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Synergistic combination of information from ground
observations, geostationary satellite, and air quality
modeling towards improved PM2.5 predictability
Jinhyeok Yu 1, Chul H. Song1✉, Dogyeong Lee1, Sojin Lee1,10, Hyun S. Kim1, Kyung M. Han1, Seohui Park2, Jungho Im 2,
Soon-Young Park 1,11, Moongu Jeon3, Vincent-Henri Peuch 4, Pablo E. Saide5, Gregory R. Carmichael6, Jeeho Kim 1, Jhoon Kim 7,
Chang-Keun Song 2, Jung-Hun Woo8 and Seong-Hyun Ryu9

Concentrations of ambient particulate matter (such as PM2.5 and PM10) have come to represent a serious environmental problem
worldwide, causing many deaths and economic losses. Because of the detrimental effects of PM2.5 on human health, many
countries and international organizations have developed and operated regional and global short-term PM2.5 prediction systems.
The short-term predictability of PM2.5 (and PM10) is determined by two main factors: the performance of the air quality model and
the precision of the initial states. While specifically focusing on the latter factor, this study attempts to demonstrate how
information from classical ground observation networks, a state-of-the-art geostationary (GEO) satellite sensor, and an advanced air
quality modeling system can be synergistically combined to improve short-term PM2.5 predictability over South Korea. Such a
synergistic combination of information can effectively overcome the major obstacle of scarcity of information, which frequently
occurs in PM2.5 prediction systems using low Earth orbit (LEO) satellite-borne observations. This study first presents that the scarcity
of information is mainly associated with cloud masking, sun-glint effect, and ill-location of satellite-borne data, and it then
demonstrates that an advanced air quality modeling system equipped with synergistically-combined information can achieve
substantially improved performances, producing enhancements of approximately 10%, 19%, 29%, and 10% in the predictability of
PM2.5 over South Korea in terms of index of agreement (IOA), correlation coefficient (R), mean biases (MB), and hit rate (HR),
respectively, compared to PM2.5 prediction systems using only LEO satellite-derived observations.
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INTRODUCTION
Particulate matter with aerodynamic diameters smaller than 2.5
μm (PM2.5) has come to represent a serious societal issue in South
Korea and China, because their ambient concentrations frequently
exceed criteria concentrations, particularly during winter and
spring seasons1,2. Detrimental effects of PM2.5 on human health
have been well recognized. High PM2.5 can lead to high
occurrence rates of stroke, ischemic heart diseases (IHD), chronic
obstructive pulmonary diseases (COPD), and lung cancer3,4.
Because of the human toxicity of high PM2.5, the South Korean
Ministry of Environment (KMoE) has been performing PM2.5

forecasts since 2014 for the purpose of promptly alerting South
Korean citizens of hazy events as well as for preparing national
emergency programs for reducing the emissions of air pollutants.
Many countries have developed and operated their own short-

term air quality forecasting systems (refer to Supplementary
Note 1). Among those operational short-term air quality forecast-
ing systems, the ECMWF (European Centre for Medium-Range
Weather Forecasts) in Europe and the NASA (National Aeronautics
and Space Administration) Goddard center in USA have imple-
mented global air quality forecasts including PM2.5 and ozone

predictions using the C-IFS (Integrated Forecasting System with
Atmospheric Composition)5 and GEOS-Chem (Goddard Earth
Observing System with Chemistry)6 models, respectively. Several
other organizations are also releasing indices of global and
regional air quality as well as PM2.5 on a daily basis, based on
multi-model air quality simulations7. Air quality forecasts are now
becoming an important part of our daily life, much like traditional
weather forecasts.
Although air quality forecasts provide people with important

information on air quality every day, people (particularly those in
South Korea) have expressed high degrees of dissatisfaction with
the accuracy of PM2.5 forecasts8,9. Therefore, there is a strong need
to improve the predictability of ambient PM2.5 in South Korean
society. In this context, the current study deals with important
issues of how to enhance the accuracy of air quality predictions.
The focus in terms of air pollution in South Korea and northeast
Asia is now on PM2.5. We therefore will pay particular attention to
PM2.5 in this study. However, we believe that strategies and
methods to enhance PM2.5 predictability can also be applied to
other ambient pollutants such as ozone and NO2.
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Throughout this study, several key data and ‘state-of-the-art’
technical elements are synergistically combined. Such key data
and technical elements include: (i) aerosol data retrieved from
Korean geostationary (GEO) satellite sensor; (ii) near real-time
ground observations collected through a screen crawling techni-
que; and (iii) outputs from an advanced air quality modeling
system. The main objective of this study is to determine whether a
smart combination of these technical elements and data could
create synergy to improve PM2.5 predictability over South Korea.
All technical elements mentioned above were integrated into the
framework of the K_ACheMS v2.0 (Korean Air Chemistry Modeling
System version 2.0). The K_ACheMS v2.0 is an air quality modeling
system that is currently being developed, primarily to enhance the
predictability of PM2.5 and PM10 in South Korea (for details on
K_ACheMS v2.0, refer to the Methods and Supplementary Note 2).
Figure 1 illustrates the domain of interest in this study.

RESULTS AND DISCUSSION
ECMWF CAMS_nrt products over South Korea
First, we start our discussion with CAMS_nrt (Copernicus Atmo-
spheric Modeling and Monitoring Service, near real-time pro-
ducts), which is global air quality forecast data produced by the
C-IFS of the ECMWF (for details on the C-IFS model simulations,
see Supplementary Note 3)10.
Figure 2a presents hourly variations of averaged PM2.5 over

South Korea during the period of KORUS-AQ campaign
(Korea–United States Air Quality campaign) carried out between
1 May, 2016 and 10 June, 2016. Figure 2 also shows comparisons
between PM2.5 predictions and PM2.5 observations. PM2.5 observa-
tions were acquired from a ground observation network in South
Korea called ‘AIR KOREA’ that is managed by the KMoE. In Fig. 2,
model-predicted PM2.5 was based on averages of PM2.5 at the grid
cells corresponding to the locations of AIR KOREA stations over
South Korea. This KORUS-AQ campaign has been well-investigated
in terms of meteorological and physico-chemical characteris-
tics11,12. Therefore, we selected this campaign period as a time-
window for this study.
The CAMS_nrt PM2.5 in Fig. 2a shows a moderate agreement

with observed PM2.5, with an IOA (Index of Agreement) of 0.51.

Here, the IOA was calculated based on hourly PM2.5 data. In
addition, only IOA was presented in Fig. 2. However, other
statistical metrics including errors and biases were also analyzed in
Supplementary Note 4. This moderate IOA of 0.51 in Fig. 2a might
be affected by two main factors: (i) modeling errors produced by
C-IFS model simulations and (ii) imprecision in the initial state
caused by data assimilation with LEO (low Earth orbit) satellite-
derived data.
First, to evaluate the accuracy of C-IFS model simulations, we

compared the predicted concentrations of major PM2.5 constitu-
ents with observed concentrations of sulfate, organic aerosols
(OAs), black carbon (BC), and dust at six intensive measurement
stations in South Korea. The comparisons are shown in
Supplementary Note 5. In general, C-IFS model simulations tended
to over-predict dust and BC concentrations while under-predicting
OA concentrations. These inaccuracies contributed to the
moderate IOA shown in Fig. 2a. In addition, the relatively coarse
resolution of the C-IFS model simulations (approximately
80 × 80 km2) can contribute to model errors.
Second, the precision of the initial states prepared by data

assimilation are also crucial, particularly for short-term (i.e., one or
two days) predictions. The CAMS_nrt system employs a 4-D VAR
(4-Dimensional Variational) data assimilation method with MODIS
(Moderate-resolution Imaging Spectro-radiometer) AOD (Aerosol
Optical Depth)13. This 4-D VAR data assimilation method is a
technique that can correct errors of model fields (background
fields) with observations (near true value). Corrected fields
(analysis fields) created by data assimilation are applied to
operational C-IFS runs for initial conditions. Observational data
for the 4-D VAR assimilation are AOD data retrieved from two
MODIS sensors onboard Terra and Aqua satellites.
However, MODIS sensors (or other LEO UV/VIS sensors) have

shown two serious limitations in terms of their data availability.
First, they cannot produce AOD data over areas where clouds are
present. We call this phenomenon ‘cloud masking’. For example,
(north)east Asia is highly cloudy compared to other continents,
mainly because of both large presences of cloud seeds (atmo-
spheric aerosols) and high humidity. Such large cloud masking
tends to lead to a large loss of aerosol data over (north)east Asia.
In actuality, the average percentage of MODIS AOD data available

Fig. 1 Domains of this study. a Modeling domain and b GOCI domain. Circles in the two domains represent the locations of ground-
observation stations inside China and South Korea. Color codes of the circles indicate averaged PM2.5 during the KORUS-AQ campaign
(between 1 May and 10 June, 2016). Regions A, B, and C are the Yellow Sea, North Korea, and the East Sea (or the Sea of Japan), respectively,
where no surface PM2.5 information is available. Further, the three black squares in panel b mark the locations of the three cities in South
Korea where further analyses were conducted.
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during the period of the KORUS-AQ campaign was only ~14% over
the domain shown in Fig. 1.
Second, the results of monitoring via these two MODIS sensors

are prone to be affected by the ‘sun-glint effect’. This is an
inherent effect caused by the geometry between LEO satellite
sensors and the sun. Because of the sun-glint effect, we
sometimes lose many potentially important data, particularly over
ocean areas, where no surface PM2.5 observations are available14.
This loss of MODIS AOD data due to the sun glint effect is
discussed further in Supplementary Note 6.
Collectively, these two limitations in monitoring data from

MODIS sensors result in a scarcity of AOD data or data related to
PM2.5. This scarcity of observed data can prevent data assimilation
from effectively correcting model background errors. The moder-
ate IOA of 0.51 shown in Fig. 2a is due to both modeling errors
and the scarcity of the observations used in the data assimilation.
In addition, Fig. 2a provides a typical example of how difficult
accurate short-term PM2.5 prediction is with our current levels of
knowledge and techniques.

LEO vs. GEO satellite sensors
With lessons from CAMS_nrt, we set up a strategy to build up a
more accurate short-term PM2.5 prediction system over South
Korea by developing a more advanced air quality modeling
system intended to reduce modeling errors and by utilizing better
satellite-borne PM2.5 data to improve initial states15,16. Regarding
the former, we have developed K_ACheMS v2.0. Regarding the
latter, we decided to use AOD products from the state-of-the-art
Korean geostationary satellite sensor named GOCI (Geostationary
Ocean Color Imager) instead of the two MODIS sensors. Although
the GOCI sensor cannot also produce AOD data over pixels where

clouds are present, it can overcome the limitation of the sun-glint
effect because it is a GEO satellite sensor.
Figure 2b is produced from K_ACheMS v2.0 without performing

data assimilation (i.e., without updated initial conditions). With this
effort alone, the IOA jumped up from 0.51 (Fig. 2a) to 0.71 (Fig. 2b),
indicating the potential importance of the performance of the air
quality modeling system. Figure 2c presents PM2.5 predictions made
by the K_ACheMS v2.0 with 3-D VAR (3-Dimensional Variational)
data assimilation using only MODIS AOD. The experiment of Fig. 2c
was a mimicking simulation of CAMS_nrt. Surprisingly, the IOA in
Fig. 2c was the same as that in Fig. 2b. This was because MODIS AOD
data were too sparse to affect the PM2.5 predictability in South Korea
due to both cloud masking and sun-glint effects. Again, the data
coverage of MODIS sensors was only ~14%. With this low data
coverage, the data assimilation appears to be almost ‘useless’.
This problem of data scarcity can be avoided in part by using

GOCI satellite-retrieved AOD. When we used GOCI-retrieved AOD
data, the percentage of the AOD data available during the period
of the KORUS-AQ campaign over the monitoring domain of the
GOCI increased up to 28.5%. Here, we attempted to use AOD
products from the Korean GOCI sensor in 3-D VAR data
assimilation. Figure 2d presents the PM2.5 predictability from this
experiment. Enhancements in PM2.5 predictability can be seen
visually in Fig. 2 as well as in terms of IOA. The IOA again increased
from 0.71 to 0.73, showing that assimilation of GOCI AOD data
could more effectively correct model errors in the initial state than
MODIS AOD data.

Ill-location of information: satellite data vs. ground
observations
Despite the substantial advancements that have been made, both
MODIS- and GOCI-retrieved data have inherent and unavoidable

Fig. 2 Hourly variations of ground-observed and predicted PM2.5 in South Korea. All PM2.5 values inside South Korea are aggregated in the
plots. a–f present comparisons between observed PM2.5 and predicted PM2.5 obtained in the experiments a from CAMS NRT, b from the
control run (without 3DV), c with 3DV using MODIS AOD, d with 3DV using GOCI AOD, e with 3DV using ground observations, and f with 3DV
using both GOCI AOD and ground observations. The color shadows around PM2.5 represent ranges of one standard deviation of averaged
PM2.5. Two representative model performance metrics of IOA (scientific metrics) and HR (administrative metrics) are inserted into the plots.
Other performance metrics are analyzed and listed in Supplementary Fig. 1. Here, IOAs were calculated based on hourly data at AIR KOREA
stations. The three gray-shaded areas represent Asian dust (I), air stagnant (II), and long-range transport (III) episodes, respectively.
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disadvantages: ‘data scarcity’ and ‘data ill-location’. As mentioned
above, the average percentage of the GOCI AOD data available
over the entire GOCI domain was approximately 28.5%. This
means that we could not obtain AOD data from 71.5% of GOCI
pixels, mainly due to the presence of clouds. The presence of
clouds is the major reason for the problem of scarcity of satellite-
borne aerosol data. In addition, even 28.5% of the GOCI aerosol
data are not always available at useful locations for PM2.5

predictions in South Korea. For example, if some portions of GOCI
AOD data are available over areas where air masses cannot
influence air quality in South Korea (e.g., over the northern edges
of the modeling domain or over the East China Sea, which is far
from the Korean peninsula), then such AOD data become
meaningless in terms of their ability to improve PM2.5 predict-
ability in South Korea. We refer to this type of problem as the
‘ill-location problem’ of satellite data.
To overcome the problems of data scarcity and data ill-location,

we must return back to classical observation data, i.e., ground
observations. Because ground observations are being made at
fixed surface locations, these data are never affected by the
presence of clouds. Figure 1 shows PM2.5 measurement networks
in China (at approximately 1800 locations) and in South Korea (at
approximately 400 sites)17,18. However, a challenging point is
whether we can obtain these observation data in near real-time. In
the case of ‘past’ observations, they can be downloaded from the
data archive. However, it is difficult to collect ‘present’ data in a
near real-time mode. To resolve this problem, we decided to
develop a method called the ‘screen crawling technique’ (also
known as the ‘scraping technique’)19. Using this digital software
technique, we can scan and obtain observation data from
corresponding Chinese and Korean websites in a near real-time
(in situ) mode. Such near real-time observations can then be
utilized almost immediately in the PM2.5 prediction system after a
quick data quality inspection called the ‘buddy test’, which was
described in detail in Lee et al.20.
Figure 2e shows how large improvements in PM2.5 predictions

over South Korea can be achieved by assimilating ground PM2.5

observations instead of GOCI AODs. The IOA increased from 0.73
to 0.77. We could also find additional advantages by assimilating
the data of these ground observations. In Fig. 2, the gray-shadow
period I was characterized as an ‘Asian dust episode’ that had
taken place from 6 May to 7 May, 2016. During this period, dust
plumes were generated in the Inner Mongolia, and they were then
transported long distance over northeastern China and the Yellow
Sea. Unfortunately, these dust plumes were not detected by the
GOCI sensor because such dust plumes are frequently co-present
with cold frontal clouds. However, the ground observation
network inside China certainly detected these dust plumes.
During dust episodes, PM10 exhibits a tendency to increase,
because dust particles are predominantly composed of coarse-
mode particles (i.e., particles larger than 2.5 μm). In this study, we
assimilated both ground PM2.5 and PM10 (refer to Supplementary
Note 7). Supplementary Fig. 6e clearly shows that our prediction
could also capture the dust peak in PM10 during period I. By
contrast, PM10 predictions in Supplementary Fig. 6d, wherein only
GOCI products were assimilated, could not capture the dust peak.
Such enhancements in PM2.5 predictability via the assimilation

of ground PM2.5 are also presented in Supplementary Fig. 1 and
summarized in Table 1. The assimilation of ground PM2.5 exhibits
larger impacts on PM2.5 predictability than the assimilation of
GOCI products. Again, the limited effects of the assimilation of
GOCI products are attributable to their scarcity and undesirable
locations. This is the most compelling reason to assimilate
‘ground’ PM2.5 and PM10 to enhance PM2.5 and PM10 predictability.

What if ground and satellite-derived observations are used
together?
What can happen if ground PM2.5 observations and GOCI-borne
data are used together for data assimilation? Can we expect a
synergism? To answer this question, we designed one more
experiment with sequential data assimilation of ground PM2.5 and
GOCI AOD; Fig. 2f shows the results of this case study. As shown in
Fig. 2f, the IOA increased again from 0.77 to 0.78 over the entire
period of the KORUS-AQ campaign, implying that the addition of
either GOCI-derived AOD into ground PM2.5 could improve the
precision of the initial state and thus the PM2.5 predictability
throughout South Korea.
This appears to be particularly true for the two gray-shadow

periods II and III in Fig. 2. Gray-shadow periods II and III were
characterized by KORUS-AQ scientists as ‘a period of air
stagnation’ and ‘an episode of long-range transport’ from China,
respectively. During the period of air stagnation (between 18 May
and 23 May, 2016), an anticyclone sat around the Korean
peninsula. Because of this, air masses were rotating clockwise
with low wind speeds around the Korean peninsula (see Fig. 3b).
This low-speed rotation of air masses created a favorable
condition for air pollutants to be accumulated around the Korean
peninsula. On the other hand, during the period of long-range
transport (between 25 May and 30 May, 2016), air pollutants,
including PM2.5, were transported long distance from the North

Table 1. Summary of scientific and administrative statistical metrics
for all of South Korea, Seoul, Gwangju, and Ulsan.

IOA R RMSE1 MB1 ACC2 HR2

All of South Korea

CAMS NRT 0.51 0.27 24.67 7.11 49.64 68.48

w/o 3DV 0.71 0.52 16.81 –4.56 57.53 56.36

3DV (MODIS) 0.71 0.53 16.67 –4.26 58.82 56.97

3DV (GOCI) 0.73 0.56 17.54 –5.04 55.38 52.73

3DV (GRD) 0.77 0.60 15.11 –3.30 66.57 64.24

3DV (GOCI+GRD) 0.78 0.63 15.25 –3.04 65.28 62.42

Seoul (37.6° N, 126.9° E)

CAMS NRT 0.53 0.31 25.50 11.27 36.59 63.64

w/o 3DV 0.71 0.52 17.55 –3.02 48.78 45.45

3DV (MODIS) 0.71 0.52 17.55 –3.02 48.78 45.45

3DV (GOCI) 0.71 0.51 17.51 –2.66 48.78 45.45

3DV (GRD) 0.76 0.59 16.07 –2.23 60.98 54.55

3DV (GOCI+GRD) 0.76 0.60 15.94 –3.24 65.85 45.45

Gwangju (35.2° N, 126.8° E)

CAMS NRT 0.40 0.13 28.01 11.31 46.34 60.00

w/o 3DV 0.75 0.63 14.55 –7.12 65.85 40.00

3DV (MODIS) 0.75 0.63 14.55 –7.12 65.85 40.00

3DV (GOCI) 0.77 0.63 14.48 –6.92 65.85 40.00

3DV (GRD) 0.77 0.62 14.68 –4.71 60.98 40.00

3DV (GOCI+GRD) 0.80 0.68 13.08 –4.76 65.85 50.00

Ulsan (35.6° N, 129.3° E)

CAMS NRT 0.53 0.27 23.78 3.47 48.78 54.55

w/o 3DV 0.76 0.62 17.83 0.63 80.49 90.91

3DV (MODIS) 0.76 0.62 17.83 0.63 80.49 90.91

3DV (GOCI) 0.76 0.62 17.81 0.97 80.49 90.91

3DV (GRD) 0.77 0.67 18.51 3.58 80.49 81.82

3DV (GOCI+GRD) 0.79 0.67 16.47 1.96 85.37 90.91

1 Unit: μgm-3; 2 Unit: %.
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China Plain (NCP) to South Korea due to strong westerlies (see
Fig. 3c). We found that PM2.5 increased up to 60 μg/m3 on 26 May,
2016. As can be seen visually in Fig. 2f, the gaps between PM2.5

observations and predictions during these two gray periods
became narrower than those in Fig. 2e. A similar situation was also
found for the predictions of PM10, as shown in Supplementary Fig.
6f. These results are particularly important, because both air
stagnation and long-range transport are two typical meteorolo-
gical conditions under which the levels of PM2.5 in the Korean
peninsula are frequently enhanced. If the situation is really like this
one, then the following question arises: what factor creates such
improvements in PM2.5 and PM10 predictability?
The answer to this question is presented in Fig. 3, which

demonstrates a synergism created by sequential data assimilation
using ground PM2.5 observations and GOCI-derived AOD. During
the periods II and III, sequential applications of both forms of data
to data assimilation allowed IOA to jump up from 0.57 to 0.64
during the period of air stagnation and from 0.62 to 0.67 during
the period of long-range transport. In case of air stagnation, GOCI
AOD data were available over the Yellow Sea (denoted as A in Fig.
1), North Korea (denoted as B in Fig. 1), and the East Sea (denoted
as C in Fig. 1). This data availability was due to the fact that the sky
was very clear (uncloudy) as a result of the anticyclone located
around the Korean peninsula. Because of the rotation of air
masses, all the three regions became upwind regions to South
Korea in this case. Therefore, it is crucial to have information over
all three of these regions to achieve accurate PM2.5 predictions in
South Korea.
The episode of long-range transport (period III) is another

excellent example regarding the creation of synergism. Surpris-
ingly, during this period, ground PM2.5 measurements inside China
were all turned off. However, high AOD plumes were detected by
the GOCI sensor over the Yellow Sea. The Yellow Sea was an
upwind region to South Korea in this case (see the arrows of winds
in Fig. 3c). In addition to the ground PM2.5 information available
inside South Korea, the GOCI AOD data available over the Yellow

Sea helped us further enhance the accuracy of PM2.5 predictions in
South Korea.
Over the entire period of the KORUS-AQ campaign, including

the two episodes discussed above, our advanced PM2.5 prediction
system (Fig. 2f) exhibited enhancements of approximately 10%,
19%, 29%, and 10% in the predictability of PM2.5 over South Korea,
in terms of IOA, R (Pearson correlation coefficient), MB (mean
biases), and HR (hit rate), respectively, compared to the PM2.5

prediction system using LEO-retrieved observations alone (Fig. 2c)
(for details, also refer to Supplementary Fig. 1 and Supplementary
Note 4).
Although this study paid particular attention to the predictions

of ‘surface’ PM2.5, using both GOCI AOD and ground PM2.5 in the
data assimilation was also found to be extremely helpful in
analyzing the aerosol concentrations ‘above the surface’. Supple-
mentary Fig. 7 in Supplementary Note 8 presents the comparison
of vertical profiles between observed and predicted aerosol
concentrations. As shown in Supplementary Fig. 7, the experiment
using GOCI AOD and ground PM2.5 exhibited the highest
agreements with aircraft-borne aerosol observations, even above
the surface.

Blank area of information
As described above, South Korea is surrounded by so-called ‘blank
areas of information’ such as the Yellow Sea, North Korea, and the
East Sea. However, transboundary air pollution events from China
to South Korea are almost always occurring through these blind
regions along the strong persistent westerly and/or northwesterly
winds. This means that, for improved PM2.5 (and PM10) predict-
ability in South Korea, it is certainly necessary to have information
on air quality over these blind regions.
In this context, we demonstrated that information from GEO

satellite sensors over those blank areas of information could help
us substantially improve PM2.5 predictability in South Korea.
Although it is true that geostationary satellite data can help us
improve PM predictability, there is no 100% guarantee that GEO

Fig. 3 Three representative plots showing how effective geostationary satellite-derived information can be to enhance PM2.5
predictability in South Korea. a Asian dust episode, b air stagnant episode, and c long-range transport episode took place on 6–7 May, 18–23
May, and 25–30 May, respectively, during the period of the KORUS-AQ campaign. It should also be noted that, in all three cases, GOCI AOD
data were available over upwind areas of South Korea. Wind vectors shown with arrows were obtained at 850 hPa.
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satellite data are always available over the blank areas due to the
random presence of clouds. To provide more convincing data
availability over the blank regions, it would be helpful to establish
surface observation networks to boost the performances of PM2.5

predictions in South Korea. The establishment of a surface
observation network may be a cheaper and more guaranteed
way to improve PM2.5 predictability in South Korea than launching
expensive GEO satellite sensors.
Based on the discussions shown above, establishing several air

quality monitoring towers or stations above the Yellow Sea and
the East Sea as well as inside North Korea will be highly useful for
achieving better PM2.5 predictions in South Korea. Of course,
building air monitoring stations inside the territory of North Korea
would create political arguments. It appears to be a difficult task to
achieve politically, although it is an easy task to accomplish
technically.

Additional analyses and discussion
In this work, we have evaluated the performances of K_ACheMS
v2.0 at the country-level. To more closely scrutinize the
performances of K_ACheMS v2.0, we have evaluated the
performance of K_ACheMS v2.0. To further assess its performance,
we zoomed into three key areas inside South Korea: Seoul,
Gwangju (located in the southwest of South Korea), and Ulsan
(located in the southeast of South Korea) (see Fig. 1 for the
locations of these three cities). We have then further assessed the
performances of K_ACheMS v2.0 in these three cities. Table 1
summarizes the PM2.5 predictability of K_ACheMS v2.0 in those
three cities in South Korea. In addition, Fig. 4 shows a similar
analysis to Fig. 1 for Seoul.
Based on the results presented in Fig. 4 and Table 1, it can also

be seen that the conclusions drawn from our investigations in the
three cities are similar to those drawn from our investigations over
all of South Korea. For example, we again see increased IOAs from
0.71 (Fig. 4b) to 0.76 (Fig. 4f) in Seoul. The results from the

Gwangju and Ulsan studies also show similar trends to those from
the country-level investigations (refer to Table 1).
In this study, we have reported our major findings inferred from

experiments during the period of the KORUS-AQ campaign. To
more firmly support our conclusions, we also carried out another
six-month test-bed experiment between 1 November, 2016 and
30 April, 2017 (a high PM2.5 period in South Korea). Test results
from this six-month investigation are discussed in Supplementary
Note 9. In short, we again drew the same conclusions from the six-
month experiment. Based on this finding, we now believe that our
conclusions drawn from this study are general ones, not period-
specific. The methods and strategies applied to South Korea can
also be applied to many other regions that encounter similar
situations. In this sense, our methods and strategies are not area-
specific, either.
IOAs and other statistical metrics such as root mean square

errors, mean biases, and so on are commonly used in the science
community. We refer to these metrics as ‘scientific statistical
metrics’. On the other hand, the HR is a metric that administration
parties such as KMoE are taking particular care of in South Korea.
Because of this, we refer to the HR as an ‘administrative statistical
metric’. The HR is defined as the percentage of successful hits of
category intervals of PM2.5 in South Korean air quality standards
(refer to Supplementary Note 10 for a detailed equation for HR
calculation). However, high IOAs do not always guarantee high
HRs, because HR is estimated based on the hit percentage of
category intervals. Although we believe the HR is less scientific,
there has also been a strong requirement to enhance the HR in
South Korea. This was why we also inserted HRs into Fig. 2. It could
be seen that HRs increased continuously from Fig. 2b–f. There are
several more administrative statistical metrics such as ACC
(Accuracy), POD (Probability of detection), and FAR (False alarm
rate), and definitions of these metrics can be found in
Supplementary Note 10. Among these administrative statistical

Fig. 4 Hourly variations of ground-observed and predicted PM2.5 in Seoul. Panels a–f present comparisons between observed PM2.5 and
predicted PM2.5 obtained in the experiments a from CAMS NRT, b from the control run (without 3DV), c with 3DV using MODIS AOD, d with
3DV using GOCI AOD, e with 3DV using ground observations, and f with 3DV using both GOCI AOD and ground observations. The three gray-
shaded areas represent Asian dust (I), air stagnant (II), and long-range transport (III) episodes, respectively.
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metrics, both the ACC and HR for our experiments are summarized
in Table 1.

Model performances for operational runs. The K_ACheMS v2.0
discussed in this study has been run for operational PM2.5

predictions over South Korea since 1 Jan., 2022 (visit website at
https://kachems.gist.ac.kr). Figure 5 presents the parts of perfor-
mances of the K_ACheMS v2.0 through comparisons between
PM2.5 observations and PM2.5 predictions. In Fig. 5, three PM2.5

predictions from the K_ACheMS v2.0, current operational PM2.5

prediction systems at NIER (National Institute of Environmental
Research in South Korea) and ECMWF are compared with PM2.5

observations from AIR KOREA. The PM2.5 predictions from the NIER
have been based on a different approach of an ensemble average
of 20 outputs from 20 combinations among different meteorol-
ogy, air quality models and emission inventories8. It can be seen in
Fig. 5 that the K_ACheMS v2.0 produced much better PM2.5

predictions than the other two systems for three major high PM2.5

episodes. The three high PM2.5 episodes shown in Fig. 5 were the
biggest ones that occurred over the six months, during which the
K_ACheMS v2.0 were operated.
During the six-month test period, the IOA and HR from the

K_ACheMS v2.0 were 0.78 and 67%, respectively. These numbers
were substantially higher than those produced by the ECMWF
prediction system (IOA: 0.76 and HR: 54%). Although the PM2.5

predictions from the NIER system were not released yet, the
annual averaged HR of the NIER system has been reported to be
approximately 55–60%. Further analyses regarding the operation
runs of K_ACheMS v2.0 are made in Supplementary Note 11 (refer
to Supplementary Tables 6 and 7). Based on these analyses, the
new PM2.5 prediction system proposed in this study appears to
have been working very well.

METHODS
K_ACheMS v2.0
K_ACheMS v2.0 consists of the following: (i) Chemistry-transport
model (CMAQ vG, a CMAQ model significantly modified by
Gwangju Institute of Science and Technology in South Korea); (ii)
Meteorological models including the WRF-ARW (Advanced
Research version of the Weather and Research Forecasting) model
and UK Met Office UM (Unified Model), together with WRF-MCIP
(Meteorology-Chemistry Interface Processor) and UM-MCIP; (iii)
bottom-up emissions based on KORUS v5.0; (iv) data assimilation
system based on 3-D VAR and EnKF (Ensemble Kalman Filter)
methods using ground observations and/or geostationary GOCI;
and (v) machine learning elements such as XGBoost (eXtreme
Gradient Boost)21. Each element of the K_ACheMS v2.0 is
described further in Supplementary Note 2.
In the current study, the horizontal resolution for K_ACheMS

v2.0 was set at 15 × 15 km2 for northeast Asia, and there were 15
vertical layers from the surface to 50 hPa. The chemical initial
conditions for the K_ACheMS v2.0 were updated at every 00 UTC
via assimilation with GOCI AODs and/or ground PM2.5 measured at
00 UTC. 24–48 h air quality predictions were then carried out using
the updated initial conditions.
The CMAQ vG (Community Multi-scale Air Quality version G)

model has been actively developed based on the US EPA CMAQ
v5.2 model22. In particular, the model has been improved through
the following additions: (i) daytime HONO photo-chemistries23, (ii)
heterogeneous HO2 reactions24, (iii) gas- and aqueous-phase
halogen chemistries25, and (iv) new yield data for the formation of
secondary organic aerosols acquired from multiple smog chamber
experiments conducted under typical conditions of northeast

February 11
18:00 KST

January 23
12:00 KST

January 10
12:00 KST

AIR KOREA
(Observation)

K_ACheMS
(Prediction)

CAMS
(Prediction)

NIER
(Prediction)

Fig. 5 Performances of K_ACheMS v2.0 for PM2.5 predictions over South Korea. The first column presents levels of observed PM2.5 from AIR
KOREA, while the second, the third, and the fourth columns respectively present PM2.5 predictions from K_ACheMS v2.0 and two operational
PM2.5 prediction systems at NIER and ECMWF. Red, yellow, green, and blue colors indicate ‘very bad (very unhealthy)’, ‘bad (unhealthy)’,
‘moderate’, and ‘good’ air qualities, respectively, in terms of Korean PM2.5 standards. The PM2.5 prediction service using operational K_ACheMS
v2.0 was launched on 1 Jan., 2022 and has been operated continuously since then. The first, second, and third rows are PM2.5 observations
and predictions taken at noon on 10 Jan., 23 Jan., and 11 Feb., 2022, respectively.
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Asia26. These new additions will be discussed in other
publications.
For anthropogenic emissions, KORUS v5.0 has been used.

KORUS v5.0 is a bottom-up emission inventory that was
specifically established for the KORUS-AQ campaign27. K_ACheMS
v2.0 uses two meteorological fields generated by WRF-ARW
model28 and UM29. This study used the meteorological fields
generated via WRF-ARW model using 0.25° × 0.25°-resolved NOAA
GFS MET fields for initial and boundary conditions.
Two data assimilation techniques have been developed and

incorporated into K_ACheMS v2.0: the 3-D VAR and EnKF
methods. Although the EnKF method has outperformed the 3-D
VAR method in our PM2.5 predictions30, we decided to use the 3-D
VAR method in the present study. The 3-D VAR method has been
shown to have several limitations compared to the EnKF
technique. For example, its background error information is
relatively simple and not flow-dependent. It also has a lack of
temporal propagation. However, when using of the EnKF
technique, we typically generate 30–40 ensemble members to
construct background error covariance matrices, which means
that operational runs of K_ACheMS v2.0 using the EnKF technique
would require approximately 30–40 times larger hardware
resources than those of K_ACheMS v2.0 using the 3-D VAR
method. Due to the strong concern of high computation costs, we
decided to employ the 3-D VAR technique in the operation runs of
K_ACheMS v2.0.

Data assimilation methods
To use the 3-D VAR method, we had to develop background and
observation error covariance matrices. To update the initial
conditions, data assimilations were carried out at every 00 UTC
with satellite-borne and/or ground observations. Further technical
details regarding the 3-D VAR method can be found in
Supplementary Note 12.

DATA AVAILABILITY
The data are available upon request to the corresponding author.

Received: 5 October 2022; Accepted: 3 May 2023;

REFERENCES
1. Kim, H. C. et al. Recent increase of surface particulate matter concentrations in

the Seoul Metropolitan Area, Korea. Sci. Rep. 7, 4710 (2017).
2. Huang, R.-J. et al. High secondary aerosol contribution to particulate pollution

during haze events in China. Nature 514, 218–222 (2014).
3. Apte, J. S., Marshall, J. D., Cohen, A. J. & Brauer, M. Addressing global mortality

from ambient PM2.5. Environ. Sci. Technol. 49, 8057–8066 (2015).
4. Burnett, R. T. et al. An integrated risk function for estimating the global burden of

disease attributable to ambient fine particulate matter exposure. Environ. Health
Perspect. 122, 397–403 (2014).

5. Flemming, J. et al. Tropospheric chemistry in the integrated forecasting system of
ECMWF. Geosci. Model Dev. 8, 975–1003 (2015).

6. Keller, C. A. et al. Description of the NASA GEOS composition forecast modeling
system GEOS-CF v1.0. J. Adv. Model. Earth Syst. 13, e2020MS002413 (2021).

7. For example, to find a global and regional multi-model air quality forecasts, go to
http://waqi.info/forecast/#/ (January 11, 2023).

8. Chang, L.-S. et al. Human-model hybrid Korean air quality forecasting system. J.
Air Waste Manag. Assoc. 66, 896–911 (2016).

9. Koo, Y.-S., Kim, S.-T., Cho, J.-S. & Jang, Y.-K. Performance evaluation of the updated
air quality forecasting system for Seoul predicting PM10. Atmos. Environ. 58,
56–69 (2012).

10. https://apps.ecmwf.int/datasets/data/macc-nrealtime / (January 11, 2023).
11. Peterson, D. A. et al. Meteorology influencing springtime air quality, pollution

transport, and visibility in Korea. Elementa-Sci. Anthrop. 7, 57 (2019).

12. Kim, H., Zhang, Q. & Heo, J. Influence of intense secondary aerosol formation and
long-range transport on aerosol chemistry and properties in the Seoul Metro-
politan Area during spring time: results from KORUS-AQ. Atmos. Chem. Phys. 18,
7149–7168 (2018).

13. Benedetti, A. et al. Aerosol analysis and forecast in the European Centre for
medium-range weather forecasts integrated forecast system: 2. Data assimilation.
J. Geophys. Res.-Atmos. 114, D13205 (2009).

14. Cox, C. & Munk, W. Measurement of the roughness of the Sea Surface from
photographs of the Sun’s glitter. J. Opt. Soc. Am. 44, 838–850 (1954).

15. Lee, S. et al. GIST-PM-Asia v1: development of a numerical system to improve
particulate matter forecasts in South Korea using geostationary satellite-retrieved
aerosol optical data over Northeast Asia. Geosci. Model Dev. 9, 17–39 (2016).

16. Lee, K. et al. Development of Korean Air Quality Prediction System version 1
(KAQPS v1) with focuses on practical issues. Geosci. Model Dev. 13, 1055–1073
(2020).

17. Go to http://www.cnemc.cn/en for China urban air quality real-time data release
platform (January 11, 2023).

18. Go to https://www.airkorea.or.kr for AIR KOREA (January 11, 2023).
19. Singrodia, V., Mitra, A. & Paul, S. A review on web scrapping and its applications.

in 2019 International Conference on Computer Communication and Informatics
(ICCCI) 1–6 (2019). https://doi.org/10.1109/ICCCI.2019.8821809.

20. Lee, S. et al. Impacts of uncertainties in emissions on aerosol data assimilation
and short-term PM2.5 predictions over Northeast Asia. Atmos. Environ. 271,
118921 (2022).

21. Chen, T. & Guestrin, C. XGBoost: A Scalable Tree Boosting System. in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining 785–794 (Association for Computing Machinery, 2016). https://
doi.org/10.1145/2939672.2939785.

22. Byun, D. & Schere, K. L. Review of the governing equations, computational
algorithms, and other components of the models-3 community multiscale air
quality (CMAQ) modeling system. Appl. Mech. Rev. 59, 51–77 (2006).

23. Zhang, L. et al. Potential sources of nitrous acid (HONO) and their impacts on
ozone: a WRF-Chem study in a polluted subtropical region. J. Geophys. Res. Atmos.
121, 3645–3662 (2016).

24. Macintyre, H. L. & Evans, M. J. Parameterisation and impact of aerosol uptake of
HO2 on a global tropospheric model. Atmos. Chem. Phys. 11, 10965–10974 (2011).

25. Sarwar, G. et al. Impact of enhanced ozone deposition and halogen chemistry on
tropospheric ozone over the northern hemisphere. Environ. Sci. Technol. 49,
9203–9211 (2015).

26. Babar, Z. B., Park, J.-H., Kang, J. & Lim, H. Characterization of a Smog chamber for
studying formation and physicochemical properties of secondary organic aero-
sol. Aerosol. Air Qual. Res. 16, 3102–3113 (2016).

27. Woo, J.-H. et al. Development of the CREATE inventory in support of integrated
climate and air quality modeling for Asia. Sustainability 12, 7930 (2020).

28. Skamarock, C. et al. A Description of the Advanced Research WRF Model Version
4.1. (2019) https://doi.org/10.5065/1dfh-6p97.

29. Brown, A. et al. Unified modeling and prediction of weather and climate: a 25-
year journey. Bull. Am. Meteorol. Soc. 93, 1865–1877 (2012).

30. Park, S.-Y. et al. Implementation of an ensemble Kalman filter in the Community
Multiscale Air Quality model (CMAQ model v5.1) for data assimilation of ground-
level PM2.5. Geosci. Model Dev. 15, 2773–2790 (2022).

ACKNOWLEDGEMENTS
This research was supported by the National Research Foundation of Korea (NRF)
grant funded by the Ministry of Science and ICT (MSIT) (Nos. 2020M3G1A1114617,
2020M3G1A1114621, and 2021R1A2C1006660).

AUTHOR CONTRIBUTIONS
J.Y., D.L., K.M.H., and S.-Y.P. carried out K_ACheMS model simulations and data
analysis; S.L., P.E.S., and G.R.C. established data assimilation technique; H.S.K., M.J.,
S.P., J.I., and J.K. developed machine learning techniques; V.-H.P. provided ECMWF
CAMS data; J.K. and C.-K.S. developed GOCI AOD retrieval algorithm; J.-H.W. prepared
emissions; S.-H.R. developed screen crawling technique; C.H.S. designed and
supervised research and wrote the paper.

COMPETING INTERESTS
The authors declare no competing interests.

J. Yu et al.

8

npj Climate and Atmospheric Science (2023)    41 Published in partnership with CECCR at King Abdulaziz University

http://waqi.info/forecast/#/
https://apps.ecmwf.int/datasets/data/macc-nrealtime
http://www.cnemc.cn/en
https://www.airkorea.or.kr
https://doi.org/10.1109/ICCCI.2019.8821809
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.5065/1dfh-6p97


ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41612-023-00363-w.

Correspondence and requests for materials should be addressed to Chul H. Song.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

J. Yu et al.

9

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2023)    41 

https://doi.org/10.1038/s41612-023-00363-w
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Synergistic combination of information from ground observations, geostationary satellite, and air quality modeling�towards improved PM2.5 predictability
	Introduction
	Results and discussion
	ECMWF CAMSnrt products over South Korea
	LEO vs. GEO satellite sensors
	Ill-location of information: satellite data vs. ground observations
	What if ground and satellite-derived observations are used together?
	Blank area of information
	Additional analyses and discussion
	Model performances for operational runs


	Methods
	KACheMS v2.0
	Data assimilation methods

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




