
Received 6 November 2023, accepted 17 November 2023, date of publication 24 November 2023,
date of current version 30 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3336685

COSMOS: Coordinated Management of Cores,
Memory, and Compressed Memory Swap for
QoS-Aware and Efficient Workload Consolidation
for Memory-Intensive Applications
MYEONGGYUN HAN 1, EUNSEONG PARK1, YOUNGSAM SHIN 2, DEOK-JAE OH 2,
YEONGON CHO 2, AND WOONGKI BAEK 3, (Member, IEEE)
1Department of Computer Science and Engineering, UNIST, Ulsan 44919, Republic of Korea
2Samsung Advanced Institute of Technology, Suwon 16678, Republic of Korea
3Department of Computer Science and Engineering and Graduate School of Artificial Intelligence, UNIST, Ulsan 44919, Republic of Korea

Corresponding author: Woongki Baek (wbaek@unist.ac.kr)

This work was supported in part by the Samsung Advanced Institute of Technology, Samsung Electronics Company Ltd.; in part by the
National Research Foundation of Korea under Grant NRF-2021R1A2C1011482; and in part by the Institute of Information &
Communications Technology Planning & Evaluation under Grant 2021-0-01817.

ABSTRACT With the rapid growth in memory demands, the slowdown of DRAM scaling, and the DRAM
price fluctuations, DRAM has become one of the critical resources in cloud computing systems and
datacenters. The compressed memory swap (CMS) is a promising technique that improves the effective
memory capacity of the underlying computer system by compressing and storing a subset of pages in
memory instead of the disk swap. While prior works have extensively investigated resource management
techniques for workload consolidation, they lack the capability of dynamically allocating cores, memory,
and CMS to the consolidated applications in a controlled and efficient manner. To bridge this gap, this work
presents the in-depth characterization of the impact of cores, memory, and CMS on the QoS and throughput
of the consolidated latency-critical (LC) and batch applications. Guided by the characterization results,
we propose COSMOS, a software-based runtime system for coordinated management of cores, memory,
and CMS for QoS-aware and efficient workload consolidation for memory-intensive applications. COSMOS
dynamically collects the runtime data from the consolidated applications and the underlying system and
allocates the resources to the consolidated applications in a way that achieves high throughput with strong
QoS guarantees. Our quantitative evaluation based on a real system and widely-used memory-intensive
benchmarks demonstrates the effectiveness of COSMOS in that it robustly satisfies the QoS and achieves
high throughput across all the evaluated workload mixes and scenarios and significantly reduces the number
of explored system states.

INDEX TERMS Cloud and datacenter computing, compressed memory swap, efficiency, quality-of-service,
resource management, workload consolidation.

I. INTRODUCTION
The memory demands in cloud computing systems and
datacenters are explosively growing because of the rise of
emerging memory-intensive applications such as machine
learning and big data applications [37], [48]. In addition,

The associate editor coordinating the review of this manuscript and

approving it for publication was Alessandro Floris .

DRAM scaling has slowed down [24], [28] and there
have been large fluctuations in DRAM prices [45]. As a
result, DRAM has become one of the most critical and
expensive components in cloud computing systems and
datacenters [45].

The compressed memory swap (CMS) [39] is a promising
technique to host memory-intensive applications without
increasing the memory capacity of the underlying server

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 133199

https://orcid.org/0000-0003-1832-1032
https://orcid.org/0009-0000-6978-5780
https://orcid.org/0000-0002-3697-8946
https://orcid.org/0009-0002-1242-6343
https://orcid.org/0000-0002-1877-7307
https://orcid.org/0000-0002-8745-1327


M. Han et al.: COSMOS: Coordinated Management of Cores, Memory, and CMS

system [23], [45]. With the CMS, pages selected as victim
pages by the memory reclaim algorithm in the OS are
compressed and evicted to the CMS instead of the disk
swap. The CMS incurs overheads for compressing and
decompressing pages when pages are transferred between the
memory and CMS. However, since the page compression and
decompression operations are performed using CPU cores
and memory, the CMS is significantly faster than the disk
swap, which incurs expensive disk I/O operations [45]. The
CMS is supported by widely-used OSes such asWindows [3],
Linux [6], and macOS [5] and employed in commercial cloud
computing systems and datacenters [23], [45].
Workload consolidation is an effective technique to

improve the resource efficiency of cloud computing systems
and datacenters [11], [27]. Without workload consolidation,
dedicated servers are allocated to latency-critical (LC) appli-
cations that have soft or hard deadlines in order to satisfy their
quality-of-service (QoS) requirements, drastically degrading
the resource efficiency of cloud computing systems and
datacenters. Workload consolidation significantly improves
the resource efficiency by colocating the LC and batch
applications on the same physical server. The key challenge
for the resource manager for workload consolidation is to
find the right amounts of resources allocated to each of the
LC and batch applications in order to maximize the resource
efficiency while providing QoS guarantees.

Prior works have extensively investigated system software
support for workload consolidation [11], [15], [16], [27],
[31], [32], [33], [34], [46], [49]. However, most of the prior
works present system software techniques that mitigate the
performance interference caused by the contention on cores,
caches, and memory bandwidth [15], [16], [27], [31], [32],
[33], [34], [46], [49] but lack the capability of controlling the
contention on memory capacity. While the resource manager
proposed in [11] provides memory capacity partitioning,
it lacks the capability of dynamic management of the CMS,
which is crucial for satisfying the LC application’s QoS and
improving the throughput of the consolidated applications
with the limited memory capacity.

To bridge this gap, this work characterizes the impact of
cores, memory, and CMS on the QoS and the throughput of
the consolidated applications. Based on the characterization
results, we propose a system called COSMOS for coordinated
management of cores, memory, and CMS for QoS-aware
and efficient workload consolidation for memory-intensive
applications. We quantify the effectiveness of COSMOSwith
various LC and batch applications in various scenarios.

Specifically, this paper makes the following contributions:
• We present the in-depth characterization of the impact of
cores, memory, and CMS on the LC application’s QoS
and throughput of the consolidated memory-intensive
LC and batch applications. Through our characterization
study, we derive guidelines to effectively find an
efficient system state that can significantly improve
the overall throughput of the consolidated applications
while satisfying the QoS.

• Guided by the characterization results, we propose
COSMOS, a software-based system for coordinated
management of cores, memory, and CMS for QoS-
aware and efficient workload consolidation for memory-
intensive applications. COSMOS dynamically collects
the runtime data from the consolidated applications and
the underlying system and allocates cores, memory, and
CMS in a way that significantly improves the throughput
of the consolidated applications while satisfying the LC
application’s QoS.

• We design and implement a prototype of COSMOS
as a user-level runtime system on Linux. COSMOS is
lightweight and readily applicable to various commodity
systems without requiring the specialized hardware
support or the modifications of the underlying operating
systems.

• We quantify the effectiveness of COSMOS using
widely-used memory-intensive LC and batch bench-
marks on a real server system. Our experimental
results demonstrate that COSMOS provides strong QoS
guarantees and achieves high throughput across all
the workload mixes with various loads for the LC
application and memory overcommit ratios. In addition,
COSMOS significantly reduces the number of explored
system states by skipping the inefficient system states.
To the best of our knowledge, our work is the first to
present the in-depth characterization of the impact of
cores, memory, and CMS on the QoS and throughput
of the consolidated applications and design, implement,
and evaluate a coordinated resource manager for cores,
memory, and CMS for QoS-aware and efficient work-
load consolidation for memory-intensive applications on
a full commodity server system.

The rest of this paper is organized as follows. Section II
provides background information. Section III describes the
experimental methodology. Section IV characterizes the
impact of cores, memory, and CMS on the QoS and
throughput of consolidated applications. Section V presents
the design and implementation of COSMOS. Section VI
quantifies the effectiveness of COSMOS. Section VII dis-
cusses related work. Section VIII concludes the paper.

II. BACKGROUND
A. MEMORY RECLAIM AND CMS
When the memory usage exceeds thresholds, the operating
system (OS) performs memory reclaim to secure free space
in memory. During memory reclaim, the OS determines a set
of victim pages that need to be evicted frommemory based on
various metrics (e.g., recency, hotness) and moves the victim
pages from memory to the swap area to reserve free space.

Memory reclaim can be conducted in a foreground or
background manner. When a user-level process requests the
OS to allocate a free page but the current memory usage
exceeds a threshold, the OS conducts foreground memory
reclaim. Since the requesting process is blocked during

133200 VOLUME 11, 2023



M. Han et al.: COSMOS: Coordinated Management of Cores, Memory, and CMS

the foreground memory reclaim, it can drastically degrade
the latency-critical (LC) application’s QoS because of the
significantly increased tail latency.

When the memory usage exceeds another threshold
(typically set to a smaller value than that for the foreground
memory reclaim), background memory reclaim can be
triggered by the OS or user-level processes even without
any pending page allocation requests. One of the major
advantages of background memory reclaim is that user-level
processes can continue their execution during background
memory reclaim.

With the conventional disk swap, victim pages that are
evicted from memory are stored in the swap area in the
disk. The disk swap incurs significant performance overheads
because of the I/O operations that are executed to transfer
pages between the memory and disk.

The compressed memory swap (CMS) mitigates the
page swapping overhead by storing the victim pages in
the in-memory swap area instead of the disk. While the
CMS incurs overheads for compressing and decompressing
pages, it is still significantly faster than the disk swap
by eliminating the I/O operations. Widely-used OSes (e.g.,
zswap in Linux [6], memory compression in Windows [3],
and compressed memory in macOS [5]) support CMS. While
this work focuses on Linux and zswap, we believe that the
findings from this work can be applied to other OSes and
implementations of CMS.

zswap provides various compression and decompres-
sion algorithms and memory pools for victim pages [6].
Among the compression and decompression algorithms and
memory pools, we use the Lempel–Ziv–Oberhumer (LZO)
algorithm [4] and the zbud memory pool [18], which are the
default algorithm and memory pool for zswap.

B. WORKLOAD CONSOLIDATION
Workload consolidation enables the colocation of latency-
critical (LC) and batch applications on a single physical
server. LC applications are user-facing and interactive
applicationswith latency constraints. The target tail latency of
an LC application determines its latency constraint (e.g., the
99th percentile latency must be lower than one millisecond)
that must be satisfied to enable user-facing and interactive
services and is set based on the service-level agreement
between the provider and the user. The load for an LC
application is defined as the number of incoming requests per
second.

In contrast, batch applications are background applications
without any latency constraints. The common metric to
evaluate the performance of batch applications is throughput
such as the number of executed iterations of the main loop
per second and the amount of the input data processed per
second.

The main objective of workload consolidation is to max-
imize the throughput of the consolidated applications while
providing strong QoS guarantees for the LC application.

When resources are allocated in an unmanaged manner,
the LC application is likely to violate its QoS because
of the performance interference caused by the contention
on the resources (e.g., cores, memory capacity) shared by the
consolidated LC and batch applications.

To eliminate or mitigate the performance interference,
the resource manager for workload consolidation partitions
resources between the consolidated LC and batch applica-
tions. Production-quality operating systems provide support
for core and memory capacity partitioning. For instance,
Linux provides core and memory capacity partitioning
through control groups (cgroups) [1]. A cgroup is a set of
processes that can be allocated their own resources. Cores and
memory can be partitioned between the consolidated LC and
batch applications by associating each application with its
own cgroup and allocating disjoint sets of cores and memory
to each cgroup. Linux also allows to dynamically change the
amounts of the resources allocated to each cgroup.

III. EXPERIMENTAL METHODOLOGY
A. SYSTEM CONFIGURATION
In this work, we use two systems, each of which is used
as the server or client system. The server system runs the
consolidated latency-critical (LC) and batch applications.
The server system is equipped with the 16-core Intel Xeon
Gold 6226R CPU, 64 GB memory (4 × 16 GB DIMMs),
a 1 TB Samsung 970 EVO Plus NVM-e SSD, and a 100 Gb
NIC. 4 GB out of the 64 GB is reserved for the OS. The
server system is installed with Ubuntu 22.04 and Linux kernel
6.1.11.

Cgroups is used to partition cores and memory between
the LC and batch applications. In addition, sysfs is used
to dynamically (1) control the amount of the compressed
memory swap (CMS) allocated to the LC container (i.e.,
/sys/module/zswap/parameters/max_pool_-
percent) and (2) track the compression ratio, which is com-
puted by collecting the number of pages stored in the CMS
(i.e., /sys/kernel/debug/zswap/stored_pages)
and the actual amount of memory used by the CMS (i.e.,
/sys/kernel/debug/zswap/pool_total_size).

The client system runs the load generator for each of the
evaluated LC applications. The client system is equippedwith
two 32-core Intel Xeon Gold 6338 CPUs, 64 GB memory
(4× 16 GB DIMMs), a 1 TB Samsung 870 EVO SATA SSD,
and a 100 Gb NIC. The client system is installed with Ubuntu
22.04 and Linux kernel 5.15.0. The client and server systems
are directly connected through the 100 Gb Ethernet.

B. BENCHMARKS
We use two latency-critical (LC) benchmarks – mem-
cached [2], [14] and silo [19], [44], which are in-memory
key-value store and in-memory database, respectively. The
QoS target of memcached is that the 99th percentile latency
must be lower than 200 microseconds, which is in line with
the prior works [22], [38]. We use Lancet, which is an open

VOLUME 11, 2023 133201



M. Han et al.: COSMOS: Coordinated Management of Cores, Memory, and CMS

TABLE 1. Loads for the LC benchmarks.

loop-based load generator for memcached [21]. In line
with the prior works [11], [22], we configure the key and
value sizes to 30 and 200 bytes and the query type to read-
only. In addition, we configure the key popularity to follow
a Zipfian distribution [40] with a skewness parameter of
0.99 and the query inter-arrival time to follow an exponential
distribution in order to emulate the access [8], [47] and traffic
(e.g., micro-bursts) [19], [30] patterns commonly observed in
datacenters.

The QoS target of silo is that the 99th percentile latency
must be lower than one millisecond, which is in line with the
prior works [12], [35]. We use the load generator included
in TailBench for silo [19]. The load generator for silo
also generates queries with an exponential inter-arrival time
distribution based on the observations (e.g., micro-bursts)
from the prior works [19], [30].

We also use five batch benchmarks – betweenness central-
ity (BC) [9], breath-first search (BFS) [9], canneal [10],
connected components (CC) [9], and stream [29]. The met-
ric used to quantify the throughput of the batch benchmarks is
the number of executed iterations of themain loop per second.

We use the aforementioned LC and batch benchmarks
because they are memory-intensive and are widely used
for cloud computing systems and datacenter research [11],
[12], [15], [16], [35], [45], [47]. The thread count of each
benchmark is set to 16, which is same as the number of cores
in the CPU on the evaluated server system.1

In this work, we refer to a container that contains the LC
application as the LC container. In addition, we refer to a
container that consists of one or more batch applications as
the batch container.

We investigate the impact of cores, memory, and com-
pressed memory swap on the QoS of throughput of the
consolidated containers and evaluate the effectiveness of
COSMOS with various loads for the LC container. Table 1
summarizes low, medium, and high loads (in queries per
second (QPS)) for the LC benchmarks.

We also conduct experiments with various memory over-
commit ratios (MORs). The MOR is defined in Equation 1,

1There are mainly two widely-used mechanisms to control the concur-
rency of applications – (1) dynamic threading [36], [43] and (2) thread
packing [13], [41]. With dynamic threading, the concurrency of an
application is controlled by dynamically adjusting the number of threads
of the application. With thread packing, the concurrency of an application
is controlled by dynamically adjusting the number of cores allocated to
the application. A major disadvantage of dynamic threading is the limited
applicability because numerous applications lack the support for dynamic
threading. In contrast, thread packing can be applied to all applications
regardless of whether they support dynamic threading or not. Because of
the advantage of thread packing, we consider it as a mechanism for dynamic
concurrency control. To ensure the cores in the evaluated CPU can fully be
utilized, we configure the thread count of each benchmark to 16.

TABLE 2. Working-set sizes.

whereM is the total memory capacity (excluding the amount
of the memory reserved for the OS) of the underlying server
system and wLC and wBatch denote the working-set size of the
LC and batch containers, respectively. Table 2 summarizes
the working-set sizes of the evaluated benchmarks with low
(i.e., 1.075), medium (i.e., 1.15), and high (i.e., 1.3) MORs
in GB. For example, if we consider the workload mix of
memcached andBCwith themediumMOR, theworking-set
sizes of memcached and BC are 45.0 GB and 24.0 GB,
respectively. The MOR is then computed to be 1.15 (i.e.,
45.0+24.0

M = 1.15, whereM is 60 GB) on the evaluated server
system using Equation 1.

Memory overcommit ratio =
wLC + wBatch

M
(1)

IV. CHARACTERIZATION
In this section, we characterize the impact of cores, memory,
and compressed memory swap (CMS) on the QoS and the
throughput of the consolidated containers. While we only
present the experimental results with memcached (i.e., the
latency-critical (LC) container) and stream (i.e., the batch
container) for conciseness, other benchmarks exhibit similar
data trends. We execute the consolidated containers using
the following configurations – (1) low load and low memory
overcommit ratio (MOR), (2) low load and high MOR,
(3) high load and lowMOR, and (4) high load and highMOR.

In each of the configurations, we vary the number of
cores and the amounts of the memory and CMS allocated to
the LC container and analyze their impact on the QoS and
throughput of the consolidated containers.We denote the core
count, the amount of memory, and the amount of the CMS
allocated to the LC container as rLC,Cores, rLC,M, and rLC,CMS,
respectively. In addition, we denote the working-set size of
the LC container and the average compression ratio of the
pages stored in the CMS as wLC and γLC.
The upper bound of rLC,CMS is then computed using

Equation 2. Intuitively, Equation 2 indicates that there is
no need to further increase rLC,CMS once it becomes large
enough to fit wLC in memory and CMS or rLC,CMS cannot
exceed rLC,M because the CMS consumes the memory
allocated to the LC container.

rLC,CMS,max = min
(wLC − rLC,M

γLC − 1
, rLC,M

)
(2)

133202 VOLUME 11, 2023



M. Han et al.: COSMOS: Coordinated Management of Cores, Memory, and CMS

FIGURE 1. Impact of cores, memory, and CMS allocated to the LC container with low load and low MOR.

In line with the prior works on workload consolida-
tion [11], [16], [27], we use effective machine utilization
(EMU), which is a system-wide metric that quantifies the
throughput of the consolidated containers. If the LC container
violates its QoS, EMU becomes zero.

In contrast, if the LC container satisfies its QoS, EMU
is computed to be a positive value. A larger EMU value
indicates that the consolidated containers achieve higher
throughput. To compute EMU, we first compute the nor-
malized throughput of each of the consolidated applications
by dividing the throughput of the application with workload
consolidation (i.e., the hardware resources are shared by the
consolidated applications) by the solo-run throughput of the
application when it is allocated all of the hardware resources.
We then compute EMU by summing up the normalized
throughput of each of the consolidated applications.2 EMU
can be higher than 100% if the consolidated applications can
maintain high throughput (in a non-linear manner) even when
relatively small amounts of resources are allocated to them.

Figure 1 shows the EMU and disk swap rates (DSRs)
of memcached and stream with low load and low
MOR. Each cell in the heat maps represents a single data
point. Each heat map reports 20 data points collected from
20 configurations.

First, when a sufficient amount of the CMS (e.g.,
rLC,CMS = rLC,CMS,max) is allocated to the LC container,
its QoS is satisfied (i.e., EMU ̸= 0) across wide ranges of
rLC,Cores and rLC,M. This is mainly because the LC container
requires a relatively small amount of memory with a low
MOR and a relatively small number of cores with a low load.

Even when a sufficient amount of the CMS is allocated
to the LC container, its QoS is violated (i.e., EMU = 0)
with insufficient cores and memory (e.g., rLC,Cores = 2,

2Note that the throughput of the LC application (i.e., the load for the LC
application) is also used to compute EMU.

rLC,M = 35.7 GB, and rLC,CMS = rLC,CMS,max in Figure 1a).
This is mainly because the contention on the cores shared
by the threads of the LC container and the memory reclaim
threads. When a smaller amount of memory is allocated to
the LC container, more of its data is transferred between the
memory and CMS. This increases the CPU utilization of the
memory reclaim threads, causing the contention on coreswith
the threads of the LC container.
Second, when a sufficient amount of the CMS (e.g.,

rLC,CMS = rLC,CMS,max) is allocated to the LC container, the
EMU tends to increase as the number of cores and the amount
ofmemory allocated to the LC container decreases. The EMU
is maximized when the number of cores and the amount
of memory allocated to the LC container are small yet just
enough to satisfy the LC container’s QoS (e.g., rLC,Cores = 4,
rLC,M = 37.3 GB, and rLC,CMS = rLC,CMS,max in Figure 1a).
We also observe that the EMU gradually increases as the

LC container’s core count decreases. For example, Figure 1b
shows that the EMU increases from 66.3% to 82.5% as the
LC container’s core count decreases from 10 to 4 when
rLC,M = 37.3 GB. This is mainly because the batch container
gradually achieves higher throughput as it is allocated more
cores.
In contrast, the EMU abruptly increases only when the

amount of the memory allocated to the LC container is
small enough to make the working-set of the batch container
fit in memory. Except for this abrupt change, the EMU
minimally changes as the amount of the memory allocated
to the LC container decreases. This is mainly because the
hotness among the data accessed by the batch container
(i.e., stream) is uniform. With the uniform memory access
pattern, the batch container exhibits high performance only
when its entire working set fits in memory. The EMU
changes more gradually when the batch container includes
applications (e.g., BC) that exhibit non-uniform memory
access patterns.

VOLUME 11, 2023 133203



M. Han et al.: COSMOS: Coordinated Management of Cores, Memory, and CMS

FIGURE 2. Impact of cores, memory, and CMS allocated to the LC container with low load and high MOR.

Third, when a relatively small amount of the CMS is
allocated to the LC container, its QoS is satisfied with fewer
configurations. For example, when rLC,CMS =

rLC,CMS,max
2 ,

the QoS is satisfied with only eight configurations (c.f.,
18 configurations when rLC,CMS = rLC,CMS,max) out of
20 configurations. This is mainly because more memory is
needed to make the working set of the LC container fit in
memory when a smaller amount of the CMS is allocated to
the LC container. When the working set of the LC container
does not fit in memory by being allocated with insufficient
amounts of the memory and CMS, victim pages are evicted
to the disk swap. This incurs the QoS violation of the LC
container because of frequent I/O operations.

In an extreme case where rLC,CMS = 0, the LC container’s
QoS is violated across all the configurations. This indicates
that the use of the CMS is required to satisfy the QoS
when its working-set size exceeds its allocated memory
size.

Figure 2 shows the EMU and disk swap rates (DSRs) of
memcached and streamwith the low load and highMOR.
First, the overall EMU data trends are similar to the case
with the low load and low MOR in that the EMU tends to
increasewhen the number of cores and the amount ofmemory
allocated to the LC container are smaller.

Second, the highest EMU achieved with the low load
and high MOR (e.g., rLC,Cores = 6, rLC,M = 30.6 GB,
and rLC,CMS = rLC,CMS,max in Figure 2a) is similar to the
highest EMU achieved with the low load and lowMOR (e.g.,
rLC,Cores = 4, rLC,M = 37.3 GB, and rLC,CMS = rLC,CMS,max
in Figure 1a). This is mainly because the load for the LC
container is same and the batch container achieves similar
performance when allocated a sufficient amount of memory.

Third, in comparison with the case with the low load and
low MOR, the LC container needs to be allocated a larger
number of cores and a smaller amount of memory to achieve

the highest EMU (e.g., rLC,Cores = 4, rLC,M = 37.3 GB,
and rLC,CMS = rLC,CMS,max in Figure 1a vs. rLC,Cores = 6,
rLC,M = 30.6 GB, and rLC,CMS = rLC,CMS,max in Figure 2a).
Since the working-set size of the batch container increases
with the high MOR, the LC container needs to be allocated
a smaller amount of memory in order to make the working
set of the batch container fit in memory. As a result, a larger
portion of the data of the LC container is transferred between
the memory and CMS, increasing the CPU utilization of
the memory reclaim threads. To mitigate the contention
on the cores shared by the threads of the LC container and
the memory reclaim threads, more cores need to be allocated
to the LC container.

Fourth, in comparison with the case with the low load
and low MOR, the LC container requires a larger amount
of the CMS to satisfy its QoS. For instance, the LC
container’s QoS is violated across all the configurations when
rLC,CMS =

rLC,CMS,max
2 with the low load and high MOR

(Figure 2b), whereas it is satisfied with eight configurations
when rLC,CMS =

rLC,CMS,max
2 with low load and low MOR

(Figure 1b). Since the working-set size of the LC container
increases with the high MOR, the LC container requires a
larger amount of the CMS to make its working set fit in
memory.

Figure 3 shows the EMU and disk swap rates (DSRs)
of memcached and stream with the high load and low
MOR. First, the overall EMU data trends are similar to the
aforementioned cases in that the EMU tends to increase as
the core count and the amount of the memory allocated to the
LC container decrease.

Second, the highest EMU achieved with the high load and
low MOR is higher than that with the cases with the low
load. Since the LC container is applied with the high load, the
portion of the EMU contributed by the LC container increases
in comparison with the cases with the low load.

133204 VOLUME 11, 2023



M. Han et al.: COSMOS: Coordinated Management of Cores, Memory, and CMS

FIGURE 3. Impact of cores, memory, and CMS allocated to the LC container with high load and low MOR.

FIGURE 4. Impact of cores, memory, and CMS allocated to the LC container with high load and high MOR.

Figure 4 shows the EMU and disk swap rates (DSRs)
of memcached and stream with the high load and high
MOR. First, the overall EMU trends are similar to the
aforementioned cases. Second, the LC container’s QoS is
satisfied in fewer configurations than the other cases. This
is because the LC container requires larger amounts of
resources to satisfy its QoSwith the high load and highMOR.

Third, the highest EMU achieved with the high load and
high MOR is higher than those achieved with the cases
with the low load. Since the throughput of the LC container
increases with the high load, the overall EMU also increases.

In contrast, the highest EMU achieved with the high
load and high MOR is lower than that achieved with the
high load and low MOR. Since the working-set size of
the batch container increases with the high MOR, the LC
container needs to be allocated with a smaller amount of

memory. To make its working set fit in memory, the LC
container requires a larger amount of the CMS. Since the CPU
utilization of thememory reclaim threads increases withmore
frequent data transfers between the memory and CMS, the
LC container requires a larger number of cores, decreasing
the highest EMU achieved with the high load and high MOR.

Our characterization results clearly motivate the need for
coordinated management of cores, memory, and CMS to
significantly improve the EMU with strong QoS guarantees.
The findings learned from the characterization study are
summarized as follows.
• Impact of resources (C1): Cores, memory, and CMS
have significant impact on the LC container’s QoS and
the throughput of the consolidated containers in that
EMU widely varies depending on how the resources are
allocated to the consolidated containers.

VOLUME 11, 2023 133205



M. Han et al.: COSMOS: Coordinated Management of Cores, Memory, and CMS

FIGURE 5. Overall architecture of COSMOS.

• Impact of loads and MORs (C2): There is no single
configuration of cores, memory, and CMS that delivers
high EMU across various loads and MORs in that the
configuration of cores, memory, and CMS that results
in high EMU widely varies across various loads and
MORs.

• Allocation ofmemory andCMS (C3): The EMU of the
consolidated container is significantly improved (i.e.,
satisfying the QoS and achieving high throughput) when
the amount of the memory allocated to the LC container
is small enough to make the working-set of the batch
container fit in memory but the amounts of the memory
and CMS allocated to the LC container are large enough
to make its working-set fit in memory.

• Allocation of cores (C4): With a smaller amount of the
memory and a larger amount of the CMS allocated to the
LC container, the LC container requires a larger number
of cores that are sufficient to execute not only its threads
but also the memory reclaim threads for satisfying its
QoS.

V. DESIGN AND IMPLEMENTATION
Our characterization study shows that resources, loads, and
memory overcommit ratios have significant impact on the
latency-critical (LC) container’s QoS and the throughput of
the consolidated containers (i.e., C1 and C2 in Section IV).
Based on the characterization results, we propose COSMOS,
a software-based runtime system that dynamically allocates
cores, memory, and compressed memory swap (CMS) to
the consolidated LC and batch containers to achieve high
throughput while satisfying the QoS for given load and
memory overcommit ratio. COSMOS consists of three
components – the (1) profiler, (2) system state space explorer,
and (3) resource allocator. Figure 5 illustrates the overall
architecture of COSMOS.

A. PROFILER
The profiler of COSMOS dynamically collects the runtime
data that the system state space explorer uses to make
resource allocation decisions. Specifically, it collects the load

FIGURE 6. Execution flow of the system state space explorer.

and tail latency data from the latency-critical (LC) container
and the throughput data from the batch container.

In addition, the profiler dynamically collects the
working-set sizes of the LC and batch containers, which are
available through procfs on Linux. Further, it collects the
average compression ratio of the pages stored in the CMS
through sysfs at runtime.

B. SYSTEM STATE SPACE EXPLORER
The system state space explorer (SSSE) of COSMOS
dynamically explores the system state space to discover a
system state that delivers high throughput while providing
strong QoS guarantees for the latency-critical (LC) container.
It uses effective machine utilization (EMU), which is defined
in Section IV, as the throughput metric.

As shown in Equation 3, we define a system state (i.e.,
s) as a vector of three elements (i.e., rLC,Cores, rLC,M, and
rLC,CMS), which denote the number of cores, the amount
of memory, and the amount of CMS allocated to the LC
container (see Section IV for the definitions of rLC,Cores,
rLC,M, and rLC,CMS). Note that the remaining resources are
allocated to the batch container. We then define the system
state space as the set of all the valid system states.

s = (rLC,Cores, rLC,M, rLC,CMS) (3)

Figure 6 shows the execution flow of the SSSE.
In addition, Algorithm 1 shows the top-level function (i.e.,
exploreSystemStateSpace) executed by the SSSE.
It operates in a periodic manner. In each period, the SSSE
first allocates the resources to the consolidated containers
(Lines 9–10 in Algorithm 1) based on the resource allocation
plan encoded in the current system state through the resource
allocator (Section V-C).3 It then collects the runtime data
(Lines 11–17 in Algorithm 1) – the load for the LC container,
the tail latency of the LC container, the throughput of the
batch container, the working-set sizes of the consolidated
containers, and the average compression ratio of the pages
stored in the CMS based on the profiler (Section V-A).
If the current system state satisfies the LC container’s QoS
and achieves higher throughput than the highest throughput
that has been discovered so far, it updates the best system
state (i.e., sbest) to the current system state (Lines 24–27 in
Algorithm 1). It comprises two phases – the (1) exploration
and (2) idle phases.

3The period is set to one second in this work.

133206 VOLUME 11, 2023



M. Han et al.: COSMOS: Coordinated Management of Cores, Memory, and CMS

Algorithm 1 The exploreSystemStateSpace Function
1: phase← exploration; subphase← memoryAndCMS
2: L← 0; Q← 0; T ← 0; wLC← 0; wBatch← 0; γLC← 1
3: sbest← sinvalid; Tbest← 0
4: isBatchThroughputIncreased← false
5: procedure exploreSystemStateSpace
6: createReclaimThreads() ▷ Create the memory reclaim threads
7: snext← getInitialState()
8: while true do
9: scurr← snext
10: applySystemState(scurr)
11: sleep(τ ) ▷ Period: one second
12: L← getLoad()
13: Q← getTailLatency()
14: T ← getBatchThroughput()
15: wLC← getLCWorkingSetSize()
16: wBatch← getBatchWorkingSetSize()
17: γLC← getCompressionRatio()
18: if needToReadapt() = true then ▷ Check if re-adaptation needs to be triggered
19: resetVariables() ▷ Reset the global variables
20: snext← getInitialState()
21: phase← exploration
22: else
23: if phase = exploration then
24: if isQoSSatisfied(Q) = true and T > Tbest then
25: sbest← scurr
26: Tbest← T
27: isBatchThroughputIncreased← true
28: else
29: isBatchThroughputIncreased← false
30: end if
31: snext← getNextSystemState(scurr)
32: if snext = scurr then
33: snext← sbest
34: phase← idle
35: end if
36: end if
37: end if
38: end while
39: end procedure

1) EXPLORATION PHASE
During the exploration phase, it gradually explores the system
state space to find an efficient system state that achieves
high throughput while satisfying the LC container’s QoS.
Specifically, in each period, it invokes the getNextSys-
temState function (Line 31 in Algorithm 1), which is
shown in Algorithm 2.
The getNextSystemState function determines the

system state, which is explored in the next period and
expected to satisfy the LC container’s QoS and achieve higher
throughput than the current system state. The exploration
phase comprises two sub-phases –(1) memory and CMS
allocation sub-phase (Lines 3–13 in Algorithm 2) and (2) core

allocation sub-phase (Lines 14–24). It begins with the
memory and CMS allocation sub-phase.

The SSSE builds on the third and fourth observations
(i.e., C3 and C4 in Section IV) from the characterization
study. The third observation is that the throughput of the
consolidated containers is likely to significantly improve
when the working-sets of the consolidated containers fit
in memory through the use of the CMS. Guided by this
observation, it attempts to directly allocate the memory and
CMS to the LC container in a way that satisfies the following
requirements – (1) R1: the amounts of the memory and
CMS allocated to the LC container are enough to hold the
working-set of the LC container and (2) R2: the amount of

VOLUME 11, 2023 133207



M. Han et al.: COSMOS: Coordinated Management of Cores, Memory, and CMS

Algorithm 2 The getNextSystemState Function
1: procedure getNextSystemState(scurr)
2: snext← scurr
3: if subphase = memoryAndCMS then
4: if isInitialState(scurr) = true then
5: snext← setLCMemory(scurr, max(M − wBatch, wLC/γLC))
6: else
7: if isQoSViolated(Q) = true then
8: snext← increaseLCMemory(scurr) ▷ Granularity: 5% of the working-set size of the LC container
9: else
10: subphase← core
11: snext← decreaseLCCore(scurr) ▷ Granularity: 1 core
12: end if
13: end if
14: else
15: if isQoSSatisfied(Q) = true then
16: if isBatchThroughputIncreased = true then
17: snext← decreaseLCCore(scurr)
18: else
19: snext← scurr
20: end if
21: else
22: snext← increaseLCMemory(scurr)
23: end if
24: end if
25: if isMemoryChanged(scurr, snext) = true then ▷ Check if the amount of memory allocated to LC will be changed
26: rLC,CMS,max← getCMSMax(snext, wLC, γLC) ▷ Compute rLC,CMS,max using Equation 2
27: snext← setLCCMS(snext, rLC,CMS,max)
28: end if
29: return snext
30: end procedure

the remaining memory is just enough to hold the working-set
of the batch container (Lines 4–5 and 25–28 in Algorithm 2).4

This design approach has an advantage of reducing the
number of explored system states by skipping inefficient
system states.

The SSSE then checks if the LC container’s QoS is
satisfied with this state. If the QoS is satisfied, it completes
the memory and CMS allocation sub-phase and transitions to
the core allocation sub-phase (Lines 9–12 in Algorithm 2).
If the LC container’s QoS is violated, the SSSE gradually

(i.e., 5% of the working-set size of the LC container)
increases the amount of the memory and accordingly adjusts
the amount of the CMS allocated to the LC container
(Lines 7–8 and 25–28 in Algorithm 2). It repeats this process
until the QoS is satisfied.

The SSSE transitions to the core allocation sub-phase
after completing the memory and CMS allocation sub-phase.
During the core allocation sub-phase, it gradually reclaims

4If it is impossible to satisfy bothR1 andR2 because the working-set sizes
of the LC and batch containers are too large for the total memory capacity
even with the use of the CMS, the SSSE utilizes the entire memory allocated
to the LC container as the memory pool of the CMS in order to maximize the
amount of the remaining memory, which is allocated to the batch container.

cores from the LC container and determines the right number
of cores for the LC container, which is just enough to satisfy
the QoS.

Specifically, the SSSE reduces the LC container’s core
count by one in each period (Lines 16–17 in Algorithm 2).
If the LC container’s QoS is satisfied even when allocated
with the minimum number of cores or reducing the LC con-
tainer’s core count provides no throughput gain, it terminates
the core allocation sub-phase and transitions to the idle phase
(Lines 18–19 in Algorithm 2).
If the LC container’s QoS is violated with the current core

count, the SSSE keeps increasing the amount of the memory
(Lines 21–23 in Algorithm 2) and accordingly decreasing
the amount of the CMS (Lines 25–28) allocated to the LC
container until the QoS is satisfied again. We have made
this design decision based on the fourth observation from
the characterization study. The observation is that the LC
container tends to require a smaller number of cores when
allocated with a larger amount of memory and a smaller
amount of the CMS because of the decreased CPU utilization
of the memory reclaim threads. If the size of the hot data
of the batch container is smaller than its working-set, the
throughput can be improved by allocating more cores to the

133208 VOLUME 11, 2023



M. Han et al.: COSMOS: Coordinated Management of Cores, Memory, and CMS

FIGURE 7. Quality of service.

batch container (and reducing the amount of the memory
allocated to the batch container).

If the LC container’s QoS is satisfied with an increased
amount of memory and a decreased amount of the CMS,
the SSSE attempts to reduce the LC container’s core count.
It repeats the aforementioned process and then transitions to
the idle phase.

2) IDLE PHASE
As the SSSE enters the idle phase, it first sets the system state
to the best system state (i.e., sbest) that achieves the highest
throughput while satisfying the QoS among all the explored
system states (Lines 32–35 in Algorithm 1). During the idle
phase, it keeps monitoring the consolidated containers and
the server system but performs no adaptation activities. If a
change is detected (e.g., a significant increase or decrease in
the load for the LC container), it transitions to the exploration
phase and re-triggers the adaptation process (Lines 18–21 in
Algorithm 1).

C. RESOURCE ALLOCATOR
The resource allocator of COSMOS dynamically allocates
the resources based on the system state determined by the
system state space explorer. The resource allocator builds on
cgroups to dynamically allocate cores and memory to the
consolidated containers. In addition, the resource allocator
uses sysfs to adjust the amount of the CMS allocated to the
latency-critical container at runtime.

VI. EVALUATION
In this section, we evaluate the effectiveness of COSMOS.
Specifically, we aim to investigate the following – (1) QoS
and throughput, (2) the sensitivity to the load and memory
overcommit ratio, (3) the number of explored system states,
and (4) the effectiveness of dynamic resource management.

A. QOS AND THROUGHPUT
We quantify the effectiveness of COSMOS in terms of QoS
and throughput. To keep the discussion focused, we first
report the experimental results collected with the medium
load and medium memory overcommit ratio (MOR) that
represent a common scenario in this section. We then report

TABLE 3. Evaluated workload mixes.

the experimental results collected with all the loads and
MORs in Section VI-B.

Based on the two latency-critical (LC) benchmarks and
five batch benchmarks discussed in Section III-B, we create
10 workload mixes. Each workload mix consists of the LC
and batch containers, which contain the LC and batch bench-
marks, respectively. Table 3 summarizes the 10 workload
mixes evaluated in this work.

For each of the 10 workload mixes in Table 3, we execute
it using the following resource allocation policies – (1) Linux
default (LD), which employs the default resource allocation
policy (i.e., no core or memory partitioning and compressed
memory swap (CMS) enabled with the memory pool size
of 20% of the total memory capacity) of Linux, (2) core
allocation (CA), which dynamically allocates cores to the
consolidated containers, (3) core and memory allocation
(CMA), which dynamically allocates cores and memory to the
consolidated containers and represents the approach adopted
by PARTIES [11] with respect to memory management,
(4) exhaustive, which executes the workload mix with a
system state, which is discovered by exhaustively exploring
the system state space through extensive offline profiling
and exhibits the highest throughput while satisfying the QoS
among all the explored system states,5 and (5) COSMOS,
which dynamically allocates cores, memory, and CMS to the
consolidated containers based on COSMOS.

Figure 7 shows the normalized tail latency of the LC
container in each of the 10 workload mixes with the medium
load and medium MOR. Each bar in Figure 7 reports the
tail latency normalized to the target tail latency of the LC
container. We observe the following data trends.

First, the LD and CA versions fail to satisfy the LC
container’s QoS across all the workload mixes. The LD
version violates the QoS because of the contention on the
cores that are shared by the consolidated containers.

Since insufficient amounts of the memory and CMS are
allocated to the LC container with the CA version, the
working-set of the LC container does not fit in memory and
the victim pages are evicted to the disk swap. Because of the

5Note that the exhaustive version is impractical because it requires highly
time- and resource-consuming extensive offline profiling for each workload
mix. Furthermore, the exhaustive version still requires separate extensive
offline profiling for each of the datasets even for the same workload mix.
This is because workload mixes tend to exhibit different characteristics
with different datasets. Despite the impracticality of the exhaustive version,
we compare COSMOS with the exhaustive version to demonstrate that
COSMOS can achieve high throughput with strong QoS guarantees without
requiring extensive offline profiling.

VOLUME 11, 2023 133209



M. Han et al.: COSMOS: Coordinated Management of Cores, Memory, and CMS

FIGURE 8. Effective machine utilization.

frequent accesses to the disk swap, the CA version violates
the LC container’s QoS.

Second, the CMA version satisfies the LC container’s QoS
across all the workload mixes. Since the number of cores
and the amount of memory allocated to the LC container
are sufficient, it satisfies the QoS. However, achieving tail
latency that is significantly lower than the target tail latency
is sub-optimal because it indicates that the LC container
is allocated excessive resources, some of which could have
been reallocated to the batch container to improve the overall
throughput. As discussed later in this section (i.e., Figure 8),
the CMA version delivers low throughput because of the
excessive resources allocated to the LC container.

Third, COSMOS robustly satisfies the LC container’s QoS
across all the workload mixes. By dynamically analyzing
the resource requirements of the LC container and allocating
cores, memory, and CMS in a coordinated and efficient
manner, COSMOS provides strong QoS guarantees for the
LC container.

Fourth, the tail latency of COSMOS is closer to the target
tail latency than that of the CMA version. COSMOS allocates
a smaller amount of memory to the LC container through the
use of the CMS than the CMA version in order to secure a
sufficient amount of memory to the batch container. While
it makes the tail latency of COSMOS closer to the target
tail latency, it is an effective trade-off in that COSMOS still
satisfies the LC container’s QoS and significantly improves
the throughput (as discussed later).

Figure 8 shows the EMU of various versions of the
workload mixes. The rightmost bars denote the geometric
mean of each version. First, the EMU of the LD and CA
versions across all the workload mixes is zero. EMU is
computed to be zero for the LD and CA versions because they
fail to satisfy the LC container’s QoS across all workload
mixes.

Second, theCMA version delivers low throughput across the
workload mixes. Since it lacks the capability of dynamically
allocating the CMS to the LC container, it allocates a larger
amount of memory to the LC container than the case in which
the CMS is also used. Therefore, it allocates an insufficient
amount of memory to the batch container, achieving low
throughput.

TheCMA version of theworkloadmixes 1 and 6 that include
BC in the batch container exhibits higher EMU than other
workload mixes. With BC, some of the nodes in the graph
are accessed more frequently than others. Even if the CMA
version allocates an insufficient amount of memory to BC,
pages that contain more frequently accessed nodes are likely
to remain in the memory without being evicted to the disk
swap by the memory reclaim algorithm. This makes the CMA
version of the workload mixes 1 and 6 access the disk swap
less frequently, resulting in higher EMU.

Third, COSMOS consistently achieves high throughput
across all the evaluated workload mixes. Specifically, COS-
MOS delivers 351.1% higher (on average) throughput than
the CMA version and the throughput similar (i.e., 0.31% lower
on average) to the exhaustive version, which uses a system
state that is discovered through extensive offline profiling and
achieves the highest throughput while satisfying theQoS. Our
experimental results show the effectiveness of COSMOS in
the sense that it is capable of dynamically finding an efficient
system state with high throughput and QoS guarantees for
each workload mix without the need for offline profiling.

COSMOS delivers higher EMU with the workload mixes
that include silo (i.e., the workload mixes 6–10) in the LC
container and BFS or CC (i.e., the workload mixes 2, 4, 7,
and 9) in the batch container. As for silo, since it requires
fewer cores to satisfy its QoS than memcached, COSMOS
achieves higher EMU by allocating more cores to the batch
container.

As for BFS and CC, they exhibit high throughput even
when the amount of the memory allocated to them is smaller
than their working-set size because some of the nodes are not
accessed because of the connectivity of the graph. COSMOS
dynamically identifies their characteristics and allocates a
larger amount of the memory and a smaller amount of the
CMS to the LC container. This reduces the CPU utilization
of the memory reclaim threads because of less frequent
data transfers between the memory and CMS. Since the LC
container requires a smaller number of cores with the reduced
CPU utilization of the memory reclaim threads, COSMOS
achieves higher EMU by allocating more cores to the batch
container (i.e., BFS or CC).

B. SENSITIVITY
We investigate the sensitivity of the QoS and throughput
achieved byCOSMOS to the load for the latency-critical (LC)
and the memory overcommit ratio (MOR) of the consolidated
containers. We first analyze the sensitivity to the MOR.
Figure 9 shows the EMU of the CMA and exhaustive versions
and COSMOS, which is averaged (using geometric mean)
across all of the 10 workload mixes. The data reported in
Figure 9 is collected with the medium load and by sweeping
the MOR from low to high.

First, COSMOS robustly satisfies the LC container’s QoS
across all the workload mixes and MORs. Note that it would
be impossible to compute the average EMU using geometric
mean if COSMOS failed to satisfy the QoS with any of

133210 VOLUME 11, 2023



M. Han et al.: COSMOS: Coordinated Management of Cores, Memory, and CMS

FIGURE 9. Sensitivity to the memory overcommit ratio.

FIGURE 10. Sensitivity to the load for the LC container.

the workload mixes and MORs because EMU would be
computed to be zero.

Second, COSMOS consistently achieves high throughput
across all the workload mixes and MORs. Specifically,
COSMOS significantly outperforms the CMA version and
delivers the throughput similar to the exhaustive version
which executes each of the workload mixes with a system
state that is discovered through extensive offline profiling and
achieves the highest throughput.

Third, the throughput of COSMOS gradually decreases
as the MOR increases. This is mainly because COSMOS
allocates a smaller amount of memory and a larger amount
of CMS to the LC container with a higher MOR to make
the working-set of the batch container fit in memory.
With a larger amount of the CMS allocated to the LC
container, it requires a larger number of cores because the
CPU utilization of the memory reclaim threads increases.
Consequently, COSMOS allocates a smaller number of cores
to the batch container with a higher MOR, resulting in lower
throughput.

We now investigate the sensitivity to the load for the
LC container. Figure 10 shows the EMU of the CMA
and exhaustive versions and COSMOS, which is averaged
(using geometric mean) across the workload mixes. The data
reported in Figure 10 is collected by sweeping the load from
low to high with the medium MOR.

First, similarly to the sensitivity data trends with the MOR,
COSMOS robustly satisfies the LC container’s QoS and
achieves high throughput across all the workload mixes and

FIGURE 11. Sensitivity to the load and memory overcommit ratio.

FIGURE 12. Number of the explored system states.

loads. Specifically, COSMOS significantly outperforms the
CMA version and delivers the EMU similar to the exhaustive
version which discovers an efficient system state through
extensive offline profiling.

Second, the throughput of COSMOS gradually increases
as the load for the LC container increases. Since the portion
of the EMU contributed by the LC container increases with a
higher load, the overall EMU also increases.

For completeness, we report the EMU of the CMA and
exhaustive versions and COSMOS across all the loads and
MORs in Figure 11. L, M, and H in Figure 11 indicate low,
medium, and high, respectively. We observe that COSMOS
exhibits similar sensitivity trends when the load or MOR is
fixed at low or high to the ones (i.e., the load or MOR is fixed
at medium) shown in Figures 9 and 10. In addition, COSMOS
consistently achieves high throughput across all the evaluated
loads and MORs.

C. EXPLORED SYSTEM STATES
We investigate the impact of the optimization (i.e., skipping
inefficient system states) applied to COSMOS on the number
of explored system states. To this end, we create a synthetic
version of COSMOS that iteratively explores the system state
space without applying the optimization (Section V-B).
Figure 12 shows the number of the system states explored

by the synthetic version and COSMOS with the medium
load and medium memory overcommit ratio (MOR). The
optimization applied to COSMOS is effective for reducing
the number of the explored system states. Specifically, the

VOLUME 11, 2023 133211



M. Han et al.: COSMOS: Coordinated Management of Cores, Memory, and CMS

FIGURE 13. Effectiveness of dynamic resource management.

full version of COSMOS explores 79.6% fewer system states
on average than the synthetic version.

D. DYNAMIC RESOURCE MANAGEMENT
We investigate the effectiveness of dynamic resource man-
agement supported by COSMOS. We use memcached (i.e.,
the latency-critical (LC) container) and stream (i.e., the
batch container) with the medium memory overcommit ratio
(MOR). The load that the load generator applies to the LC
container dynamically varies over the time between the low
and high loads in Table 1 by following the diurnal pattern,
which is commonly observed in production datacenters [7],
[26], [30], [47]. The load generator simulates a 24-hour
period. Specifically, the load generator is configured to make
each hour in the 24-hour diurnal pattern correspond to four
minutes for keeping the total experiment time manageable.

We execute the consolidated containers using four resource
allocation policies – (1) EX-L, which statically allocates
cores, memory, and compressed memory swap to the
consolidated containers based on a system state that is
discovered through exhaustive search (with extensive offline
profiling) when the LC container is applied with the low load,
(2) EX-M, which statically allocates resources based on a
system state discovered through exhaustive search with the
medium load, (3) EX-H, which statically allocates resources
based on a system state discovered through exhaustive search
with the high load, and (4) COSMOS, which dynamically
allocates resources using COSMOS. Figure 13 shows the
EMU of the four versions. We observe the following data
trends.

First, the EX-L and EX-M versions fail to satisfy the
LC container’s QoS (i.e., EMU = 0) as the load applied
to the LC container increases. Since the EX-L (or EX-
M) version statically allocates resources based on a system
state discovered through exhaustive search with the low (or
medium) load, it allocates insufficient resources to the LC
container when the load is relatively high. This results in QoS
violations with relatively high loads.

Second, the EX-H version exhibits relatively low through-
put as the load applied to the LC container decreases. Since
the EX-H version statically allocates resources based on a
system state discovered through exhaustive search with the

high load, it allocates excessive resources to the LC container
and delivers low throughput when the load is relatively low.

Third, COSMOS robustly satisfies the LC container’s
QoS and achieves high throughput across all the evaluated
loads. When COSMOS detects a change in the load, it re-
triggers the adaptation process to find a system state that
exhibits high throughput while satisfying the QoS with
the changed load and dynamically allocates resources to
the consolidated containers based on the newly-discovered
system state. With its re-adaptation capability, COSMOS
achieves high throughput with strong QoS guarantees across
all the evaluated loads.

Overall, our experimental results demonstrate the effec-
tiveness of COSMOS in that it robustly satisfies the
LC container’s QoS and delivers high throughput of the
consolidated containers across all the evaluated workload
mixes, loads, andMORs and significantly reduces the number
of explored system states.6

VII. RELATED WORK
Prior works have extensively investigated resource man-
agement techniques for workload consolidation [11], [15],
[16], [27], [31], [32], [33], [34], [46], [49]. Most of the
prior works focus on partitioning resources such as cores
and memory bandwidth and lack the consideration of
dynamically partitioning the memory capacity between the
consolidated applications [15], [16], [27], [31], [32], [33],
[34], [46], [49]. Our work differs in that it investigates system
software support for coordinated management of cores,
memory, and compressed memory swap (CMS) for QoS-
aware and efficient workload consolidation for memory-
intensive applications.

The technique proposed in [11] considersmemory capacity
partitioning between the consolidated applications. While
insightful, it lacks the consideration of dynamic allocation
of the CMS, which is crucial to improve the throughput of
the consolidated applications with strong QoS guarantees
for the latency-critical application. Our work is significantly
different in the sense that it presents the in-depth charac-
terization of the impact of cores, memory, and CMS on the
QoS and throughput of the consolidated applications and
design, implement, and evaluate a software-based runtime
system for QoS-aware and efficient workload consolidation
for memory-intensive applications based on a real system.

Prior works have explored memory offloading techniques
based on the CMS [23], [45]. While the prior works have
a similarity to our work in that they show that the CMS
can effectively be used to improve the resource efficiency
of cloud computing systems and datacenters, they lack the
consideration of dynamic management of the CMS in the
context of workload consolidation. Our work significantly
differs in the sense that it investigates coordinated resource

6Our experimental results also show that the performance overhead of
COSMOS is small. Specifically, its CPU utilization is 0.27% on average,
which is low.

133212 VOLUME 11, 2023



M. Han et al.: COSMOS: Coordinated Management of Cores, Memory, and CMS

management of cores, memory, and CMS for QoS-aware and
efficient workload consolidation.

Prior works have studied the feasibility of the CMS for
embedded applications [17], [20], [25], [42]. The prior works
show that the CMS can be used to reduce the response time
and improve the interactivity of applications on embedded
systems with limited memory capacity. However, they lack
the capability of holistically allocating the resources to
the consolidated applications. Our work is considerably
different in that it proposes a software-based runtime system
that dynamically allocates cores, memory, and CMS to
the consolidated applications in a coordinated manner for
QoS-aware and efficient workload consolidation.

VIII. CONCLUSION
In this work, we present the in-depth characterization of
the impact of cores, memory, and compressed memory
swap (CMS) on the QoS and throughput of the consoli-
dated applications. Guided by the characterization results,
we propose COSMOS, a software-based runtime system
for QoS-aware and efficient workload consolidation for
memory-intensive applications. Our quantitative evaluation
based on a real system and widely-used benchmarks
demonstrates that COSMOS robustly satisfies the QoS and
achieves high throughput across all the evaluated workload
mixes and scenarios and significantly reduces the number
of explored system states by skipping inefficient system
states. As future work, we plan to investigate lightweight
and flexible architectural support for CMS. We would also
like to explore the design and implementation of efficient
compression and decompression algorithms for CMS.

REFERENCES
[1] Cgroups(7)—Linux Manual Page. Accessed: Nov. 6, 2023. [Online].

Available: https://man7.org/linux/man-pages/man7/cgroups.7.html
[2] Memcached—A Distributed Memory Object Caching System. Accessed:

Nov. 6, 2023. [Online]. Available: https://memcached.org/
[3] Memory Compression in Windows 10 RTM. Accessed: Nov. 6, 2023.

[Online]. Available: https://learn.microsoft.com/en-us/shows/seth-juarez/
memory-compression-in-windows-10-rtm

[4] Oberhumer.com. LZO Real-Time Data Compression Library.
Accessed: Nov. 6, 2023. [Online]. Available: http://www.oberhumer.
com/opensource/lzo/

[5] OS X Mavericks Core Technologies Overview. Accessed: Nov. 6,
2023. [Online]. Available: https://images.apple.com/media/us/osx/2013/
docs/OSX_Mavericks_Core_Technology_Overview.pdf

[6] Zswap. Accessed: Nov. 6, 2023. [Online]. Available: https://www.
kernel.org/doc/html/v4.18/vm/zswap.html

[7] D. Ardelean, A. Diwan, and C. Erdman, ‘‘Performance analysis of
cloud applications,’’ in Proc. 15th USENIX Symp. Netw. Syst. Design
Implement. (NSDI). Renton, WA, USA: USENIX Association, Apr. 2018,
pp. 405–417.

[8] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
‘‘Workload analysis of a large-scale key-value store,’’ in Proc. 12th ACM
SIGMETRICS/PERFORMANCE joint Int. Conf. Meas. Model. Comput.
Syst. (SIGMETRICS). New York, NY, USA: Association for Computing
Machinery, Jun. 2012, pp. 53–64.

[9] S. Beamer, K. Asanović, and D. Patterson, ‘‘The GAP benchmark suite,’’
2015, arXiv:1508.03619.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li, ‘‘The PARSEC benchmark
suite: Characterization and architectural implications,’’ in Proc. Int. Conf.
Parallel Architectures Compilation Techn. (PACT), New York, NY, USA,
Oct. 2008, pp. 72–81.

[11] S. Chen, C. Delimitrou, and J. F. Martínez, ‘‘PARTIES: QoS-aware
resource partitioning for multiple interactive services,’’ in Proc. 24th Int.
Conf. Archit. Support Program. Lang. Oper. Syst. New York, NY, USA:
Association for Computing Machinery, Apr. 2019, pp. 107–120.

[12] S. Chen, A. Jin, C. Delimitrou, and J. F. Martínez, ‘‘ReTail: Opting for
learning simplicity to enable QoS-aware power management in the cloud,’’
in Proc. IEEE Int. Symp. High-Performance Comput. Archit. (HPCA),
Apr. 2022, pp. 155–168.

[13] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, ‘‘Pack & cap:
Adaptive DVFS and thread packing under power caps,’’ in Proc. 44th
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2011,
pp. 175–185.

[14] B. Fitzpatrick, ‘‘Distributed cachingwithmemcached,’’ Linux J., vol. 2004,
no. 124, p. 5, Aug. 2004.

[15] M. Han, S. Yu, and W. Baek, ‘‘Secure and dynamic core and cache
partitioning for safe and efficient server consolidation,’’ in Proc. 18th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID), May 2018,
pp. 311–320.

[16] M. Han and W. Baek, ‘‘SDRP: Safe, efficient, and SLO-aware workload
consolidation through secure and dynamic resource partitioning,’’ IEEE
Trans. Services Comput., vol. 15, no. 4, pp. 1868–1882, Jul. 2022.

[17] J. Hwang, J. Jeong, H. Kim, J. Choi, and J. Lee, ‘‘Compressed memory
swap for QoS of virtualized embedded systems,’’ IEEE Trans. Consum.
Electron., vol. 58, no. 3, pp. 834–840, Aug. 2012.

[18] S. Jennings, ‘‘Transparent memory compression in Linux,’’ Presented at
LinuxCon North America, New Orleans, LA, USA, Sep. 2013.

[19] H. Kasture and D. Sanchez, ‘‘Tailbench: A benchmark suite and evaluation
methodology for latency-critical applications,’’ in Proc. IEEE Int. Symp.
Workload Characterization (IISWC), Sep. 2016, pp. 1–10.

[20] J. Kim, C. Kim, and E. Seo, ‘‘ezswap: Enhanced compressed swap scheme
for mobile devices,’’ IEEE Access, vol. 7, pp. 139678–139691, 2019.

[21] M. Kogias, S. Mallon, and E. Bugnion, ‘‘Lancet: A self-correcting latency
measuring tool,’’ in Proc. USENIX Annu. Tech. Conf. (USENIX ATC).
Renton, WA, USA: USENIX Association, Jul. 2019, pp. 881–896.

[22] N. Kulkarni, F. Qi, and C. Delimitrou, ‘‘Pliant: Leveraging approximation
to improve datacenter resource efficiency,’’ in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2019, pp. 159–171.

[23] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal, R. Burny, S. Butt,
J. Chang, A. Chaugule, N. Deng, J. Shahid, G. Thelen, K. A. Yurtsever,
Y. Zhao, and P. Ranganathan, ‘‘Software-defined far memory in
warehouse-scale computers,’’ in Proc. 24th Int. Conf. Archit. Support
Program. Lang. Oper. Syst. New York, NY, USA: Association for
Computing Machinery, Apr. 2019, pp. 317–330.

[24] S.-H. Lee, ‘‘Technology scaling challenges and opportunities of memory
devices,’’ in IEDM Tech. Dig., Dec. 2016, pp. 1.1.1–1.1.8.

[25] C. Li, L. Shi, Y. Liang, and C. J. Xue, ‘‘SEAL: User experience-aware two-
level swap for mobile devices,’’ IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 39, no. 11, pp. 4102–4114, Nov. 2020.

[26] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,
‘‘Towards energy proportionality for large-scale latency-critical work-
loads,’’ in Proc. ACM/IEEE 41st Int. Symp. Comput. Archit. (ISCA),
Jun. 2014, pp. 301–312.

[27] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
‘‘Heracles: Improving resource efficiency at scale,’’ in Proc. ACM/IEEE
42nd Annu. Int. Symp. Comput. Archit. (ISCA), New York, NY, USA,
Jun. 2015, pp. 450–462.

[28] C. A. Mack, ‘‘Fifty years of Moore’s law,’’ IEEE Trans. Semicond. Manuf.,
vol. 24, no. 2, pp. 202–207, May 2011.

[29] J. D. McCalpin, ‘‘Memory bandwidth and machine balance in current high
performance computers,’’ IEEE Comput. Soc. Tech. Committee Comput.
Archit. (TCCA) Newslett., Dec. 1995, pp. 19–25.

[30] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F. Wenisch,
‘‘Power management of online data-intensive services,’’ in Proc. 38th
Annu. Int. Symp. Comput. Archit. (ISCA), New York, NY, USA, Jun. 2011,
pp. 319–330.

[31] K. Nikas, N. Papadopoulou, D. Giantsidi, V. Karakostas, G. Goumas, and
N. Koziris, ‘‘DICER: Diligent cache partitioning for efficient workload
consolidation,’’ in Proc. 48th Int. Conf. Parallel Process. New York, NY,
USA: Association for Computing Machinery, Aug. 2019, pp. 1–10.

[32] R. Nishtala, V. Petrucci, P. Carpenter, and M. Sjalander, ‘‘Twig: Multi-
agent task management for colocated latency-critical cloud services,’’ in
Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2020,
pp. 167–179.

VOLUME 11, 2023 133213



M. Han et al.: COSMOS: Coordinated Management of Cores, Memory, and CMS

[33] J. Park, S. Park, and W. Baek, ‘‘CoPart: Coordinated partitioning of
last-level cache and memory bandwidth for fairness-aware workload
consolidation on commodity servers,’’ in Proc. 14th EuroSys Conf.,
New York, NY, USA, Mar. 2019, pp. 10:1–10:16.

[34] J. Park, S. Park, M. Han, J. Hyun, and W. Baek, ‘‘Hypart: A hybrid
technique for practical memory bandwidth partitioning on commodity
servers,’’ in Proc. 27th Int. Conf. Parallel Archit. Compilation Techn., New
York, NY, USA, Nov. 2018, pp. 5:1–5:14.

[35] G. Prekas, M. Kogias, and E. Bugnion, ‘‘ZygOS: Achieving low tail
latency for microsecond-scale networked tasks,’’ in Proc. 26th Symp. Oper.
Syst. Princ. New York, NY, USA: Association for Computing Machinery,
Oct. 2017, pp. 325–341.

[36] K. K. Pusukuri, R. Gupta, and L. N. Bhuyan, ‘‘Thread reinforcer:
Dynamically determining number of threads via OS level monitoring,’’
in Proc. IEEE Int. Symp. Workload Characterization (IISWC), Nov. 2011,
pp. 116–125.

[37] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang, M. Zhang,
D. Li, and Y. He, ‘‘ZeRO-offload: Democratizing billion-scale model
training,’’ in Proc. USENIX Annu. Tech. Conf. (USENIX ATC). Berkeley,
CA, USA: USENIX Association, Jul. 2021, pp. 551–564.

[38] F. Romero and C. Delimitrou, ‘‘Mage: Online and interference-aware
scheduling for multi-scale heterogeneous systems,’’ inProc. 27th Int. Conf.
Parallel Archit. Compilation Techn. New York, NY, USA: Association for
Computing Machinery, Nov. 2018, pp. 1–13.

[39] S. Roy, R. Kumar, andM. Prvulovic, ‘‘Improving system performance with
compressed memory,’’ in Proc. 15th Int. Parallel Distrib. Process. Symp.
(IPDPS), 2001, p. 7.

[40] A. I. Saichev, Y. Malevergne, and D. Sornette, Theory of Zipf’s Law and
Beyond (Lecture Notes in Economics and Mathematical Systems). Berlin,
Germany: Springer, 2009.

[41] H. Sasaki, S. Imamura, and K. Inoue, ‘‘Coordinated power-performance
optimization in manycores,’’ in Proc. 22nd Int. Conf. Parallel Archit.
Compilation Techn., Sep. 2013, pp. 51–61.

[42] T. Song, M. Kim, G. Lee, and Y. Kim, ‘‘Prediction-guided performance
improvement on compressed memory swap,’’ in Proc. IEEE Int. Conf.
Consum. Electron. (ICCE), Jan. 2022, pp. 1–6.

[43] M. Aater Suleman, Moinuddin K. Qureshi, and Yale N. Patt, ‘‘Feedback-
driven threading: Power-efficient and high-performance execution of
multi-threaded workloads on cmps,’’ in Proc. 13th Int. Conf. Archit.
Support Program. Lang. Oper. Syst. (ASPLOS), New York, NY, USA:
Association for Computing Machinery, 2008, pp. 277–286.

[44] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, ‘‘Speedy
transactions in multicore in-memory databases,’’ in Proc. 24th ACM Symp.
Oper. Syst. Princ. New York, NY, USA: Association for Computing
Machinery, Nov. 2013, pp. 18–32.

[45] J. Weiner, N. Agarwal, D. Schatzberg, L. Yang, H. Wang, B. Sanouillet,
B. Sharma, T. Heo,M. Jain, C. Tang, andD. Skarlatos, ‘‘TMO: Transparent
memory offloading in datacenters,’’ in Proc. 27th ACM Int. Conf. Archit.
Support Program. Lang. Oper. Syst. New York, NY, USA: Association for
Computing Machinery, Feb. 2022, pp. 609–621.

[46] H. Yang, A. Breslow, J. Mars, and L. Tang, ‘‘Bubble-flux: Precise online
QoS management for increased utilization in warehouse scale computers,’’
in Proc. 40th Annu. Int. Symp. Comput. Archit. (ISCA), New York, NY,
USA, Jun. 2013, pp. 607–618.

[47] J. Yang, Y. Yue, and K. V. Rashmi, ‘‘A large scale analysis of hundreds
of in-memory cache clusters at Twitter,’’ in Proc. 14th USENIX Symp.
Oper. Syst. Design Implement. (OSDI). New York, NY, USA: USENIX
Association, Nov. 2020, pp. 191–208.

[48] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, ‘‘Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,’’ in Proc.
9th USENIX Conf. Netw. Syst. Design Implement. (NSDI). Berkeley, CA,
USA: USENIX Association, 2012, p. 2.

[49] H. Zhu and M. Erez, ‘‘Dirigent: Enforcing QoS for latency-critical tasks
on shared multicore systems,’’ in Proc. 21st Int. Conf. Archit. Support
Program. Lang. Oper. Syst. (ASPLOS), New York, NY, USA, 2016,
pp. 33–47.

MYEONGGYUN HAN received the bachelor’s
degree from UNIST, in 2018, where he is cur-
rently pursuing the integrated M.S. and Ph.D.
degrees with the Department of Computer Science
and Engineering. His research interests include
parallel and distributed computing and computer
systems security.

EUNSEONG PARK, photograph and biography not available at the time of
publication.

YOUNGSAM SHIN received the B.S. degree from
the Hankuk University of Foreign Studies and
the M.S. degree from the Pohang University of
Science and Technology, in 2001. He is currently
a Staff Researcher with the Samsung Advanced
Institute of Technology. His research interests
include computer architecture, system software,
and hardware and software co-optimization.

DEOK-JAE OH received the B.S. degree in
electrical engineering from Hongik University and
the Ph.D. degree from theGraduate School of Con-
vergence Science and Technology, Seoul National
University, in 2022. He is currently a Staff
Researcher with the Samsung Advanced Institute
of Technology. His research interests include
computer architecture, processing near memory,
and hardware and software co-optimization.

YEONGON CHO received the M.S. degree
from the Department of Electrical and Computer
Engineering, Sungkyunkwan University. He is
currently a Principal Researcher with the Samsung
Advanced Institute of Technology. He has devel-
oped in-house Samsung reconfigurable processor
and mobile GPU. He is also leading processing
in/near memory project. His research interests
include computer architecture and microarchitec-
ture.

WOONGKI BAEK (Member, IEEE) received
the B.S. and M.S. degrees from Seoul National
University and the Ph.D. degree in electrical
engineering from Stanford University, in 2011.
He is currently a Professor with the Department
of Computer Science and Engineering, UNIST.
His research interests include architecture, system
software, and programming models for parallel
and distributed computing. He is a member of
ACM.

133214 VOLUME 11, 2023


