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We introduce unsupervised machine learning techniques in order to identify toric phases of 4d N ¼ 1

supersymmetric gauge theories corresponding to the same toric Calabi-Yau 3-fold. These 4d N ¼ 1

supersymmetric gauge theories are world volume theories of a D3-brane probing a toric Calabi-Yau 3-fold
and are realized in terms of a type IIB brane configuration known as a brane tiling. It corresponds to the
skeleton graph of the coamoeba projection of the mirror curve associated to the toric Calabi-Yau 3-fold.
When we vary the complex structure moduli of the mirror Calabi-Yau 3-fold, the coamoeba and the
corresponding brane tilings change their shape, giving rise to different toric phases related by Seiberg
duality. We illustrate that by employing techniques such as principal component analysis and t-distributed
stochastic neighbor embedding, we can project the space of coamoeba labeled by complex structure moduli
down to a lower-dimensional phase space with phase boundaries corresponding to Seiberg duality. In this
work, we illustrate this technique by obtaining a 2-dimensional phase diagram for brane tilings
corresponding to the cone over the zeroth Hirzebruch surface F0.

DOI: 10.1103/PhysRevD.108.106009

I. INTRODUCTION

The world volume theories of a D3-brane probing a toric
Calabi-Yau 3-fold [1,2] form a very rich class of 4dN ¼ 1
supersymmetric gauge theories [3–8]. These supersymmet-
ric gauge theories are realized by a type IIB brane
configuration that takes the form of a bipartite periodic
graph on a 2-torus. Such bipartite graphs have been
extensively studied in mathematics as dimers [9,10], and
are known as brane tilings [11–13] in string theory. More
recently, brane tilings have also been studied in relation to
integrable systems [14,15], scattering amplitudes [16,17],
and lattice gauge theories [18,19].
Under T-duality, the D3-brane probing the toric

Calabi-Yau 3-fold singularity becomes a D5-brane sus-
pended between a NS5-brane wrapping a holomorphic
curve Σ [20–22]. The holomorphic curve is given by

Σ∶ Pðx; yÞ ¼ 0; ð1:1Þ

where Pðx; yÞ is the Newton polynomial in x; y∈C� of the
toric diagram Δ corresponding to the toric Calabi-Yau
3-fold. The Newton polynomial is defined as

Pðx; yÞ ¼
X

ðnx;nyÞ∈Δ

cðnx;nyÞx
nxyny ; ð1:2Þ

where ðnx; nyÞ∈Z2 are the coordinates of the vertices
of the 2-dimensional convex lattice polygon Δ, and
cðnx;nyÞ ∈C� are complex coefficients, which are complex
structure moduli of the mirror Calabi-Yau 3-fold [23–25].
Brane tilings and the corresponding 4d N ¼ 1 super-

symmetric gauge theories have been extensively studied
using mirror symmetry of the corresponding toric Calabi-
Yau 3-fold [24,26]. The mirror geometry of the toric
Calabi-Yau 3-fold is another 3-fold given by the double
fibration over the complex W-plane,

W ¼ Pðx; yÞ; W ¼ uv; ð1:3Þ

where u; v∈C. The critical points of Pðx; yÞ are given by
ðx�; y�Þ and satisfy

∂

∂x
Pðx; yÞ

���
ðx�;y�Þ

¼ 0;
∂

∂y
Pðx; yÞ

���
ðx�;y�Þ

¼ 0: ð1:4Þ

On the W-plane, the critical points correspond to
W� ¼ Pðx�; y�Þ. When the toric diagram Δ contains at
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least one internal point, the number of critical points
of P matches the normalized area of the toric diagram,
which is also the number of gauge groups G in the
corresponding 4d theory [27].
The fiber associated to Pðx; yÞ in (1.3) corresponds to a

holomorphic curve ΣW∶ Pðx; yÞ −W ¼ 0, while the
fiber associated to uv in (1.3) is a C� fibration. For generic
values of the complex structure moduli cðnx;nyÞ in (1.2), an

S1 ⊂ ΣW shrinks to zero size at each critical point W�,
whereas additionally the S1 from the uv-fibration vanishes
at the origin W ¼ 0. Overall, from this S1 × S1 fibration
over a vanishing path connecting W ¼ 0 to a specific
critical pointW�, we obtain an S3 as illustrated in Fig. 1. All
these S3’s meet at W ¼ 0, where the uv-fibration vanishes.
D6-branes wrapping these S3’s give rise to the correspond-
ing 4d N ¼ 1 supersymmetric gauge theory, and the way
how these spheres intersect each other at the vanishing
locus Pðx; yÞ ¼ W ¼ 0 specifies the quiver and super-
potential of the 4d theory. The intersection structure is
precisely what is given by the holomorphic curve Σ in (1.1),
which is represented by the corresponding brane tiling.
For different values of the complex structure moduli

cðnx;nyÞ, the positions of the critical points W� change and

therefore the configuration of the S3’s change. This gives
rise to a different intersection structure between the spheres
and hence to a different 4d gauge theory phase. These
phases are all represented by brane tilings and are also
known as toric phases [7,28,29]. They are related by a local
deformation of the brane tiling, which corresponds to
Seiberg duality for 4d theories [30]. This local deformation
is also known as urban renewal or spider move [15,31,32]
in the mathematics literature and is illustrated in Fig. 2.
In the following work, we focus on brane tilings given

by the coamoeba description [26,33] of the holomorphic
curve Σ. When we project the holomorphic curve Σ onto a
2-torus using

ðx; yÞ ¼ ðrxeiθx ; ryeiθyÞ ↦ ðθx; θyÞ∈T2; ð1:5Þ

we obtain what is known as the coamoeba projection
[26,33] of Σ. The coamoeba projection identifies the
locations on T2 where the D5-brane meets the NS5-brane
wrapping Σ in the T-dual description of the D3-brane
probing the toric Calabi-Yau 3-fold. The skeleton graph of
the coamoeba, as illustrated in Fig. 3, is precisely what
we call as the brane tiling [11–13], which represents the 4d
N ¼ 1 supersymmetric gauge theory corresponding to the
toric Calabi-Yau 3-fold. We note that there is a one-to-one
map between a specific coamoeba and the corresponding
brane tiling, and a given brane tiling uniquely identifies the
associated 4d N ¼ 1 supersymmetric gauge theory.
The choice of complex structure moduli cðnx;nyÞ ∈C� in

the Newton polynomial Pðx; yÞ determines the shape of the
coamoeba on T2. When the complex structure moduli pass
critical values, the coamoeba transforms into a new shape,
which corresponds to a new toric phase related by Seiberg
duality to the original 4d theory.
Although, it is well-understood that the complex struc-

ture moduli cðnx;nyÞ ∈C� affect the shape of the coamoeba,
it is in general not well-understood which values of the
complex structure moduli correspond to which toric phase.
We propose in this work a new method to explore and
parameterize using complex structure moduli the phase
space for brane tilings corresponding to a given toric
Calabi-Yau 3-fold. Given that the number of complex
structure moduli increases with increasing number of
vertices in the toric diagram of the toric Calabi-Yau

FIG. 1. The mirror geometry of a toric Calabi-Yau 3-fold is
another 3-fold given by a double fibration over the complex
W-plane. Along a vanishing path connecting W ¼ 0 with a
critical point W�, we obtain from the double fibration an overall
S3. The S3’s meet atW ¼ 0 and how they intersect is given by the
corresponding brane tiling that represents a 4d N ¼ 1 super-
symmetric gauge theory.

FIG. 2. A local deformation of a brane tiling known as urban
renewal or spider move corresponds to Seiberg duality between
the 4dN ¼ 1 theories represented by the brane tilings connected
by the local deformation.

FIG. 3. (a) A coamoeba plot on T2 (b) can be mapped to its
corresponding unique skeleton graph, (c) which is a brane tiling
on T2. The brane tiling is a bipartite graph where edges connect
nodes with different colors.
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3-fold, the problem of identifying regions in the space of all
possible values of the complex structure moduli associated
to specific toric phases is extremely challenging.
We therefore propose unsupervised machine learning

techniques in order to simplify the space of all possible
coamoeba corresponding to a toric Calabi-Yau 3-fold. By
using principal component analysis (PCA) [34–38] and
additionally t-distributed stochastic neighbor embedding
(t-SNE) [39,40], the space of coamoeba labeled by complex
structure moduli can be dimensionally reduced to a lower-
dimensional phase space. Such a phase space obtained using
machine learning allows us to visualize regions in the phase
space as toric phases and boundaries between regions as
phase boundaries corresponding to Seiberg duality. Our
proposed method also enables us to construct probability
functions in terms of the complex structure moduli, whose
probability values at certain choices of the complex structure
moduli identify the corresponding toric phases.
Our work follows a long list of applications of machine

learning techniques in string theory, beginning with the
pioneering works in [41–49], and aims for explainable and
interpretable results in string theory and mathematics
through machine learning. We focus in this work on
unsupervised machine learning techniques and the presen-
tation of interpretable results in the context of coamoeba
and brane tilings, which is in contrast to some previous
attempts [50] on applying supervised machine learning
techniques for the study of amoeba and brane webs [51,52].
We also note that our emphasis on the interpretation of the
space of coamoeba under PCA and t-SNE as a phase space
for brane tilings and corresponding 4d N ¼ 1 supersym-
metric gauge theories is in stark contrast to the focus on
numerical accuracy of estimating amoeba features in [53,54].

II. BRANE TILINGS AND COAMOEBA

4dN ¼ 1 supersymmetric gauge theories corresponding
to toric Calabi-Yau 3-folds can be realized in terms
of a type IIB brane configuration known as a brane
tiling [11–13]. A brane tiling consists of D5-branes
suspended from a NS5-brane, where the NS5-brane extends
along the (0123) directions and wraps a holomorphic curve
Σ embedded into the (4567) directions. The coordinates
(45) and (67) are pairwise combined into complex variables
x; y∈C�, respectively. They are the complex coordinates
in the Newton polynomial Pðx; yÞ and the arguments
ðargðxÞ; argðyÞÞ ¼ ðθx; θyÞ are the coordinates of a T2.
The brane configuration is summarized in Table I.
As discussed in (1.1), the holomorphic curve Σ is

defined as the zero locus of the Newton polynomial
Pðx; yÞ of the toric diagram Δ. The brane tiling is the
skeleton graph of the coamoeba projection of Σ onto
ðargðxÞ; argðyÞÞ∈T2 [26]. This is a projection of every
point on the curve Σ∶ Pðx; yÞ ¼ 0 to its angular compo-
nent, resulting in a doubly periodic image of the curve Σ

on T2. We refer to this image on T2 as the coamoeba
[26,33] of the toric Calabi-Yau 3-fold. The alternative
projection of Σ onto ðjxj; jyjÞ ¼ ðrx; ryÞ is called the
amoeba projection [55,56].
The brane tiling associated to the coamoeba is a bipartite

periodic graph on T2. We can use the following dictionary
to identify the corresponding 4d N ¼ 1 supersymmetric
gauge theory from a brane tiling [11,12]:

(i) White and black nodes. Positive and negative terms
in the superpotential W of the 4d N ¼ 1 super-
symmetric gauge theory correspond to white and
black nodes in the brane tiling, respectively. The
white and black nodes also have a clockwise and
anticlockwise orientation, respectively.

(ii) Edges. Bifundamental fields Xij in the 4d N ¼ 1
supersymmetric gauge theory are represented by
edges in the brane tiling, which always connect
nodes that have different colors. Going along the
orientation of a node, one can identify the fields
Xij; Xjk;…Xmi associated to the specific superpo-
tential term �TrðXijXjk…XmiÞ∈W in the correct
cyclic order.

(iii) Faces. UðNiÞ gauge groups correspond to faces of a
brane tiling. Every edge in the brane tiling correspond-
ing to a bifundamental field Xij has neighboring faces
associated toUðNiÞ andUðNjÞ. The orientation of the
bifundamental field Xij is given by the orientation
around the white and black nodes at the two opposite
ends of the corresponding brane tiling edge.

In the following work, all gauge groups are considered to
be Uð1Þ such that the mesonic moduli space [57–60] of
the 4d N ¼ 1 supersymmetric gauge theories is precisely
the probed toric Calabi-Yau 3-fold. Under Seiberg duality,
dual brane tilings keep corresponding to Abelian 4d
theories with Uð1Þ gauge groups. Accordingly, for
Abelian 4d theories corresponding to toric Calabi-Yau
3-folds, Seiberg duality is often referred to as toric duality
in the literature [7,8,28].
As an example, Fig. 4 shows the brane tiling for the first

toric phase corresponding to the Calabi-Yau cone over the
zeroth Hirzebruch surface F0 [7,61–63]. When we replace
the faces as nodes, and edges as arrows along the
orientation of the white and black nodes of the brane
tiling, we obtain a periodic quiver [11] on T2. The T2 unit
cell of the periodic quiver gives the quiver diagram [5] of
the corresponding 4dN ¼ 1 supersymmetric gauge theory.

TABLE I. A 4d N ¼ 1 gauge theory corresponding to a toric
Calabi-Yau 3-fold can be represented by a type IIB brane
configuration known as a brane tiling.

0 1 2 3 4 5 6 7 8 9

D5 × × × × × ⋅ × · · ·
NS5 × × × × Σ · ·
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The faces of the brane tiling indicate the locations of the
D5-brane suspended between the NS5-branes wrapping Σ
in the brane construction in Table I. In the mirror symmetry
description, the faces of the brane tiling are centered
around the critical points W� ¼ ðx�; y�Þ from (1.4).
Each critical point W�

i corresponds to a gauge group,
and when they are projected under the coamoeba map
to T2, they form the centers of the brane tiling faces. The
solutions to Pðx; yÞ ¼ 0mapped to T2 indicate the location
of the holomorphic curve Σ on T2 and is highlighted in
black in the coamoeba plots as illustrated in Fig. 5. These
regions surround the critical points W�

i that are located
inside the white regions of the coamoeba plot. In the
following section, we review how we generate these
coamoeba plots and how we illustrate them on T2.

III. COAMOEBA GENERATION AND
REPRESENTATION

For the following work, the coamoeba projection of Σ
onto T2 plays a central role, because it directly corresponds
to the brane tiling and 4d N ¼ 1 supersymmetric gauge
theory for a given toric Calabi-Yau 3-fold. From (1.2), we
note that Σ∶ Pðx; yÞ ¼ 0 depends on the complex structure
moduli cðnx;nyÞ ∈C�. In order to identify a correspondence
between complex structure moduli cðnx;nyÞ and specific toric
phases, we have to generate for the same toric Calabi-Yau
3-fold many coamoeba for different values of cðnx;nyÞ.

As discussed above, the coamoeba is given by the
angular projection of Σ∶ Pðx; yÞ ¼ 0 onto T2. In order
to obtain the coamoeba plot on T2, one needs to solve for
the set of solutions for Pðx; yÞ ¼ 0, which then can be
mapped to T2 using the coamoeba map. We make use of the
Monte-Carlo method [64] and scan for solutions in the
range of θx ¼ argðxÞ∈ ½0; 2πÞ and θy ¼ argðyÞ∈ ½0; 2πÞ.
We call the process of searching for solutions while varying
θx the θx-scan, while the search for solutions while varying
θy is called the θy-scan.
For the θx-scan, we first pick a random value

θx0 ∈ ½0; 2πÞ and a random value for mϵ ∈ ½−ϵ; ϵ�, where
the positive parameter ϵ ≪ 1 is taken to be small. Here, ϵ is
a measure of the overall thickness of the coamoeba after
projecting Σ onto T2. By taking x0 ¼ eiθx0þmϵ , we can then
numerically solve for y using

Pðx ¼ x0; yÞ ¼
X

ðnx;nyÞ∈Δ

cðnx;nyÞx
nx
0 yny ¼ 0: ð3:1Þ

The solutions y ¼ y� then combined with the value for x0
can be mapped to T2 by taking ðθ�x; θ�yÞ≡ ðθx0 ; argðy�ÞÞ,
where θx0 is given by x0 ¼ eiθx0þmϵ. In total, we take Nθ

random values for θx0 ∈ ½0; 2πÞ and mϵ ∈ ½−ϵ; ϵ� in order to
find corresponding solutions y ¼ y� in (3.1). The resulting
collection of solutions of the form ðθx0 ; argðy�ÞÞ gives the
θx-scan of the coamoeba. The θy-scan of the coamoeba is
similarly defined for a range of values for θy ∈ ½0; 2πÞ.
For a given choice of complex structure parameters

cðnx;nyÞ ∈C� for a Newton polynomial Pðx; yÞ of a toric
Calabi-Yau 3-fold, we define the components of the
coamoeba matrix X as follows:

Xαβ ¼
�
1 ∃ ðθ�x; θ�yÞ s:t: ðβ − 1Þdx ≤ θ�x < βdx and ðα − 1Þdy ≤ θ�y < αdy
0 otherwise

; ð3:2Þ

FIG. 4. (a) The brane tiling on T2 with clockwise/anti-
clockwise orientations on white/black nodes, (b) the periodic
quiver on T2, and (c) the quiver and superpotential corresponding
to the first toric phase of F0.

FIG. 5. Each critical point W�
i on the W-plane corresponds to a

UðNÞ gauge group in the 4d N ¼ 1 theory. When they are
projected under the coamoeba map to T2, (a) they form the
centers of white regions in the coamoeba plot and (b) are in the
interior of the brane tiling faces.
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where ðθ�x; θ�yÞ is a solution found under the θx- and
θy-scans. The indices α ¼ 1;…; my and β ¼ 1;…; mx label
the grid points used for the coamoeba plot, and 0<dx≤2π
and 0 < dy ≤ 2π measure the grid separation, as illustrated
in Fig. 7(a). The resolutions mx and my for the coamoeba
plot are defined by

dx ¼
2π

mx
; dy ¼

2π

my
: ð3:3Þ

Given the coamoeba matrix X, we can concatenate the
rows of the matrix to form a ðmxmyÞ-dimensional coa-
moeba vector as follows:

x ¼ ðX11;…; X1my
; X21;…; Xmx1

;…Xmxmy
Þ: ð3:4Þ

These coamoeba vectors live in the non-negative cone
ofZmxmy . We note that for each choice of complex structure
moduli, we have a corresponding coamoeba vector in
Zmxmy . In the following work, we will use the coamoeba
vectors as input to generate the phase diagram of coamoeba
and brane tilings for a given toric Calabi-Yau 3-fold.

A. Example

Figure 6 illustrates coamoeba plots corresponding to the
cone over the zeroth Hirzebruch surface F0, whose Newton
polynomial takes the form,

Pðx; yÞ ¼
�
xþ 1

x

�
þ c1

�
yþ 1

y

�
þ c2; ð3:5Þ

where c1; c2 ∈C� are the independent complex structure
moduli. We note that the complex structure moduli are
nonzero such that the number of terms in the Newton

polynomial is maintained and its correspondence to a
specific toric Calabi-Yau 3-fold is fixed. We further note
that for any toric Calabi-Yau 3-fold, with a toric diagram Δ
with jΔj vertices on Z2, the complex coefficients in the
Newton polynomial Pðx; yÞ can be rescaled such that they
give precisely jΔj − 3 independent ones [27]. In the case for
F0, this precisely gives two independent complex structure
moduli chosen to be c1 ¼ c11 þ ic12 and c2 ¼ c21 þ ic22
in (3.5), where cij ∈R such that ci ∈C�. Figure 6 shows the
coamoeba plots for complex structure moduli set to
ðc11; c12; c21; c22Þ ¼ ð−3: − 6;−3;þ6Þ, with the coamoeba
plot embedded in a grid defined by the resolution
mx ¼ my ¼ 63, giving a total of mxmy ¼ 3969 grid points
in the coamoeba plots. Accordingly, the coamoeba vectors
are in the positive cone of Z3969. The four coamoeba
plots in Fig. 6 are obtained using ϵ∈ f1; 5g and Nθ ¼
f500; 1000g and are the union of the corresponding θx- and
θy-scans. We note that our use of coamoeba vectors as
representations of corresponding brane tilings, 4d N ¼ 1
theories and the choice of complex structure moduli is very
much in contrast to the use of amoeba images in con-
junction with supervised machine learning techniques for
example in [54].

IV. DIMENSIONAL REDUCTION AND PRINCIPAL
COMPONENT ANALYSIS

Given a choice of complex structure moduli for a toric
Calabi-Yau 3-fold, we can obtain through the coamoeba
projection the corresponding coamoeba vector defined
in (3.4). The choice of complex structure moduli and the
corresponding coamoeba vector are both associated to a
brane tiling representing a 4d N ¼ 1 supersymmetric
gauge theory. Given that multiple choices of complex
structure moduli can be associated to the same toric phase,
identifying a map between toric phases and choices of
complex structure moduli is a challenging problem.
In this work, we propose to dimensionally reduce the

ðmxmyÞ-dimensional coamoeba vectors in the positive cone
of Zmxmy to a lower dimensional phase space, where
connected regions in the phase space can be identified with
toric phases of brane tilings representing 4d N ¼ 1 super-
symmetric gauge theories. We use principal component
analysis (PCA) [34–37], which is one of the most funda-
mental and powerful techniques used for machine learning.
The main idea behind PCA is to compress data by dimen-
sional reduction with the aim of losing the least amount of
information during the process. In the following section, we
give a brief review of PCA applied to coamoeba vectors
relating to specific choices of complex structure moduli.

A. Principal component analysis

Let us give a brief review of PCA [34–38] for coamoeba
vectors associated to choices of complex structure moduli.
Given a set of N coamoeba vectors fx1;…;xNg, where for

ε = 1,Nθ = 500

ε = 1,Nθ = 1000 ε = 5,Nθ = 1000

ε = 5,Nθ = 500

FIG. 6. Illustration of coamoeba plots corresponding to the
cone over the zeroth Hirzebruch surface F0 with the components
of the complex structure moduli chosen to be ðc11; c12; c21;
c22Þ ¼ ð−3;−6;−3;þ6Þ. The thickness parameter ϵ and the
density parameter Nθ are varied between different plots.
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PCAwe generalize xa ∈Rd with d ¼ mxmy, we can always
project Rd to a lower m-dimensional feature space
U ¼ Rm ⊂ Rd. The lower-dimensional representation of
xa ∈Rd, which we call za ¼ πUðxaÞ∈U, is given by

za ¼ πUðxaÞ ¼ Pπxa; ð4:1Þ

where the projection matrix from Rd to U is given by

Pπ ¼ BðB⊤BÞ−1B⊤: ð4:2Þ

Here,

B ¼ ½b1;…;bm�∈Rd×m; ð4:3Þ

is the matrix of basis vectors bi for U. The coordinate
vector based on the basis given by B is
ðza1;…; zamÞ ¼ ðB⊤BÞ−1B⊤xa. Note that if the basis of
U is orthonormal, then B⊤B ¼ I gives the identity matrix,
leading to

za ¼ πUðxaÞ ¼ BB⊤xa; ð4:4Þ

where

ðza1;…; zamÞ ¼ B⊤xa; ð4:5Þ

are the coordinates of za with respect to the orthonormal
basis given by B.
So far, we see that there are no surprises and using Pπ

defined in terms of B, we can project any coamoeba vector
xa ∈Rd into the subspaceU. This is however now the point
where beautifully linear algebra meets statistics. What we
mean is, we do not want to project xa ∈Rd to any subspace
U of Rd, but to a special subspace Û where statistically the
maximum amount of information in the original set of

coamoeba vectors xa ∈Rd is preserved. This, in other
words, means we need to find Û with basis vectors
b1;…;bm such that when xa ∈Rd are projected to Û,
they have a maximized variance along b1;…;bm.
Let us consider the first basis vector b1 of Û, that

maximizes the variation of the original set of coamoeba
vectors under the projection. This involves the maximiza-
tion of the variance of the first coordinate z1a of za over the
whole set of vectors fx1;…;xNg. Given that the basis of Û
is orthonormal, we can express the first coordinate as

z1a ¼ b⊤
1 xa: ð4:6Þ

The variance for the first coordinate z1a over fx1;…;xNg is
then given by

Vðz1Þ ¼
1

N

XN
a¼1

z21a ¼
1

N

XN
a¼1

ðb⊤
1 xaÞ2; ð4:7Þ

where we note that the expression for the variance is
independent of the mean of the first coordinate over the
whole set fx1;…;xNg.
Here, let us introduce the coamoeba covariance matrix S

for the original set of coamoeba vectors fx1;…;xNg,
which is defined as follows:

S ¼ 1

N

XN
a¼1

xax⊤
a : ð4:8Þ

The covariance matrix is symmetric and positive semi-
definite and is a measure of how much the original set of
coamoeba vectors is spread. The expression of the variance
Vðz1Þ of the first coordinate in (4.7) can be expressed in
terms of the covariance matrix S as follows:

Vðz1Þ ¼ b⊤
1 Sb1: ð4:9Þ

FIG. 7. A coamoeba plot consists of (a) a mx ×my grid with grid separation given by dx and dy. (b) When a critical point ðθ�x; θ�yÞ is
inside a grid point, (c) the grid point is colored black. (d) The grid can be represented in terms of a coamoeba matrix whose entries are 1
for black grid points and otherwise 0.
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The question now is how to maximize the variance
Vðz1Þ. One option is to increase the length of the basis
vector b1. This is however not what we want given the fact
that we started with the condition that Û has an ortho-
normal basis. Accordingly, we introduce the constraint that
the norm of the basis vector satisfies kb1k2 ¼ 1. The result
is a constrained optimization problem taking the form,

max
b1

ðVðz1ÞÞ ¼ max
b1

ðb⊤
1 Sb1Þ;

kb1k2 ¼ b⊤
1 b1 ¼ 1: ð4:10Þ

In order to solve this constrained optimization problem, we
write a Lagrangian function of the form

Lðb1; λÞ ¼ b⊤
1 Sb1 þ λð1 − b⊤

1 b1Þ; ð4:11Þ

where λ is the Lagrange multiplier. By taking the partial
derivatives of Lðb1; λÞ to zero, we obtain

Sb1 ¼ λb1; ð4:12Þ

and b⊤
1 b1 ¼ 1. Here, (4.12) beautifully refers to an

eigenvalue equation, where the first basis vector b1 is the
eigenvector with eigenvalue λ for the coamoeba covariance
matrix S.
By inserting the eigenvalue equation in (4.12) with

b⊤
1 b1 ¼ 1 into the formula for the variance in (4.9), we get

Vðz1Þ ¼ b⊤
1 Sb1 ¼ λ: ð4:13Þ

This implies that in order to maximize the variance of the
projected set of coamoeba vectors fx1;…;xNg, we have to
choose for b1 an eigenvector of the covariance matrix S that
has the largest eigenvalue λ ¼ λ1. This eigenvector b1 is
also known as the first principal component. Using this
principal component, we can then identify the optimal
projected coamoeba vector using (4.6) inside the original
feature space Rd,

x̂a ¼ b1z1a ∈Rd: ð4:14Þ

We can now extend the problem to the m-th principal
component. Let us first assume that we already found
the first m − 1 principal components b1;…;bm−1, which
correspond to the first m − 1 eigenvectors of the coamoeba
covariance matrix S with the eigenvalues sorted from large
to small as follows: λ1;…; λm−1.
For the mth principal component, we then have to

maximize the variance VðzmÞ for the mth component of
the set of coamoeba vectors fx1;…;xNg, under the
constraint that we have orthonormal basis vectors satisfying
b⊤
mbm ¼ 1. By solving the constrained optimization prob-

lem, we obtain the following eigenvalue equation:

Sbm ¼ λmbm; ð4:15Þ

where the variance of the coamoeba vectors projected
onto the mth principal component is given by the eigen-
value VðzmÞ ¼ λm.
Overall, in order to find the most optimal m-dimensional

subspace Û of the original space Rd of coamoeba vectors
fx1;…;xNg, we have to choose as basis vectors for Û
eigenvectors of the covariance matrix S that have the largest
eigenvalues. The maximum variance from the first m
principal components is given by

Vðz1;…; zmÞ ¼
Xm
i¼1

λi: ð4:16Þ

B. Unsupervised optimization

The overall optimization problem of identifying the first
m principal components that maximize Vðz1;…; zmÞ can
be reformulated as a loss function JðbaÞ that needs to be
minimized. Such a loss function measures the overall
difference between the actual coamoeba vectors xa and
the projected coamoeba vectors x̂a expressed in terms
of Rd coordinates. Following the expression for za ∈ Û
in (4.1), we can express

x̂a ¼ ðz1a;…; zma; 0;…; 0Þ∈Rd; ð4:17Þ

where ðz1a;…; zmaÞ are the coordinates for the projected
coamoeba vector za in Û ⊂ Rd. Accordingly, we can write
the loss function for the original set of coamoeba vectors
fx1;…;xNg under PCA as

JðbaÞ ¼
1

N

XN
a¼1

kxa − x̂ak2

¼
Xd

k¼mþ1

b⊤
k Sbk ¼

Xd
k¼mþ1

λk: ð4:18Þ

We can see from here that in order to minimize the loss
function above, we have to identify the smallest d −m
eigenvalues of the coamoeba covariance matrix S whose
corresponding eigenvectors are orthogonal to the m prin-
cipal components that span Û.
In this work, we interpret Û as a phase space for

coamoeba corresponding to brane tilings and 4d N ¼ 1
supersymmetric gauge theories associated to a toric Calabi-
Yau 3-fold. Every projected vector za in Û is a projected
coamoeba vector with an associated choice of complex
structure moduli. If the dimensionm of Û is kept small, we
expect za to cluster into connected regions in Û corre-
sponding to coamoeba and brane tilings that form a toric
phase associated to the toric Calabi-Yau 3-fold. In the
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following section, we obtain Û for the Calabi-Yau cone
over the zeroth Hirzebruch surface F0 with m ¼ 2. We
illustrate with this example that indeed Û can be interpreted
as a phase space for toric phases of F0.

V. A PHASE DIAGRAM FOR COAMOEBA
AND BRANE TILINGS

In this section, we overview the explicit construction of
the phase diagram that we propose using PCA for coa-
moeba and brane tilings corresponding to the Calabi-Yau
cone over the zeroth Hirzebruch surface F0 [7,61–63].

A. Example

Let us consider the brane tilings and coamoeba for the
cone over the zeroth Hirzebruch surface F0 [7,61–63],
whose Newton polynomial with complex structure moduli
c1 and c2 is given in (3.5). Restricting ourselves to a
discrete finite subset of all possible choices for the complex
structure moduli, we choose the real moduli cij to take
values only from f−9;−6;−3; 0; 3; 6; 9g such that ci ∈C�.
Under this restriction on the choices of complex structure
moduli, we generate N ¼ 2304 coamoeba plots with
parameters ϵ ¼ 5, Nθ ¼ 2000, and mx ¼ my ¼ 63. These
give N ¼ 2304 coamoeba vectors xa ∈Rd with d ¼ 3969.
We note that these hyperparameters are chosen specifically
for the discussion in this work on the phase space for brane
tilings, and a more detailed discussion on the role played by
these hyperparameters is the subject of future work.
We use PCA to project the coamoeba vectors xa ∈Rd

down to Û with m ¼ 2 principal components b1 and b2.
These are the eigenvectors of the coamoeba covariance
matrix S defined in (4.8), whose respective eigenvalues
λ1 and λ2 are the largest and second largest out of all
eigenvalues of S. This means that along b1;b2 ∈Rd, the set
of original coamoeba vectors xa when projected down to
za ¼ ðz1a; z2aÞ∈ Û ⊂ Rd, have the largest and second
largest maximized variances Vðz1Þ ¼ λ1 and Vðz2Þ ¼ λ2
over all a ¼ 1;…; N. The eigenvalues for our dataset of
coamoeba vectors for F0 take the following values,

λ1 ¼ 144.23; λ2 ¼ 57.79; ð5:1Þ

where we express measurements up to 2 decimal points.
The so-called proportional variance given by the ith
eigenvalue of S can be calculated using

λ�i ¼
λiP
d
j¼1 λj

× 100%; ð5:2Þ

where the total variance
P

d
j¼1 λj is used in the denomi-

nator. For our analysis, the proportional variance for the
first m ¼ 2 principal components is given by

λ�1 ¼ 17.18%; λ�2 ¼ 6.88%: ð5:3Þ

This means about λ�1 þ λ�2 ¼ 24.06% of the information in
the original set of coamoeba vectors xa is preserved in total
if all the vectors are projected to za ¼ ðz1a; z2aÞ∈ Û.
When we plot the coordinates z1, z2 corresponding to the

principal components b1ðPC1Þ and b2ðPC2Þ, respectively,
for all coamoeba vectors, we obtain a 2-dimensional PCA
score plot as shown in Fig. 8(a). We interpret this plot as a
2-dimensional phase diagram for brane tilings and coa-
moeba for F0. This is because the projected za, each
corresponding to a coamoeba defined for a particular
choice of complex structure moduli whose skeleton graph
is a brane tiling realizing a 4d N ¼ 1 supersymmetric
gauge theory, cluster in the 2-dimensional plot as shown
in Fig. 8(a).
A closer look at the first principal component b1ðPC1Þ

and the corresponding coordinate z1 reveals that when
plotted as a frequency histogram with bin size Δz1 ¼ 1.25
and with a total of Nbins ¼ 30 bins along the z1-axis, there
are 3 peaks in the frequency count NðbinhÞ of coamoeba
vectors for a given binh along the z1-axis as shown in
Fig. 8(b). These peaks in the frequency count along the
z1-axis indicate clusters of projected coamoeba vectors za
in the 2-dimensional phase diagram. We call this frequency
histogram along the z1-axis corresponding to the first
principal component the m ¼ 1 phase histogram for F0.
The locations of these clusters along the z1-axis are

given by

zð1Þ1 ¼ 0; zð2aÞ1 ¼ −15; zð2bÞ1 ¼ 15; ð5:4Þ

where we call the clusters respectively as (1), (2a), and (2b).
We note that the m ¼ 2 phase diagram appears to be
symmetric around z1 ¼ 0, mapping clusters (2a) and (2b)
into each other.
When we take samples of projected vectors za from the

phase diagram in Fig. 8(a), the corresponding coamoeba
and their brane tilings, as shown in Figs. 8(c)–8(g), contain
the two known toric phases for the cone over the zeroth
Hirzebruch surface F0. The first toric phase [8,63], whose
brane tiling, quiver diagram and superpotential of the
corresponding 4d N ¼ 1 supersymmetric gauge theory
are shown in Fig. 4, can be associated to cluster (1) in the
phase diagram in Fig. 8(a). The second toric phase [7,29],
which is Seiberg dual to the first toric phase, is identified
with clusters (2a) and (2b), where as shown in Fig. 8(a)
projected coamoeba vectors za in clusters (2a) and (2b)
correspond to equivalent brane tilings on the 2-torus giving
the same 4d N ¼ 1 supersymmetric gauge theory.
We can further highlight the existence of these clusters

by having a closer look at the eigenvectors b1 and b2 of
the coamoeba covariance matrix S. We recall from (4.3)
that these eigenvectors representing the two principal
components form the matrix of basis vectors B of Û.
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Following (4.5), given that B⊤B ¼ I gives the identity
matrix, B⊤ projects the original coamoeba vectors xa to
the 2 coordinates z1a and z2a. An alternative interpre-
tation of the eigenvectors b1 and b2 and the matrix B is
that the absolute values of their components measure
how correlated the d ¼ 3969 components of the original
coamoeba vector xa are with the m ¼ 2 components of
the projected vectors with coordinates ðz1a; z2aÞ on the
m ¼ 2 phase diagram.
We can in fact plot the values of the d ¼ 3969 compo-

nents of the eigenvectors b1 and b2 on the unit cell of T2,
like the coamoeba plots obtained from the coamoeba matrix
defined in (3.2). The resulting heatmaps for b1 and b2 are
shown in Fig. 9. Quite beautifully we can see that the large
positive values (in yellow) for the components of b1 in
Fig. 9(a) form the shape of a coamoeba corresponding to
cluster (2b) in the m ¼ 2 phase diagram in Fig. 8(a).
Furthermore, the largely negative values (in dark blue) for
the components of b1 form the shape of a coamoeba
corresponding to cluster (2a) in the phase diagram in
Fig. 8(a). This means, the first principal component b1

mainly detects coamoeba corresponding to the second toric
phase of F0 and the sign of the components of b1 mainly
distinguish between clusters (2a) and (2b) in the phase
diagram in Fig. 8(a). Moreover, looking at the heatmap for
the second principal component b2 in Fig. 9(b) reveals that
large positive values (in yellow) of the components of b2

form the shape of a coamoeba corresponding to cluster
(1) in the phase diagram in Fig. 8(a). This indicates that the
second principal component b2 mainly identifies the first
toric phase of F0. Accordingly, the two principal compo-
nents b1 and b2 play a vital role in distinguishing coamoeba
corresponding to the two toric phases of F0.
In our discussion, we have identified in the m ¼ 2 phase

diagram for F0 clusters of projected coamoeba vectors za
by identifying peaks in the frequency histogram of vectors
along the z1-axis of the phase diagram. In the following
section, we employ further unsupervised machine learning
techniques in order to explicitly identify the clusters and
discrete boundaries between them. These boundaries can be
interpreted as phase boundaries between toric phases of F0

where Seiberg duality occurs.

FIG. 8. (a) Them ¼ 2 phase diagram for F0 consists of points that correspond to coamoeba plots and their corresponding brane tilings
for specific choices of the complex structure moduli. (b) We call the corresponding frequency histogram along the z1-axis corresponding
to the first principal component the m ¼ 1 phase histogram for F0. It shows three peaks corresponding to three clusters in the m ¼ 2
phase diagram for F0. We identify these clusters with three phases of coamoeba plots and their corresponding brane tilings, called phases
(1), (2a), and (2b). In (c)–(g), we select five points in the m ¼ 2 phase diagram and illustrate the corresponding coamoeba plots, the
associated brane tilings and the choices of complex structure moduli.
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VI. CLUSTERS AND TORIC PHASE BOUNDARIES

In order to identify the explicit borders between toric
phases in the 2-dimensional phase diagram in Fig. 8(a), we
make use of a manifold learning algorithm for dimension-
ally reducing multidimensional data known as t-distributed
stochastic neighbor embedding (t-SNE) [39,40]. Let us
give a brief overview of t-SNE in terms of coamoeba
vectors xa ∈Rd with a ¼ 1;…; N.

A. t-distributed stochastic neighbor embedding

Let us first define the pairwise affinity pbja, which
measures how similar two coamoeba vectors in the original
d-dimensional space Rd are,

pbja ¼
expð−kxa − xbk2=2σ2aÞP
h≠a expð−kxa − xhk2=2σ2aÞ

: ð6:1Þ

The pairwise affinity pbja essentially measures the like-
lihood that one coamoeba vector xa would pick xb as its
neighbor under the assumption that neighbors are picked
following a Gaussian probability distribution centered
at xa. Here, the Gaussian is chosen to have a variance
of σa. The pairwise affinity can be symmetrized as follows:

pab ¼
pbja þ pajb

2N
; ð6:2Þ

where N is the number of coamoeba vectors xa ∈Rd.
We note that the individual variances σa for each

coamoeba vector xa are determined using binary search.
The search is dependent on the value of the perplexity
Perp [39,40], which is defined as

PerpðPaÞ ¼ 2HðPaÞ; ð6:3Þ

where Pa is the probability distribution formed by the
conditional probabilities given by pbja defined in (6.1).
HðPaÞ is the Shannon entropy of Pa given by

HðPaÞ ¼ −
XN
b¼1

pbjalog2pbja: ð6:4Þ

Overall, the value of the perplexity Perp has the effect of
emphasizing local and global features of the dimensional
reduction of the coamoeba vectors to za in m dimensions.
We can define a pairwise affinity between the dimen-

sionally reduced coamoeba vectors za as follows:

qab ¼
ð1þ kza − zbk2Þ−1P
N
h≠gð1þ kzh − zgkÞ−1

; ð6:5Þ

where here we use the t-distribution with ν ¼ 1 degree of
freedom. This gives us the Cauchy distribution which
replaces the Gaussian distribution that is used in (6.1).
Here, the pairwise affinity between the reduced coamoeba
vectors za is a measure of similarity in the dimensionally
reduced space. The t-distribution is used for za rather than
the Gaussian distribution, because the “heavy” tails of the
distribution tend to make clusters of reduced coamoeba
vectors za tighter than in other dimensional reduction
techniques.
Given the probability distribution Pa defined by the

pairwise affinities pab of coamoeba vectors xa ∈Rd, and
the probability distribution Qa defined by the pairwise
affinities qab of dimensionally reduced coamoeba vectors
za ∈Rm, we can measure the overall divergence of these
two probability distributions using the Kullback-Leibler
(KL) divergence [65] defined as

CKL ¼
XN
a;b¼1

pab log
pab

qab
: ð6:6Þ

The dimensional reduction of coamoeba vectors xa ∈Rd

to za ∈Rm using t-SNE has the aim of reducing the KL
divergence C by iteratively varying the positions of
candidate coamoeba vectors za in Rm. This minimization
process is done by gradient descent, where the gradient is
defined as

δCKL

δza
¼ 4

XN
b¼1

ðpab − qabÞðza − zbÞ
1þ kza − zbk

: ð6:7Þ

Having reviewed t-SNE for coamoeba vectors, let us
now apply t-SNE to the N ¼ 2304 coamoeba vectors
xa ∈R3969 that we have obtained in Sec. III for the
Calabi-Yau cone over the zeroth Hirzebruch surface F0.

FIG. 9. The plots show the values of the d ¼ 3969 components
of the eigenvectors (a) b1 and (b) b2 as heatmaps on the unit cell
of T2. In (a), they form the shape of coamoeba corresponding to
phase (2a) and (2b), whereas in (b), the heatmap forms the shape
of the coamoeba for phase (1). The indices α ¼ 1;…; my and
β ¼ 1;…; mx label the grid points when the eigenvectors are
illustrated in a mx ×my grid, analogous to coamoeba plots.
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B. Example

Let us consider the N ¼ 2304 coamoeba vectors xa ∈
R3969 obtained for the cone over the zeroth Hirzebruch
surface F0 from Sec. III. Using t-SNE, the coamoeba
vectors can be dimensionally reduced to za ∈Rm with
m ¼ 2, giving the t-SNE phase diagram for F0 shown in
Fig. 10(a) with the perplexity parameter set to Perp ¼ 250.
In comparison to the phase diagram obtained from PCA,
the t-SNE phase diagram contains three disconnected
clusters Sp, which can be identified with phases p ¼ ð1Þ,
(2a), and (2b), where (2a) and (2b) correspond to the same
second toric phase of F0.
We can identify through the t-SNE phase diagram the

coamoeba and the corresponding complex structure moduli
corresponding to each of the three clusters Sp in Fig. 10(a),
giving the following counting of coamoeba,

jSð2aÞj¼1004; jSð1Þj¼297; jSð2bÞj¼1003; ð6:8Þ

where N ¼ jSð2aÞj þ jSð1Þj þ jSð2bÞj ¼ 2304.
We define the average projected coamoeba vector for a

subset Sp of vectors in a given phase p as

hzaip ¼ 1

jSpj
X
za ∈ Sp

za: ð6:9Þ

Recalling that the concatenated rows of the coamoeba
matrix give the coamoeba vector, we can illustrate the
averaged coamoeba plots from the average coamoeba
vectors hzaip for the three phases Sp identified in the
t-SNE phase diagram. These averaged coamoeba plots for
each of the phases with the corresponding brane tilings are
shown in Fig. 10(c). We note that the brane tiling for the
averaged coamoeba plot for phase 1 corresponds exactly to
the known first toric phase of F0. Moreover, the brane
tilings for the averaged coamoeba plots for phases 2a
and 2b corresponds exactly to the known second toric
phase of F0.
We can identify individual coamoeba vectors za in

clusters Sð1Þ, Sð2aÞ, and Sð2bÞ of the m ¼ 2 t-SNE phase
diagram in the m ¼ 2 phase diagram obtained through
PCA. This allows us to identify the phase boundaries
between different phases in the m ¼ 2 PCA phase diagram
as illustrated in Fig. 10(b). We note that these phase
boundaries in the m ¼ 2 phase diagram exactly correspond
to where Seiberg duality occurs between toric phases.

FIG. 10. (a) The m ¼ 2 t-SNE phase diagram for F0 shows three clusters Sp with sizes jSð2aÞj ¼ 1004, jSð1Þj ¼ 297, jSð2bÞj ¼ 1003.
The points corresponding to coamoeba for specific choices of complex structure moduli can be identified with points in the (b) m ¼ 2
PCA phase diagram for F0. Given that through the m ¼ 2 t-SNE phase diagram we know which points correspond to which cluster and
phase, we can identify the phase boundaries in the m ¼ 2 PCA phase diagram for F0. In (c), we show the averaged coamoeba plots and
the corresponding brane tilings for phases (1), (2a), and (2b).
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We further note that our approach is in direct contrast to the
attempts of using supervised machine learning for studying
Seiberg duality in [66,67].
An interesting question one can ask is if one can predict

now whether a certain choice of complex structure moduli
in (3.5) leads to a specific toric phase of F0. We note that
the clusters Sð1Þ, Sð2aÞ, and Sð2bÞ obtained through the t-SNE
phase diagram in Fig. 10(a) play an essential role in
answering this question. In order to solve this problem,
we propose the use of logistic regression [68,69], where the
input parameters are chosen to be the components of the
complex structure moduli c11, c12, c21, and c22 for F0. We
recall that for the set of N ¼ 2304 coamoeba vectors, we
chose values for cij ∈ f−9;−6;−3; 0; 3; 6; 9g such that
ci ∈C� in Sec. III. For the purpose of using logistic
regression, each component cij is scaled as follows:

c0ij ¼
cij − μðcijÞ

σðcijÞ
; ð6:10Þ

where the mean μðcijÞ ¼ 0 and standard deviation σðcijÞ ¼
6.06 for all cij over the N ¼ 2304 choices of complex
structure moduli.
In logistic regression, the aim is to obtain the probability

that a given instance, in our case a choice of complex
structure moduli given by cij, belongs to a particular class,
in our case a particular subset of projected coamoeba
vectors Sp. The probability is given by

PpðcijÞ ¼
1

1 − e−lpðcijÞ
; ð6:11Þ

where we choose PpðcijÞ ¼ 1 if the corresponding pro-
jected coamoeba vector za∈Sp, and PpðcijÞ¼0 if za ∉ Sp.
Here, logit—the log odds of za belonging to Sp with
complex structure moduli components cij—is given
by a linear combination of the complex structure moduli
components,

lpðcijÞ ¼ βp0 þ βp1c11 þ βp2c12 þ βp3c21 þ βp4c22; ð6:12Þ

where βp0 ∈R is the intercept and all other βpi are real
coefficients specific for a projected coamoeba vector
za ∈ Sp. In order to train the model, we randomly split
the set of N ¼ 2304 choices of complex structure moduli
that we use to generate the coamoeba vectors in Sec. III into
a train (80%) and test (20%) set. With an average test
accuracy of 99.996%, we obtain the values for the intercept
β0 and coefficients βi for each of the projected coamoeba
sets Sp as summarized in Table II.
We note that the absolute magnitude jβpi j of the trained

coefficients for a given set Sp tells us about the strength of
the relationship between the components of the complex
structure moduli cij in the logit function in (6.12) and the

probability that the choice of complex structure moduli
components cij corresponds to a projected coamoeba
vector za belonging to Sp of phase p. From the results in
Table II, we see that for phases (2a) and (2b) the
complex structure moduli component c11 with corre-
sponding coefficient βp1 by far plays the greatest role in
determining whether the projected coamoeba vector za
corresponding to cij is in Sp. We recall that this is
determined with an average test accuracy of 99.996%. A
closer look reveals that

za ∈

8>><
>>:

Sð1Þ if c11 ¼ 0

Sð2aÞ if c11 < 0

Sð2bÞ if c11 > 0

ð6:13Þ

for any values of c12; c21; c22 ∈R such that ci ∈C�.
In summary, we identified using t-SNE the clusters of

projected coamoeba vectors Sð2aÞ, Sð1Þ, and Sð2bÞ corre-
sponding to the toric phases of F0. We then provided
evidence through logistic regression that just the sign of the
component c11 of the complex structure moduli for F0

determines the phase of the corresponding coamoeba and
brane tiling. This is a remarkable result given that we
started with a collection of coamoeba generated for an
arbitrary range of complex structure moduli centered at 0
with no knowledge about which coamoeba and choice of
complex structure moduli would correspond to which toric
phase of F0.

VII. CONCLUSIONS AND DISCUSSIONS

We made use of unsupervised machine learning tech-
niques in order to find a phase diagram for the zeroth
Hirzebruch surface F0. Such a phase diagram is useful
because it identifies different toric phases of 4d N ¼ 1
supersymmetric gauge theories related by Seiberg duality
in terms of clusters in the phase diagram. These clusters are
made up of projected coamoeba vectors za which each refer
to a coamoeba plot that corresponds to a brane tiling and a
4d N ¼ 1 supersymmetric gauge theory. The coamoeba

TABLE II. Logistic regression result in terms of the real
coefficients βpi for the log odds of za belonging to cluster Sp
with complex structure moduli components cij. The training was
done on a random train (80%) and test (20%) set split of the N ¼
2304 choices of complex structure moduli with an average test
accuracy of 99.996%. We can see from the coefficients βpi that
complex structure moduli component c11 corresponding to βp1
plays the most significant role in determining the phase p for za.

p jSpj βp0 βp1 βp2 βp3 βp4

(2a) 1004 −1.63 −17.51 þ0.27 −0.03 þ0.00
(1) 297 þ3.20 þ0.00 þ0.00 þ0.22 −0.03
(2b) 1003 −1.58 þ17.71 −0.07 þ0.00 þ0.02
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plots are also associated to a specific choice of complex
structure moduli in the mirror description of the toric
Calabi-Yau 3-fold. The phase diagram for F0 was obtained
by using PCA and t-SNE that projected the original
coamoeba vectors in d ¼ 3969 dimensions to two principal
components corresponding to the axes of the F0 phase
diagram. We even showed that t-SNE allows us to identify
phase boundaries in the 2-dimensional phase diagram of
F0, where phase boundaries correspond to Seiberg duality
between the 4d N ¼ 1 supersymmetric gauge theories
associated to the toric phases meeting at the phase
boundary. By the use of logistic regression, we gave
evidence that amongst the complex structure moduli, only
the value of a single real component of the moduli
determines whether the corresponding coamoeba and brane
tiling are in one of the two toric phases of F0.
We expect that a similar construction of phase diagrams

is possible for different toric Calabi-Yau 3-folds that exhibit
a variety of toric phases in the context of the corresponding
4d N ¼ 1 supersymmetric gauge theories [70,71].
Moreover, we plan to report on phase diagrams constructed
using the proposed unsupervised machine learning tech-
niques for toric Calabi-Yau in higher dimensions, such as
for toric Calabi-Yau 4-folds probed by D1-branes whose
worldvolume theories are a class of 2d (0,2) supersym-
metric gauge theories realized in terms of brane brick
models [27,72,73]. These 2d (0, 2) supersymmetric gauge
theories related to toric Calabi-Yau 4-folds have been found
to exhibit Gadde-Gukov-Putrov triality [74,75] and are
expected to have more elaborate phase diagrams that
exhibit many interesting structures in the phase space of
2d (0, 2) theories.

The use of unsupervised machine learning techniques in
this work in order to study the phase structure of super-
symmetric gauge theories related to toric Calabi-Yau
opens up a new avenue of research at the interface of
supersymmetric gauge theories realized in string theory,
Calabi-Yau mirror symmetry and tropical geometry, and
explainable AI and unsupervised machine learning on
which we hope to report on more in the near future.
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