nodes
in N. r is a bool value that determines whether there is a risk of
collision according to the CRI value and has only a True or False
value. It has a True value for CRI<0.7 and False for CRI�0.7 (Zhou
and Wu 2004; Hu et al., 2020). c is a bool variable that de-
termines whether the own ship enters the penalty zone. When the
own ship enters the penalty zone, c is True; otherwise, False. In the
proposed algorithm, to search for a path that satisfies both collision
safety and the COLREGs simultaneously, if either is violated, node v
is put in a closed set and excluded from the next node candidate.
The proposed algorithm is similar to the traditional A* algorithm
dealing with an obstacle zone, but there is a difference in the
calculation of the avoidance paths based on the dynamic motion of
the target ship.

The A* algorithm has a heap-type nonlinear graph structure
based on a complete binary tree, which means that the data is hi-
erarchically structured, unlike a linear structure. As a feature of the
heap structure, all search nodes except the start node have one
parent node. Therefore, in the process of node search through the
algorithm, the A* algorithm can find the parent node of each search
node, and the parent node of the parent node can also be known.
Through this repeated parent node search, the path from the cur-
rent node to the start node can be calculated, and the distance and
time of the calculated path can bemeasured. This method is used in
the A* algorithm to calculate the path when the current node ar-
rives at the end node, which is used in this study to determine the
time taken from the start node to each current node to predict the
location of the target ship. However, because the A* algorithm
performs a one-time route calculation, the following two as-
sumptions are required to predict the location of the relative ship.

First, the speeds of the own ship and the target ship do not
change. Second, the target ship does not give way. In other words,
COG is assumed to be constant. The own ship is assumed to be a
power-driven vessel, and the target ship is assumed to be a vessel
restricted in its ability. The estimated progress time (bt) through the
distance from the start node to the current node can be determined
using the above two assumptions. As shown in Eqs. (17)e(19), the
expected location (latitude and longitude) of the target ship that
changes for each node can be found.



Table 3
Pseudocode of the CRI-based A* algorithm.

Fig. 6. Ship domain models.

Table 4
Initial data of simulation ships.

Latitude [deg] Longitude [deg] SOG [knot] COG [deg]

Own ship 37 131 15 0

Target ship Head-on 37.1 131 15 180
Fine-Broad Crossing 37.085 131.035 15 225
Converging Crossing 37.065 131.065 16 265
Overtaking 37.06 131 5 0
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bt¼Distancevðs; vÞ = SOGOS (17)

LatitudeTSðvÞ¼ LatitudeTSðsÞþ SOGTS $ cosðCOGTSÞ$bt (18)

LongitudeTSðvÞ¼ LongitudeTSðsÞþ SOGTS $ sinðCOGTSÞ$bt (19)

Therefore, to apply the CRI and penalty zone to the proposed A*
8

algorithm, in the process of inputting d(v) of the adjacent node[u]
as a key value, the previously calculated CRI value and the target
ship are input to the position of r[v] and the Boolean value of c[v],
respectively. Then, the node selected as the smallest f cost is
checked to satisfy the two constraints (CRI and COLREGs). Other-
wise, the node that satisfies the two constraints and has the next
low cost is selected. In the preceding iterative manner, when the
current node(u) is equal to the end node(t), the final path is
generated, and the algorithm is terminated. The end node is



Fig. 7. Collision avoidance simulations of the proposed algorithm on local map grids.
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defined as the intersection where the ship's route is extended to
meet the edge of the local map, allowing the own ship to follow the
existing economic route after taking a collision avoidance action.
The pseudocode of the proposed algorithm is presented in Table 3.
The CRI-based A* algorithm ensures safer operation, by lowering
the risk of collision than conventional A* algorithms in that it
rediscovers collision avoidance paths under COLREGs when po-
tential collisions are detected within the penalty zone.

4. Comparison with ship domain

Sections 2 and 3 discuss in detail the map grid configuration in
which the algorithm is performed, the A* algorithm using SOG
prediction models, CRI, and how to apply the COLREGs to search for
paths capable of collision avoidance based on the A* algorithm. This
section examines how the CRI-based A* algorithmworks compared
with other methods based on traditional ship domains. First, we
examined whether the proposed algorithm can generate routes
that avoid the target ship's access from various angles. Next, the
existing ship domain-based and CRI-based collision avoidance
9

algorithms are applied equally to the A* algorithm to evaluate the
avoidance maneuvering performance of the own ship in various
encounter situations.

4.1. Building the environmental map

Before testing the performance of the proposed algorithm, the
grid size of the map used was reduced, and its resolution was
increased. The global map and prediction models used in previous
studies were suitable for route planning in a large sea, and it takes a
long time to compute as the size of the map is large. However, in
routing for collision avoidance between ships, the distance be-
tween nodes must be short to search for detailed avoidance paths,
and the calculation time should be reduced to establish immediate
avoidance path planning. Therefore, in this study, the grid-based
global map was split into a local map, and the edges between
nodes were divided at 1/10 intervals so that the grid scale was
0.1 nm. The intersection points were used as nodes so that the al-
gorithm could search for more detailed paths. Linear interpolation
was performed at each node to apply the predicted SOG parameter,



Fig. 8. Collision avoidance path calculated in various situations on local map grids.

Table 5
The result table of measuring the maximum CRI and distance for each encountered situation.

CRI-based model Goodwin Fujii Szlapczynski

Head-on Max. CRI 0.57 0.92 0.81 0.55
Distance 11.67 11.53 11.62 12.45

Fine-Broad crossing Max. CRI 0.65 0.93 0.85 0.30
Distance 12.20 12.38 12.43 13.34

Converging crossing Max. CRI 0.62 0.27 0.22 0.21
Distance 11.67 11.96 12.06 13.54

Overtaking Max. CRI 0.63 0.94 0.95 0.57
Distance 11.50 11.62 11.72 12.62

Distance unit: nm.
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which is the g-cost used in the A* algorithm, to the local map.While
this study used a grid scale of 0.1 nm, using a denser grid scale can
ensure a smoother path and allow for more accurate calculation of
CRI.
4.2. Collision avoidance based on ship domain

The ship domain method, in which the safety area of a ship is
10
determined by the length over all (LOA), is generally used in colli-
sion avoidance and maritime transportation research. Goodwin
(1975) proposed a circular ship domain based on a ship's traffic
history, and different safety distances were determined according
to the angle of an encounter between ships. Fujii and Tanaka (1971)
and Coldwell (1983) proposed an elliptical ship domain; similarly,
the safety distance is measured in proportion to the LOA. In a recent
study, Szlapczynski et al. (2018) adopted the existing elliptical ship



Fig. 9. Sampled data for various encountered situations.
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domain but proposed that the safety distance is different by setting
the center of the ship domain differently depending on the
encounter situation. In addition, AIS data-based ship domain
(Hansen et al., 2013) and ship domain considering speed and hu-
man factors (Wang and Chin, 2016) were studied. In this study,
Goodwin and Fujii models are the most commonly used ship do-
mains, and Szlapczynski's relatively recently studied models were
selected and compared with collision avoidance models using CRI.
The CRI-based A* algorithm simultaneously evaluates the CRI and
path cost when performing a path search and selects a node with a
CRI of 0.7 or less. On the other hand, the ship domain-based path
search algorithm selects the node with the lowest path cost where
the target ship does not enter the ship domain based on the defined
safe distance. The paths calculated through comparison with each
ship domain were evaluated in terms of path efficiency and safety.
Fig. 6 shows the ship domains selected as a comparative model.
4.3. Simulation results and discussion

To confirm the validity of the proposed algorithm, paths were
searched for various encounter situations. Table 4 shows the
maneuvering characteristics of the own ship and the target ship
used in the simulation. It is assumed the visibility between the own
ship and the target ship is 6 nm based on COLREGs rule 22, and
thus, the distance at which the shipmust start collision avoidance is
approximately 6 nm. In the situation of head-on and crossing, it
started at a distance of approximately 6 nm based on the own ship,
and overtaking was set at a distance of 3e4 nm. Based on the own
ship, the route was calculated by setting a risk-level target ship in
four situations: head-on, fine-broad crossing, converging crossing
and overtaking. As shown in Fig. 7, the route calculated for each
encounter situation bypasses a specific collision risk region to avoid
a dangerous route. The path marked in blue is the path of the own
ship and is marked as 10e40 according to the time order of the path
finding. The black straight path is the path of the target ship and is
marked 1 to 4 in the time order. Looking at the path of the own ship
and the target ship, it can be seen that the path direction of the ship
11
changes before the collision occurs. In addition, paths facing each
other's port side were calculated according to the COLREGs. In the
case of an overtaking situation, because there is no regulation to
avoid in a specific direction, the fastest path was calculated based
on a criterion with a low risk of collision. Therefore, the proposed
algorithm calculates an appropriate avoidance path for four
different encounters.

However, to compare the CRI-based algorithm and ship domain
models, the path calculationwas performed by applying each of the
four models under the same conditions for the previous four situ-
ations. Fig. 8 shows the path calculation results obtained using the
ship domain models and the proposed algorithm. As shown in the
figure, the calculated path results depend on each collision avoid-
ance model; in general, the path results using CRI, Goodwin, and
Fujii show less path change, whereas the Szlapczynski model cal-
culates an avoidance path that is relatively far from the target ship.
Long relative distances can yield safe routes that lower the risk of
collision but are not good in terms of path efficiency. On the other
hand, a short relative distance can increase path efficiency, but the
risk of collision can increase; therefore, it is necessary to explore
economic routes under conditions where the risk of collision is not
high. The CRI-based model shows path distances similar to those of
the other models while maintaining a CRI value below 0.7.

Table 5 shows the calculated path length (distance [nm]) and
maximum CRI values of each model performed in each encounter
situation. As shown in the table, the CRI-based algorithm does not
have a maximum CRI value exceeding 0.7 in all four cases and has a
short path distance. In the case of Goodwin and Fujii models, the
calculated maximum CRI values vary greatly depending on the
encountered situation, and the CRI values are also estimated to be
0.7 or higher, indicating a high risk of collisions. This means that the
safety areas defined by the Goodwin and Fujii models can be
evaluated differently depending on the angle and speed of the
encounter. Szlapczynski's ship domain defines a larger safety area
than that of Goodwin and Fujii models, indicating that the path
efficiency is generally evaluated as the lowest CRI among the four
collision avoidance models, but the distance to the route differs by
approximately 1 nm compared to the proposed model.

A COLREGs-based dataset was created to test the collision
avoidance performance of the proposed algorithm in most areas
where avoidance obligations for various encounter situations are
required. The range of the generated data is defined as 5 < SOG<24,
|DCPA|<1, and TCPA<0.4 by the COLREGs, which is the case where
there is a risk of collision based on the operating state of the target
ship and the latitude, longitude, speed, and orientation of the own
ship. In addition, to simplify the simulation and uniform generation
of data, Latin Hypercube Sampling (LHS) was used to sample the
population sufficiently with 500 datasets for each area of head-on,
fine-broad crossing, converging crossing, and overtaking. The LHS
is the statistical sampling technique used to spread the sample data
more evenly in a defined region than random sampling; thus, it
simulates various encounter situations and operation conditions. In
actual maritime operations, there are often situations where other
vessels violate COLREGs or make unexpected speed and direction
changes. However, in this study, it was assumed that both the own
ship and target ships are unmanned ships, and encounters or col-
lisions that occur unexpectedly were not explicitly considered.
Fig. 9 shows the data sampled using the LHS method.

To verify the suitability of the CRI-applied A* algorithm using
2000 data points simulating four different encountered situations,
Goodwin, Fujii, and Szlapczynski models were applied to the A*
algorithm. Figs. 10 and 11 are box plots showing the maximum CRI
values and the distances of the paths among the avoidance paths
according to each model and situation. As shown in Fig. 10, the
Goodwin and Fujii models show that the collision risk is calculated



Fig. 10. Comparison of maximum CRI results.
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to be high on average in all situations. This is because the two
models use only distance-based ship domains and do not consider
relative speed and bearings, so there is a risk that own ships may
not take collision avoidance actions despite the high risk of the
actual collision. On the other hand, the Szlapczynski model has a
wider ship domain region than other models, making it mandatory
to take action to avoid collisions even when the risk of collision is
not necessarily high. Therefore, the Szlapczynski model has low CRI
values on average, which increases the travel distance owing to the
effect of reducing the economic feasibility of the route. However, in
the case of the CRI-based algorithm, as shown in Figs. 10 and 11, the
distance of the calculated path compared to those of the Goodwin
and Fuji models does not exceed the risk level of CRI but also has a
CRI value of 0.7 or less at the same time.

In addition, the CRI-based algorithm has a relatively low varia-
tion in maximum CRI values compared to Goodwin and Fujii
models. The reason for this is that the proposed method selectively
searches only for nodes with a CRI value not exceeding 0.7, while
Goodwin and Fujii have more diverse CRI values because they
generate various paths depending on the dynamic data of the target
12
ships due to their small ship domain region. In the conversing
crossing situation, the angle of the encounter between the own
ship and the target ship is narrow, and as shown in Fig. 7(c), most
own ships go around the target ship, so the variations in the
maximum CRI values also decrease due to the similarity of the
avoidance path of all models. However, the Szlapczynski model
causes the own ship to avoid the target ship excessively, resulting in
various CRI values ranging from 0.2 to 0.75. On the other hand, in
the overtaking situation, the Szlapczynski model, which has a high
safety distance, avoids the target ship far away, so most of the
maximum CRI values are concentrated around 0.5e0.6. However,
compared to the proposed algorithm, the Szlapczynski model still
has an excessively high or low maximum CRI value.

The CRI-based algorithm considers various factors affecting the
risk of collisionwhen evaluating the CRI; thus, the safety of the ship
can be accurately evaluated using operation data for the target ship
when searching for nodes of the A*algorithm. Thus, the proposed
algorithm is safe and economical compared to other ship domains.

Table 6 shows the mean values of CRI and the distance obtained
from the four different models for the four encountered situations.



Fig. 11. Comparison of distance results.

Table 6
Mean values of maximum CRI and distance of four models.

Encounter Measures CRI-based model Goodwin Fujii Szlapczynski

Head-on Max. CRI 0.6 0.8 0.75 0.38
Distance 11 11 11 11.5

Fine-broad crossing Max. CRI 0.55 0.6 0.6 0.4
Distance 10.5 10.5 10.5 11.5

Conversing crossing Max. CRI 0.68 0.95 0.95 0.6
Distance 12.2 12 12 14

Overtaking Max. CRI 0.5 0.7 0.7 0.5
Distance 10.1 10.1 10.2 10.8

Total Max. CRI 0.567 0.760 0.743 0.472
Distance 11.03 10.92 10.98 11.91

Distance unit: nm.
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The proposed method has a lower average value than the Goodwin
and Fujii models, with the maximum CRI value not exceeding 0.7.
On the other hand, the Szlapczynski model has a low CRI value
owing to its conservative ship domain. The proposed method cal-
culates paths of generally similar distances to the Goodwin and
13
Fujii models, while there is a large distance difference to the
Szlapczynski model. This means that the own ship using the
Szlapczynski model bypasses a long distance for collision avoid-
ance, which increases the total path distance, resulting in poor path
efficiency. In particular, it can be seen that in encountered
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situations with a high risk of collisions, such as head-on and
converging crossing situations, the CRI-based algorithm shows
significantly better results than other models. Therefore, the A*
algorithm applied with the CRI and COLREGs ensures the safety of
the route and efficient ship operation in avoiding collisions. If
encountered with the other ships during actual operation, the data
from the target ship and own ship can be used to efficiently
calculate avoidable routes, and SOG values used in algorithms can
be updated using weather and AIS data collected in real time. In
addition, because the last location of the collision avoidance path is
on the line of the optimized route by the A* algorithm, the own ship
can follow the optimumpath immediately after collision avoidance.

5. Conclusion

This study proposed an A* algorithm for collision avoidance
based on CRI and COLREGs. The proposed CRI-based A* algorithm
for collision avoidance finds the optimized path in consideration of
global map-based economic feasibility when there is no risk of
collision, but when the own ship enters the penalty zone defined
based on the COLREGs, it performs a CRI-based safe path search. To
this end, the global map can be subdivided into a local map,
enabling a more precise and accurate collision risk assessment and
improving the collision avoidance maneuvering of the own ship. In
addition, a more efficient route search is possible by designating
the area of the search node set according to various encountered
situations during the route search. To verify the performance of the
proposed method, 2000 data points for the target ship were
generated using LHS for four encounter situations (head-on, fine-
broad crossing, converging crossing, overtaking). The CRI-based
A* algorithm ensures the safety and economic feasibility by
exploring paths close to optimal in most collision risk situations
compared to Goodwin, Fujii, and Szlapczynski models using con-
ventional ship domains. The Goodwin and Fujii models, although
resulting in shorter path distances, had a higher risk of collision due
to their reliance on distance-based ship domains. On the other
hand, the Szlapczynski model, with its wider ship domain, had
lower collision risk but sacrificed path efficiency. In contrast, the
proposed algorithm maintained a CRI value below 0.7, ensuring
both safety and efficiency with similar path distances to the
Goodwin and Fujii models. Overall, the proposed algorithm
demonstrated robustness, providing a balanced solution with low
variability in both CRI and distance. In this study, the collision
avoidance route was explored in a situation where the speed and
direction of the target ship did not change. The size and maneu-
vering characteristics of ships and multi-ship encounter situations
were not considered, so that it could not be applicable when the
own ship or target ships are large in size or sudden collision
avoidance actions are taken. In future studies, we will study a more
advanced route search method in consideration of the various
aforementioned cases such as multiple encounter situations. In
addition, an algorithm for real-time route optimization and colli-
sion avoidance will be developed so that it can be applied to actual
maritime operations where inter-ship communication is possible.
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