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ABSTRACT The objective of this research work is to extend the scope of the empirical mode decomposition
(EMD) algorithm, as an efficient tool to decompose the nonlinear and non-stationary time series. For EMD
to be widely applicable, the extension utilizes both clean and noisy data sets. When constructing upper and
lower envelopes, the proposed algorithm utilizes the Akima spline interpolation technique rather than a cubic
spline. The proposed EMD is called Akima-EMD, which is used to identify non-informative fluctuations in
the signal, such as noise, outliers, and ultra-high frequency components, and to break down the clean and
chaotic data into various components to avoid distortion. It has been shown through synthetic as well as
real-world time series data analysis that the proposed method successfully extracts noise in the form of the
first IMF from the data.

INDEX TERMS Akima, empirical mode decomposition (EMD), fast Fourier transform (FFT), intrinsic
mode functions (IMFs), variational mode decomposition (VMD), complementary ensemble empirical mode
decomposition with adaptive noise (CEEMDAN).

I. INTRODUCTION frequency domain, a different dimension, utilizing all
To examine the composite signal, the usual practice is to the available information.

break it down into several components ranging from simple iii. Following the deconstruction, each subcomponent is
to complicated forms. The next step is to retrieve the valu- examined so that valuable data can be extracted sepa-
able information concealed in these subcomponents after the rately for additional examination and prediction.
signal has been broken down into its many parts so that it

can be used for some meaningful analysis or prediction. The A well-known and simple technique for time series anal-
advantages of breaking down a signal into distinct parts are ysis in a variety of disciplines, especially in mathematics
as follows: and statistics is called spectral analysis. Before applying

the spectral method, it requires some pre-defined parameter
setting such as the collection of linearly dependent vectors,
which are used to represent the data. For linear and sta-
tionary data analysis, the most common technique is the
Fourier transformation [1]. However, we cannot apply the
Fourier transformation in situations when the time series is
nonlinear and nonstationary. To overcome these limitations

The associate editor coordinating the review of this manuscript and researchers in the signal processing areas proposed wavelet
approving it for publication was Sajid Ali . transformation (WT) [2], which provides efficient results

i. To extract various modes and complexity levels from a
complex signal by using the best acceptable technique,
which must be suitable for the corresponding signal.

ii. The decomposition is carried out in such a way that
information, in the time domain, is transferred into the
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when applied to nonlinear and nonstationary time series.
However, the method of WT is based on the Fourier transform
except that it uses some data transformation techniques with
the help of some pre-selected functions that work well for
linear time series. The use of sophisticated and cutting-edge
data-driven techniques, such as fast Fourier transformation
(FFT), spectral analysis, and wavelet analysis, to break down
a linear and stationary signal into its subcomponents is well
acknowledged [3], [4], [5], [6], [7].

However, the FFT has certain limitations, such as the
requirement that the system is linear and that the data
be strictly periodic or stable, without which the resulting
spectrum will not make any physical sense. To solve this
shortcoming of FFT a unique data-driven approach that uses
the EMD to generate a collection of intrinsic mode functions
(IMFs). To overcome the limitations of both the Wavelet
and Fourier transform a novel method known as EMD has
been proposed by [8], to analyze nonstationary, and nonlinear
time series. By using the EMD technique, the input signal
is divided into several simple oscillatory modes with known
frequencies and a singular monotone residue (trend). The
method of EMD becomes more powerful for the analysis
of any given time series, especially when integrated with
Hilbert spectrum analysis (HAS) to extract the instantaneous
frequencies, such integration is known as the Hilbert-Huang
transform (HHT) [9]. After its first development, it has been
widely used in many branches of science and engineering to
analyze nonstationary or nonlinear signals [10]. In most situ-
ations, this technique is used for the earth sciences [11], [12]
but currently, the generality of EMD and HHT can be seen
in various fields such as medicines [13], speech recogni-
tion [14], quantum systems [15], ocean engineering [16] and
finance [17]. Keeping in view the versatile characteristics of
EMD, it is probable that this method will find new ways to
solve problems in almost every field of science that contains
experimental data.

The method of EMD uses cubic spline interpolation to
determine the upper, lower, and mean envelopes and, later,
the IMFs. When the signal contains noise, and outliers then
it is difficult to construct the mean envelopes while using the
cubic spline interpolation technique. Furthermore, the cubic
spline interpolation technique suffers from the problem of
overshoot, which causes these non-informative oscillations to
skew the results. The following advantages of the proposed
EMD over the traditional EMD have been achieved by using
Akima spline interpolation rather than cubic spline interpola-
tion.

1. The proposed method known as Akima-EMD can
divide such signals into suitable IMFs without the dis-
tortion caused by noise and non-informative random
fluctuations such as outliers and ultra-high frequency
components. Because the Akima spline interpolation
technique is more resilient to noise and non-informative
random fluctuations such as outliers and ultra-high fre-
quency components.
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2. As a result, it yields consistent decomposition for
the entire domain, including boundary areas. Without
imposing any condition on the boundary our proposed
method solves the limitation of huge wiggles at both
ends of the data.

This paper is further divided into the following sections.
The theoretical background of the study is presented in
section II. We thoroughly explained how Akima spline inter-
polation could be utilized inside the EMD algorithm to
determine the upper, and lower envelopes, followed by the
mean envelope as well as IMFs, in section III. Simulation
studies are carried out in section IV, real-world application
of our proposed method is presented in section V, and to end
this paper, a detailed conclusion is provided in section VI.

Il. THEORETICAL BACKGROUND OF THE STUDY

In this section, we will briefly describe EMD and its different
extensions such as ensemble empirical mode decomposition
(EEMD), statistical empirical mode decomposition (SEMD),
complementary ensemble empirical mode decomposition
with adaptive noise (CEEMDAN), and one of the latest signal
decomposition technique similar to EMD, which is known as
variational mode decomposition (VMD).

A. EMPIRICAL MODE DECOMPOSITION
Using the EMD approach, a signal is broken down into a typi-
cally small number of IMFs. The well-known HHT algorithm
is used in this method to decompose the complex signal into
distinct oscillatory components ranging in frequency from
low to high and a single monotone residue. Two requirements
must be met for a signal to be an IMF: (i) the number of
zero-crossings and extrema (maxima and minima) must be
equal or deviate by no more than one; and (ii) The upper and
lower envelopes’ means, known as the local mean, must equal
zero. The EMD technique can successfully split signal y(z)
into numerous components. This approach is reliable, simple,
and efficient, requires no major model assumptions, and is
broadly applied for prediction problems in a wide range of
areas [18], [19], [20].

The detailed decomposition is presented in the following
flowchart.

B. ENSEMBLE EMPIRICAL MODE DECOMPOSITION
(EEMD)

The fundamental drawback of the traditional EMD when
breaking down complex signals into different subgroups is
mode mixing. Wu and Huang [21] proposed the EEMD tech-
nique in 2009 to address this problem. The algorithm of this
technique is described below.

C. STATISTICAL EMPIRICAL MODE DECOMPOSITION
(SEMD)

To extract the first mode, the SEMD approach proposed
by [22] substitutes smoothing for cubic spline interpolation.
The smoothing method has several advantages over cubic
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Algorithm 1 The Standard EMD Algorithm

Algorithm 2 The standard EEMD algorithm of EEMD

1. Recognize the entire local extrema (local maxima and
minima) in the signal {y; (z)}.

2. Find out the upper {U (t)}, and lower envelope {L (1)}
in the signal y;(?).

3. To obtain the mean of both the upper and lower enve-
lope, join all the minima and maxima using the cubic
spline interpolation approach, i.e., M (1):

Mean (t) = w (D

4. To produce the first component, subtract the mean
envelope computed in step 3 from the original signal,
ie.

ki (t) =y (t) — Mean (1) @)

If k1 (t) meets the two conditions for the IMF as indicated
above, it should be considered as the initial IMF; otherwise,
steps 1 through 4 will be repeated with k| (z) treated as a
new signal.

5. The first IMF determined in step 4 will be sub-
tracted from the signal y(¢) to generate r (?), i.e.

ri (1) =y (1) — ki (1) 3)

6. The filtering procedure from step 1 is once again
applied in this stage, where r; () is treated as a new
signal. Following the last step of EMD, the overall
signal trend will be a smooth monotonic residue,
and the actual signal, y(¢), will be decomposed as
follows:

YO =" ki) +r “

It is important to note that r;, is the residue and ki(?),
ka(t)... ky(t) are all different IMFs with varying frequen-
cies ranging from high to low. Where r, is the residue
and ki(1), ka(t)...k,(t) are different IMFs with different
frequencies that vary from high to low.

spline interpolation, particularly when the signal has been
contaminated by noise. The step-by-step algorithm of this
method is outlined in the following lines.

D. COMPLEMENTARY ENSEMBLE EMPIRICAL MODE
DECOMPOSITION WITH ADAPTIVE NOISE (CEEMDAN)
The mode-mixing problem in the EMD algorithm can be
removed by incorporating Gaussian white noise into the sig-
nal, and this type of modification in EMD is known as EEMD.
However, the EEMD technique may not remove Gaussian
white noise after signal reconstruction and causes reconstruc-
tion errors. To overcome this problem, the complete ensemble
empirical mode decomposition with adaptive noise (CEEM-
DAN) was proposed by [23].
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1. Choose the ensemble number, m, and the amplitude
of white noise, n.

2. Add a white noise series w; (t) to the actual signal y (t)
to obtain a new series y; (1), i.e.

Yi (O =y + wi(t) (5)

3. Breakdown the signal y; (t) into different IMfs and a
monotone residue using EMD.

4. Repeat the above steps 2, and 3 by adding diverse
white noise series respectively; and

5. Attain the (ensemble) means of the appropriate IMFs
of the decompositions as the concluding result.

Algorithm 3 Standard SEMD Algorithm

1. The signal x(¢) can be splitinto K test datasets 71, ...,
Ty, ..., Tk where x(¢) is the test signal.

2. Calculate the local average of two neighboring points
for the k™ test dataset, and obtain Tk.

3. The SEMD algorithm with a given smoothing param-
eter A is applied to the composite signal 77, ...,
Tr_1, Tk, Tk+1, ..., Tk to decompose it into A 5 and
.

4. With a given smoothing parameter A, apply the SEMD
algorithm to decompose the composite signal 77, ...,
Tr—1, Tk, Tk+1, ..., Ty into an hy ) and the remaining
signal ;.

5. To obtain the predicted values for the remaining sig-
nal, it would be necessary to evaluate it at the k™ step
which is denoted by r;f (0).

6. Steps (ii) to (iv) should be repeated fork = 1, ..., K,
and the prediction error should be defined as follows:

PE(A) = % > {x (1) — rf(t)}z ©)

After its first development, it has been widely used in many
fields such as the exploitation of marine resources to extract
ship-radiated noise by integrating CEEMDAN with adaptive
noise [24]. The advantage of CEEMDAN is that it eliminates
the problem of mode mixing efficiently, reconstruction errors
become negligible as well as the cost of calculation is signif-
icantly minimized. Let’s describe the function EMD; (-) that
makes possible the j# mode attained by EMD, and let wi (+)
be white noise from the standard normal distribution, the
algorithm of the CEEMDAN is summarized in the following
steps:

E. VARIATIONAL MODE DECOMPOSITION (VMD)

The variational mode decomposition was proposed by
Dragomiretskiy and Zosso in 2014 [25]. It can decompose
a signal into multiple components, and its essence and core
idea is the construction and solution of variational problems.

VOLUME 11, 2023
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Algorithm 4 The Standard CEEMDAN Algorithm
1. The first IMF can be obtained by decomposing the
Gaussian white noise added signal y; (f) = y(¢) +
yowi(t) (where yq is a noise coefficient, i =1, 2,..., L)
by implementing the method of EMD. The first mode
is then defined as:

J— 1 L
IMF, = - Zi:l IMF;, (7
2. Calculate the first residue
r (1) =y (@) — IMF, ®)

3. Decompose residue r1 (¢) + y1 EMD(w; (t)) to obtain
the 2" mode as:

2 [ 2 i=1 1[ 1 (t) 1 I(Wi (t))]

4. The resulting residue can be obtained by repeating the
same procedure for each IMF, mathematically;

R (1) =y(0) = D" M, (10)

The total number of IMFs is denoted with m. The IMFs
collectively break down the features of the original signal
at diverse timescales. The residue describes the trend of the
actual series, which is flatter and diminishes the forecast
error excellently.

This new variant of EMD is used in many fields such as in
marine science to analyze the underwater acoustic signal and
to extract more distinctive features of a ship [26]. Similarly,
the method of genetic algorithm (GA) is combined with
VMD to enhance the recognition performance of bearing fault
signals [27], and financial time series such as predicting the
direction movement of the stock prices [28], [29], carbon
price prediction [30], and underwater acoustic signal denois-
ing [30], [31]. Inspired by the EMD, the method assumes that
the original signal f is composed of a quantity of so-called
Intrinsic Mode Functions (IMFs) w; which is defined as
amplitude modulation and frequency modulation (AM-FM)
components.

F@O =m0 = Acoslg ()] (11)
k k

The envelope, phase, and the IMFs in (11) are represented
by Ak (¢), px (t) and @ (7). It is important to mention here
that every individual IMF has a center frequency and limited
bandwidth. In the VMD algorithm, the key decomposition
process is the constrained variational problem. The mathe-
matical structure of this constrained variational problem can
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be seen in the following equation (12).

min [z Hg [(5 ) + i) * [k (t):| e Jkt
P’ Tt

2
{m} {on} J
st =1 (12)

where {ur} = {u1,..., uxtand {wy} = {w,..., ok}
are shorthand notations for the set of all modes and their
center frequencies, respectively. Equally, ¥; := E/f:] is
considered the summation of all the modes. Based on the
penalty factor and the Lagrangian multiplier, we can solve the
above-constrained variational problem in (12). As aresult, the
augmented Lagrangian can be expressed as follows:

at [(a ) + i)
Tt

K
L({/’Lk}’{wk}s)"):az
k=1

) 2
* Uy (t)] eIkt
2
K 2
+F @6 =D @
k=1 2

K
+ OO =D ) (13)

k=1

A and « are the Lagrangian multipliers and balancing param-
eters respectively in (13). To obtain the saddle point, the
alternating direction multiplier method (ADMM) is applied,
and after that ug, wx and A are updated periodically, in the
following manner:

A N Xn
1+ 2« (a) — wZ)z
2
00 An+1
el
w, = 3 (15)
Jo: ﬁZH) do

@ =@+ (f @ -2 mt @) 16

The Fourier Transform and time step in (16) are denoted by A
and 7. As long as the convergence stop condition is satisfied,
the algorithm continues to run. A stop condition is defined as
follows:

2
et = g
Zk et <e (17)
Iz

The accuracy of convergence is given by e in (17). The
complete algorithm of VMD is as follows:

ill. PROPOSED METHOD

Before going into details about our suggested approach,
which is based on the Akima spline interpolation technique,
we will demonstrate how the conventional EMD and its
several types provide subpar decomposition results for a
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Algorithm 5 The Standard VMD Algorithm

1. nitialize {i2}}, {w}}, {41} . n =0
2. Repeatn <—n+1fork =1:K do
3. Update /iy forallw > 0 :

An+1 (@)
(—f (a)) — zl<k 'a7+1 (a)) B Zz>k H’l (w) + & (CU)
14+ 2a (a) — a)k)
(18)
4. Update wy :
fooo A”H ()| dw
it ’ (19)
f() ’\n+1 ((1))‘ dw
end for

5. Dual ascent for all w > 0 :
@) < i @) 41 (F @ - X @)
(20)

6. Repeat steps (2) to (5) until the iteration stop condi-
tion is satisfied:

5 ],
N I

synthetic signal. Suppose that a synthetic signal is denoted
by x(t), where 0 < t < 9 with frequencies fij= 6, o= 2
and f3= I then the artificial signal’s mathematical structure
is provided as follows:

x (t) = 0.5¢ 4 sin (fiwt) + sin (frwt) + sin (z37wt) + €(t)
(21)

where € (t) is Gaussian noise with a signal-to-noise ratio
(SNR) of 5. Fig. 1 shows the underlying signal of (1) with
Gaussian noise with an SNR level of 5.

This noisy signal is decomposed into various components
known as IMFs using the methods of EMD, EEMD, SEMD,
VMD, CEEMDAN, and the newly proposed approach; the
decomposition outcomes are displayed in Fig. 3.

Fig. 3 (a) demonstrates that the first IMF component,
which represents the noise in the signal, is not captured by the
usual method of EMD. In a similar vein, the altered versions
of EMD known as EEMD, SEMD, VMD, and CEEMDAN
also fail to separate the IMF1-based noise from the signal.
While the number of IMFs acquired by SEMD is smaller
than that of EMD, EEMD, and the proposed approach, the
number of IMFs obtained by EMD, EEMD, and CEEMDAN
are almost equal, showing that there is only a slight differ-
ence between these decomposition methods. Furthermore,
the new method of VMD that is based on the idea of EMD
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FIGURE 1. Schematic view of the EMD algorithm.
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FIGURE 2. Actual signal, noise from Gaussian with SNR level of 5, and
contaminated signal.

extracts the IMFs from the actual signal without producing
a single monotone residue and the last IMF still consists of
variations because of this structure, and algorithm design.
Fig. 3(f) shows that the noise in the form of the first IMF is
successfully retrieved when the signal is decomposed using
the new technique. For the implementation of EMD, EEMD,
SEMD, VMD, and CEEMDAN we have used three distinct
libraries in RStudio, namely ‘“Rlibeemd” [33], “EMD” [34],
and “VMDecomp” [35] whereas the proposed method is
implemented in MATLAB (R2021b) by switching the cubic
spline interpolation method with Akima spline interpolation.
Fig. 2 (a-e) demonstrates how EMD, EEMD, SEMD, VMD,
and CEEMDAN fail to yield stable decomposition results
from such a chaotic synthetic signal. For the implementation
of EEMD, the default setting provided in the package is used
with the number of siftings of 50, the ensemble size of 250,
and the noise strength of 0.2, which is the standard deviation
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@ o

FIGURE 3. Decomposition of the noisy signal presented in Figure 2 by
(a) EMD (b) SEMD (c) EEMD (d) VMD (e) CEEMDAN (f) Proposed
Akima-EMD.

of the Gaussian random numbers used as additional noise.
Similarly, the method of VMD is applied with the default
settings. The cubic spline interpolation technique used in the
building of the upper and lower envelopes through the local
extrema is the primary reason for the failure of both EMD,
EEMD, and CEEMDAN. The algorithm of VMD is different
from EMD, EEMD, SEMD, and CEEMDAN, and therefore
for any synthetic or real-world data it extracts nine IMFs with
default settings. The last component known as IMF9 still
has some oscillations and unlike the other variants, we are
not able to obtain the monotone single residue. The lower
frequency component of the signal is not effectively reflected
by the mean envelope because it is vulnerable to noise. When
there are heavy-tailed noises present, such as outliers, the
upper or lower envelope tends toward extreme values, making
it impossible for the mean envelope to accurately repre-
sent the lower frequency pattern of the signal. Additionally,
SEMD, another modified version of EMD that uses smooth-
ing rather than cubic spline interpolation, is unable to remove
noise from the noisy signal. Furthermore, the first IMF is
subtracted from the signal for the purpose to find out the
deviations between the actual signal and the remaining one
after subtracting the first IMF component from it. We used
three different statistical metrics such as RMSE, MAE, and
MAPE to know which method successfully extracted noise
from the synthetic signal. The investigational results of this
analysis are presented in the following Table 1.
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TABLE 1. Statistical metrics of actual and noise-free signal.

Method RMSE MAE MAPE
EMD 0.3887 0.3480 0.4717
EEMD 0.4101 0.3468 0.4527
SEMD 0.5225 0.4236 0.4976
CEEMDAN 0.3599 0.2963 2.1733
VMD 2.7399 2.3376 1.6442
Proposed Akima-EMD 0.2572 0.2204 0.4024

According to Table 1, the proposed method extracts noise
from a contaminated signal more effectively because RMSE,
MAE, and MAPE are the minimums among other methods,
such as EMD, EEMD, SEMD, CEEMDAN, and VMD.

To solve this issue, we suggest a novel method that does
not change the interpolation with smoothing as in the case of
SEMD, which yields the worst decomposition results when
compared to EMD, EEMD, CEEMDAN, and VMD but rather
uses a different kind of interpolation approach. This interpo-
lation technique is known as Akima spline interpolation, and
therefore, we call our proposed new method Akima-EMD.
Before going into the details of our proposed method we
are first introducing the Akima interpolation technique in the
following subsection.

A. AKIMA SPLINE INTERPOLATION TECHNIQUE

Hiroshi Akima first presented the Akima spline interpola-
tion method in 1970 [36]. The Akima interpolation is a
sub-spline interpolation that is continuously differentiable.
It is constructed using fragmented third-order polynomials.
Piecewise cubic Hermite interpolation finds a cubic polyno-
mial for each interval [x;, x;+1] of an input data set of nodes
x and values ¢, that not only interpolates the provided data
values v; and v; 41 at the interval’s nodes x; and x;41, but also
has particular derivatives d; and d;; at x; and x;+1. A key
factor in the Hermite interpolation method is the selection
of derivatives di. A derivative formula was suggested by the
author to reduce the number of local undulations: Let §; =
E;:i—:;i; to be the slope of the interval [x;, x;+1]. Akima’s
derivative at x; is defined as:

g = Bir1 =il di1 +18i-1 — 8i2] 5

’ 18i+1 — 8il +18i-1 — ;2]

Akima’s derivative formula is altered by adjusting the weights
w1 and w, of the slopes §;—1 and §; to remove overshoot and
prevent edge cases where both the numerator and denomina-
tor are equal to zero.

(22)

wi w2
di = wi + wz&_l + w1 + wy o 3)
where w1 = [8ip1 — 8| + [8iv1 +8il /2, and wy =
18i—1 — 8i—al + 18i—1 + 8i—2| /2.

Observe that the five points x;_3, xi—1, X, Xj+1andx;;> are
used to locally calculate Akima’s derivative at x;. It requires
the slopes 61,80, and §,, 8,41 for the endpoints x; and
Xxn. Akima recommended using quadratic extrapolation to
compute these slopes as §g = 2861 — 62,61 = 2§ —

67375



IEEE Access

M. Ali et al.: New Approach to EMD Based on Akima Spline Interpolation Technique

81 and 8, = 28,—1 — 8,—2 as they are not included in the
input data. Because it only employs values from nearby knot
points in the formation of the upper and lower envelopes
and the coefficients of the interpolation polynomial between
any two-knot points, the Akima spline interpolation has an
advantage over the cubic spline in the classic EMD. As a
result, there are not many complicated equations to solve, and
the Akima spline prevents unnatural wiggles in areas where
the second derivative of the underlying curve is changing
quickly. The fact that the second derivative of the Akima
spline is discontinuous could be a drawback.

B. ALGORITHM OF THE PROPOSED AKIMA-EMD

The suggested novel Akima-EMD technique, which uses the
Akima spline interpolation technique for both clean and noisy
signals, is summarized as follows:

Algorithm 6 Algorithm of the Proposed Akima-EMD

1. By using the Akima spline interpolation approach,
isolate the initial oscillatory component k*(¢) from the
noisy signal y(¢).

2. Determine the upper {U (t)}, and lower {L (1)}
envelopes of the signal y;(¢) respectively.

3. To obtain the mean of the upper and lower envelopes,
or M (t), join all the minima and maxima using the
Akima spline interpolation approach, i.e.

U @)+ L)

M@ =—7— (24)

4. The mean envelope calculated in step 3 will be
subtracted from the actual signal to obtain the first
component, i.e.

k() =y —M1) (25)

5. Repeat steps 1-4 for the component k (¢) until a stop-
ping criterion is satisfied, and take the resulting & (¢)
as k*(r).
If the remaining signal i.e., r (t) = y (£) — k™ (¢) has still
some oscillation components then it can be further decom-
posed with the help of a new version of EMD. constant for
more than two consecutive nodes.

Any noisy signal can be decomposed with the help
of the new proposed Akima EMD. The addition of
|6i+1 + il /2, and |6i—1 + 6i—2| /2 terms forces d;=0 when
8;i = 8i+1 = 0, i.e., d; = Owhenv; = viy+1 = vi12, and hence
it eliminates the overshoot problem when the data is

IV. SIMULATION STUDY

To assess the empirical efficiency of the proposed method,
known as Akima-EMD, a simulation study is carried out to
measure how effectively the first component of the IMF can
extract the noise from the data. The purpose is to compare
the proposed method with the benchmark EMD, as well as its
different variants, such as EEMD, SEMD, CEEMDAN, and
VMD. We created a noisy signal from the following model to
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FIGURE 4. Actual chirp signal, noise from Gaussian with SNR level of 10,
and contaminated chirp signal.

conduct simulation studies and determine the effectiveness of
our novel method:

K (1) = F (1) + n (1) (26)

In the above (26) F (t;) are a test function and pu (¢;) is the
noise that will be generated from 1) Gaussian with different
SNR levels, 2) heavy-tailed distribution such as #-distribution
with varying degrees of freedom. It was observed that the
final scenario depicts a situation in which noise includes
outliers or is generated from a heavy-tailed distribution. The
chirp signal (chirp) is the test function or signal that was used
in the simulation study. Although this signal has a variety of
mathematical structures, in this investigation we employed
the chirp signal defined as follows:

F (1) = 7405670 (4 < 10, 9]) (27)

The noise produced by various distributions contaminates the
chirp signal described above; a detailed description of how to
add different noises to the above chirp signal is as follows.

A. GAUSSIAN NOISE ADDED INTO CHIRP SIGNAL WITH
SNR LEVEL OF TEN

In the first scenario of the simulation study, the chirp signal
described in (27) is initially contaminated with Gaussian
noise at an SNR level of 10. Fig. 4 displays the real signal, the
noise produced by a Gaussian distribution at an SNR level of
10, and the noise-added signal.

In this scenario of simulation experiments, we replicated
500 simulated datasets from the chirp signal with various data
lengths, such as 500, 1000, 5000, and 10000. To decompose
the chirp test function into different IMFs, the six methods—
EMD, EEMD, SEMD, CEEMDAN, VMD, and the newly
proposed Akima-EMD were applied to each replicated sim-
ulated data set with a different number of data points. It is
important to acquire the estimate p for the test function after
decomposing the signal; p is determined by removing the first
component (IMF1) of the noisy signal K (¢,), i.e.

p=K () — IMF1 (28)
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TABLE 2. Average accuracy metrics for 500 replicated simulated data sets
with 500, 1000, 5000, and 10000 number of observations of chirp signal
having Gaussian added noise with SNR level of 10.

g z
g 4 a a % é
3 |2 (212 |2 [E |2
z <= = = » < @) >
500 RMSE 0.233 | 0.226 | 0.329 0216 | 0.257 | 0.345
MAE 0.205 | 0.206 | 0.260 0.195 | 0.287 | 0.228
MAPE 7.816 | 6.116 | 8.826 5170 | 8.391 | 9.454
1000 RMSE 0.234 | 0.226 | 0.329 0.209 | 0.265 | 0.354
MAE 0.206 | 0.204 | 0.260 0.191 | 0298 | 0.348
MAPE 6.687 | 6.077 | 9.987 5620 | 6.256 | 7.981
5000 RMSE 0.234 | 0.231 | 0.327 0.226 | 0291 | 0.339
MAE 0.206 | 0.209 | 0.259 0201 | 0.219 | 0.231
MAPE 6.103 | 6.700 | 9.987 5987 | 6.987 | 6276
10000 RMSE 0.234 | 0.239 | 0.327 0.226 | 0.241 | 0.267
MAE 0.206 | 0.218 | 0.259 0205 | 0278 | 0.228
MAPE 5.835 | 6.876 | 11.127 5079 | 6812 | 7.143

The proposed Akima-EMD approach is compared with other
methods based on three different statistical performance met-
rics such as average RMSE, MAE, and MAPE. The following
equations show how these various statistical metrics are math-
ematically structured.

1 /1 g n A \2
Average RMSE = 5\/; E 1 E 1 (Ktj —Ptj) (29)
1]1 g n n
Average MAE = e [; E jmt E _ |Kyj —Ptj|i| (30)

11 g n
Average MAPE = G I:; ijl thl

Each of these performance indicators has 500 values because
there are 500 replicated simulated datasets, and hence, the
average of RMSE, MAE, and MAPE is calculated. The
empirical results of these performance metrics are presented
in Table 2.

It is evident from the empirical results presented in Table 2
that the proposed method efficiently extracts noise from the
signal. Since in the first case there are replications of 500 sim-
ulated datasets from chirp signals of different lengths such as
500, 1000, 5000, and 10000, therefore, we have 500 values
of RMSE, MAE, and MAPE. Table 2 shows that for the
chirp signal after adding noise from Gaussian distribution
with an SNR level of 10 average of three different statistical
metrics such as RMSE, MAE, and MAPE of the proposed
method with different lengths of data is minimum. Hence,

Ky — py } 31)
K
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FIGURE 5. Actual chirp signal, Gaussian noise with SNR level 5, and
contaminated chirp signal.

it can be concluded that the proposed Akima-EMD method
successfully extracts noise in the form of IMF1 from the chirp
signal, which is contaminated, with Gaussian noise with an
SNR level of 10.

B. GAUSSIAN NOISE ADDED INTO CHIRP SIGNAL WITH
SNR LEVEL OF FIVE

In the first case of the simulation, we used a chirp signal
defined in (27), and Gaussian noise with an SNR level of 10 is
added to make it noisy. We simulated 500 replicated datasets
with a different number of observations such as 500, 1000,
5000, and 10000. In the second case, the same procedure is
repeated i.e., the Gaussian noise is again added but the SNR
level is changed from 10 to 5 for the purpose to contaminate
the chirp signal with more noise. In Fig. 5 the actual signal,
noise from Gaussian with SNR level of 5, and the noise added
chirp signal are plotted. It can be seen that increasing the SNR
level will make the chirp signal noisier.

The purpose of changing the SNR level is to know the
efficiency of the proposed Akima-EMD for such a heavy-
noisy signal. It is worth mentioning here that replacing the
SNR level; from ten to five generates more noise in the
signal and in such a case, the performance of the conventional
EMD is affected because of the cubic spline interpolation
technique that is used inside the EMD algorithm to find out
the upper and lower envelope. The proposed Akima-EMD,
which uses the Akima spline interpolation technique for the
purpose to construct lower and upper envelopes, performs
more efficiently in such a scenario and extracts the Gaussian
noise in the form of the first IMF component. The recent
extension of EMD known as SEMD uses smoothing rather
than interpolation to find out the mean envelope is showing
inefficient performance for this noisy chirp signal. Unlike
the SEMD, the EEMD, and CEEMDAN techniques perform
better than the classical benchmark EMD. It can be seen
from Table 3 that the statistical performance measures such
as the average RMSE, MAE, and MAPE are minimum for
our proposed new method. These statistical metrics were
obtained after subtracting the first IMF component from the
signal and comparing the remaining signal with the actual
noisy chirp signal.
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TABLE 3. Average accuracy metrics for 500 replicated simulated data of
chirp signal having Gaussian added noise with SNR level of 5.

a
= | Z
? 9] a g Tx g
55| g = E 2 E = =
S| = = = £E | = =
z <= = &= » o) @) >
500 RM | 0414 | 0402 | 0.570 0.402 | 0.431 0.40
SE
MA | 0364 [ 0367 | 0454 0364 | 0391 0.370
E
MA | 5848 | 7.656 | 10098 | 4730 | 6.031 | 6.891
PE
1000 RM | 0417 | 0426 | 0.564 0.406 | 0.432 0.419
SE
MA [ 0366 | 0367 | 0.448 0358 [ 0379 [ 0.407
E
MA | 8827 [ 9.041 | 12.0987 | 6.076 | 9.982 7.103
PE
5000 RM | 0417 | 0436 | 0.568 0.403 | 0.443 | 0.429
SE

MA 0.366 0.389 0.452 0.365 0.371 0.387

MA 6.704 7.129 15.765 7.186 8.120 9.591

10000 RM 0.417 0.423 0.568 0.402 0.435 0.487

MA 0.366 0.370 0.453 0.365 0.390 0.432

MA 7.063 8.056 20.965 5.944 9.971 8.032

The empirical results presented in Table 3 indicate that the
average values for RMSE, MAE, and MAPE of our proposed
Akima-EMD are the minimum for this chirp signal, which is
again contaminated with heavy noise since we changed the
SNR level from 10 to 5. By using EMD, SEMD, EEMD,
CEEMDAN, VMD, and the newly proposed Akima-EMD
method, we were able to decompose the noisy signal into
different IMFs, and a single monotone residue, and then
subtract the first IMF component from the noisy chirp signal
to determine the average values of RMSE, MAE, and MAPE,
as indicated in Table 3.

C. NOISE FROM HEAVY TAIL T-DISTRIBUTION WITH
DIFFERENT DEGREES OF FREEDOM

In the first two cases, the Gaussian noise is added to the chirp
signal with two different SNR levels i.e., ten, and five. It is
evident from the empirical results presented in Tables 2, and 3
that the proposed new Akima-EMD method outperformed the
other methods such as EMD, EEMD, SEMD, CEEMDAN,
and VMD in terms of removing noise from the signal as the
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FIGURE 6. Actual, Noise, and the noisy signal after adding noise from
t-distribution with three degrees of freedom.

average of three statistical metrics such as RMSE, MAE, and
MAPE of is minimum. However, a query has to be answered
‘is it efficient in a case when noise is generated from a
heavy-tailed distribution such as t-distribution’? To answer
this question, noise in the chirp signal is added from a heavy-
tailed t-distribution with different degrees of freedom. The
shape of the t-distribution is depended upon its single degree
of freedom; therefore, noise is generated from this heavy tail
t-distribution with a different number of degrees of freedom.
The performance of the proposed method when noise is added
from heavy-tailed t-distribution can be seen in the following
subsections.

1) NOISE FROM T-DISTRIBUTION WITH # = 3 (DEGREES OF
FREEDOM)

As a first case, noise is added in the chirp signal from the
heavy-tailed t-distribution with three degrees of freedom and
decomposed the noise-added chirp signal with the help of
EMD, EEMD, SEMD, CEEMDAN, VMD, and the proposed
Akima-EMD. In this scenario, the proposed method per-
formed well for each length of the data such as 500, 1000,
5000, and 10000 for 500 different replicated datasets in terms
of the smallest values of average RMSE, MAE, and MAPE.
The chirp signal, noise, and noise-augmented chirp signal are
shown in Fig. 6.

The average statistical metrics such as RMSE, MAE, and
MAPE are calculated after subtracting the first IMF com-
ponent from the actual signal and comparing the noise-free
remaining signal with the actual. Investigation results are
presented in Table 4 which clearly shows that the proposed
Akima-EMD method outperforms the other methods in terms
of accuracy metrics such as average RMSE, MAE, and
MAPE, in all scenarios i.e. for 500 replicated simulated
datasets, having different lengths of the data such as 500,
1000, 5000, and 10000.

2) CASE-Il NOISE FROM T-DISTRIBUTION WITH # =5
(DEGREES OF FREEDOM)

In the preceding example, noise from the heavy-tailed
t-distribution with three degrees of freedom was created and
then extensively added to the chirp signal. The noise-added
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TABLE 4. Average accuracy metrics for 500 replicated simulated data sets
of chirp signal with noise added from heavy-tailed t-distribution with
# =3 (degrees of freedom).

TABLE 5. Average accuracy metrics for 500 replicated simulated data sets
of chirp signal with noise added from heavy-tailed t-distribution with
# = 5(degrees of freedom).

) z
<«
g a 15 g
S 2
)
z IS | & s & €3 | S g
500 | RMSE | 8568 | 8312 | 11.803 | 7814 | 9.120 | 10920
MAE | 7394 | 7.600 [ 9.119 | 6997 | 8413 | 8.001

MAPE | 5.535 8.056 11.007 | 4.972 5.001 7.881

1000 RMSE | 8.504 7.888 11.557 | 6.583 7.101 8.192

MAE 7.427 7.513 8.971 7.261 7.879 9.092

MAPE | 6.521 9.840 18.192 | 6.409 7.112 7.740

5000 RMSE | 8.595 8.986 11.795 | 8.068 8.429 9.182

MAE 7.436 7.671 9.036 7.308 7.672 8.217

MAPE | 6.163 7.091 13.030 | 5.460 6.429 10.340

10000 | RMSE | 8.622 9.071 11.770 | 8.133 8.562 10.281

MAE 7.475 7.900 8.953 7.333 7.729 9.028

MAPE | 7.540 6.192 10.109 | 5.754 6.921 7.104
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FIGURE 7. Actual, Noise, and the noisy signal after adding noise from
t-distribution with five degrees of freedom.

chirp function is then decomposed with the help of EMD,
EEMD, SEMD, CEEMDAN, VMD, and the new Akima-
EMD method. Now, as a second case, we generated noise
again from the heavy-tailed t-distribution with five degrees
of freedom and added this heavy noise to the chirp signal.
The actual noise-free signal, the noise, and the noisy added
signal are presented in the following Fig. 7 below.
According to Fig. 7, after adding noise from a t-distribution
with five degrees of freedom, the chirp signal becomes
contaminated with high-amplitude noise, which is statisti-
cally known as an outlier. Now the same procedure is again
repeated for the purpose to extract the noise from the chirp
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a
z
Z, . 35 |2
9 <
5T g s 2 gE = 2
= =< =
z 22 | 5 =| 7] £< | O 5
500 RMSE | 6313 | 6196 | 8350 | 5802 | 6.102 | 7.998
MAE | 5515 | 5630 | 7583 | 5269 | 549 | 6.000

MAPE 10.691 6.100 25.764 | 4.032 9.109 11.850

1000 RMSE | 6.523 6.246 10.683 6.014 6.921 8.019

MAE 5.696 5.614 9.909 5.483 5.810 7.491

MAPE | 6.012 8.433 31.00 5.587 6.060 7.102

5000 RMSE | 6.449 6.993 8.685 6.134 6.572 7.199

MAE 5.660 5.929 9.881 5.552 5.920 6.002

MAPE | 20.153 18.001 21.086 | 8.345 19.523 | 22.996

10000 RMSE | 6.417 6.351 14.673 | 6.145 6.720 8.901

MAE 5.638 5.789 12.889 | 5.575 5.701 7.000

MAPE 12.587 11.207 11.201 7.190 12.031 13.380

signal. Since the experiment is performed by simulating
500 datasets from a chirp signal with different lengths of data
such as 500, 1000, 5000, and 10000. Hence, we have four
different simulated cases, i.e. 500 different datasets generated
from the chirp signal each of length 500 as a first case,
and subsequently 1000, 5000, and 10000 lengths. Therefore,
on each iteration, the chirp function is decomposed with the
help of EMD, EEMD, SEMD, CEEMDAN, VMD, and the
new method. The IMF1 is subtracted from the actual chirp
signal, and average statistical metrics such as RMSE, MAE,
and MAPE are calculated and presented in Table 5. It can be
seen from the empirical results presented in Table 5 that the
average values of RMSE, MAE, and MAPE of the proposed
Akima-EMD method are minimum in all scenarios. In the
case of such noisy chirp signals, the performance of the
benchmark EMD is not satisfactory due to the use of cubic
spline interpolation to determine the lower, upper, and mean
envelopes. Furthermore, the performance of the newly pro-
posed SEMD is not satisfactory for such a nonstationary and
nonlinear simulated chirp signal, which seems very unusual.
On the other hand, the method of EEMD, CEEMDAN, and
the proposed new method produces very similar results for
the average statistical measures such as RMSE, and MAE,
whereas the baseline EMD performance is not very satisfac-
tory to extract the noise from the noise-added chirp signal.
To end this case of simulation study where the noise is
generated from t-distribution with five degrees of freedom
and then added this noise with the chirp signal to contaminate
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it with heavy noise. After decomposing the noise added chirp
signal with EMD, EEMD, SEDM, CEEMDAN, VMD and
the proposed Akima-EMD the first IMF component is sub-
tracted from the actual chirp signal. A comparison is made
between the actual chirp signal and the remaining signal (after
removing the IMF1) to find out average RMSE, MAE, and
MAPE. It is evident from the empirical results presented in
table 5 that the proposed method outperforms the other data
decomposition method in terms of minimum average values
of RMSE, MAE, and MAPE, and hence to be considered as a
new tool to decompose the nonlinear and nonstationary data
specifically time series.

V. APPLICATION OF THE PROPOSED METHOD ON REAL
DATA SETS

In section IV, the proposed Akima-EMD method was applied
to the simulated datasets generated by using the chirp signal
defined in (25). As a first case, noise from the Gaussian with
different SNR levels i.e. five, and ten has been generated
and added to the chirp signal to contaminate it with outliers.
As a second case, noise from the heavy-tailed t-distribution
with different degrees of freedom is also added to the chirp
signal. In all of these scenarios, the suggested technique
outperforms previous methods such as EMD, EEMD, SEMD,
CEEMDAN, and VMD in terms of removing noise from the
signal. However, in real-world scenarios, where the data is not
created by any single function, nor is the noise generated by
any certain distribution. Indeed, there may have a complex,
nonstationary, and nonlinear dataset, or a dataset with some
trend or seasonality. In general, the performance of any given
approach must be consistent for both the simulated and actual
data sets. The following two real-world time series datasets
were used to check the performance of the proposed method.

A. CASE-I: NOISE-FREE WEATHER TIME SERIES

As a first real-world dataset, we analyzed weather time
series data of Australia collected by the Australian
bureau of meteorology department and available online
(http://www.bom.gov.au/climate/dwo/). This daily time
series dataset was gathered from several Australian weather
stations and comprises 21 variables for 10 years. However,
in the analysis, we only used univariate time series data,
i.e., daily minimum temperature, for the Sydney weather
station. It is important to mention that this dataset is not
contaminated with any outlying observation, and has some
seasonality. The following Fig. 8 illustrates that the Sydney
daily minimum temperature weather time series data has
a seasonal component and does not contain any unusual
observations.

The daily minimum temperature data is decomposed into
distinct IMFs and monotone residue using the EMD, EEMD,
SEMD, CEEMDAN, VMD, and the newly developed Akima-
EMD method.

Fig. 9 shows the results of this decomposition; it can be
observed that for the noise-free real dataset, the decomposi-
tion with the proposed technique is fairly close to the EMD,
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FIGURE 9. Decomposition of Australia (Sydney) daily minimum
temperature time series data in the time window 9/30/2014 to 6/25/2017
by implementing a) EMD b) EEMD c) SEMD d) VMD e) CEEMDAN and f)
Proposed Akima-EMD.

EEMD, and CEEMDAN with just one more IMF, but the
SEMD method provides poor decomposition results with
only five IMFs. The same procedure as in the simulation
studies section is repeated after decomposing the daily min-
imum temperature time series data into different IMFs and a
monotone residue. The first IMF component is removed from
the real daily minimum temperature data to generate a new
series, which is then compared to the actual data to get the
three important statistical measures known as RMSE, MAE,
and MAPE presented in Table 6 below.
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TABLE 6. Accuracy metrics for noise-free (not having a single outlier)
temperature data.

Method RMSE MAE MAPE
EMD 1.207 0.988 0.070
SEMD 1.300 1.052 0.075
EEMD 1.042 0.873 0.062
CEEMDAN 1.044 0.835 0.059
VMD 16.155 15.669 1.027
Akima-EMD 0.907 0.732 0.049

The empirical findings shown in Table 6 show that the
values of RMSE, MAE, and MAPE of the suggested novel
technique are minimal when compared to EMD, EEMD
SEMD, CEEMDAN, and VMD. Therefore, the proposed
Akima-EMD successfully removes noise in terms of IMF1
from the daily time series temperature data. Furthermore, the
EEMD and CEEMDAN findings are remarkably comparable
to the proposed new method, and it is considered a second
choice in this comparison of how these data-driven algorithms
eliminate noise from data. When the authors in [21] employed
smoothing instead of interpolation to determine the lower
and upper envelopes, the SEMD approach yields inferior
decomposition results when compared to the baseline EMD.

B. CASE-II: WEST TEXAS INTERMEDIATE (WTI) CRUDE OIL
TIME SERIES DATA
In the first real-world scenario, the daily weather time series
data collected from several Australian weather stations in
Australia is used. Because this time series dataset is clean
of noise and contains no outliers, therefore, the decompo-
sition results obtained by the standard EMD and the novel
technique are quite comparable. In a second scenario, the
performance of the proposed Akima-EMD is examined using
daily crude oil price time series, i.e., from January 1, 2019,
to December 31, 2022, collected from the website of yahoo
finance (https://finance.yahoo.com/). This time series dataset
is chosen for two reasons. To confirm that the proposed
method is equally efficient on different types of datasets, the
weather dataset is used in the first instance and the daily
closing price of crude oil such as West Texas Intermediate
(WTI) in the second case. Second, the crude oil daily closing
price time series data contains an anomaly in which the daily
closing price of a barrel of WTI, the US oil benchmark,
dropped as low as negative $37.63 per barrel (recorded on
April 19th, 2020). This means that oil producers are paying
buyers to take the commodity off their hands over fears that
storage capacity could run out. The reason behind this huge
decrease in crude oil prices is the COVID-19 pandemic where
oil demand has all but dried up as lockdowns across the world
have kept people inside. Figure 10 depicts the daily closing
price of WTI; it is noticeable that prices fell as low as negative
$37.63.

The crude oil daily closing price time series dataset
has 791 observations spanning from January 1, 2019,
to December 31, 2022, including the pandemic period.

VOLUME 11, 2023

tn
=

Daily Closing Price
[=]

2019 2020 021 2022

Dates (Days)

[

FIGURE 10. WTI daily closing prices in the time window January 01, 2019,
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FIGURE 11. Decomposition of WTI crude oil data by implementing the
method of a) EMD b) SEMD c) EEMD d) VMD e) CEEMDAN f) Proposed
Akima-EMD.

This nonlinear and nonstationary daily time series data is
decomposed into several components and a single monotone
residue, implementing the methods of EMD, EEMD, SEMD,
CEEMDAN, VMD, and the proposed Akima-EMD. Fig.11
depicts the decomposition results; it can be seen from this
figure that the decomposition results of the novel approach
are stable and extract noise in the form of the first IMF.
Whereas the other methods such as EMD, EEMD, SEMD,
CEEMDAN, and VMD fail to extract the first IMF as a noise
present in the WTI crude oil data.

After decomposing the crude oil WTI daily closing price
into different IMFs the next aim is to know which method
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TABLE 7. Accuracy metrics for crude oil WTI daily closing price data
having a single outlier.

Method RMSE MAE MAPE
EMD 2.373 0.894 0.027
SEMD 3.081 1.527 0.043
EEMD 1.702 0.760 0.021
VMD 56.176 54.866 1.029
CEEMDAN 1.596 0.597 0.027
Akima-EMD 1.527 0.583 0.017

successfully extracted the noise. To verify the claim that the
proposed Akima-EMD extracted the noise in the form of the
first IMF component from the crude oil time series we sub-
tracted the IMF1 from the actual time series and compared the
leftover data with the actual. Three performance metrics such
as RMSE, MAE, and MAPE are calculated after comparing
the actual crude oil time series data with the leftover (after
removing noise in terms of IMF1) and presented in Table 7.

The empirical findings shown in Table 7 show that the
suggested technique successfully removes noise since the
results of the three statistical metrics are the lowest when
compared to the other three methods such as EMD, EEMD,
SEMD, VMD, and CEEMDAN. Once again, the SEMD per-
forms the poorest of the four approaches, demonstrating that
utilizing smoothing rather than interpolation when generating
the upper and lower envelopes neither improves the decom-
position results nor does it address the boundary condition
and wiggles at both ends of the data. In the classical EMD,
the cubic spline interpolation technique is changed with the
Akima spline interpolation. The advantage of this change is
that it overcomes the limitation of the overshoot, boundary
condition, and wiggles in the EMD. By solving the afore-
mentioned limitations in the benchmark, EMD the proposed
Akima-EMD decomposes the crude oil WTI time series data
successfully and considers the first IMF component as noise.

Briefly, it is obvious that decomposing such nonstationary
and nonlinear time series data with the help of the new method
known as Akima-EMD effectively extracts the fluctuations,
and it will become easier for financial time series experts to
predict its future trajectory once they identify noise in the
data.

VI. CONCLUSION

In this research article, we suggested a novel method that
overcomes the limitations of EMD such as overshoot, under-
shoot, wide swings, and wiggles at both ends of the data due
to the cubic spline interpolation technique. After developing
the new method we used a synthetic signal to know its effec-
tiveness and compare it with other decomposition methods
such as EMD, EEMD, SEMD, CEEMDAN, and VMD. For
the experimental purpose, a synthetic signal that is sinusoidal
which is defined in (27) contaminated with noise generated
from Gaussian distribution with an SNR level of 5 is used.
After contaminating the signal with the noise this noisy sig-
nal is then decomposed with the newly proposed method
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in comparison with the other methods such as the classical
EMD, SEMD, EEMD, CEEMDAN, and VMD. Three dif-
ferent statistical metrics such as RMSE, MAE, and MAPE
are calculated after subtracting the first IMF component from
the actual data and then comparing the remaining signal
with the actual one. Investigation results of RMSE, MAE,
and MAPE presented in Table 1 suggest that the proposed
new method which is known as Akima-EMD extracts noise
from the contaminated signal effectively as compared to the
other methods used in the comparison. Furthermore, for the
simulation study, we took the chirp signal defined in (27) and
generated 500 different replicated datasets from it. In the first
case, the number of observations in each of these simulated
datasets was 500. This chirp signal is then contaminated by
generating noise from Gaussian distribution using different
SNR levels such as ten, and five. After contaminating the
chirp signal with the noise then decompose this noisy signal
with the newly proposed method in comparison with the
other methods such as the classical EMD, SEMD, EEMD,
CEEMDAN, and VMD. The same procedure was repeated
by changing the number of observations from 500 to 1000,
5000, and 10000. After subtracting the first IMF component
from the real data and comparing the remaining signal to
the actual one, the average RMSE, MAE, and MAPE are
computed. The empirical findings shown in Tables 2, and 3
suggests that the average values of the statistical metrics of
the proposed novel technique are minimum in all scenarios,
i.e. 500 replicated simulated datasets with 500, 1000, 5000,
and 10000 lengths of data. The same chirp signal is used
in the second phase of the simulation study, but the noise
level is changed from Gaussian to heavy-tailed t-distribution
with different degrees of freedom such as three, and five.
We followed the same procedure as in the case of Gaussian to
extract the heavy-tailed noise added to the chirp signal from
t-distribution. The investigational findings of average RMSE,
MAE, and MAPE provided in Tables 4, and 5 indicate that the
suggested new approach outperforms previous methods such
as EMD, EEMD, SEMD, CEEMDAN, and VMD in terms of
removing noise in the form of first IMF from the noisy chirp
signal. The performance of any new method involves not just
simulation studies but also testing on real-world data. For
this purpose, two different real-world time series datasets are
used, i.e. the temperature data and the WTI crude oil prices.
These two datasets meet the criteria since the latter contains
an outlier and the temperature data is a clean time series
without any outliers. These two real datasets are decomposed
using EMD, EEMD, SEMD, CEEMDAN, VMD, and the
novel Akima-EMD method. Following the decomposition of
the nonstationary and nonlinear daily time series data into
several IMFs and a single residue, the first IMF is removed
from the real data to determine that this component contains
no relevant information. According to the empirical results
of performance indicators such as RMSE, MAE, and MAPE
presented in Tables 6 and 7, the proposed method effectively
extracts noise (useless information) from data in the form
of the first IMF component. In a summary, both simulation
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studies and real-world data examples indicate that the new
approach, known as Akima-EMD, outperforms previous non-
linear and non-stationary data decomposition methods such
as EEMD, SEMD, CEEMDAN, VMD, and the well-known
benchmark EMD.

Therefore, it should be considered a new tool in the existing
literature and could be used as an efficient technique for
decomposing and forecasting the nonlinear and nonstationary
time series.
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