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Abstract: Multi-abnormal events, referring to the simultaneous occurrence of multiple single abnor-
mal events in a nuclear power plant, have not been subject to consideration because multi-abnormal
events are extremely unlikely to occur and indeed have not yet occurred. Such events, though, would
be more challenging to diagnose than general single abnormal events, exacerbating the human error
issue. This study introduces an efficient abnormality diagnosis model that covers multi-abnormality
diagnosis using a one-vs-rest classifier and compares it with other artificial intelligence models. The
multi-abnormality attention diagnosis model deals with multi-label classification problems, for which
two methods are proposed. First, a method to effectively cluster single and multi-abnormal events
is introduced based on the predicted probability distribution of each abnormal event. Second, a
one-vs-rest classifier with high accuracy is employed as an efficient way to obtain knowledge on
which particular multi-abnormal events are the most difficult to diagnose and therefore require the
most attention to improve the multi-label classification performance in terms of data usage. The
developed multi-abnormality attention diagnosis model can reduce human errors of operators due to
excessive information and limited time when unexpected multi-abnormal events occur by providing
diagnosis results as part of an operator support system.

Keywords: nuclear power plant; abnormality diagnosis; multi-abnormality diagnosis; one-vs-rest
classifier; neural network; multi-label classification

1. Introduction

The operation modes of general Korean pressurized water reactors (PWRs) are classi-
fied into six categories. Mode 6 corresponds to refueling, while modes 5 to 1, respectively,
cycle between cold shutdown, hot shutdown, hot standby, startup, and power operation.
During power operation (mode 1), the nuclear power plant (NPP) generates electricity
following three sorts of operating procedures: general operating procedures in normal
conditions, abnormal operating procedures (AOPs) in abnormal events, and emergency
operating procedures in emergency situations. In an abnormal transient, the operators
must find the appropriate AOP for the situation based on the information from thousands
of dynamic plant parameters within a limited time and take action. Depending on the
measures taken by the operators, the NPP may return to a normal condition or enter an
emergency situation accompanied by a reactor shutdown.

In the case of the Korean Advanced Power Reactor 1400 (APR-1400), there are 82 AOPs
with 224 sub-procedures. When an abnormal event occurs, the operators recognize the tran-
sition into the abnormality through alarms in the main control room (MCR). Operators then
must correctly diagnose the abnormal event according to one of the 224 sub-procedures of
the AOPs while under hundreds of indicators and thousands of power plant parameters [1].
With limited time, these large amounts of plant parameters and AOPs can burden operators,
potentially leading to a misdiagnosis and worsened situations such as a reactor trip.

The safety systems of NPPs have undergone extensive development after facing unex-
pected accidents. For instance, research on human reliability has been actively conducted
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since the Three Mile Island accident, and countermeasures to the extended loss of al-
ternating current power have been discussed after the Fukushima Daiichi accident [2,3].
According to Korea’s operational performance information system for nuclear power plants,
unexpected shutdowns of reactors due to human error amount to about 20 percent of all
shutdowns, and to cope with human error, some studies have been conducted to support
MCR operators in abnormal transients using artificial intelligence (AI) based on improved
computing resources [4,5]. Previous studies mainly focused on diagnosing single abnormal
events in the role of operator support systems with neural networks. Multi-abnormal
events, in which two or more single abnormal transients occur at the same time, have
not been considered because such events have not occurred in reality. Single abnormal
events are diagnosed by the operators according to the entry conditions of the AOPs; but
in the case of multi-abnormal events, more complex entry conditions must be considered
with dynamic and various patterns of power plant variables. Operators can feel excessive
workload due to unexpected conditions and misdiagnose the events by following inap-
propriate AOPs. Therefore, research on multi-abnormal events is needed to cope with
unexpected incidents to increase nuclear safety. However, a multi-abnormality diagnosis
requires a huge amount of data, much more than a single-abnormality diagnosis. In this
study, the combination of 15 single abnormal events results in 105 different multi-abnormal
events, since multi-abnormal events consist of a combination of at least two single abnormal
transients, with the number of branches increasing significantly.

To solve the drawback of needing a lot of multi-abnormal data for training, we propose
a multi-abnormality attention diagnosis model using a one-versus-rest (OVR) classifier as an
operator support system that considers multi-abnormalities even by training minimal multi-
abnormal data. The proposed model needs to solve multi-class classification for normal
and single abnormality cases and also solve multi-label classification for multi-abnormality
problems simultaneously but with a lack of multi-abnormal data. The developed multi-
abnormality attention diagnosis model adopts a hierarchical structure using an OVR
classifier since binary relevance is the most intuitive method for multi-label classification
through the characteristics of independent binary learning tasks [6]. The main goals of
the hierarchical structure of the proposed model are as follows: (1) providing insight into
which multi-abnormal events should be trained for high accuracy in terms of data usage;
(2) clustering single and multi-abnormal events; and (3) diagnosing the abnormalities. For
this, methods are developed that exploit the characteristics of the difference in the predicted
probability distributions between single and multi-abnormalities through a comparison of
the OVR classifier with other AI models.

Research is being actively conducted on operator support systems that aid decision
making on operating procedures in NPPs [7,8]. The proposed multi-abnormality attention
diagnosis model was developed as a prior study of such an operator support system. This
study seeks a reduction in the operators’ workload and a reduction in human error for the
accurate diagnosis of multi-abnormal transients.

2. Background
2.1. Concurrent Occurrence of Abnormalities in NPPs

Like other industrial plants, several types of operating procedures exist to safely
operate NPPs. Nuclear operators train operating procedures to respond immediately to
abnormal situations, where the operator’s action process is as follows: (1) recognizing
abnormal events by alarms; (2) decision making on the appropriate operating procedure;
and (3) performing the sequences of the operating procedure. Operators recognize that the
NPP has entered an abnormal state when they detect abnormal trends of the parameters
through the large display panel of the MCR or when alarms go off. Following this, operators
select the appropriate sub-procedure of the AOP through alarms or parameter trends
numbering at least 1 to more than 20. Each sub-procedure consists of alerts and symptoms,
automatic actions, countermeasures, and follow-up measures.
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The aforementioned APR-1400 has about 200 sub-procedures of the AOPs, and there
are thousands of indicators and many alarms. In addition, some abnormal transients
require appropriate actions to be taken within a few minutes. Because of the complicated
environment of abnormal transients, even well-trained operators can feel burdened and
make a misdiagnosis or human error. Alarms and symptoms correspond to entry conditions
and the automatic operation to check the status of the current plant variables, and depend-
ing on the conditions of the countermeasures, it may become an emergency. In the case of
multi-abnormalities, the entry conditions and required tasks in the abnormal procedures
are doubled within a limited time, and different entry conditions make diagnosis more
difficult. In addition, there is no abnormal procedure that assumes multi-abnormalities.
For these reasons, a multi-abnormality diagnosis model was developed in this study.

For instance, assume a multi-abnormality of a stuck-open pressurizer (PZR) spray
valve and a pilot-operated safety relief valve (POSRV). In this case, cooling water flows
from the spray valve to the PZR and then from the PZR to the containment. Over time, the
PZR pressure decreases, and the PZR low-pressure alarm goes off. At this time, the operator
recognizes the abnormal situation through the alarm and analyzes the alerts and symptoms
for diagnosis. In the case of a typical abnormality of the PZR, the pressure decreases and
the water level rises. But in the case of a general abnormality of the POSRV, the pressure
decreases and the water level decreases. If the POSRV abnormality is more intense than
that of the PZR, the water level will eventually decrease. In this case, the operators would
check the POSRV state according to the entry conditions (alerts and alarms) and diagnose
the situation as a single abnormality of the POSRV. Operators may subsequently notice
the existence of the PZR abnormality only when they have completed all countermeasures
against the POSRV abnormality. As this simple example shows, overlapped abnormalities
are an inherent threat to NPP operations by causing a serious failure of operator situation
awareness and diagnosis. Identification of these multiple abnormalities would prevent
wrong responses against the transients requiring multiplied tasks.

2.2. Related Work

Over the past few decades, computing power has increased, and big data of higher
quantity and quality has been produced and handled. With this progress, numerous
data-driven approaches using AI have been applied to various fields. For instance, the
development of information and communications has facilitated the creation of big data
on road traffic, where travel times are reviewed and traffic conditions are predicted based
on data-driven approaches with neural networks for comparison with traditional para-
metric approaches [9]. Studies have also been conducted in the nuclear engineering field
to improve safety. When an emergency situation occurs during power operation, the
prediction of plant parameter trends can be achieved based on data-driven methods such
as multi-layer perceptrons, recurrent neural networks, and long short-term memory [10].
While conventional thermal-hydraulic codes take a long time to implement in NPPs, these
types of studies have shown the advantage of data-driven methods using AI that enable
real-time trend prediction through training.

Artificial neural networks (ANNs) are widely used in various fields, such as pattern
recognition and even in manufacturing industries [11]. Neural networks used in classifica-
tion problems vary from single-layer perceptrons, feedforward neural networks (FNNs),
recurrent neural networks, deep neural networks, and convolutional neural networks
(CNNs). The FNNs have architectures of feedforward single- or multi-layer perceptrons
and have been widely tested and applied [12,13]. The CNNs, which are derived from
ANNs, show good results and facilitate the easy extraction of features between adjacent
parameters due to their characteristic convolutional calculations [14–16]. CNNs are partic-
ularly popular in the field of image classification because of their feature of considering
dependencies between adjacent parameters. In the field of nuclear engineering, research
has been conducted to diagnose NPP states using the characteristics of CNNs. For example,
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one study produced data using an NPP simulator and highlighted the advantages of CNNs
by converting the parameters into the form of an image [17].

Simple machine learning models are widely used in classification and prediction prob-
lems as well. For instance, the classification of cancer genomics has been performed using
a support vector machine (SVM), and hybrid SVM models with neural networks have been
used for electrical energy consumption forecasting [18,19]. These machine learning methods
are classical AI methods but show effectiveness in many fields such as pattern recognition,
classification, and regression analysis. SVM models can solve not only multi-class classifi-
cation problems but also multi-label classification problems using binary classification by
forming a decision boundary between labels [20–22]. The decision boundary may become
a hyperplane or hypersphere, depending on the objective function [23].

Classification problems are largely divided into two categories when there are more
than three labels: multi-class classification and multi-label classification. The result of multi-
class classification refers to only one of three or more labels, while the result of multi-label
classification refers to one or more of three or more labels. Neural networks for multi-label
classification must be designed differently because dependencies between labels should be
considered [24]. To consider the dependencies between labels, an OVR classifier, which
is a type of SVM, is included in the present study. The OVR classifier requires individual
training for the number of labels, and the dependencies between labels are verified by
setting a hyperplane between the corresponding labels and other labels [20,25,26].

3. Methodology

In this section, the hierarchical structure of the proposed multi-abnormality attention
diagnosis model for effective and efficient operation is described in several stages. The
term single-data is used to refer to normal and single abnormal data, while multi-abnormal
data (or multi-data) reflects two different single abnormal data from two events occurring
simultaneously during power operation. Figure 1 shows the overall framework of the multi-
abnormality attention diagnosis model. The points below briefly introduce the framework.

• Data preprocessing: Raw data are preprocessed by feature extraction, normalization,
and shape transformation. First, out of the plant parameters, feature extraction selects
certain plant parameters to diagnose plant states. Then min–max normalization is ap-
plied due to large variations between plant parameters such as flow rate, temperature,
electric power, and the number of pump rotations. Next, the procedure is adjusted to
add the differences between the past and current plant parameter data into the OVR
classifier, inspired by previous work [17]. See Section 3.2 for details.

• Multi-abnormality attention function: In this stage, we actively utilize the mean and
standard deviation of the predicted probability distribution of the OVR model to deal
with the multi-label classification problem. The OVR model trains only single-data
first, and a predicted probability distribution is obtained from the validation dataset.
The multi-abnormality attention function selects which multi-abnormal events should
be trained additionally.

• Multi-abnormality clustering function: Test data are clustered into single- and multi-
data by the multi-abnormality clustering function using the predicted probability
distribution from the OVR model.

• Diagnosis: At the last stage of the proposed model, test data are diagnosed with the
OVR model.

3.1. Multi-Label Classification via One-vs-Rest Classifier

As shown in Figure 2, the OVR classifier requires as many SVM binary classifiers
as there are class labels. The OVR classifier aims to set the decision boundary in the
feature spaces between the labels; in Figure 2, the decision boundary is a hyperplane. The
hyperplane is positioned as far as possible from the training labels.
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Let Dk = {(x1, y1k), (x2, y2k), . . . , (xn, ynk)} be the kth training dataset where xi is a
feature vector and yik is class label i with k = 1, 2, . . . , m, xi ∈ Rd, and yi ∈ {−1, 1}.
The optimal hyperplane, which is handled as a decision boundary, can be obtained by
Equation (1), where wk ∈W = {w1, w2, . . . , wn}. wk is the weight vector and bk is the bias.

f (xi) = wkxT
i + bk = 0 (1)
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The hyperplane should satisfy the following Equations (2) and (3) for arbitrary target
label classes.

wkxT
i + bk ≥ 1, when yik = 1 (2)

wkxT
i + bk ≥ −1, when yik = −1 (3)

These equations represent the margin of the hyperplane. To deal with overfitting
problems of the hyperplane, the slack variables ξik ≥ 0 are introduced in Equation (4).

yi

(
wkxT

i + bk

)
− 1 + ξik ≥ 0 (4)

The objective function for maximizing the margin of the hyperplane can be represented
as the following Equation (5), where C is a penalty variable to balance the classification
accuracy and the complexity of the quadratic complexity of the hyperplane set.

min
||Wk||2

2
+ C ∑n

i=1 ξik, s.t. yi

(
wkxT

i + bk

)
− 1 + ξik ≥ 0 (5)

To solve Equation (5), Lagrange multipliers λik ≥ 0 are used, which can be expressed
as the dual formula in Equation (6).

max− 1
2 ∑n

i,j=1 λikλjkyikyjk

(
xT

i xj

)
+ ∑n

i=1 λik, s.t. ∑n
i=1 λikyik = 0, 0 ≤ λik ≤ C (6)

Lastly, the decision function is defined as Equation (7).

label o f x =
{

k, s.t.wk xT
i + bk ≥ 0, k = 1, 2, . . . , m

}
(7)

In our study, the OVR classifier is constructed using LibSVM tools for support vector
regression [27,28].

3.2. Data Preprocessing
3.2.1. Data Normalization

Data preprocessing consists of data extraction, normalization, and transformation.
Data extraction focuses on selecting plant parameters in consideration of NPP understand-
ing and the degree of change in the parameters. The raw data produced by the simulator
includes plant parameters according to each second. Parameters that typically do not
change during abnormal events, such as safety injection tank level, aux feedwater pump
mass flow rate, and others, may affect diagnostic accuracy and lead to unnecessary compu-
tational costs. Therefore, the relevant plant parameters that can be identified in the MCR
are extracted first, and then all parameters in the normal and abnormal data that do not
change are removed.

The types of plant parameters and ranges of parameter values are various, as men-
tioned earlier, so all plant parameters are normalized by the min–max scaling method
using the minimum and maximum values of the nth plant parameter regardless of time in
Equation (8). In this equation, x̂t,n is the value after normalization, where t is time and n is
the nth plant parameter. Through the normalization process, the plant parameters have the
same effect as a calculated weight vector.

x̂t,n =
xt,n − xmin o f nth parameter

xmax o f nth parameter − xmin o f nth parameter
(8)

3.2.2. Data Transformation (Two-Channel Model)

In reference [17], an abnormality diagnosis model was proposed using a two-channel
CNN focused on transforming the data shape from the perspective of changes between
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past and present data to express the degree of variation of each parameter. Inspired by this
work, we add the value of change from the past 5 s to the current value. Then the dataset
Xt = {xt,1, xt,2, . . . , xt,n} is the dataset at time t with n plant parameters. The transformed
dataset can be represented in the following Equation (9) and Figure 3.

Xt o f trans f ormed

= {x̂t,1, x̂t,2, . . . , x̂t,n, (x̂t,1 − x̂t−5,1), (x̂t,2 − x̂t−5,2), . . . , (x̂t,n − x̂t−5,n)}
(9)
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3.3. Multi-Abnormality Attention Diagnosis Algorithm

In this section, the detailed methodology for the multi-abnormality attention diagnosis
algorithm of Figure 1 is described. This study aims to find which multi-labels are hard
to classify and should be trained for high accuracy in an efficient manner; from now on,
single-label refers here to a label for multi-class classification, and multi-label stands for a
combined label of two different class labels. When the OVR classifier predicts the true label,
the sum of the predicted probabilities becomes 1, and the probability distribution shows
different aspects between single- and multi-labels. For instance, a well-fitted OVR classifier
shows the highest predicted probability of close to 1 in the case of a single-label, but the
highest predicted probability of a multi-label is lower than the single-label case. Focusing
on this point, we use the distribution of the predicted probabilities of the OVR classi-
fier to determine whether the data are single-label or multi-label and which multi-labels
should be trained to get higher accuracy. The following paragraphs explain the overall
multi-abnormality attention diagnosis algorithm including the multi-abnormality attention
function and the multi-abnormality clustering function based on the OVR classifier.

The multi-abnormality attention function selects labels to convert the multi-label clas-
sification problem to a multi-class classification problem with additional training. Using
the single-data validation set, we obtain the mean and standard deviation of the predicted
probability for every single-label. Weights are given for a high mean predicted probability
and penalties are given for a low standard deviation of the predicted probabilities because
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when the label does not fit well, the difference in predicted probabilities between single-
and multi-labels is not large. Therefore, the multi-abnormal attention function is defined
as Equation (10), where n, l stand for the number of single-labels and the regulator con-
stant, respectively. In the equation, pLi is the predicted probability of multi-class label
Li(i = 1, 2, . . . n), and pLi ,val, mean and pLi ,val, std are the mean and standard deviation of
the predicted probability of the validation dataset for the target label Li, respectively.

i f
(
1− pLi ,val, mean

)
× pLi ,val, std > l × 1

n ∑n
j=1

(
1− pLj ,val, mean

)
× pLj , val,std (10)

The multi-labels are trained for multi-class classification if they contain a single-label
that has the true value of the multi-abnormality attention function. Multi-labels with a false
value from the multi-abnormality attention function proceed with multi-label classification
using the multi-abnormality clustering function.

Clustering of single- and multi-labels is performed via the predicted probability distri-
bution for each single-label corresponding to the multi-abnormality clustering function,
Equation (11), using the mean and standard deviation of the predicted probability of the
validation dataset for target label Li.

Tested data is single label, i f pLi , test > pLi ,val, mean − k× pLi ,val, std

Tested data is multi label, i f pLi , test ≤ pLi ,val, mean − k× pLi ,val, std
(11)

Here, k is the regulator constant that determines how sensitive the model is to the
multi-labels in terms of trade-offs with the single-labels. If the tested data is clustered as
single-label, the OVR classifier performs multi-class classification; if the tested data are
clustered as multi-label, the OVR classifier performs multi-label classification by diagnosing
the top two predicted probability labels.

4. Experimental Settings
4.1. Description of Datasets

This study uses a PWR simulator to produce data instead of actual NPP operational
data [29]. The 3KEYMASTER simulator made by Western Services Corporation models a
generic two-loop 1400 MWe PWR. It can sufficiently simulate operation modes 1 to 5 and
produce abnormal data through various malfunctions and device failures. The simulator is
designed to allow users to drive desired scenarios through scenario codes. We use scenario
codes to vary the degree of abnormality injection and the timing at which the injection is
completed to produce normal, single-abnormal, and multi-abnormal data. The distinct
cues of each abnormal data are inspected within 2 min, and we conservatively targeted
60 s of data for the experiment. Raw data from the simulator is generated in a matter
of seconds and includes 2829 parameters indicating the state of the plant, such as mass
flow rate, temperature, pressure, and others. Let L = {L1, L2, . . . , Ln} be the set of labels
with the magnitude of malfunction Li,j ∈ {Li,1, Li,2, . . . , Li,7}. Here, i, and j represent the
label and magnitude of the malfunction. Figure 4 shows the overall structure of the data
produced using the simulator. Let Di,j = {x1,1, x1,2, . . . , x60,2828, x60,2829} be the dataset with
the label and magnitude of malfunction i, j respectively. Then for an arbitrary label, Li,j
has 2829 plant parameters within 60 s, as shown in Figure 5.

We produced single- and multi-abnormal events during the power operation of an NPP.
Data production proceeded for a generic two-loop 1400 MWe PWR using the 3KEYMASTER
simulator. We selected the abnormalities of the representative system-level abnormalities,
and Table 1 describes the abnormal events produced.

For each label, we produced 49 datasets consisting of about 2800 plant parameters
over 60 s. Therefore, single-data has 1 normal and 15 single-abnormal events, giving
a total of 16× 49 = 784 datasets. The data of the multi-abnormal events have a total
of 15C2 × 49 = 5148 datasets through the combination formula of the single-abnormal
events. Through the data extraction process, 467 plant parameters out of the approximately
2800 plant parameters were selected for the multi-abnormality attention diagnosis model. In
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addition, datasets for the two-channel model were converted into 467 × 2 plant parameters
over 55 s instead of 60 s and 467 plant parameters in each dataset. For the training,
validation, and test datasets, 70%, 10%, and 20% of the total data were used via random
sampling, and all abnormal event datasets were used equally.
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Table 1. Data description.

Location of Abnormality
Injection Description Main Symptoms

None
(Normal) Middle of the life cycle at 100% power generation None

Steam generator tube leakage
(SGTL) Steam generator A tube leak Secondary system radiation high, SG level high

Charging water system
(CHRG) Charging line break upstream Charging line flowrate low, cavity sump level high

Letdown water system
(LTDN) Letdown line leak inside the containment Letdown line flowrate low, cavity sump level high

Condensate system
(CDS) Loss of condenser vacuum CDS pressure high, CDS hotwell temperature high

Pilot-operated safety relief
valve
(POSRV)

POSRV leak PZR pressure low, POSRV discharging
temperature high

Circulating water system
(CWS) Circulating water tube leak in low pressure condenser CDS pressure high, CDS pit level high

Main steam isolation valve
(MSIV) MSIV positioner failure SG pressure high, SG steam flowrate low

Reactor coolant pump
(RCP)

RCP component cooling water service loop header leak
to aux atm CCW flowrate through RCP low

Main steam system
(MSS)

Steam generator A steam line 1A break inside the
containment SG pressure low, SG steam flowrate low

Pressurizer
(PZR) PZR spray valve positioner failure PZR pressure low, PZR spray temperature high

Component cooling water
(CCW) CCW service loop header leak to aux atm CCW pump header discharging pressure low, CCW

surge tank level low
Low-pressure feedwater
heater
(LFH)

Low feedwater heater 4A tube break Low-pressure feedwater heater level high, condenser
pump discharging pressure low

High-pressure feedwater
heater
(HFH)

High Feedwater heater 5A tube break High-pressure feedwater heater level high, feedwater
pump discharging pressure low

Main feed water
(MFW) MFW pump recirculating valve positioner open failure SG level low, main feedwater pump drain

flowrate high
Turbine control system
(TCS)

High-pressure turbine control valve positioner
close failure Turbine power low, Tavg—Tref high

4.2. Description of Experimental Models

For a comparison of the proposed model, a CNN, FNN, and a one-vs-one (OVO) clas-
sifier, which is a type of SVM for multi-class classification, were included as a comparison
group. Details of the architectures of these models are provided in the following Tables 2–4.

Table 2. Architecture of the OVR and OVO classifiers.

Characteristic Description

Input size (467, 1)
SVM type Logistic regression

Solver Liblinear

Table 3. Architecture of the CNN.

Characteristic Description

Input size (22, 22, 1)
Kernel size (3, 3)

Max pooling size (2, 2)
Number of conv 2D layers 2

Number of max pooling 2D layers 2
Number of dense layers 2

Loss function Binary cross-entropy
Activation function ReLU, sigmoid
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Table 3. Cont.

Characteristic Description

Optimizer Adam
Epochs 100

Early stopping 30
Learning rate 0.001

Table 4. Architecture of the FNN.

Characteristic Description

Input size (467, 1)
Number of layers 2

Number of max pooling layers 2
Number of dense layers 2

Loss function Binary cross-entropy
Activation function ReLU, sigmoid

Optimizer Adam
Epochs 100

Early stopping 30
Learning rate 0.001

4.3. Evaluation Method via Confusion Matrix

Evaluation of each model was carried out using a confusion matrix. However, instead
of obtaining a confusion matrix for each label, we obtained a confusion matrix for the
models. The following metrics and Equations (12)–(15) show the evaluation methods of
accuracy, precision, recall, and F1 score for the models according to Figure 6, showing label
Li (i = 1, 2, . . . , n) for a number of labels n.
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• Accuracy: ratio of correctly classified classes to all classes

Accuracy =
1
n ∑n

i=1
TPLi + TNLi

TPLi + TNLi + FPLi + FNLi

• Precision: ratio of correctly predicted classes to predicted positive classes

Precision =
1
n ∑n

i=1
TPLi

TPLi + FPLi
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• Recall: ratio of correctly classified classes to true positive classes

Recall =
1
n ∑n

i=1
TPLi

TPLi + FNLi

• F1 score: harmonic mean of precision and recall

F1 score =
1
n ∑n

i=1
2× precisionLi × recallLi

precisionLi + recallLi

5. Results

In this section, the performance of each AI model for the multi-class classification
of normal and single abnormal events is first verified. Based on the results, we select
the AI models to be used for multi-abnormal events and validate their performance in
multi-label classification. We then train additional multi-abnormal data via the proposed
multi-abnormality attention function for selective training and test the multi-abnormality
attention diagnosis model, showing the amount of data used and its accuracy.

5.1. Model Performance Comparison for Single-Abnormality Diagnosis

The presented models for single-abnormality diagnosis are of two types, namely one-
channel and two-channel. The two-channel models are to additionally reflect the difference
between the current plant parameters and those from 5 s before. Therefore, the one-channel
models perform diagnosis for 600 s for each normal and abnormal state, which is 20% of
the total data, and the two-channel models perform diagnosis for 550 s for each normal
and abnormal state, which is 20% of the total data. In the case of the CNN and FNN
models, binary cross-entropy loss and sigmoid activation functions were used to advance
to multi-label classification. Tables 5 and 6 list the results of the one- and two-channel
models, respectively, trained with normal data and 15 single-abnormal data. In this study,
the one-channel models adopt data that have been preprocessed via Equation (8), and the
two-channel models adopt data that has been preprocessed via Equation (9), as described
in Figure 3. In the case of the CNN, the input shape was (22,22,2), while the input shapes of
the other models were (467 × 2).

Table 5. Results of the single-abnormality diagnosis models with one channel.

Model OVR OVO CNN FNN

Accuracy 0.9804 0.9756 0.9824 0.9705
Precision 0.9806 0.97625 0.9838 0.9719

Recall 0.98 0.9756 0.9825 0.97
F1 score 0.98 0.975 0.9819 0.9694

Table 6. Results of the single-abnormality diagnosis models with two channels.

Model 2ch-OVR 2ch-OVO 2ch-CNN 2ch-FNN

Accuracy 0.9978 0.9976 1 0.9931
Precision 0.9975 0.9975 1 0.9938

Recall 0.9975 0.9975 1 0.9931
F1 score 0.9975 0.9975 1 0.9938

Before implementation of the multi-abnormality diagnosis model, the initial single-
abnormality diagnosis experiment was conducted to confirm the baseline performance
of the models. The results show that the two-channel models reflecting the difference
between current and past data have better performance than the one-channel models,
and also that the OVR classifier among the SVM models and the CNN among the neural
network models have excellent performance. Therefore, the OVR and CNN were selected
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for implementation in the multi-abnormality diagnosis model; their results are compared
in the next section. Table 7 shows the label-specific performance of the two-channel OVR
model for single-abnormality diagnosis.

Table 7. Results of the single-abnormality diagnosis model with two-channel OVR classifier.

Location of Abnormality Injection Accuracy Precision Recall F1 Score

None (normal) 1 0.96 1 0.98
Steam generator tube leakage (SGTL) 1 1 1 1

Charging water system (CHRG) 1 1 1 1
Letdown water system (LTDN) 1 1 1 1

Condensate system (CDS) 1 1 1 1
Pilot-operated safety relief valve (POSRV) 1 1 1 1

Circulating water system (CWS) 1 1 1 1
Main steam isolation valve (MSIV) 1 1 1 1

Reactor coolant pump (RCP) 0.964 1 0.96 0.98
Main steam system (MSS) 1 1 1 1

Pressurizer (PZR) 1 1 1 1
Component cooling water (CCW) 1 1 1 1

5.2. Multi-Abnormality Attention Diagnosis Model

The results of the previous section showed that the best model for multi-class classifica-
tion was the two-channel CNN, but in the case of multi-abnormality diagnosis, this model
can come with a disadvantage due to overfitting problems for single abnormal events. For
the sigmoid activation function, the predicted probability for all labels is expressed be-
tween 0 and 1, so single and multi-abnormal events are divided according to the abnormal
events with predicted probabilities higher than a certain threshold. For instance, if the
second-highest predicted probability is greater than the threshold value, the test data are
classified as a multi-abnormal event, and the two highest abnormal events are diagnosed.
However, even with different threshold values set, the two-channel CNN was weak at
multi-abnormality diagnosis problems, as the results in Table 8 show. Therefore, the OVR
model was adopted as the model for clustering and diagnosing multi-abnormal data.

Table 8. Accuracy of the multi-abnormality diagnosis models with two-channel CNN.

Accuracy Two-Channel CNN
with Threshold 0.5

Two-Channel CNN
with Threshold 0.1

Single-data 1 1
Multi-data 0.138 0.168
Total data 0.2524 0.2783

The method for clustering single and multi-abnormal events was introduced in Sec-
tion 3.3 using the multi-abnormality clustering function that includes the regulator constant
k from Equation (11). To select the regulator constant k, values were tested from 1 to 5 at
intervals of 0.5, and values with an accuracy higher than 95 percent for single-data were
chosen. The obtained values were 2.5 and 3, with which the diagnosis results of single-data
after clustering are compared between the CNN and OVR models. The CNN model is used
at the multi-class classification level after clustering the single- and multi-abnormal labels.
Corresponding to the value of k, the accuracy of the single- and multi-abnormal data varies
in terms of trade-offs. Since the accuracy is higher when the OVR model is used alone, as
shown in Table 9, the OVR model is used alone in the subsequent experiments.

The multi-abnormality attention function selects the multi-abnormal events to be
trained for multi-class classification, and the regulator constant l is set to 1. Figure 7
shows the multi-abnormality attention scores of each abnormal event, where the multi-
abnormality attention events contain SGTL, RCP, and PZR (see Table 1). The accuracies of
SGTL, RCP, and PZR, which have true values of the multi-abnormality attention function,
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were the worst because of the large standard deviation and the small mean value of their
predicted probabilities during the clustering phase of the single- and multi-abnormal
events of Equation (11). Table 10 presents the accuracy of the proposed multi-abnormality
attention diagnosis model, showing the highest accuracy for k = 3, l = 1.

Table 9. Accuracy of the multi-abnormality diagnosis models.

Accuracy CNN + OVR
with k = 2.5

CNN + OVR
with k = 3

OVR
with k = 2.5

OVR
with k = 3

Single-data 0.96 0.971 0.97 0.977
Multi-data 0.855 0.834 0.859 0.838
Total data 0.855 0.852 0.873 0.856
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Table 10. Accuracy of the multi-abnormality attention diagnosis models.

Accuracy OVR Model
with k = 2.5, l = 1

OVR Model
with k = 3, l = 1

Single-data 0.97 0.977
Multi-data 0.981 0.98
Total data 0.979 0.98

Now, the proposed multi-abnormality attention diagnosis model is compared with
the other two types of multi-abnormality diagnosis models, namely those trained on
only single-data and those trained on all single- and multi-data, in terms of data usage
and diagnostic accuracy. Because training all single- and multi-data diagnosis models
belongs to multi-class classification, the best-performing two-channel CNN model for a
single abnormal event was used. Table 11 shows the comprehensive results of the multi-
abnormality diagnosis models. AI models perform better depending on the quantity and
quality of the training data, so the CNN trained on all single- and multi-data for multi-class
classification shows the highest accuracy due to a large amount of training data. However,
training all kinds of multi-abnormal data is an inefficient and impractical way to increase
the diagnostic accuracy of the model for multi-abnormal events. For instance, as mentioned
earlier, the APR-1400 has 82 AOPs with 224 sub-procedures, giving a total of 224C2 = 24, 976
possible multi-abnormal events by the combination formula. Such a huge number for multi-
class classification can decrease the performance of the diagnosis model. Figure 8 shows
the accuracy of the diagnosis models for each label, including single- and multi-abnormal
data. When performing diagnosis using the predicted probability distribution with only
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single-data, the amount of data used is as low as 13.22% of the total data, but this shows
relatively low accuracy. Conversely, the diagnosis model using all data is highly accurate
but inefficient in producing and training data. Moreover, for diagnosis models that have
trained too many labels, the accuracy for a single abnormal event decreases in the all-
data-trained CNN model of Table 11. The proposed multi-abnormality attention diagnosis
model trained only 45.45% of the total data but, similar to the CNN trained on all data,
shows an accuracy of 98%.

Table 11. Comparison of multi-abnormality diagnosis models.

Result OVR Model
with k = 3

OVR Model
with k = 3, l = 1

CNN Model
with All Data Trained

Accuracy of single-data 0.970 0.977 0.938
Accuracy of multi-data 0.859 0.980 1.000
Accuracy of total data 0.873 0.980 0.992

% of data usage to all data
Time (s)

13.22%
(29,920 s)

45.45%
(102,850 s)

100%
(226,270 s)J. Nucl. Eng. 2023, 4, 16 
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6. Conclusions

In the power operation mode of NPPs, operators should select the appropriate AOP
when an abnormal event occurs. However, in the case of the APR-1400, 224 sub-procedures
of 82 AOPs and thousands of plant parameters can lead to operator stress and possible
event misdiagnosis. Accordingly, operator support systems using AI in various ways are
being studied to reduce human error, but multi-abnormality diagnosis problems have not
been mentioned due to their rare incidence. The occurrence of multi-abnormal events
does not correspond to the entry conditions of general AOPs, which are fitted to a typical
single abnormal event, and the consequent nonlinear NPP parameters would pose a heavy
burden on operators.

To deal with these problems, this study proposed an efficient way to diagnose multi-
abnormal events using predicted probability distributions from an OVR classifier. The
diagnosis of multi-abnormal events is a type of multi-label classification problem, for which
diagnosis is very difficult by training only single abnormal events. Therefore, we also
presented a method for selectively training multi-abnormal events because of the ineffi-
ciency of training all multi-abnormal events. Before the diagnosis of multi-abnormal events,
single-abnormality diagnosis models based on OVO, OVR, FNN, and CNN architectures
were first compared. Accuracy was improved through the consideration of additional
parameters, including changes between past and present plant parameters. Among the
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single-abnormality diagnosis models, the OVR (a type of SVM) and CNN (a type of neural
network) were selected as candidates for the multi-abnormality diagnosis model. The
results of the multi-abnormality diagnosis model using the predicted probability distri-
butions of the OVR model were the best, showing about 87% accuracy. Furthermore,
the presented multi-abnormality attention function was able to recognize which multi-
abnormal events are difficult to diagnose or unpredictable and require additional training.
The multi-abnormality attention diagnosis model achieved 98% accuracy by training only
about 45% of the total data, which is very close to the 99.2% accuracy of the model trained
on all the data. The proposed methods can provide insight to NPP operators to better cope
with multi-abnormal events and, in this way, can contribute to improving nuclear safety as
an operator support system with a decision-making tool.

Despite the remarkable identification performance of the multi-abnormality attention
diagnosis model, diagnosing multiple abnormalities in NPPs is still a challenging problem,
considering the highly complex and dynamic trends. To apply the proposed model to actual
plants as an operator support system, the following items should be further studied. (1) In
this work, we preferentially selected and tested representative system-level abnormalities.
In the future, more abnormal events will need to be diagnosed in consideration of high
accuracy. (2) Methods to efficiently use computer resources are needed to track changing
variables and diagnose various abnormalities, such as optimizing the number of hyper-
parameters or separately training the multi-abnormalities with high priority. (3) Unlike real
plants, simulators consist of noise-free data and can produce as much data as desired. For AI
models trained with simulator data only, applying the models to real-world plants requires
additional efforts to manage noise or develop robust models. If possible, it would be best
to train actual plant data. (4) Following the multi-abnormality diagnosis, a systematic
execution list for each abnormality is necessary to facilitate the rapid escape from the
multi-abnormal events and restore safe plant operation.
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