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Abstract: Drought affects a region’s economy intensively and its severity is based on the level of
infrastructure present in the affected region. Therefore, it is important not only to reflect on the
conventional environmental properties of drought, but also on the infrastructure of the target re-
gion for adequate assessment and mitigation. Various drought indices are available to interpret
the distinctive meteorological, agricultural, and hydrological characteristics of droughts. However,
these drought indices do not consider the effective assessment of damage of drought impact. In
this study, we evaluated the applicability of satellite-based drought indices over North Korea and
South Korea, which have substantially different agricultural infrastructure systems to understand
their characteristics. We compared satellite-based drought indices to in situ-based drought indices,
standardized precipitation index (SPI), and rice yield over the Korean Peninsula. Moderate resolution
imaging spectroradiometer (MODIS), tropical rainfall measuring mission (TRMM), and global land
data assimilation system (GLDAS) data from 2001 to 2018 were used to calculate drought indices.
The correlations of the indices in terms of monitoring meteorological and agricultural droughts in
rice showed opposite correlation patterns between the two countries. The difference in the prevailing
agricultural systems including irrigation resulted in different impacts of drought. Vegetation con-
dition index (VCI) and evaporative stress index (ESI) are best suited to assess agricultural drought
under well-irrigated regions as in South Korea. In contrast, most of the drought indices except for
temperature condition index (TCI) are suitable for regions with poor agricultural infrastructure as in
North Korea.

Keywords: satellite-based drought indices; agricultural drought; meteorological drought; North Korea

1. Introduction

Drought is a complex environmental disaster that affects human beings worldwide.
The characteristics or causes of the occurrence of drought can be divided into four types (i.e.,
meteorological, agricultural, hydrological, and socio-economic drought) [1]. Meteorological
drought mainly occurs due to the prolonged shortage of precipitation. Agricultural drought
originates from the reduced availability of soil moisture that is used for the growth of the
plant. Hydrological drought is related to the deficiency of surface and sub-surface water
resources such as groundwater. Finally, socio-economic drought is correlated with the
failure of social infrastructure that manages water supply or management.

Regardless of the drought type, the occurrence of drought causes environmental
and economic losses. However, one of the most severe damages often emerges in the
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agricultural sector, such as crop yield reduction. East Asia, including China, Japan, and
the Korean Peninsula, is among the highest rice-producing [2] and -consuming regions of
the world [3]. The frequency of drought in East Asia has increased in recent years mainly
due to global warming [4,5] causing food security concerns [6]. For example, agricultural
areas of Northern China suffered devastating economic losses over 40 million hectares due
to drought [1]. Therefore, it is crucial to monitor drought and provide appropriate and
accurate information for policymakers in a timely manner to mitigate its damage to the
agricultural sector [7–11].

To quantify the damages from drought, an extensive effort has been made. The
drought indices such as standardized precipitation index (SPI) [12], standardized precipita-
tion evapotranspiration index (SPEI) [13], and Palmer drought severity index (PDSI) [14]
are widely used in monitoring drought conditions. The calculation of those drought indices
is requiring some geophysical variables such as precipitation, temperature, or evapotran-
spiration. In many studies or operational applications, calculation of those drought indices
has been done using in situ measurement data. However, the use of ground-based drought
indices is difficult in regions that do not have sufficient observation stations.

Satellite sensors provide consecutive spatiotemporal data of the globe [15–17], which
can be used to document biophysical and environmental information including tempera-
ture, vegetation, evapotranspiration, soil moisture, and precipitation [18–20]. Therefore,
many researchers have developed satellite-based drought indices, which were useful in
monitoring its spatiotemporal characteristics [21–26]. Although the applicability of various
drought indices has been validated, drought indices in terms of duration, severity, and
extent of individual droughts vary [18,27]. This suggests that the drought indices reflect
only those characteristics of environmental factors that are included in them. For instance,
the vegetation condition index (VCI) [21] and vegetation health index (VHI) [22] are calcu-
lated based on vegetation conditions. The soil moisture condition index (SMCI) [28] and
soil moisture agricultural drought index (SMADI) [29] were developed considering soil
moisture. The evaporative stress index (ESI) [24] and evaporative demand drought index
(EDDI) [30] focus on evapotranspiration.

Despite the variety of drought indices, the application of drought indices in the target
area should be done carefully. This is because the designed purpose of drought indices and
the characteristics of available infrastructures or environmental conditions in the target
area may differ. Jiao et al. [27] showed that precipitation condition index (PCI) performed
better for meteorological drought (1-month time scale SPI; SPI-1) in the eastern part of the
contiguous United States, which is more humid than the western part. SMCI overestimated
the severity of drought compared to United States Drought Monitor (USDM) [18], while
VHI underestimated that in July 2011 and 2012. Zhang et al. [18] suggested that the choice
of single condition indices (SCIs) to develop combined condition indices (CCIs) is an
important factor that affects the performance of a drought index. Recently, Son et al. [31]
developed a correlation coefficient-based combination of multiple drought indices called
vector projection index of drought (VPID) to enable reflect various drought factors at once.
In the paper, VPID not only reflected multiple drought indicators well but also showed a
close relationship with the crop yield statistics.

The damage caused by agricultural drought in each country is determined by the
degree of meteorological drought and the agricultural infrastructure that helps in miti-
gating its impact [32]. However, previous studies have not adequately dealt with these
issues. Most researchers have focused on selecting optimal drought indices that can prop-
erly reflect the characteristics of the target region (e.g., climate). Therefore, an in-depth
discussion on developing drought indices that can consider meteorological and agricul-
tural infrastructure characteristics is required. From this perspective, North Korea and
South Korea are suitable for a sensitivity analysis based on each of the drought indices
as both have similar climatic conditions, but differing agricultural facilities and farming
systems [32,33]. Drought monitoring over North Korea and South Korea was conducted
using eight satellite-based drought indices that are commonly used and easy to calculate.
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This research aims to arrive at an optimal drought index for monitoring rice yield
in the Korean peninsula. The spatial extent and intensity inferred by drought indices
for North Korea and South Korea were analyzed. The remaining part of this paper is as
follows. In Section 2, a detailed descriptions of study area and data which were used in the
calculation of drought indices and analysis were provided. Section 3 provides comparison
between satellite-based drought indices and precipitation-based drought indices to find
optimal drought indices for South and North Korea. Finally, in Section 4, we summarized
our study with the detailed discussion of drought indices with available infrastructure of
target area.

2. Study Area and Methods
2.1. North and South Korea

The study area comprises of North Korea and South Korea with the spatial extent
lying within 34◦N–43◦N and 124.5◦E–131◦E. Forests (57.4%) and croplands (35.1%) are
dominant land cover types in the region. The region enjoys four distinct seasons with the
growing season from May to October. Annual precipitation is concentrated during the
Asian monsoon (June to July). The annual mean temperature and precipitation experienced
by North Korea are 10.7 ◦C and 596.3 mm, and by South Korea are 14.2 ◦C and 1196.4 mm,
respectively [34].

Rice is one of the major food crops in both the countries (88% and 46.6% of total crop
production in South Korea and North Korea, respectively) (Statistics Korea 2018). There is a
significant difference in rice yield (i.e., crop production per cultivated area of crops; kg/ha)
between North Korea and South Korea. Rice yield in South Korea was 4591.90 (kg/ha)
and in North Korea it was 3838.87 (kg/ha) in 2017 (Statistics Korea 2018). Although both
countries have similar climatic conditions, they have different levels of artificial controls in
terms of irrigation facilities, reservoirs, and management systems [32]. South Korea has
better developed agricultural infrastructure (17,516 reservoirs and 117,457 irrigation canals)
than that of North Korea (1910 reservoirs and 51,400 irrigation canals) [32].

2.2. Study Methods

This study was conducted using drought indices that are based on satellite data
and land surface model (LSM) outputs. Moderate resolution imaging spectroradiometer
(MODIS) provides various drought related biophysical and environmental products ob-
tained from. The GLDAS was designed to deliver global LSM outputs, which preserve the
consistency of long-term climatology using in situ observation-based forcing data [35]. In
this study, four MODIS products, tropical rainfall measuring mission (TRMM) precipitation,
and GLDAS soil moisture were used to calculate drought indices (Table 1). This study
was conducted using 1-km drought indices with a monthly temporal resolution. Since the
satellite and reanalysis data have different temporal and spatial resolutions (Table 1), they
were converted into monthly data considering the number of days used in a month or they
were resampled to 1 km to match the spatial resolution using the nearest neighbor method.
To investigate the relationship between drought indices and rice yields, all datasets were
aggregated at the administrative level (si, gun, and gu). This is because the rice yield
data provided were at the administrative level. Only pixels that are labeled as cropland
in land cover were included in the datasets; all other pixels were excluded. TRMM data
were gathered from March to October for the study years of 2001–2018, while other data
were obtained from June to October (Table 1). Drought indices were calculated using
accumulated precipitation over three months to reflect the time lags between vegetation
and precipitation [36].
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Table 1. Specification of the datasets used in this study.

Data Product Time Period Resolution
(Spatial, Temporal) Source

MODIS

LST (K)

2001–2018
(May to October)

1 km, 8-day

NASA EARTHDATA
(https:

//search.earthdata.nasa.gov/,
accessed on 1 November 2022)

NDVI 1 km, Monthly

ET/PET
(mm/8-day) 500 m, 8-day

Land cover 500 m, Yearly

GLDAS
Surface (0–10 cm)

Soil moisture
(kg/m2)

0.25◦, Monthly

TRMM Precipitation
(mm/month)

March, 2001 to October
2018 0.25◦, Monthly

Station-based precipitation March, 1980 to October
2018 Point, Monthly

Korea Meteorological
Administration (KMA;

http://data.kma.go.kr, accessed
on 1 November 2022).

Rice yield (kg/ha) 2001–2018 Yearly

Food and Agricultural
Organization (FAO), United States
Department of Agriculture (USDA;

https://www.fas.usda.gov,
accessed on 1 November 2022),

and Korean Statistical Information
Service (KOSIS; http://kosis.kr,
accessed on 1 November 2022)

To identify the characteristics of drought related to the different infrastructures of
North Korea and South Korea, both single- and multi-variable-based drought indices
were used. The VCI [36], temperature condition index (TCI) [21], SMCI [28], and PCI [23]
were calculated using the normalized difference vegetation index (NDVI), land surface
temperature (LST), soil moisture, and precipitation (3-month accumulated), respectively. As
discussed in Park et al. [34], indices calculated by normalization can represent the relative
status of each region (pixel). The maximum and minimum values of each region (pixel)
during the study period (2001 to 2018) were used for normalization (0 represents dryness
and 1 means wetness) to consider the environmental potential (the driest or wettest).
The VHI [22] is a weighted sum of VCI and TCI that reflect temperature and vegetation
conditions. The scaled drought condition index (SDCI) [23] and microwave integrated
drought index (MIDI) [28] were calculated using multi-sensor composition. The TCI, VCI,
PCI, and SMCI were composed to produce SDCI and MIDI. The ESI [24] is based on the
standardized anomaly of the ratio between the actual and potential evapotranspiration.
The categories of drought indices were classified by matching with the drought categories
given in the United States Drought Monitor (USDM) as follows: D4: 0.0 to <0.1, D3: 0.1 to
<0.2, D2: 0.2 to <0.3, D1: 0.3 to <0.4, D0: 0.4 to <0.5, No Drought: 0.5 to ≤1 for condition
index; and D4: <−2.5, D3: −2.5 to <−2.0, D2: −2.0 to −1.5, D1: −1.5 to <−1.0, D0: −1.0 to
<−0.5, No Drought: −0.5 to ≤3 for ESI (refer to Figure 3).

SPI is the representative meteorological drought index. In this study, SPI was used as
the reference for monitoring meteorological drought. SPIs from 61 observation stations (48
stations in South Korea and 13 stations in North Korea) were calculated using station-based
monthly precipitation data for 30 years (Table 1). Multi-timescale SPIs (1-, 3-, 6-, and
9-month periods) were employed in this study. Our goal is to identify the characteristics of
drought indices under different agricultural systems. Firstly, eight drought indices were
compared with SPI to validate the usefulness of drought indices to evaluate meteorological
drought. The monthly patterns of the relationship between eight drought indices (averaged

https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
http://data.kma.go.kr
https://www.fas.usda.gov
http://kosis.kr
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over cropland) and rice yield were analyzed considering spatial variability. The spatial
distribution of drought indices under the different agricultural systems in North Korea and
South Korea were compared during the severe drought period of July 2015.

3. Results and Discussion

The relationships between drought indices and 1-month to 9-month SPIs were ex-
amined. Table 2 shows the mean value of the correlation coefficients between SPIs from
61 observation stations and the averaged drought indices over cropland in the 61 adminis-
trative districts in which the stations are located. Most of the drought indices showed higher
correlation coefficient values in South Korea compared to North Korea except for VCI. The
relationships between VCI to SPIs are positive in North Korea, while they are negative in
South Korea. The evolution from meteorological drought to agricultural drought seems
difficult in South Korea. VHI, which includes VCI and TCI, worked better in North Korea
than in South Korea. Both VCI and TCI monitored meteorological drought well using
different aspects (vegetation and temperature) in North Korea indicating that VHI had a
synergetic effect. However, VHI was not useful in monitoring meteorological drought in
South Korea due to the contrasting performances of VCI and TCI. SDCI, PCI, and SMCI
including meteorological factors such as precipitation and soil moisture were highly cor-
related to the SPIs in both North Korea and South Korea. As expected, PCI produced the
highest correlation coefficient values, especially in South Korea because SPI is based on
precipitation. The drought indices VHI and SMCI showed moderately increased correlation
coefficient values when they were combined with PCI (SDCI and MIDI). MIDI combined
with SMCI, PCI, and TCI showed the best performance because of the synergetic effect
from the meteorological components. The drought indices agreed better with the 6- and
9-month period SPIs than that of the other SPIs in the Korean Peninsula.

Table 2. Comparison of the correlation coefficients between various drought indices and station-based
meteorological drought index (SPI). The highest correlation coefficient for each index is shown in bold.

Drought
Indices

1-Month SPI 3-Month SPI 6-Month SPI 9-Month SPI

N. Korea S. Korea N. Korea S. Korea N. Korea S. Korea N. Korea S. Korea

VHI 0.122 0.094 0.204 0.151 0.252 0.184 0.271 0.181
ESI 0.007 0.112 0.077 0.167 0.101 0.299 0.064 0.137

SDCI 0.120 0.286 0.261 0.454 0.348 0.502 0.353 0.458
MIDI 0.104 0.291 0.252 0.523 0.355 0.560 0.356 0.516
TCI 0.061 0.106 0.154 0.267 0.208 0.301 0.202 0.312
VCI 0.137 0.0257 0.183 −0.039 0.199 −0.033 0.230 −0.077
PCI 0.090 0.305 0.243 0.500 0.336 0.539 0.330 0.496

SMCI 0.049 0.182 0.174 0.460 0.266 0.472 0.278 0.418

Figure 1 shows the boxplot of the monthly correlation coefficients between SPIs from
61 stations and PCI/VCI averaged over cropland. The monthly patterns were analyzed
from July to October because transplanting was conducted in June (paddy is flooded) [33].
There is a notable difference between North Korea and South Korea in Figure 1. Both VCI
and PCI show the same correlation patterns in North Korea, while the patterns are opposite
in South Korea. As mentioned above, PCI has positive relationships with SPIs in both
North Korea and South Korea whereas VCI has negative relationships with SPIs in South
Korea. Although both PCI and SPI were calculated using precipitation, the correlations
with SPIs were not as high as expected because of the normalizing approaches, data source,
and different periods. PCI, which is based on the TRMM satellite data, was calculated using
maximum and minimum values [23] of the data during the 18-year study period, while SPI
based on station data was calculated using standardization [12] of the 30-year data. The
relations of PCI to SPIs are higher in South Korea than in North Korea, and the boxplot also
illustrates that the difference is more during the rainy season (July to August). In addition,
the range of the correlation coefficients are bigger in North Korea than in South Korea
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because of the high variation at each station due to reliability. Normal data acquisition
from the station-based precipitation data is ~90% in North Korea and ~99% in South Korea
(KMA; http://data.kma.go.kr, accessed on 1 November 2022). The correlation coefficient
values of the 6-month SPI were relatively high, while the values of the 1-month SPI were
relatively low because PCI was calculated by accumulating 3-month precipitation, and VI
reflects the time lag between precipitation and vegetation responses [36,37]. VCI and SPIs
show the most definite relationship during the harvesting season (September).
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Figure 2 shows the correlation coefficients between rice yield and each of the drought
indices from 2001 to 2018 using bar graphs (Figure 2a) and correlation maps of TCI (b),
VCI (c), and PCI (d) for rice yield to evaluate the performance of drought indices in North
Korea and South Korea. These three indices show marked differences depending on
their characteristics. Figure 2a shows that the drought indices except TCI have a positive
correlation with rice yield in North Korea, while only VCI shows a positive correlation
with rice yields in South Korea. VCI showed the highest correlation with rice yield in both
North Korea and South Korea for each month. The temporal patterns of the correlations of

http://data.kma.go.kr
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drought indices reflected the growth of rice. VCI shows the lowest correlation coefficient
during the transplanting season (June) due to flooded paddy. VCIs are predominantly
high in the tillering to flowering stage (July and August). On the other hand, TCI, which
was widely used to monitor agricultural droughts in previous studies [32,38–41], showed
a low correlation with rice yields. The precipitation-based drought index, PCI, reflects
only spontaneous water supply; it is suitable for monitoring agricultural drought in rice in
North Korea and not in South Korea. In Figure 2b–d, the spatial patterns of North Korea
and South Korea with respect to drought indices such as TCI, VCI, and PCI are clearly
established. Rice yield in North Korea is related to PCI, VCI, and ESI but not TCI, while
only VCI has a valid relationship with rice yield in South Korea. It is considered that VCI is
a good indicator for monitoring rice yield throughout the Korean Peninsula as shown in
Figure 2c because it can explain the condition of rice growth accurately.
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Figure 2. The correlation coefficients (r) between rice yields and each of the drought indices during
the growing season over North Korea and South Korea (a). The correlation maps of TCI (b), VCI (c),
and PCI (d) in July with respect to rice yield.

VCI can effectively assess the damage to vegetation caused by low precipitation and
high temperature during a drought [21,39]. VCI also indirectly showed the difference
in the irrigation systems of North Korea and South Korea. In the case of South Korea,
meteorological drought caused by precipitation deficiency does less damage in terms of
agricultural drought in rice yield because of the adequate irrigation facilities [32]. This
implies that drought due to water shortage can be effectively alleviated through agricultural
infrastructure systems. Therefore, it implies that South Korea exercises more artificial
controls including irrigation, which makes it more resilient to stress from drought than
North Korea. VCI represented the highest correlation coefficient with rice yield in both
North Korea and South Korea (Figure 2). The correlation coefficient of VCI to rice yield
had a temporal pattern due to the phenological sensitivity of its vegetation to soil moisture
conditions [22,42]. As discussed in previous studies, the flowering season is vulnerable
to drought, and it is important for the determination of crop yield [23,37]. TCI did not
monitor agricultural drought in rice well in both North Korea and South Korea, although it
monitored meteorological drought well as discussed in Ryu et al. 2019 [32]. This is because
rice production tends to increase under high solar radiation [32,43]. Solar radiation is high
under drought conditions with low precipitation and high temperature [44–47]. Although
heat stress due to high temperature affects crop yield [34,48], it is considered that the effect
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of solar radiation is bigger than heat stress. Although high temperature is associated with
decrease in crop yields [49], TCI was not useful in diagnosing agricultural drought in rice
due to other influences such as solar radiation in both North Korea and South Korea.

Figure 3 shows the spatial features of the drought indices in 2015, which was the most
severe drought period based on the long-term variation of SPI 9 shown in Figure 3b. The
drought indices based on the variables of precipitation, soil moisture, and temperature
such as PCI, SMCI, SDCI, and MIDI indicate that most of the cropland on the Korean
peninsula suffered from severe drought. In particular, the deficiency of precipitation was
more serious in South Korea than in North Korea as shown in Figure 3i. TCI shows severe
drought in both North Korea and South Korea, while VCI shows severe drought only in
North Korea. ESI and SMCI represent soil moisture. Although the shortage of water supply
due to high temperature and low precipitation is similar, the vegetation stress is more
severe in North Korea than in South Korea. As per commodity intelligence reports (CIR)
reported by UDSA, North and South Hwanghae provinces in North Korea (green line in
Figure 3a) account for 34% of the total paddy rice crop area that is most affected by drought
(80% and 58% of paddy rice crop area in 2015, respectively). As a result, the production
of rice yield decreased by ~27% in the provinces. However, significant reduction in rice
yields in South Korea was not witnessed in 2015 when compared to other years, suggesting
that the effects of meteorological drought on rice yield were not serious in 2015. The rice
yield is stable in South Korea. The standard deviations of rice yields from 2001 to 2018 on
average are ~5% in South Korea and ~20% in North Korea. These results corroborate the
inferences made from Figure 3, and effectively describe the spatial status of rice yield in
response to VCI in both North Korea and South Korea.
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(a) Spatial map of cropland from MODIS products, (b) Time series of SPI 9 from 2001 to 2018. The
average of SPI 9 from 61 stations is shown by the dashed red line. Shaded lines indicate minimum
and maximum range of SPI 9 from 61 stations. (c–j) represent maps of each drought index.
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4. Conclusions

Various drought indices were computed, compared, and validated to analyze their
performances in terms of monitoring drought in different agricultural systems present
in North Korea and South Korea and to suggest an appropriate drought index for the
Korean Peninsula. This study identified the factors that are useful for the interpretation
of drought severity considering regional characteristics including agricultural systems.
The relationship between drought indices and SPIs were identified in the cropland area.
Most indices showed positive relationships in both North Korea and South Korea, while
only VCI in South Korea showed a negative relationship. This study focused on analyzing
the effect of drought indices to monitor rice yield, and VCI showed the best performance.
However, it is likely that other indices may work well for other crops (corn, soybean, etc.).
Many studies have suggested the use of combining various drought indicators as more
useful than the use of a single drought indicator due to the complexity of drought [7,37].
Many blending approaches have been developed [10,23,50]. Combined indices such as
SDCI, MIDI, and VHI reflect characteristics of each component. In meteorological drought,
blended hybrid indices including VHI, MIDI, and SDCI performed better than a single
indicator in North Korea. However, the performance of hybrid indices decreased when they
were blended with VCI in South Korea because agricultural infrastructure systems prevent a
meteorological drought from propagating to an agricultural drought. MIDI was developed
by blending meteorological indicators such as precipitation, temperature, and soil moisture,
and it is the most useful index for monitoring meteorological drought in both North Korea
and South Korea. The blended indices including VCI and excluding TCI performed well in
monitoring agricultural drought in rice. Since meteorological indictors are not useful in
an irrigated region to monitor agricultural drought, blended hybrid indices showed poor
results in South Korea. Therefore, it is better to use a vegetation-related drought index
that directly assesses the condition of rice. Thus, future studies shall consider hydrological
factors such as dams, stream flow conditions, and area of reservoirs while assessing an
irrigated region [51,52]. The 3-month and 6-month SPIs were normally used for monitoring
agricultural drought [53]. However, drought indices worked differently as shown in Table 2
and Figure 2. Therefore, the characteristics of drought indices and the target region (e.g.,
crop types, infrastructures) should be considered to develop an adequate drought index in
further studies.
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