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It is challenging to capture carbon dioxide (CO2), a major greenhouse gas in the
atmosphere, due to its high chemical stability. One potential practical solution to
eliminate CO2 is to convert CO2 into formate using hydrogen (H2) (CO2

hydrogenation), which can be accomplished with inexpensive hydrogen from
sustainable sources. While industrial flue gas could provide an adequate source of
hydrogen, a suitable catalyst is needed that can tolerate other gas components,
such as carbon monoxide (CO) and oxygen (O2), potential inhibitors. Our
proposed CO2 hydrogenation system uses the hydrogenase derived from
Ralstonia eutropha H16 (ReSH) and formate dehydrogenase derived from
Methylobacterium extorquens AM1 (MeFDH1). Both enzymes are tolerant to
CO and O2, which are typical inhibitors of metalloenzymes found in flue gas.
We have successfully demonstrated that combining ReSH- and MeFDH1-
immobilized resins can convert H2 and CO2 in real flue gas to formate via a
nicotinamide adenine dinucleotide-dependent cascade reaction. We anticipated
that this enzyme system would enable the utilization of diverse H2 and CO2

sources, including waste gases, biomass, and gasified plastics.
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1 Introduction

Global warming is an issue that has garnered significant attention in recent years due to
its potentially catastrophic impacts on the environment and human societies (Frölicher et al.,
2018; Hughes et al., 2018). One of the primary causes of global warming is the release of
carbon dioxide (CO2) into the atmosphere, mainly due to human activities such as burning
fossil fuels (Salam and Noguchi, 2005; Armaroli and Balzani, 2011; Olah et al., 2011; Al-
Ghussain, 2019). To mitigate the effects of global warming, it is crucial to develop effective
strategies for reducing CO2 emissions (Takemura and Suzuki, 2019). Due to its stability as a
fully oxidized gaseous molecule at room temperature and pressure, capturing CO2 from the
atmosphere presents a formidable challenge (Rochelle, 2009; Ghalei et al., 2017; Ding and
Jiang, 2018). Moreover, as large-scale captured CO2 holds little industrial value, the most
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promising approach to regenerate combusted CO2 is through CO2

hydrogenation (Li et al., 2018; Ye et al., 2019).
One potential approach to CO2 hydrogenation is the conversion of

CO2 and hydrogen (H2) into formate, using hydrogen as a renewable
energy source (Wang et al., 2015;Wang et al., 2019). Formate, one of the
most basic C1 compounds, exists as a non-flammable liquid at ambient
temperature and pressure, serving as both a precursor for various
syntheses and a primary storage medium for captured CO2

(Kothandaraman et al., 2015). Further hydrogenation of formate can
lead to the production of formaldehyde ormethanol (Wang et al., 2015),
while microorganisms can utilize it to generate biopolymers (Hwang
et al., 2020). However, to enable the hydrogenation of amassive amount
of CO2, cheap H2 derived from sustainable sources is required.

Industrial flue gas can address this issue as a cheap H2 source.
According to an International Energy Agency report, around 30% of
industrial CO2 emissions came from the steel industry (Kim et al.,
2019). The steel mill generates various flue gases such as coke oven
gas (COG), blast furnace gas (BFG), and Lintz-Donawitz gas (LDG)
(Lee et al., 2020). In particular, COG has a high H2 content of nearly
60% (Moral et al., 2022) (Table 1). These gases are promising cheap
H2 resources but are used inefficiently for auxiliary facilities in steel
mills as heat or power sources for boilers (Xiang et al., 2016). While
it is unsurprising that efforts have been made to harness this H2 for
CO2 hydrogenation, the presence of multiple gases in the industrial
flue gas necessitates the use of a catalyst that is practically free of side
reactions and tolerant to other gas components like carbon
monoxide (CO) and oxygen (O2). To address this issue, we
propose a CO2 hydrogenation system that utilizes multiple
enzymes, taking advantage of their high reactivity and substrate
specificity under ambient temperature and pressure conditions.

The CO2 hydrogenation reaction occurs as two half-reactions: H2

oxidation and CO2 reduction (equation (1)-3) (Loges et al., 2008; Reda

et al., 2008). The enzymes responsible for each reaction are hydrogenase
(H2ase) for H2 oxidation (Lubitz et al., 2014) and formate
dehydrogenase (FDH) for CO2 reduction (Appel et al., 2013; Amao,
2018; Moon et al., 2020). The conversion of H2 and CO2 to formate was
reported through a cascade reaction involving the reaction of H2ase and
FDHand electron transfer (Sokol et al., 2019). Flue gas contains CO,O2,
nitrogen (N2), etc., in addition to the substrate H2 and CO2. The H2ase
and FDH used in the previous study as well as most other H2ases and
FDHs were derived from anaerobic microorganisms, and so their
metal-active sites are often attacked and inactivated even in the
presence of trace amounts of O2 (Fontecilla-Camps et al., 2007; Niks
andHille, 2018). CO also acts as an irreversible inhibitor ofmost H2ases
(Bagley et al., 1994; Vincent et al., 2007).

2H+ $H2 (E˚′� −0.382V vs. SHE, pH 6.5) (1)
CO2+H+ $HCO−

2 E( ˚′� −0.366V vs. SHE, pH 6.5) (2)
CO2+H2 $HCO−

2+H+ (E˚′rxn� U˚′� 0.016V) (3)
We previously demonstrated the feasibility of the combined use

of O2-tolerant H2ase and FDH using pure gases (Cha et al., 2023a).

TABLE 1 Composition of flue gases from Hyundai Steela.

Coke oven gas (COG) Blast furnace gas (BFG) COG + BFG (1:1 mix) Lintz-donawitz gas (LDG)

Component (v/v, %)

H2 55.4 ± 0.5 3.8 ± 0.2 29.6 ± 0.5 1.4 ± 0.4

CO2 2.4 ± 0.1 23.6 ± 0.2 13 ± 0.2 19.3 ± 0.6

CO 6.2 ± 0.1 25.5 ± 0.3 15.9 ± 0.3 49.4 ± 1.9

O2 1.1 ± 0.02 1.1 ± 0.00 0.6 ± 0.02 0.01 ± 0.02

N2 8.6 ± 0.6 46.7 ± 0.1 27.7 ± 0.6 29.2 ± 1.9

CH4 24.2 ± 0.4 - 12.1 ± 0.4 -

CmHn 3.1 ± 0.1 - 1.6 ± 0.1 -

aData of Hyundai Steel are calculated from the previous studies (Kim et al., 2022).

TABLE 2 Kinetic parameters of ReSH in the presence of O2 or CO.

Gas contents kcat (s-1) Km (μM) (NAD+) kcat/Km (μM-1 s-1)

50% H2, 50% N2 55.22 ± 0.82 1,179.4 ± 47.1 0.0468 ± 0.0020

50% H2, 2% O2 54.25 ± 1.29 1,162.4 ± 75.4 0.0467 ± 0.0032

50% H2, 20% CO 54.08 ± 3.68 1,146.3 ± 205.2 0.0472 ± 0.0090

50% H2, 2% O2, 20% CO 57.11 ± 3.49 1,249.9 ± 149.7 0.0457 ± 0.0061

TABLE 3 Kinetic parameters of MeFDH1 in the presence of O2 or CO.

Gas contents kcat (s-1) Km
(μM) (NAD+)

kcat/Km (μM-1

s-1)

100% Carbonate 2.272 ± 0.064 26.38 ± 1.16 0.0862 ± 0.0030

2% O2 2.232 ± 0.029 26.15 ± 1.02 0.0854 ± 0.0023

20% CO 2.237 ± 0.052 24.79 ± 1.12 0.0903 ± 0.0026

2% O2, 20% CO 2.276 ± 0.064 25.97 ± 1.76 0.0878 ± 0.0038
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However, for CO2 hydrogenation using the real flue gas, several
issues should be solved. First, with the ultimate goal of long-term
repeated or continuous reactions, enzymes should be immobilized
on solid supports. We developed the suitable pair of immobilization
tag and affinity resin for each enzyme. Second, the enzymes need to
be tolerant to both CO andO2. Therefore, we investigated the impact
of CO or O2 on the kinetic parameters of both H2ase and FDH.
Third, the H2ase and FDH, capable of electron transfer between the
two reactions, must satisfy catalytic bias. Therefore, we selected
H2nase and FDH, which exhibit a catalytic bias towards a desired
direction to the greatest extent possible.

First, we chose the hydrogenase from Ralstonia eutropha H16
(ReSH) consisting of heterodimeric [NiFe] hydrogenase (HoxHY)
subunits and diaphorase (HoxFU) subunits, stably oxidized H2 and
reduced NAD+ to NADH under oxic conditions (Lauterbach and
Lenz, 2013; Wulff et al., 2014; Horch et al., 2015). In addition, it has
also been reported that ReSH is not sensitive to CO, unlike other
hydrogenases (Burgdorf et al., 2005). Resistant to O2 and CO, ReSH
is a promising H2ase candidate that can reduce NAD+ to NADH by
consuming hydrogen in real flue gas. FDHs are classified as metal-
independent or metal-dependent based on the active site
(molybdenum or tungsten) (Ünlü et al., 2021; Alpdağtaş et al.,
2022). Although metal-independent FDH exhibits O2-
independent activity, the strategies like mutation and
immobilization have been reported to enhance its activity and
stability due to its inherently low activity (Çakar et al., 2020;
Tülek et al., 2023). FDHs from Clostridium carboxidovorans
strain P7T (Alissandratos et al., 2013), Chaetomium
thermophilum (Çakar et al., 2020), Rhodobacter capsulatus
(Hartmann and Leimkühler, 2013), and Methylobacterium
extorquens AM1 (Laukel et al., 2003) have maintained high CO2

reduction activity under oxic conditions. Second, we chose tungsten-
containing FDH1 from M. extorquens AM1 (MeFDH1), consisting
of alpha and beta subunits, as FDH to produce formate via
enzymatic NAD+ regeneration stably (Baccour et al., 2020). It
was reported that MeFDH1 has the great catalytic bias towards

CO2 reduction. The resistance of MeFDH1 to CO has not been
reported.

In this study, we constructed an enzymatic reactor with ReSH-
immobilized resins, MeFDH1-immobilized resins, and NAD+,
which showed CO2 hydrogenation from real flue gas (Figure 1).
The kinetic parameters were determined to ensure each enzyme
could withstand the potential critical inhibitors O2 and CO in the
flue gas environment. The gaseous substrate needs to be bubbled to
supply the enzymatic reactor continuously. To reduce aeration
damage, the reactor was constructed with the enzymes
immobilized on an agarose based affinity resin, respectively.

2 Materials and methods

2.1 Materials

COG and BFG were supplied by Hyundai steel (Ulsan, South
Korea). Ni-NTA agarose and a gravity-flow polypropylene column
(PP column, 10 mL) were purchased from Qiagen (Hilden,
Germany). Strep-Tactin XT 4 Flow high-capacity resin was
obtained from IBA Life Sciences (Göttingen, Germany).
Disposable PD-10 desalting columns were purchased from Cytiva
(Marlborough, MA, United States). Unless otherwise stated, all other
chemical reagents were purchased from Sigma-Aldrich (St. Louis,
MO, United States).

2.2 Preparation of immobilized and purified
ReSH and MeFDH1

Strains and expression conditions of ReSH and MeFDH1 were
described in previous studies (Jang et al., 2018; Cha et al., 2023a). To
purify ReSH, cell pellets were resuspended in 50 mM potassium
phosphate (Kpi) buffer (pH 7.0) containing 1 mg/mL lysozyme to a
concentration of 1 g/10 mL. The resuspended cells were lysed by

FIGURE 1
Schematic showing an enzymatic reactor for flue gas conversion. The reactor converts H2 and CO2 to formate via an NAD+-dependent cascade
reaction of immobilized ReSH and MeFDH1.
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sonication (amplitude 28%, on/off 2 s/4 s) for 1 h. Insoluble cell
debris was removed by centrifugation at 13,000 × g for 30 min.
Strep-Tactin XT 4Flow high-capacity resin was mixed with the clear
supernatants incubated at 4 °C for 30 min. The resin was washed
with 50 mM Kpi buffer (pH 7.0) containing 300 mM potassium
chloride on a PP column to remove impurities. After running off the
wash solution, plug the end of the pp column, add 200 mM Kpi
(pH 6.5), and resuspended the resin to obtain the ReSH immobilized
resin for cascade reactions. The ReSH-immobilized resin was stored
at 4°C until use. In order to obtain purified ReSH, the resin was
eluted with 3 mL of 200 mM Kpi (pH 6.5) containing 50 mM biotin
and buffer-exchanged with 200 mMKpi buffer (pH 6.5) using a PD-
10 column.

The purification of MeFDH1 was started with the cell lysis by
sonication in an anaerobic chamber. The wet cell pellet was
suspended into the buffer A (50 mM (3-(N-morpholino)
propanesulfonic acid (MOPS), 200 mM NaCl, 20 mM imidazole,
2 mM dithioerythritol (DTE) and 2 µM resazurin, pH 7.0) with 1 g
wet cell/10 mL buffer concentration and sonicated (amplitude 35%,
on/off 2 s/2 s). The lysate was centrifuged at 11,000 rpm at 4 °C for
20 min. The supernatant and Ni-NTA agarose bead were mixed
together and incubated for 15 min to bind protein. The protein-
boundNi-NTA agarose bead was separated from themixture using a
gravity flow column. The collected protein-bound Ni-NTA agarose
bead was washed with buffer A. The MeFDH1-bound Ni-NTA
agarose bead was stored at 4°C until use. For the activity and kinetic
property assay, the purifiedMeFDH1was eluted by buffer B (50 mM
MOPS, 200 mM NaCl, 300 mM imidazole, 2 mM DTE and 2 µM
resazurin, pH 7.0).

Protein purity was verified by SDS-PAGE (Figs. Sa and b). The
concentrations of purified ReSH was determined by measuring their
absorbance at 280 nm using a microplate reader (Synergy, BioTek,
Winooski, VT, United States), as previously reported for other
proteins (Bak et al., 2020; Kim et al., 2021). The concentrations
of purifiedMeFDH1 was determined by measuring their absorbance
at 280 nm using a NanoDrop 1 C (Thermo fisher scientific,
Waltham, Massachusetts, United States). The extinction
coefficients of ReSH and MeFDH1 were calculated to be
165,710 and 153,735 M−1·cm−1, respectively, based on their amino
acid sequences.

2.3 Enzyme kinetics

The enzyme reaction kinetic parameters of ReSH were measured
for the NAD+-dependent oxidation of H2 to H+ in the presence or
absence of O2 and CO. The sealing cuvette was filled with 900 μL of
200 mM Kpi buffer (pH 6.5) containing NAD+ and sealed; then,
100% H2 and mix gas containing 1) 100% N2, 2) 96% N2 and 4% O2

3) 60% N2 and 40% CO, and 4) 56% N2, 4% O2 and 40% CO were
injected simultaneously for 30 min at 10 mL/min. ReSH (6 mL,
80 nM) was purged with 10 mL/min N2 gas bubbling in a 25 mL
sealing vial for 30 min to remove O2 from the air. The reaction was
initiated by mixing 100 μL of 80 nM ReSH with a gas-saturated
solution in a sealed cuvette. The final concentration of NAD+ was
varied from 0 to 4 mM.

The enzyme reaction kinetic parameters of MeFDH1 were
measured for the NADH-dependent reduction of CO2 to formate

in the presence or absence of O2 and CO. The 200 mM Kpi buffer
(pH 6.5) was purged with gases containing 1) 100% N2, 2) 100% O2

and 3) 100% CO for 1 h in closed serum bottles. Each gas-purged
buffer was mixed to make 1) 100% N2, 2) 98% N2 and 2%O2, 3) 80%
N2 and 20% CO and 4) 78% N2, 20% CO and 2% O2 dissolved
buffers. The powder of sodium bicarbonate and NADH was
dissolved into each buffers (100 mM of sodium bicarbonate and
6.25—100 µM of NADH). The 980 μL of buffers are finally aliquoted
into the cuvettes and sealed. By injecting 10 ug of MeFDH1 in 20 uL
of buffer B, the reaction was started.

All measurements were performed in triplicate based on the
change in the absorbance at 340 nm in the cuvette. The absorbane
changes for ReSH andMeFDHS1 were measured using the T60 UV-
Vis spectrophotometer (PG Instruments Ltd., Lutterworth, UK)and
the UV-1650 PC (Shimadzu, Kyoto, Japan), respectively. The
inverse of initial reaction rates was plotted versus the substrate
concentration according to the Hanes-Woolf plot to calculate the
kinetic parameters.

2.4 Formate production and quantification

For the cascade reaction, the gas content was controlled in a gas
flow reactor (Figure 1). The reactor was filled with 6 mL of reactor
containing 20 U of immobilized ReSH, 1 U of immobilized
MeFDH1, 1 mM NAD+, and 1% (v/v) antifoam A. All
components were resuspended or dissolved in 200 mM Kpi
buffer (pH 6.5). The reaction was initiated by a 30 mL/min
substrate gas injection. Formate production was sampled every
30 min during incubation for 1.5 h, and 20 μL of 6 N H2SO4 was
added to the 200 μL sample to inactivate the enzymes immediately.
Additionally, 180 μL of distilled water was mixed with the sample,
and the aggregated enzymes were removed by syringe filter. Formate
production was quantified by HPLC (1,260, Agilent, CA,
United States) equipped with a diode-array detector and an
Aminex HPX-87H column (BIO-RAD, CA, United States) with a
mobile phase of 5 μM H2SO4 at a flow rate of 0.6 mL/min.

3 Results and discussion

3.1 Preparation of ReSH and MeFDH1

Recombinant ReSH andMeFDH1 were expressed in R. eutropha
and M. extorquens, respectively. The ReSH and MeFDH1 were
immobilized on the strep tactin XT 4flow resin and Ni-NTA
agarose affinity resins, respectively, as described in the Materials
and Methods section. A fraction of these was eluted separately to
obtain purified proteins. The SDS-PAGE analysis was performed to
verify the existence of subunits and purity of each. Five bands of
purified ReSH subunits were observed, which matched their
expected molecular weights (HoxF, 68,110 Da; HoxH, 54,863 Da;
HoxU, 26,173 Da; HoxY, 22,881 Da; HoxI, 18,567 Da)
(Supplementary Figure S1a). Two bands of purified
MeFDH1 subunits were also observed, consistent with their
expected molecular weights (FdhA1: 107,341 Da, FdhA2:
62,321 Da) (Supplementary Figure S1b). The purity of both
enzymes was high. To calculate the enzyme units of ReSH- or
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MeFDH1 immobilized resin, we measured the concentration and
enzymatic activity of purified ReSH and MeFDH1, respectively. The
ReSH-immobilized resin had an NAD+-dependent H2 oxidation
activity of 140.9 U/mL. The MeFDH1-immobilized resin had an
NADH-dependent CO2 reduction activity of 0.53 U/mL. These
results showed that the immobilized ReSH and MeFDH1 were
successfully prepared.

3.2 pH-dependency of enzymes

We investigated the pH-dependent enzyme activities of NAD+-
dependent H2 oxidation of ReSH and NADH-dependent CO2

reduction of MeFDH1 to determine the buffer conditions in the
reactor for the cascade reaction. The specific activity of ReSH tended
to increase with increasing pH from 6 to 8 (Figure 2A). In contrast,
the specific activity of MeFDH1 tended to decrease with increasing
pH, with the maximum activity at pH 6.5 (Figure 2B). Since the
specific activity of the two enzymes is maximized at different points,
we decided to use pH 6.5 as the cascade reaction condition where the
activity of MeFDH1, which produces formate, is maximal.

3.3 Enzyme kinetics in the flue gas mimic
conditions

We investigated whether both ReSH and MeFDH1 can tolerate
the potential inhibitors (O2 and CO) present in the flue gas at pH 6.5.
The final concentrations of O2 and CO were 2% and 20%,
respectively, which is higher than those inside the COG, to
evaluate enzyme activity inhibition. The NAD+-dependent H2

oxidation reaction rate by ReSH was measured, and the Hanes-
Woolf plot was fitted to calculate the kinetic parameters using Origin
2022 program (Supplementary Figure S2). The kcat and Km values of
ReSH were not substantially different in four conditions: control

without any O2 and CO, 2% O2, 20% CO, and both 2% O2 and 20%
CO (Table 2). Similarly, The NADH-dependent CO2 reduction
reaction rate by MeFDH1 was measured, and the Hanes-Woolf
plot was fitted to calculate the kinetic parameters (Supplementary
Figure S3). The kcat and Km of MeFDH1 were not substantially
different in four conditions: control without any O2 and CO, 2% O2,
20% CO, and both 2% O2 and 20% CO (Table 3). These results show
that at concentrations below 2% O2 and 20% CO, the enzymatic
activities of ReSH and MeFDH1 are not substantially inhibited,
indicating their potential for use in flue gas conversion.

3.4 Enzymatic reactor optimization

We optimized the components of the enzymatic reactor for a
smooth cascade reaction. The reaction mechanism is that ReSH
oxidizes H2, and NAD+ is reduced to NADH, which is then
oxidized back to NAD+ by MeFDH1, which reduces CO2 to
formate. Since MeFDH1 has a Km value of about 25 uM, we used
1 mM of NAD+ as a sufficient initial input to produce the formate at
Vmax. For formate production to continue at themaximum ratewith the
minimal reverse reaction of MeFDH1, NAD+ must be reduced
immediately so that NADH is dominant during the reaction. To
achieve this, the enzyme unit of ReSH must be higher than that of
MeFDH1. We fixed the MeFDH1 immobilized resin at 1 U and varied
the ReSH immobilized resin from 0 to 20 U (Unit ratio ReSH:
MeFDH1 = 0:1 to 20:1) and measured the formate produced when
supplied with gas substrate H2 and CO2 for 1 h (Figure 3). Formate
productionwas quantified viaHPLC. The retention time of formate was
13.010 min (Cha et al., 2023a). No formate was produced in the reactor
without ReSH. Compared to the 1:1 ReSH to MeFDH1 unit ratio, all
experiments with an excess of ReSH produced about 2 mM of formate,
and experiments with an excess of ReSH over 5:1 tended to saturate
formate production. Based on these results, we determined that the unit
ratio of ReSH to MeFDH1 was 20:1 for sufficient formate productivity.

FIGURE 2
pH-dependency of (A) ReSH and (B) MeFDH1 activity. The enzyme activities were determined in the pH range of 6.0–8.0 in 200 mM Kpi buffer.
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3.5 Formate production from flue gas mimic
condition

We demonstrated CO2 hydration using a flue gasmimic.We decided
to implement a specific flue gas mimic condition by mixing different
syngas, but most flue gases have a high percentage of either H2 or CO 2.
For example, COG had more than 50% H2 but less than 3% CO2, and

BFG had 20% CO2 but less than 4% H2. So the flue gas mimic realized
them in a ratio similar to the gas contents after mixing them 1:1 (Table 1).
20Uof theReSH immobilized resin and 1Uof theMeFDH1 immobilized
resin and 1mM NAD+ were mixed and placed in a gas flow reactor.
Formate production was monitored for 2 h at 30min intervals with a
continuous flow of flue gas mimic to the enzymatic reactor containing a
mixture of all reaction components (Figure 4). No formate was detected in
the negative control group, missing one of ReSH, MeFDH1, and NAD+.
Following the trend of previous kinetics, we found that formate was
produced in 2% O2 and 20% CO. The formate tended to reach about
2mM around 2 h and then saturate without further increase. We
speculated that the elevated formate concentration increased the
reverse reaction rate, causing it to reach equilibrium.

3.6 Formate production using real flue gases

We investigated formate production by feeding real flue gases to the
enzymatic reactor. We provided the COG, BFG, and a 1:1 mix of COG
and BFG to the enzymatic reactor and monitored the formate
production (Figure 5). Contrary to our expectations, both COG,
which is rich in H2 and relatively low in CO2, and BFG, which is
low in H2 and high in CO2, saturated in formate production around
2 mM at 2 h, just like the flue gas mimic, and we saw the same trend in
formate production when we fed a 1:1 mixture of the two gases. We
speculated that even at relatively low concentrations of H2 in BFG or
CO2 in COG, the reaction rates of ReSH and MeFDH1 were high
enough to have a Vmax due to the continuous gas flow. In practice,
however, CO2 andH2 react in a 1:1mole ratio, somixing the flue gases to
produce formate, as we have shown, is a significant step toward
industrial-scale CO2 hydration. However, to solve the current
situation where formate production is saturated, it is necessary to
configure a repeated batch or continuous flow reactor to separate the

FIGURE 3
Formate produced during 1 h at different ratios of ReSH to
MeFDH1. The activity of ReSH was varied with 0, 1, 5, 10, and 20 U
(ReSH:MeFDH1 = 0:1, 1:1, 5:1, 10:1, 20:1) in the presence of 1 U
MeFDH1 and 1 mM NAD+.

FIGURE 4
Formate production by enzymatic reactors in the presence of O2

and CO. As negative controls, enzymatic reactors were constructed
lacking ReSH, MeFDH, and NAD+, respectively. The flue gas mimic
containing 30% H2, 15% CO2, 15% CO, 2% O2, and 38% N2 were
fed to the enzymatic reactor at 30 mL/min for 2 h. All measurements
were performed in triplicate.

FIGURE 5
Formate production by the enzymatic reactors using real flue
gas. COG, BFG, and 1:1 mixture of COG and BFG were fed to the
enzymatic reactor at 30 mL/min for 2 h. All measurements were
performed in triplicate.
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formate produced from the reactor continuously. As described in the
Introduction section, FDHs for enzymatic CO2 reduction are categorized
into metal-independent and metal-dependent types. Metal-independent
FDHs are not affected by O2 but generally exhibit relatively low catalytic
activities (with a range of kcat/Km 0.0004–0.08 s-1 mM-1) (Alpdağtaş et al.,
2022). On the other hand, metal-dependent FDHs display high catalytic
activity (with a range of kcat/Km 100~103 s-1 mM-1), butmost of them face
difficulties in utilizing real CO2 sources due to susceptibility to
inactivation by O2 (Moon et al., 2020; Calzadiaz-Ramirez and Meyer,
2022). The MeFDH1 enzyme used in this study is expected to serve as a
compromise, as it demonstrates catalytic activity falling between these
two ranges and displays resistance to both O2 and CO.

4 Conclusion

We have successfully demonstrated CO2 hydrogenation using
hydrogen in the real flue gas from the steel industry via an NAD+-
dependent cascade reaction in an enzymatic reactor that combines a
specific H2ase and FDH. We confirmed that ReSH and MeFDH1,
previously reported as O2-tolerant, are also resistant to CO, a potential
inhibitor of metalloenzymes. We used both H2 and CO2 from the flue
gas in this study. However, the enzymatic reactor system developed in
this study is expected to enable the utilization of CO2 and H2 obtained
from other sources, such as industrial waste gases, biomass and gasified
plastics. We plan to improve the stability of the enzymes for the long-
term operation of the reactor and improve the cofactor co-
immobilization system (Cha et al., 2023b) for implementation as a
continuous reactor.
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