IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 1 May 2023, accepted 5 June 2023, date of publication 14 June 2023, date of current version 26 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3285876

== RESEARCH ARTICLE

Kernel Code Integrity Protection at the Physical
Address Level on RISC-V

SEON HA1, MINSANG YU"“2, HYUNGON MOON "1, AND JONGEUN LEE"“2, (Member, IEEE)

! Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea
2Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea

Corresponding author: Hyungon Moon (hyungon @unist.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) funded by the Korean Government, Ministry of
Science and ICT (MSIT), South Korea, under Grant NRF-2022R1F1A1076100; in part by the MSIT under the Information Technology
Research Center (ITRC) Support Program Supervised by the Institute for Information and Communications Technology Planning and
Evaluation (IITP) under Grant IITP-2022-2021-0-01817; in part by the IITP funded by the Korean Government (MSIT) through RISC-V

Based Secure Central Processing Unit (CPU) Architecture Design for Embedded System Malware Detection and Response under Grant
2021-0-00724; in part by Samsung Electronics Company Ltd.; and in part by the IC Design Education Center (IDEC), South Korea.

ABSTRACT An operating system kernel has the highest privilege in most computer systems, making its
code integrity critical to the entire system’s security. Failure to protect the kernel code integrity allows
an attacker to modify the kernel code pages directly or trick the kernel into executing instructions stored
outside the kernel code pages. Existing prevention mechanisms rely on the memory management unit in
which certain memory pages are marked as not-executable in supervisor mode to prevent such attacks.
However, an attacker can bypass these existing mechanisms by directly manipulating the page table contents
to mark the memory pages with malicious code as supervisor-executable. This paper shows that a small
architectural extension enables a physical address-level mechanism to stop this threat without relying on
page table integrity. PrivLock lets, at boot time, the kernel specifies the physical address ranges containing
its code. At run time, PrivLock ensures that the content within the range is not manipulated and that only
the instructions from those pages are executed while the processor runs in supervisor mode. Despite this
protection, the kernel can still create new code pages (e.g., for loadable kernel modules) and make them
executable with the help of PrivLock’s secure loader. The experimental results show that PrivLock incurs
low performance (<0.5%), area (0.14-0.3%), and energy/power (0.053-2%) overhead.

INDEX TERMS System security, operating system security, RISC-V, linux, code-injection attack.

I. INTRODUCTION

The operating system kernel is responsible for resource
management, including the isolation between processes and
enforcing access control policies. Such a responsibility
makes it challenging for the kernels to be written concisely,
resulting in new security vulnerabilities being found every
year [1], [2], [3]. An attacker knowing one of these could
obtain a means to read or modify the kernel’s memory pages
arbitrarily, including the ones containing the page tables or
code [4], [5]. Manipulating the kernel’s page tables or code
allows the attacker to bypass virtually any security policies
the kernel implements. This paper presents and evaluates a
mechanism to prevent such strong attackers from executing

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato

their code with the kernel’s privilege. Compared to the ear-
lier work tackling similar problems, our study contributes
to the community by 1) presenting a small hardware exten-
sion that efficiently and effectively protects the kernel code,
2) enabling dynamic kernel extension under the presented
protection, and 3) evaluating the impact on hardware cost and
performance extensively.

One policy such an attacker bypasses is the kernel code
integrity. An operating system kernel must not be tricked
into executing pieces of code that do not belong to the
kernel, and this property is generally called the kernel
code integrity [6]. If a system fails to enforce this policy,
an attacker can gain the power to manipulate the victim
system nearly arbitrarily. For example, the attacker can
bypass any application-level security mechanisms [7], or even
the vendor-installed security policy about the application

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

62358

VOLUME 11, 2023

https://orcid.org/0009-0003-6364-9085
https://orcid.org/0000-0002-2515-1601
https://orcid.org/0000-0002-4513-1034
https://orcid.org/0000-0003-1523-2974
https://orcid.org/0000-0002-5196-8148

S. Ha et al.: Kernel Code Integrity Protection at the Physical Address Level on RISC-V

IEEE Access

deployment [8]. These threats motivated the research com-
munity and device manufacturers to look for mechanisms to
prevent such attacks [4], [5], [6], [9], [10]. For example, most
processors these days enable the operating system kernel to
classify certain pages as non-executable with the kernel’s
privilege by using special page table attributes, such as Privi-
leged Execute Never (PXN) or Supervisor Mode Execution
Prevention (SMEP). By using these page table attributes,
the operating system can enforce access control and pre-
vent unauthorized execution, providing an additional layer of
security to the system.

Unfortunately, the protection using the page attributes is
vulnerable against the kernel exploits corrupting the page
tables directly. The page tables must remain writable to the
operating system kernel because it maintains one or more
page tables for each process and has to modify them repeat-
edly. An attacker can trick the kernel into corrupting the
page table entries to create a privileged-executable virtual
page pointing to the physical page containing the attacker’s
code [4], [9]. For this reason, kernel code integrity can be
guaranteed only if the page table remains free from mali-
cious modifications. Existing mechanisms often let another
trusted software component mediate all page table updates
to prevent malicious page table modification or to randomize
its location [4]. Hypervision [9] redirect page table updates
to the trusted software protected by ARM TruseZone [11].
SecVisor [6] and HVCI [12] rely on hypervisor for the page
table integrity. The only exception is Apple’s KTRR [10]
which uses proprietary hardware components to protect the
page table integrity, but it still relies on the page table integrity
to ensure kernel code integrity. Unfortunately, the approach of
sanitizing the entire page table causes performance degrada-
tion, and the randomization-based approach is vulnerable to
kernel de-randomization attacks [13]. The others proposed to
use off-core hardware supports to fight against kernel code
corruption [14], [15], but they can only detect the attack
due to the unavoidable delay between the actual kernel code
corruption and the arrival of the corresponding log to the off-
core monitor. Moreover, none of these are shown to support
the dynamic kernel code extension.

This paper presents a small hardware extension, PrivLock,
that enables the kernel to protect the kernel code integrity
without relying on the page table integrity. A kernel can
ensure that the processor executes only the kernel-approved
code with the kernel’s privilege by using PrivLock. PrivLock
adds in-processor control registers to the RISC-V’s Control
and Status Registers (CSRs) that the kernel uses to specify
the set of virtual and physical address ranges containing the
approved kernel code. PrivLock uses the values to ensure
that the processor running in the privileged mode fetches
instructions only from the designated physical memory pages
and refuses to write to those pages. The virtual address ranges
enable PrivLock to further prevent an attacker from shuffling
the kernel code pages, potentially changing the kernel code
layout at the virtual address space (§V-E). Overall, PrivLock
enables the kernel code integrity not to rely on the integrity

VOLUME 11, 2023

of the page table and makes the kernel freely manage its
page table as needed. PrivLock ensures the integrity of the
additional control registers at run time by the locking mecha-
nism commonly used to write-protect some critical read-only
registers after the system boots. Despite this protection, the
kernel can still load the loadable kernel modules (LKMs)
dynamically at run time using PrivLock’s secure loader that
verifies the LKM’s authenticity before loading it on behalf of
the kernel (§IV-C).

We implemented PrivLock by extending the Rocket Chip
Generator [16] on the Freedom U500 Dev Kit [17] and
ran experiments using Xilinx VCU118 [18] evaluation kit
to measure the impact of PrivLock on performance, energy
consumption, chip area, and the critical path latency. Our
experiments using operating system (LMBench [19]) and
application (Beebs [20], SPEC CPU 2006 [21]), benchmark
show that PrivLock has a low impact on operating system
(< 3%) and application (<0.5%) performance. The cost in
terms of chip area (0.14-0.3%) and power/energy consump-
tion (0.053-2%) are also low.

In summary, this work makes the following contributions.

noitemsep,nolistsep

« We show that the kernel code integrity can be guaranteed
without first protecting the kernel page table integrity.
To this end, we introduced a small hardware extension
that examines all memory accesses by reusing the exist-
ing access control logic already in the processor.

o We demonstrate that the kernel can load LKMs under
this strong code page protection with the help of a small
secure loader running in RISC-V’s machine mode.

o We designed and implemented PrivLock by extending
the implementation of a RISC-V SoC, Rocket Chip,
to have a small impact on the performance, energy
consumption, and chip area. This enabled us to eval-
uate the proposed microarchitectural changes and run
experiments on an FPGA-based prototype. To the best
of our knowledge, this study is the first comprehensive
evaluation of such mechanisms.

The rest of the paper is organized as follows. §II provides
the background information about the RISC-V ISA and the
Rocket Chip Generator, and §III describes the threat model
and the security goals of PrivLock. After presenting the
design and implementation of PrivLock in §IV, we present
the result of our evaluation on the performance, energy con-
sumption, and chip area impact of PrivLock in §V. §VI
discusses the limitation of PrivLock and compares it further
with a software-only approach, § VII differentiates PrivLock
with previous work, and § VIII concludes the paper.

Il. BACKGROUND AND RELATED WORK

A. KERNEL CODE INTEGRITY

An operating system kernel is a privileged software com-
ponent that manages a system at various levels. Closely
interacting with user processes and managing most resources,
an attack on the operating system kernel gives the attacker
substantial control of the entire system. The kernel code must

62359

IEEE Access

S. Ha et al.: Kernel Code Integrity Protection at the Physical Address Level on RISC-V

remain intact at run time because it specifies how it interacts
with the user processes and manages the system resources.
We define this property as the kernel code integrity, which an
attacker can breach only in two ways. The first is modifying
existing kernel code that makes the processor execute the
attacker-modified code with the kernel’s privilege. For exam-
ple, the attacker can change how the kernel handles targeted
system calls by overwriting some system call handlers. The
second is executing an attacker-inserted code from a new
location (e.g., data page) that is not supposed to contain the
kernel code. An attacker can manipulate one or more pointers
to code, such as return addresses or function pointers, to trick
the kernel into jumping to the new location.

Attackers have incentives to breach the kernel code
integrity because it gives them a significant level of freedom
to manipulate the victim system. For example, the jailbreak
tools against iOS devices had commonly patched the kernel
to install applications from outside Apple’s app store [8].
An attacker can also bypass some user-level rooting detection
by injecting their code to the kernel [7] when some user-level
programs try to determine if the device is rooted in an Android
platform.

B. LIMITATION OF EXISTING MECHANISMS

Despite being considered the cornerstone of a computer
system’s security, many existing and deployed protection
mechanisms are susceptible to targeted attacks. Microsoft
Windows includes a feature called Kernel Patch Protection
(KPP) [22], and old versions of iOS also have a similar
one [23]. They ensure that the kernel code contents are not
modified by an attacker who exploits an unknown vulnera-
bility by periodically examining the snapshot of the kernel
code pages. Unfortunately, it has long been known that an
attacker aware of such a defense can bypass it by modifying
the kernel only in between the checks [23]. Mechanisms
using page table attributes [9], [10], [12], [24] can defeat
such manipulation. However, they require the integrity of the
page table to be guaranteed by relying on a more privileged
software layer (e.g., hypervisor) or at the cost of flexibility
in page table management. For example, Hypervision [9] and
SPROBES [24] rely on the Secure Monitor and Secure OS
that TrustZone protects, and HVCI [12] relies on a hypervisor.
While the details about KTRR [10] are not published, the
mechanism limits the flexibility in managing the kernel’s vir-
tual address space by limiting updates to the kernel page table.
Compared with these, this paper shows that a slight change
to the processor architecture enables the kernel to overcome
existing mechanisms’ limitations and protect the kernel code
integrity with low (<0.3%) performance overhead. Moreover,
PrivLock’s secure LKM loader enables the dynamic kernel
extension with a signed kernel module.

Ill. THREAT MIODEL

We follow the common threat model that defense mecha-
nisms against kernel-level attacks [25] assume. The attacker
is assumed to know the kernel vulnerabilities that they can

62360

@ Configure
Rocket Tile

Rocket Core PTW

CSRFile @ ~ Register

¢ Pairs
l l_ @1 pte
TLB g » PRIVLOCKCHECKER
@sanitized | pte

FIGURE 1. An overview of hardware components added for PrivLock.

An operating system kernel configures the kernel code address ranges at
boot time (), which is then forwarded to the registers in PTW (). For
each TLB refill, PrivLockChecker sanitizes the incoming page table

entry (®), (@) such that the entries in TLB always comply with the
PrivLock’s policy to protect the kernel code integrity.

exploit to trick the kernel into reading or modifying the
attacker-designated memory locations with the kernel’s priv-
ilege. The targets of memory modification include the page
tables that the kernel regularly reads and modifies. We also
assume that the operating system kernel and the underly-
ing processor implement state-of-the-art defense mechanisms
to defeat this attack. For example, page table entries have
attributes like PXN/SMEP enabling the kernel to make cer-
tain pages executable only in user mode. The kernel is also
carefully written such that only the page table entries for the
legitimate kernel code pages are set to be executable in the
supervisor mode. Under this threat model, the attacker will
attempt to bypass the defense by preparing a page contain-
ing malicious code snippets, creating a privileged-executable
mapping to the page by modifying the page table directly, and
then letting the kernel execute the page.

IV. DESIGN AND IMPLEMENTATION
Building Blocks. PrivLock prevents writing to the kernel
code pages and executing from outside the kernel code pages
while in supervisor mode. The kernel writes its code address
ranges to PrivLock’s CSRs at boot time through the con-
trol registers (§1V-A). PrivLock uses these ranges to sanitize
the translation lookaside buffer (TLB) entries on each TLB
miss (§IV-B). The kernel using PrivLock loads a LKM by
invoking the PrivLock’s secure LKM loader that runs at a
physical-address level in machine mode (§1V-C). PrivLock’s
secure LKM loader takes the kernel module as input, verifies
its authenticity, and loads the code pages from the module on
behalf of the kernel so that no vulnerability in the kernel can
manipulate the actual code pages that become executable.
PrivLock makes two changes to hardware and two changes
to the operating system kernel to efficiently and effectively
protect the kernel code integrity and enable dynamic kernel
code extension. Figure 1 depicts the two hardware changes.
PrivLock adds additional control registers holding the kernel
code pages’ location, size, and offset (§1V-A). The hardware

VOLUME 11, 2023

S. Ha et al.: Kernel Code Integrity Protection at the Physical Address Level on RISC-V

IEEE Access

31 12 11 210
Range Reg. [I IT1

BASE MASK

26
Offset Reg. []
OFFSET

FIGURE 2. The layout of a control register pair that PrivLock uses. LOCK
bit represents if the configuration is done and should be protected. VALID
bit represents if the content should be used for policy enforcement. BASE
and MASK fields define a physical address range that PrivLock will
consider as kernel code. §IV-A further describes this control register.

module examines the page table entries to enforce the policy
in the page table walker. The first change to the kernel is
in how the kernel loads an LKM. We modify the kernel’s
LKM loading procedure to invoke PrivLock’s secure LKM
loader. PrivLock revokes the kernel’s capability of creating a
new executable page, making it impossible for the kernel to
load an LKM by itself. PrivLock instead provides the secure
LKM loader that loads an LKM for the kernel after authenti-
cation (§IV-C). The second kernel change is in the page fault
handler. PrivLockChecker raises an exception when it finds
a violation os the policy that PrivLock is enforcing, and the
modified page table handler reports the violation.

The rest of this section provides more details about the
hardware and software changes that PrivLock makes to pro-
tect the kernel code integrity while allowing dynamic kernel
extension.

A. CONTROL REGISTERS FOR THE ADDRESS RANGES

PrivLock uses a pair of control registers for each contiguous
kernel code range. The number of these control register pairs
is configurable, and our prototype has four. Figure 2 shows
the layout of each register pair that consists of range and
offset registers. The range register specifies the address range
of a kernel code chunk, and the offset register specifies the
offset between the virtual and physical page numbers of the
corresponding kernel code chunk. The Oth and 1st bits of the
range register determine how PrivLock treats the register pair.
The LOCK bit (Oth) is a sticky bit that cannot be cleared
once set and indicates if the kernel has finished initializing
the register. PrivLock refuses any update to the register if the
LOCK bit is set unless the write request is made from the
machine mode if the LOCK bitis set to 1. The VALID bit (1st)
determines whether the register specifies valid kernel code
pages. If the VALID bit is 0, PrivLock ignores the values in
the register when it sanitizes the page table entry. PrivLock
uses the remaining bits for holding the range of the kernel
code chunk as a pair of the base address and the mask. This
range register can specify the chunks whose size is a power
of 2 bytes, ranging from 16 KB to 16 MB, and is aligned to
its size. Ten bits from the range register represent the mask,
and the rest (20 in our prototype) are for the base address.
PrivLock uses the value stored in the BASE as the base
address of the kernel code chunk after shifting the value to the

VOLUME 11, 2023

left by 14 bits. The MASK value is left-shifted by 14 bits and
prepended with 1s to compose the mask value. In summary,
PrivLock considers a physical address (addr) as a valid kernel
code address if the following expression is true.

(BASE << 14) == (addr & (0xFF | (MASK << 14))

For example, the MASK field is set to 0 x O to represent
a 16 MB chunk and 0 x 3FF to represent a 16 KB chunk.

Figure 1 shows the location of the control register pairs
and how they are written. The operating system kernel using
PrivLock sets the control register pairs at boot time (D),
through the CSRFile interface. When the kernel writes to one
of the control registers, CSRFile forwards the new values to a
copy of the register pairs (@) located in the page table walker
(PTW) in which PrivLockChecker uses the register values.
The kernel sets the LOCK bits of all registers to 1 when it
finishes initializing all (four in our prototype) register pairs.
Setting all LOCK bits to 1 lets PrivLockChecker start to
use the ranges to sanitize the incoming page table entry
(®-®). Note that PrivLockChecker ignores a registers pair
if its VALID bit is 0. Once PrivLock starts to enforce the
policy, even an attacker who can execute the same special
instructions updating the control registers cannot corrupt the
control registers. The registers all have their LOCK bit set
at boot time by the kernel, and PrivLock ignores any further
writes to such control registers.

B. PrivLockChecker

The hardware component enforcing the access control poli-
cies is PrivLockChecker. On each TLB miss, the TLB sends
a request to PTW to obtain a page table entry. In response,
the PTW walks the page table and sends the page table entry
back to the TLB. We place the PrivLockChecker module in
the path where PTW sends the page table entry to TLB. While
PrivLock is active, PrivLockChecker examines each page
table entry (@ in Figure 1) with the range and offset register
contents to determine if the table entry is mapping a virtual
page to a kernel code page with the correct offset. Suppose the
page table entry points to a kernel code page, and the offset
is correct. In this case, PrivLockChecker overrides the page
table attributes to make the corresponding page not-writable
and kernel-executable by clearing the w and sw bits, each
making the page user-writable and kernel-writable. If the
offset is not correct, PrivLockChecker makes the page not
accessible so that any further read, write or execute from the
pages will be stopped. If the page table entry is not pointing to
a kernel code page, PrivLockChecker makes it not-executable
by clearing the sx bit in the page table entry.

C. SECURE LKM LOADER

PrivLock’s secure LKM loader running in the machine mode
enables the kernel to load an LKM dynamically. Dynamic
kernel extension using LKMs is an indispensable feature of
the modern Linux kernel, but enabling the dynamic kernel
extension and enforcing the kernel code integrity together

62361

IEEE Access

S. Ha et al.: Kernel Code Integrity Protection at the Physical Address Level on RISC-V

Kernel Secure LKM Loader

(Privilege level) (Machine level)

SBI_CALL(SBI_LOAD_LKM, I, size))

|- (D Allocates the memory pages
Return base address for allocating memory

SBI_CALL(SBI_LOAD_LKM, 2, *base_address))

Return 0; |- (2) Move module to final place

SBI_CALL(SBI_LOAD_LKM, 3, *relocate_phyiscal_addr))

— (3 Verification and relocation
Return 0;

SBI_CALL(SBI_LOAD_LKM, 4, *physical_addr))
Return 0; [— @ Fix the symbol table

FIGURE 3. The LKM loading procedure when a kernel uses PrivLock’s
secure LKM loader.

is challenging. PrivLock prohibits the creation of new exe-
cutable kernel code pages, while the kernel must create a new
executable kernel code page to load an LKM.

‘We overcome this challenge by running a helper, the secure
LKM loader, in machine mode and letting the LKM loader
bypass the policy that PrivLockChecker enforces. In brief,
the secure LKM loader takes an LKM as input, verifies its
authenticity (i.e., examining that a trusted developer signed
the LKM), and helps the LKM loading procedure. Enabling
the LKM loading with a privileged loader is challenging
because the kernel does not simply copy a code snippet to
newly created kernel code pages while loading a module.
An LKM is an Executable and Linkable Format (ELF) file.
Even after copying the code to the code pages, the loader
must perform the relocation and fix the symbol table. These
additional steps modify the kernel code pages after filling
the pages with initial code snippets from the authenticated
sections in the ELF file.

The secure LKM loader authenticates the ELF file and
ensures that only the LKM loader changes the code pages
using the authenticated ELF file. Specifically, the secure
LKM loader delegates any operation that cannot be abused
to corrupt the new code pages to the kernel’s LKM loader,
as long as the loader can verify the results. This strategy called
outsource-and-verify [26] allows the secure LKM loader to
remain small.

Figure 3 shows how the kernel interacts with the secure
LKM loader to extend itself with an LKM at run time. The
secure LKM loader provides the kernel with four new Soft-
ware Binary Interface (SBI) [27] calls that the kernel should
call at each stage of LKM loading. The kernel first invokes the
secure LKM loader to allocate shared memory space in which
the kernel will place the new kernel code. The secure LKM
loader allocates the memory pages outside the protected ker-
nel code range (D) and responds to the kernel with the pages’
base physical address. The kernel then copies the LKM con-
tent to the shared pages after creating virtual pages mapped
to them. Subsequently, the kernel invokes the second SBI
call to ask the secure LKM loader to move the LKM content
to the protected memory. The secure LKM loader allocates
new physical pages inside the protected address ranges where

62362

the kernel cannot write to and copies () the LKM content
from the unprotected shared pages to the newly allocated,
protected pages. The third stage is verification and relocation
(®), which starts when the kernel invokes the third SBI call.
Before performing the relocation, the secure LKM loader
verifies the module’s authenticity. The secure LKM loader
computes the Message Authentication Code (MAC) of the
LKM content in the protected pages using a pre-shared key
and compares the result with the one the LKM accompanies.
If the MAC that the LKM has matches the one that the loader
obtained, the secure LKM loader concludes that the LKM is
written by a genuine developer who is supposed to be trusted.
To compute the MAC, the secure LKM loader uses hash MAC
(HMAC) with SHA-256. Note that this verification can also
be done with a code signing mechanism with asymmetric
key pairs to improve usability, but we leave the support as
future work. Only after the verification, the secure LKM
loader performs the relocation to modify the LKM code in
the protected pages. The last stage is to fix the symbol table
(@®). Similar to the earlier ones, this stage starts with a request
from the kernel and is executed by the secure LKM loader
using the authenticated LKM content.

D. HANDLING EXCEPTIONS

We adapt the kernel’s page fault handler to check if the
faulting virtual address points to a physical address within
a kernel code page. The kernel determines that a page fault
is induced by the PrivLock’s kernel code page protection if
the page table entry corresponding to the virtual address is
valid, the access does not violate the page attributes, and the
page table entry points to a kernel code page. For such a
page fault, the kernel jumps to PrivLock’s page fault handler,
which silently returns to the instruction that follows the one
that caused the fault in our prototype. In practice, the kernel
can either kill the process that caused the fault or silently
ignore the write, depending on the security policy.

E. ALIGNING KERNEL CODE PAGES

To utilize PrivLock, we align the kernel code pages with
minor changes to the kernel compilation procedure because
each kernel code chunk must be aligned to its size. Oper-
ating system kernels typically have from several to tens of
megabytes of code. For example, the Linux kernel running on
our implementation has about 3.04 MB of code. Accordingly,
we align the kernel code pages to the 2 MB boundary by
changing the linker script that determines the kernel code
layout. The two aligned 2 MB kernel code page chunks are
then protected as two distinct address ranges.

V. EVALUATION
We answer the following questions about PrivLock in this
section. noitemsep,nolistsep
o Does the architectural extension and kernel changes
by PrivLock affect the operating system kernel perfor-
mance? (§V-A)

VOLUME 11, 2023

S. Ha et al.: Kernel Code Integrity Protection at the Physical Address Level on RISC-V

IEEE Access

I PrivLock [Kargos [RiskiM
E\Q I Nested Kernel [T secVisor
Py
-E 25600 2052 11000 7350
0 |1T|
100 -y -0~ WI By v k1 --I-- Sl Rk Rints 11 niee
el
1010118110 0 0
=
>) . .
g A%o"} @'z’b 4;&:%@ o \\0‘5 fo\b c& :& @ ;@ & &@b ;@»\&XA&&OAZ%Q :%} Y§
NN N O ‘4@.0,&'@' S
Z Fost &Q\ & \é& OQ \\% & Q\ Q“* o7 & X FCEE SR VS
RN © &e \o o@ ¥ @ S
&9 Q"’% %Oz & & o §> S S
N XNy &
S ST 9T S %6& ((.\\@

FIGURE 4. The performance of operating system services and operations is measured using
LMBench. The performance overhead of PrivLock is unnoticeable except for the protection fault,
having the geometric mean of 3%. The protection fault slows down by about 30%, but it will not
affect the system performance significantly for being an infrequent operation, as shown by the

application benchmarks. We could not present the overhead of the four prior works for all
benchmarks because they did not report the results.

o Does PrivLock affect the user-level application perfor-
mance? (§V-B)
o What is the impact of PrivLock’s hardware extension on
the area and energy consumption? (§V-C and §V-D)
Experimental Setup. We implemented PrivLock by
extending the Rocket Chip Generator [16] and using the
Freedom U500 V707 FPGA dev kit [17] ported for Xilinx
VCUL118 evaluation kit [18], to evaluate the system on an
FPGA. The system has four RockerTiles, each containing
one Rocket core, 16 KB of L1 data cache, and 16 KB
of L1 instruction cache. To compile the kernel and user
programs, we use the GNU toolchain for the RISC-V pro-
cessors [28]. The prototype has 2 GB of external memory,
operates at 100 MHz, and runs the Linux kernel version
4.15.0 with the support for dynamic kernel module load-
ing [29]. We run the prototype at 100 MHz following the
default configuration of the unmodified Rocket Chip on the
U500 platform.

A. OPERATING SYSTEM KERNEL PERFORMANCE

We measure the impact of PrivLock on the operating system
performance using the LMBench [19]. Figure 4 shows the
result along with the overhead reported from prior work
providing similar security guarantees. As expected, PrivLock
does not significantly degrade the operating system kernel
performance. PrivLock slows down the protection fault by
about 30%, which is the direct consequence of the added fault
handling. However, this 30% overhead will not be noticeable
to most applications, as we will show in §V-B, because the
programs are typically optimized to reduce the number of
protection faults.

Comparison to Prior Work. Figure 4 also presents the
performance impact reported in prior work [6], [14], [15],
[30]. We could not present results from all benchmarks
for some of them, as they did not report the results from
all benchmarks we used for this experiment. As the figure
shows, the overhead of PrivLock is considerably lower than
software-only mechanisms (SecVisor and Nested Kernel)

VOLUME 11, 2023

o R
25
5 E 100 - -
E5
ZL% 50
QY & R D) S
“}Q%@O\Q@&é\ﬁﬁoébvé\
ST & N &P QL
R &@\9@ >%>°° o w& Q}Q g\ug‘\ %
SN X)
N

FIGURE 5. The normalized execution time of the 12 workloads from the
spec2006 benchmark suite.

and similar to hardware-assisted mechanisms (Kargos and
RiskiM). SecVisor [6] and Nested Kernel [30] exhibit up to
10@and 3@overhead, respectively. These are significantly
larger than the overhead of PrivLock (< 1.3@). Kargos [14]
and RiskiM [15], the hardware-assisted mechanisms, exhibit
similar or better performance overhead (about 3% and 30%,
respectively) compared to PrivLock. However, Kargos does
not report the latency of protection fault, which PrivLock
incurs the most performance overhead. For the benchmarks
that Kargos reported its overhead, PrivLock’s performance
overhead is similar to that of Kargos. We further compare
PrivLock with these two mechanisms in § VII.

B. APPLICATION BENCHMARK

For the applications that do not cause page faults frequently,
PrivLock is not expected to induce any performance degra-
dation. In the first application performance study, we used
Bristol/Embecosm Embedded Benchmark Suite (Beebs) [20],
a benchmark suite designed to evaluate embedded systems.
As expected, the performance overhead is unnoticeable and
stays within the 0.5% range even in the worst case and less
than 0.3% in the geometric mean. We also use the SPEC
CPU 2006 benchmark suite to evaluate the performance of
a large non-trivial program under the protection of PrivLock.
We could not run the latest SPEC CPU 2017 version because
of our prototype’s limited computing power. For the same
reason, we used t rain input, which is smaller than the larger

62363

IEEE Access

S. Ha et al.: Kernel Code Integrity Protection at the Physical Address Level on RISC-V

ref input. As shown in Figure 5, a system with PrivLock runs
non-trivial programs in the SPEC CPU 2006 with a near-zero
performance overhead.

C. IMPACT ON AREA

PrivLock brings the additional security guarantee with-
out significant performance degradation because it benefits
from additional hardware resources. Without these addi-
tional components, PrivLock would have executed more CPU
instructions to validate the page table contents and have
higher performance overhead. We evaluate the cost of these
additional resources in several ways. We measured the chip
area following the Application Specific Integrated Circuit
(ASIC) flow and the FPGA Utilization. Specifically, we mea-
sure the impact of PrivLock on the chip area using two ASIC
flows: an open-source toolchain and a commercial tool.

Chip Area Using Yosys. As the open-source toolchain,
we use the Yosys open synthesis suite (Yosys) [31] to compute
the estimation of chip area when the system with PrivLock
is implemented as an ASIC. As the cell library, we use the
freely available one included in the FreePDK45 [32]. Table 1
shows the area estimation of the top module and several
modules we change for PrivLock. Overall, the area increases
only by 0.14%. The table (Table 1) shows that most area cost
comes from the additional registers in the CSRFile, under the
Rocket core, and the PrivLockChecker under PTW, the page
table walker. It is worth noting that, as the numbers suggest,
the system that we implemented PrivLock on has nearly no
peripherals. The four RocketTiles constitute most of the chip
area. In practice, this will not be the case, and the system is
expected to have much more peripherals, making the relative
area cost of PrivLock even smaller.

Chip Area Using Synopsys Tools. In addition to the anal-
ysis using the open-source toolchain, we use a commercial
one, Synopsys Design Compiler [33], with the cell library for
Samsung 65 nm technology. The analysis using the Synopsys
tool also reported a small (0.059%) area overhead (Table 2),
suggesting that PrivLock only incurs small area overhead.

FPGA utilization. In addition to the chip areas, we present
the impact of PrivLock on the FPGA Utilization as another
estimation of the potential area cost. Table 3 shows that the
area cost of PrivLock is small (<2%) when implemented on
an FPGA as well in terms of resource utilization.

D. POWER AND ENERGY

We measure the impact of using PrivLock on power and
energy consumption in two ways. We first measure the energy
consumption by the running prototype on the FPGA. To esti-
mate the power consumption when implemented as an ASIC,
we also use the Synopsys tool to obtain the estimated power
consumption.

FPGA Energy and Power. We estimate the expected cost
of energy consumption in two ways. First, we measured
the energy consumption while running the Beebs benchmark
suite [20] on the FPGA-implemented system with PrivLock.

62364

The result (1.87% in geometric mean) suggests that the newly
added hardware components for PrivLock do not introduce
significant energy overhead.

ASIC Power. We also use the Synopsys Design Compiler
with the cell library for Samsung 65 nm technology to esti-
mate the ASIC power, and Table 4 reports the result. The
table shows that the overall power consumption increases
only by (0.053%).

E. SECURITY EVALUATION

We implemented the four potential attacks tampering with the
kernel code integrity, and PrivLock successfully prevented all
of them.

A1l. Kernel Code Modification. The first attack writes to
one of the kernel code pages to see if the write is recognized
as illegal. Existing mechanisms can prevent this attack with-
out difficulty using conventional page table-based protection.
However, the attack succeeds in the system we tested because
the kernel code pages are configured to be writable by default.
Regardless of this lack of page table attributes, PrivLock stops
this attack by overriding the page attributes on TLB refills and
making the kernel experience a protection fault.

A2. Execution from Data. The second attack is written
for the scenario where an attacker stores the malicious code
in a kernel data page and attempts to execute it. This attack
prepares the page containing the code and manipulates the
corresponding page table entries to make the page executable
while in privileged mode. We successfully implemented this
procedure, and the system without PrivLock failed to detect
the attack. Unlike the first one, the kernel is unable to pre-
vent this procedure that directly manipulates the page tables,
as suggested in earlier work [4], [9]. PrivLock successfully
prevents the attack when the processor jumps to the malicious
code located outside the physical kernel code pages.

A3. Kernel Code Modification with Double Mapping.
The third attack modifies the kernel code pages but is more
advanced than the first one in that it uses a newly created
virtual page for the kernel code page. Unlike the first one,
an operating system kernel cannot detect this attack unless
it is hardened with some mechanisms [4], [9] to prevent or
mitigate malicious page table modifications. As expected,
the implemented attack successfully corrupts the kernel
code page when PrivLock is not enabled. On the contrary,
PrivLock prevents the attack when the attacker’s code over-
writes a kernel code page. The attack creates the new mapping
as a writable page, but PrivLock clears this attribute when the
entry is being loaded to the TLB, and the processor recognizes
this page as write-protected.

A4. Page Table Shuffling. The fourth attack uses the
genuine physical kernel code pages but shuffles them in the
virtual address space by mapping consecutive virtual pages
into the physical pages that are not consecutive. This attack
does not allow the attacker to execute the code they implant
but enables the attacker to reconstruct the kernel code to some
extent at the edges of the code pages. PrivLock successfully
prevents this attack by using the offset between the virtual and

VOLUME 11, 2023

S. Ha et al.: Kernel Code Integrity Protection at the Physical Address Level on RISC-V

IEEE Access

TABLE 1. Impact of PrivLock on chip area. The raw numbers are normalized by the area of the two-input NAND gate with driving strength 1. PrivLock
increases the area of the CSRFile and PTW, but the impact of the processor core tile (RocketTile) is small (0.13%).

. PRIVLOCK PRIVLOCK PRIVLOCK
Module Name Baseline
(1 range) (2 ranges) (4 ranges)
Top 22.91M 22917TM (0.05%) 22.924M (0.08%) 22.936M (0.13%)
RocketTile 5.615M 5.618M (0.04%) 5.620M (0.08%) 5.623M (0.13%)
Rocket 128.312k 127.970K (0.61%) 130.346k (1.59%) 131.469k (2.46%)
CSRFile 30.182k 32.056k (6.21%) 32.612k (8.05%) 33.810k (12.02%)
TLB 35.184k 36.436k (3.56%) 36.691k (4.28%) 36.596k (4.01%)
PTW 14.373k 14.387k (0.10%) 16.094k (11.97%) 17.068k (18.75%)
PRIVLOCKCHECKER 0 0.151k 0.295k 0.589k

TABLE 2. Impact of PrivLock on ASIC chip area measured using Synopsys
Design Compiler.

Chip area Baseline lzzlr\;;goei;(
Combinational 6554.70K 6558.91K (0.064%)
Buf/Inv 214.77K 215.28K (0.241%)
Noncombinational 8044.32K 8048.75K (0.055%)
Macro/Black Box 0 0 (0%)
Net Interconnect undifined undifined (-%)
Total cell area 14599.03K 14607.66K (0.059%)
TABLE 3. FPGA Resource Utilization.
Site Type Baseline PRIVLOCK
Total LUTs 128.08K 128.80K (0.36%)
Logic LUTs 122.80K 123.26K (0.37%)
LURAMs 4.60K 4.60K (0.0%)
SRLs 0.67K 0.67K (0.0%)
FFs 75.11K 76.22K (1.48%)
RAMB36 0.03K 0.03K (0%)
RAMI18 0.19K 0.19K (0%)
URAM 0.00 0.00 (0%)
DSP48 Blocks 0.06K 0.06K (0%)

physical code pages and overriding the page attributes for any
mismatches.

VI. DISCUSSION

This section discusses some attacks that PrivLock is not
designed to prevent and discusses why the existing archi-
tecture supports are inadequate to protect the kernel code
integrity.

Using Physical Memory Protection (PMP). RISC-V
specification includes the standards for a form of physi-
cal address-level access control [34]. The standard defines
four configuration registers that specify 16 physical address
ranges and the corresponding access control policy. The
16 ranges are strictly prioritized, so only one of the 16 policies
can be applied to one physical address. PMP has been proven
useful to protect the machine layer software [35], but it cannot
be used to protect the kernel code integrity. PMP associates
three bits representing readable (R), writable (W), and exe-
cutable (X) permissions to each address range, enabling the
creation of execute-only physical memory regions. The oper-
ating system kernel can ask the machine mode software to
make its code pages execute-only to protect its code pages.
However, the kernel cannot prevent itself from being tricked
into executing from outside the kernel code pages because
the PMP applies only one policy to a particular physical

VOLUME 11, 2023

TABLE 4. ASIC Power anaysis the impact of PrivLock total power is
0.053%.

Power Baseline PrRIVLOCK

Switch Power 30.582mW 30.588mW (0.020%)
Int Power 266.698mW 266.850mW (0.057%)
Leak power 471 W 472uW (0.212%)
Total power 297.75ImW 297.910mW (0.053%)

address without considering which mode the processor is
currently running in. Consequently, it is impossible to pro-
hibit the operating system kernel running in the supervisor
mode from executing the user program’s code pages because
PMP must allow both supervisor and user mode code to
execute from the physical address range. This limitation is
not a deficiency of PMP because the primary goal of PMP
is to protect the machine layer from the rest. Although the
draft [36] of the enhanced specification includes a similar
specification to PrivLock, the design goal is still protecting
the code pages for the machine mode from supervisor mode
(the operating system kernel) and the user mode programs.
Overall, the current PMP cannot be used to enforce the kernel
code integrity, which motivated the development of PrivLock.

DMA attack. One avenue for an attacker to breach the
kernel code integrity against the PrivLock-protected system is
the Direct Memory Access (DMA) attack. Modern computing
systems typically run on a System-on-a-Chip (SoC) with
many peripheral devices or coprocessors directly accessing
the physical memory. In order to make the protection com-
plete, PrivLock has to be applied together with the existing
mechanisms that are known to be capable of preventing the
DMA attacks [37].

Code-Reuse Attack. A class of attack that an attacker may
perform against the kernel is the code-reuse attacks that is
also known as the Return-oriented Programming (ROP) [38].
An attacker can compose and execute an arbitrary com-
putation by stitching the existing code already marked as
executable. However, this does not make the protection mech-
anism for kernel code integrity unnecessary. An attacker per-
forms the code-reuse attack only if they cannot directly break
the code integrity. For example, the attackers are still modi-
fying the kernel code to achieve their goals [7], [8] quickly.

VII. RELATED WORK

This work is closely related to the earlier work on protect-
ing the operating system kernel against attackers exploiting
kernel vulnerabilities and memory protection mechanisms,

62365

IEEE Access

S. Ha et al.: Kernel Code Integrity Protection at the Physical Address Level on RISC-V

especially for RISC-V processors. The kernel protection
mechanisms usually rely on a component that even the
kernel-level attacker cannot manipulate, such as hypervisors
or hardware.

Hypervisor- and TrustZone-based Mechanisms. SecVi-
sor [6] and HVCI [12] rely on the hypervisor to protect
the kernel code integrity. SecVisor achieves the goal by
protecting the page table’s integrity and using the memory
management unit to prevent undesired writes or executions.
Compared to PrivLock, this software-based design relying
on the page table integrity comes with a higher performance
overhead than PrivLock (6%—93% on application benchmark
and >5@on LMBench). HVCI uses the attributes in the
hypervisor’s secondary page table. However, the protection
assumes the existence of a more privileged software layer
that has its own page table, unlike PrivLock. For a system
with a mechanism similar to HVCI, PrivLock could help
protect the hypervisor’s code integrity. Hypervision [9] uses
the Secure World, a privileges execution environment that
ARM TrustZone provides, to protect the page table integrity,
thereby protecting the kernel code integrity. Compared with
PrivLock, these two mechanisms inevitably cause higher per-
formance overhead than PrivLock because they must examine
every update to page tables.

Hardware-based Mechanism. KTRR [10] is a hardware-
based mechanism that helps protect read-only memory,
including the code pages in the operating system kernel.
It is said that the mechanism is already deployed in current
Apple devices, but most of the technical details are unknown
except for the one from reversing the i0S’s XNU kernel [39].
While the available information suggests that KTRR protects
the page table integrity along with the kernel code integrity,
KTRR could have been implemented similarly to PrivLock
in that they also have additional control registers that define
the kernel code range. However, nearly no further technical
details about the mechanism are known to the public. Com-
pared with this, PrivLock is the first to demonstrate that a
small hardware extension using control registers defining the
kernel code ranges can effectively protect the kernel code
integrity. We also show that the existing access control logic
in MMU can be utilized by page table entry sanitization at the
page table walker for the purpose.

Hardware-based External Monitors. If we exclude the
hypervisor or any software layer with higher privilege,
hardware is the only component that a kernel protection
mechanism can rely on. On top of this idea, several mecha-
nisms have been proposed to secure operating system kernels
or hypervisors by using additional hardware [10], [14], [15].
Kargos [14], [40] uses a trace interface of the ARM proces-
sors to detect kernel code integrity breaches. In particular,
Kargos instruments the kernel to protect the kernel code pages
and examines the trace to determine if the kernel executes
from outside the kernel code pages. RiskiM [15] extended the
Rocket Chip to introduce a trace interface tailored for kernel
behavioral monitoring. RiskiM can detect the kernel code
integrity violation using the interface as Kargos did. PrivLock

62366

has two advantages when compared to Kargos and RiskiM,
the hardware-based external monitors. First, PrivLock can
instantaneously prevent kernel code corruption, enabling the
system to continue operational. Unlike this, Kargos and
RiskiM can only detect corruption due to the inherent delay
between the corruption and the arrival of the corresponding
log. Second, we show that PrivLock’s secure LKM loader
enables the kernel to load an LKM at run time. It could
theoretically be possible to design a similar helper for Kargos
or RiskiM, but they did not demonstrate the possibility.

Self Protection. We can also augment the operating system
to prevent attacks on itself, even to guarantee the kernel code
integrity. PT-Rand [4] is the state-of-the-art in this direction
in which the page table integrity is protected through random-
ization. An attacker can only violate the kernel code integrity
by first corrupting the page table, which can happen only after
locating it. PT-Rand hides this location to prevent malicious
manipulation of the page table. Compared with this, PrivLock
provide the deterministic security guarantee with the cost of
hardware modification.

Compartmentalization. HAKC [25] is a recently pub-
lished mechanism demonstrating that the large Linux kernel
can effectively be compartmentalized using the pointer
authentication and the memory tagging extension. The kernel
is divided into multiple compartments where each compart-
ment is limited to access a subset of the other code and data
in the kernel. The transitions between the compartments are
also strictly contained by certain control flows. Compared to
HAKC, PrivLock proposes a new hardware extension that
limits its applicability and only protects the code integrity,
while HAKC can further limit the capability of each com-
partment. In common, both mechanisms aim to apply the
principle of least privilege.

VIIl. CONCLUSION

Kernel code integrity is the cornerstone of a computer
system’s security. Despite this importance, most exist-
ing approaches either fail to prevent the attack entirely
(i.e., allowing an attacker to bypass) or rely on the page
table integrity. We showed that a small hardware exten-
sion, PrivLock, is all we need to protect the kernel code
integrity without first protecting the page table. Moreover,
using the secure LKM loader enables the protected ker-
nel to load LKMs at run time. The experimental results
show that PrivLock incurs an unnoticeable performance
overhead (<0.5%), and the costs in chip area and energy
consumption are small as well. We hope this result motivates
future processors to adopt PrivLock and enjoy its strong
protection of the kernel code integrity.

REFERENCES

[1] P. Krysiuk, “CVE-2021-29154,” Nat. Vulnerability Database (NVD),
Tech. Rep., 2021.

[2] S. Beattie, “CVE-2021-3444,” Nat. Vulnerability Database (NVD), Tech.
Rep., 2021.

[3] Z. Xiaohui, “[patch 1/1] mwifiex: Fix possible buffer overflows in
mwifiex_cmd_802_11_ad_hoc_start,” Linux Wireless Mailing List, Tech.
Rep., 2021.

VOLUME 11, 2023

S. Ha et al.: Kernel Code Integrity Protection at the Physical Address Level on RISC-V

IEEE Access

[4]

[5]
[6]

[71

[8]
[91

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]
[20]
[21]
[22]
[23]
[24]

[25]

[26]

[27]
[28]

[29]
[30]

[31]

[32]

L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “PT-Rand: Practical
mitigation of data-only attacks against page tables,” in Proc. Netw. Distrib.
Syst. Secur. Symp., Feb. 2017, pp. 1-15.

J. Wei and C. Pu, “Toward a general defense against kernel queue hooking
attacks,” Comput., Secur., vol. 31, no. 2, pp. 176-191, Mar. 2012.

A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A tiny hypervisor
to provide lifetime kernel code integrity for commodity OSes,” in Proc.
21st ACM SIGOPS Symp. Operating Syst. Princ. (SOSP), New York, NY,
USA, Oct. 2007, pp. 335-350.

A. Kellner, M. Horlboge, K. Rieck, and C. Wressnegger, ‘‘False sense of
security: A study on the effectivity of jailbreak detection in banking apps,”
in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), Stockholm, Sweden,
Jun. 2019, pp. 1-14.

L. SauriklIT, “Cydia substrate,” SaurikIT, LLC, Tech. Rep., 2022.

A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and
'W. Shen, “Hypervision across worlds: Real-time kernel protection from
the ARM TrustZone secure world,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., New York, NY, USA, Nov. 2014, pp. 90-102.

1. Krsti¢, “Behind the Scenes of iOS and Mac Security. San Francisco, CA,
USA: Black Hat, 2019, pp. 1-162.

Building a Secure System Using TrustZone® Technology, ARM,
Cambridge, U.K., 2009.

B. Golden, E. Graff, F. Stosse, and D. Marshall, “Hypervisor-protected
code integrity,” Microsoft, Tech. Rep., 2021.

D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch
side-channel attacks: Bypassing SMAP and kernel ASLR,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 368-379.

H. Moon, J. Lee, D. Hwang, S. Jung, J. Seo, and Y. Paek, ““Architec-
tural supports to protect OS kernels from code-injection attacks and their
applications,” ACM Trans. Design Automat. Electron. Syst., vol. 23, no. 1,
pp. 1-25, Aug. 2017.

D. Hwang, M. Yang, S. Jeon, Y. Lee, D. Kwon, and Y. Paek, “RiskiM:
Toward complete kernel protection with hardware support,” in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Florence, Italy, Mar. 2019,
pp. 740-745.

K. Asanovic et al., “The rocket chip generator,” Dept. EECS, Univ. Cali-
fornia, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2016-17, Apr. 2016.
Freedom U500 VC707 FPGA Dev Kit, SiFive, San Mateo, CA, USA, 2021.
Xilinx Virtex UltraScale+ FPGA VCUII1S8 Evaluation Kit. Xilinx,
San Jose, CA, USA, 2022.

L. McVoy and C. Staelin, “Lmbench: Portable tools for performance
analysis,” in Proc. USENIX Annu. Tech. Conf., Jan. 1996, pp. 1-17.

J. Pallister, S. Hollis, and J. Bennett, “BEEBS: Open benchmarks for
energy measurements on embedded platforms,” 2013, arXiv:1308.5174.
SPEC CPU 2006 Benchmark. Standard Perform. Eval. Corp., Gainesville,
VA, USA, 1992-2022.

M. Ermolov and A. Shishkin, “Microsoft Windows 8.1 kernel patch pro-
tection analysis,” Positive Technol., Moscow, Russia, Tech. Rep., 2014.
Tick (FPU) Tock (IRQ), Xerub, Personal Blog, 2017. [Online]. Available:
https://xerub.github.io/about/

X. Ge, H. Vijayakumar, and T. Jaeger, “SPROBES: Enforcing kernel code
integrity on the TrustZone architecture,” 2014, arXiv:1410.7747.

D. McKee, Y. Giannaris, C. O. Perez, H. Shrobe, M. Payer, H. Okhravi,
and N. Burow, in Proc. Annu. Netw. Distrib. Syst. Secur. Symp. (NDSS).
San Diego, CA, USA: Preventing Kernel Hacks With HAKCs, Feb. 2022,
pp. 1-25.

Z.Zhou, M. Yu, and V. D. Gligor, ““Dancing with giants: Wimpy kernels for
on-demand isolated 1/0,” in Proc. IEEE Symp. Secur. Privacy, May 2014,
pp. 308-323.

RISC-V Open Source Supervisor Binary Interface (OpenSBI), RISC-V,
2024. [Online]. Available: https://github.com/riscv-software-src/opensbi
RISC-V GNU Compiler Toolchain, R.-V. S. Collaboration, RISC-V, 2022.
[Online]. Available: https://github.com/riscv-collab/riscv-gnu-toolchain
RISCV-Linux 4.15, Github, San Francisco, CA, USA, 2018.

N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and V. Adve, “Nested
kernel: An operating system architecture for intra-kernel privilege sepa-
ration,” in Proc. ACM SIGARCH Comput. Archit. News, New York, NY,
USA, Mar. 2015, pp. 191-206.

C. Wolf, J. Glaser, and J. Kepler, “Yosys—A free verilog synthesis suite,”
in Proc. Austrian Workshop Microelectron. (Austrochip), 2013, pp. 1-6.
J. E. Stine, 1. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis,
P.D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal,
“FreePDK: An open-source variation-aware design kit,” in Proc. IEEE Int.
Conf. Microelectron. Syst. Educ. (MSE), San Diego, CA, USA, Jun. 2007,
pp. 173-174.

VOLUME 11, 2023

(33]
(34]

(35]

(36]

(37]

(38]

(39]

(40]

Synopsys, Synopsys, Mountain View, CA, USA, 2023.

A. Waterman and K. Asanovic, The RISC-V Instruction Set Manual Volume
II: Privileged Architecture Version 1.9.1, RISC-V Found., Berkeley, CA,
USA, 2017.

D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic, and D. Song, “Keystone:
An open framework for architecting trusted execution environments,” in
Proc. 15th Eur. Conf. Comput. Syst. New York, NY, USA: Association for
Computing Machinery, Apr. 2020, pp. 1-16.

N. Kossifidis, J. Xie, B. Huffman, A. Baum, G. Favor, T. Kurd, and
F. Arakawa, “PMP enhancements for memory access and execution pre-
vention on machine mode,” RISC-V, Tech. Rep., 2022.

CoreLink TrustZone Address Space Controller TZC-380 Technical Refer-
ence Manual, ARM, Cambridge, U.K., 2010.

R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans. Inf.
Syst. Secur., vol. 15, pp. 1-34, Mar. 2012.

KTRR, Siguza, Personal Blog, 2018. [Online]. Available: https://blog.
siguza.net/ KTRR/

H. Moon, J. Lee, D. Hwang, S. Jung, J. Seo, and Y. Paek, “Architectural
supports to protect OS kernels from code-injection attacks,” in Proc.
Hardware Architect. Support Secur. Privacy (HASP). New York, NY, USA:
Association for Computing Machinery, Jun. 2016, pp. 1-8.

SEON HA received the B.S. degree in information
and communication engineering from Pukyong
National University, in 2018, and the master’s
degree in computer science and engineering from

- — ——

- &> the Ulsan National Institute of Science and Tech-
L. nology, in 2021. She is currently pursuing the
—— Ph.D. degree in computer science and engineering

with the Ulsan National Institute of Science and
Technology, where she is conducting research on
architecture for software security.

MINSANG YU received the B.S. degree in
electronic engineering from Gachon University,
Seongnam, South Korea, in 2022. He is currently
pursuing the M.S. degree with the Department
of Electrical Engineering, Ulsan National Insti-
tute of Science and Technology (UNIST), Ulsan,
South Korea. His research interests include neu-
ral network processors, embedded systems, circuit
design, and electronic design automation.

HYUNGON MOON received the B.S. degree in
electrical engineering and mathematical sciences,
and the Ph.D. degree in electrical engineering and
computer science from Seoul National University,
in 2010 and 2017, respectively. He is currently an
Associate Professor with the Department of Com-
puter Science and Engineering, Ulsan National
Institute of Science and Technology. His research
interests include secure remote execution and for-
mal methods for hardware/software analysis.

JONGEUN LEE (Member, IEEE) received the
B.S. and M.S. degrees in electrical engineering
and the Ph.D. degree in electrical engineering and
computer science from Seoul National University,
Seoul, South Korea, in 1997, 1999, and 2004,
respectively.

Since 2009, he has been as the Faculty Mem-
ber of the Ulsan National Institute of Science and
Technology, Ulsan, South Korea, where he is cur-
rently a Professor in electrical engineering. His

research interests include neural network processors, reconfigurable archi-
tectures, and compilers.

62367

