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Abstract

This study examines the spatiotemporal characteristics of the summer monsoon rainy season over
East Asia using six regional climate models (RCMs) participating in the Coordinated Regional
Domain Experiment (CORDEX) East Asia Phase II project. The framework combining multiple

global climate models (GCMs) with multiple RCMs produces a larger spread in summer monsoon
characteristics than driving GCMs only, enabling a better quantification of uncertainty factors. On
average, the RCM simulations reproduce the observed summer monsoon duration and area better
than the corresponding boundary GCMs, implying the added values of downscaling. Both the area
and duration of the East Asian summer monsoon are projected to increase by the late 21st century,
more strongly in high emission scenarios than in low emission scenarios, particularly in China.
Different responses between scenarios, which indicate warming mitigation benefits, only become
significant in the late 21st century due to large intersimulation uncertainties. Analysis of variance

results show that uncertainty in future monsoon area and duration is larger between boundary
GCMs than between RCMs over East Asia and its coastal subregions. A strong intersimulation
relationship between RCMs and GCMs supports that boundary GCMs substantially diversify
downscaled RCM projections through different climate sensitivities. Furthermore, the distinct
subregional responses in future monsoon area and duration emphasize the importance of
fine-resolution projections with appropriate uncertainty measures for better preparing

region-specific adaptation plans.

1. Introduction

Monsoons are a vital component of the global climate
system, and understanding and predicting changes in
summer monsoon characteristics is critical since half
of the annual precipitation occurs within the rainy
season (Wang and LinHo 2002, Zhisheng et al 2015,
Wang et al 2020). Researchers have conducted numer-
ical model experiments to understand global warm-
ing impacts on Asian summer monsoon character-
istics. They suggest that summer rainy season length

© 2023 The Author(s). Published by IOP Publishing Ltd

will increase (Kitoh et al 2013, Ha et al 2020, Moon
and Ha 2020, Sun et al 2022) and summer mon-
soon area will expand (Hsu et al 2012, Kitoh et al
2013, Wang et al 2020) over Asia under global warm-
ing scenarios. Changes in rainy season characterist-
ics are closely related to precipitation responses to
warming, and thus higher emission scenarios usu-
ally lead to stronger increases in monsoon precipit-
ation (Kitoh et al 2013, Chen et al 2020, Moon and
Ha 2020). Despite the differences in global climate
models (GCMs), results from the Coupled Model
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Intercomparison Project Phase 5 and 6 (CMIP5 and
CMIP6) multiple GCM simulations agree on the
warming-induced intensification of Asian summer
monsoon precipitation (e.g. Piao et al 2021).

Multi-GCM simulations enable the quantitat-
ive assessment of future projections on subcontin-
ental scales (Giorgi and Raffaele 2022), but the
GCMSs’ coarse resolution limits the subregional or
country-based projections. In particular, smaller
scale responses are more sensitive to the complex
topography and coastlines (e.g. Suzuki-Parker et al
2018, Lee et al 2020, Serland et al 2021). In this
respect, regional climate models (RCMs) have been
developed and utilized to downscale GCM outputs
for target regions. For East Asia, multiple RCM simu-
lations were performed at 50 km resolution using the
Coordinated Regional Domain Experiment (COR-
DEX; Giorgi et al 2009) Phase I East Asia domain
(e.g. Park et al 2016, 2021, Kim ef al 2021) and at
12.5 km resolution for a smaller domain of North-
east Asia (e.g. Ahn et al 2016, Suh et al 2016, Lee
et al 2017). Overall, these simulations predicted an
increase in East Asian summer monsoon rainfall
and extremes, depending on the scenarios and the
boundary forcing GCMs. RCM simulations under
the CORDEX East Asia Phase II framework have
recently been completed, which have a finer resol-
ution of 25 km (Gutowski et al 2016) than Phase
L. Overall, these simulations show a better perform-
ance than the Phase I results (e.g. Serland et al 2021).
Several studies analyzed these simulations to assess
RCM performances in tropical cyclones (Lee et al
2020) and East Asian mean climate (Kim et al 2020)
as well as future projections in heat stress (Juzbasic
et al 2022), Koppen—Trewartha climate-type (Jo et al
2019), potential for solar energy production (Park
etal 2022), and mean and extreme ocean wave heights
(Lietal 2022).

To understand the likely range of future pro-
jections, it is essential to decompose and quantify
the sources of uncertainty (e.g. Hawkins and Sutton
2011). Many RCM studies have investigated future
projections over East Asia, but accompanying uncer-
tainties in the projections remain unexplored. The
limited number of ensembles was one of the major
obstacles in representing the categorized sources
of uncertainty in future projections. Suzuki-Parker
et al (2018) investigated the future projection uncer-
tainties in mean and extreme precipitation around
Japan and found comparable contributions from
GCMs and RCMs to the projection uncertainty.
Kim et al (2020) used an analysis of variance
(ANOVA) approach to quantify model uncertain-
ties over Northeast Asia but only for present-day
precipitation. Christensen and Kjellstrom (2020,
2022) decomposed the sources of precipitation pro-
jection uncertainties over Europe and found lar-
ger contributions from GCMs than from RCMs to
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the intersimulation uncertainty. One exception was
observed for mountainous areas where the RCM con-
tribution was dominant, with a better representation
of orography and associated snow and ice.

Given the lack of uncertainty analyses for East
Asian monsoon characteristics, this study aims to
identify sources of future projection uncertainty
using a multi-GCM/multi-RCM ensemble frame-
work, focusing on summer monsoon duration and
area. We start by evaluating the multiple RCMs for
their performance in capturing observed summer
monsoon characteristics over East Asia and its subre-
gions. Next, intersimulation spreads of future RCM
projections are investigated to assess the contribu-
tion of GCM differences in comparison with those of
RCM differences. This paper is structured as follows.
In section 2, model simulations are described and
analysis methods are explained, including the defini-
tion of monsoon duration and area and the ANOVA
approach used to quantify the sources of uncertainty.
Results are provided in section 3 for RCM evaluations
and future projections for East Asian summer mon-
soon characteristics under high- and low-emission
scenarios, as well as GCM and RCM contributions to
future projection uncertainties. Summary and discus-
sions are given in section 4.

2. Data and methods

2.1. Data

We use 15 multiple RCM simulations obtained from
a four GCMs/six RCMs ensemble chain, particip-
ating in the CORDEX East Asia Phase II project
(table 1). Surface and lateral boundary conditions
for historical (1981-2005) and future (2025-2099)
periods are obtained from four different GCMs,
three from CMIP5 (GFDL-ESM2M, HadGEM2-AO,
and MPI-ESM-LR, hereafter GFD, HG2, and MPI,
respectively) and one from CMIP6 (UKESM1-0-
LL, hereafter UKE). To account for future projec-
tion uncertainties from the greenhouse gas emissions
pathways, two scenarios based on the representat-
ive concentration pathways (RCPs) and the shared
socioeconomic pathways (SSPs; O’Neill et al 2016) are
considered: low emission (LE; RCP2.6 for CMIP5 and
SSP1-2.6 for CMIP6, respectively) and high emission
(HE; RCP8.5 for CMIP5 and SSP5-8.5 for CMIP6,
respectively). Different physics and dynamics in the
RCMs can lead to broad ranges in downscaled res-
ults even under an identical driving GCM. Details of
the RCM configuration are provided in table S1. We
interpolate all model data into the 0.25° x 0.25° grids
of the Asian Precipitation-Highly-Resolved Obser-
vation Data Integration Towards Evaluation (APH-
RODITE) observations (Yatagai et al 2012), which are
used to evaluate the performance of RCMs. The land
grids are only considered according to the APHROD-
ITE land mask. A comparison of RCMs’ land masks
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Table 1. List of the CORDEX East Asia Phase I RCM simulations used in this study. Four different driving GCMs are applied to six
RCMs, producing 15 RCM simulations (see table S1 for RCM configurations). Different scenarios considered for GCM:s are indicated
below the model name. Calendar types of RCM simulations are presented. Some RCMs (HG3RA_UKE and WRF_UKE) have more days

in downscaled results by changing the calendar types.

GFDL- HadGEM2- MPI-ESM- UKESM1-
GCM ESM2M (GFD) AO (HG2) LR (MPI) 0-LL (UKE)

RCM RCP26|RCP85 RCP26|RCP85 RCP26|RCP85 SSP126|SSP585 Total (GCMs)
COSMO-CLM (CCLM) 360d Standard 360d 3
GRIMs 360d 1
HadGEM3-RA (HG3RA) 360d Standard Standard 3

MM5 360 d Standard 2
RegCM 365d 360d 360d 3

WREF 365d Standard Standard 3

Total (RCMs) 2 4 4 5 15

with the observations indicates negligible differences
(not shown). We obtain multimodel ensemble means
(hereafter referred to as MME) from all 15 RCM sim-
ulations with no weighting applied to the RCMs or
GCMs (table 1).

2.2. Summer monsoon duration and area

Our study focuses on the spatial (area) and tem-
poral (duration) characteristics of the summer mon-
soon over East Asia, which are defined based on daily
precipitation following previous studies (Wang and
LinHo 2002, IPCC AR5 2013, Kitoh et al 2013). First,
we exclude 29 February in all our analyses and then
calculate the daily climatological precipitation for 365
(or 360) days from 1 January to 31 (or 26) Decem-
ber, considering the different calendar types in the
RCM simulations (table 1). For instance, HG2 and
UKE use a 360 d calendar. We then obtain daily pre-
cipitation anomalies relative to the climatology dur-
ing January, which corresponds to the driest month in
East Asia. To exclude the submonthly variability from
these daily anomalies, we apply a harmonic analysis
and use the first 12 harmonics only (see examples in
figure S1). Finally, we obtain the onset and the retreat
date of the summer monsoon when the smoothed
precipitation anomaly firstly exceeds the 5 mm d~!
threshold and drops below 5 mm d~!, respectively
(Wang and LinHo 2002). By definition, the summer
monsoon duration is the number of days between
onset and retreat, and the summer monsoon area is
computed as the sum of areas where the monsoon
duration occurs. Our analysis ignores grids where
monsoon duration occurs less than 5 d, used as the
minimum threshold for the monsoon rainy season
characteristics. When testing the sensitivity to the
minimum 10 d duration threshold (cf Ha et al 2020),
the main findings remain unaffected (not shown).
When assessing future changes in monsoon duration,
we consider the common grids that belong to the
monsoon area in the current and future periods. Five
subregions are defined to explore the detailed behavi-
ors of East Asian summer monsoon changes: south-
ern, eastern, and northern China (SCN, ECN, and
NCN), Korea (KOR), and Japan (JPN). The sum of

3

these five domains is defined as East Asia (EAS). The
observed monsoon characteristics including onset,
retreat, duration, and area for EAS and its subregions
are provided in table S2.

2.3. Uncertainty quantification by ANOVA
Following the approach used by Suzuki-Parker et al
(2018) and Kim et al (2020), we apply an ANOVA to
our 15 simulations to identify sources of uncertainty
for historical and future simulations. Since ANOVA
was originally designed for a fully filled matrix, we use
a revised ANOVA, which is applicable for a partially
filled matrix like our GCM x RCM samples (table 1).
We consider two variabilities (sum of squares (SS))
due to different RCMs (SSrcm) and boundary GCMs
(SSgcm ). Scenario uncertainties are not considered
here for uncertainties, and results are, rather, com-
pared between scenarios to assess global warming
mitigation influences (see below). Thus, our ana-
lysis corresponds to a two-way ANOVA (GCM and
RCM). Our samples’ grand mean (Y «~) and total sum
of squares (SSt) can be expressed as equations (1)
and (2), where the value Yj; is from the GCM i and
the RCM j, respectively, and asterisks indicate mean
over indices. Note that we only have a single climato-
logical value for monsoon characteristics (Yj), which
leads to zero values for the SS of the errors (SSg) of
all our results, whereas other studies computed and
referred to it as the interannual variability in climato-
logy (Suzuki-Parker et al 2018, Christensen and Kjell-
strom 2020, Kim et al 2020). Thus, equation (2) omits
the SSg:

>,
v.=y S m

SST = Z Z (Yzj - Y**)2
i
= Z ni(Yi* - Y**)2 +an(Y*] - Y**)z
+ Znij(Yzj —Yi
ij

J
2
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From left to the right, SSt can be decomposed by
the GCM effect (SSgcm), RCM effect (SSpem), and
their interaction (SSiNyt), respectively. Although the
number of RCM simulations forced by a certain GCM
(nj, e.g. GFD: two, and UKE: five) or the number
of RCM types joined for the simulation matrix (1;,
e.g. GRIMs: one, and CCLM: three) is unequal across
models (table 1), the grand mean, SSt, SSgcm, and
SSrcm are arithmetically resolvable even in the con-
dition of an incomplete matrix. The computational
issue from this imperfect condition of samples would
occur in calculating the interaction term, SSiNt.
Rather than filling these missing values based on
statistical assumptions (Christensen and Kjellstrom
2020, 2022), we estimate the last term as residuals
(equation 3), considering that uncertainties due to the
GCM-RCM interactions (SSint) are generally much
smaller than GCM and RCM effects (Suzuki-Parker
et al 2018, Christensen and Kjellstrom 2020, Kim
et al 2020). Then, equation (2) can be expressed as
equation (4):

SSINT = Z Z (YZ] - Y**)2 - Z (Yz - Y**)z
i

i

j

SSt = SSccm + SSrem + SSINT- (4)

To supplement our findings, we also compare
our two-way ANOVA results with those from using
the fully filled matrix. Following previous studies
(Christensen and Kjellstrom 2020, 2022), we have
estimated nine missing elements of our GCM-RCM
matrix as the sum of expected values of correspond-
ing GCMs (Y} ) and RCMs (Y+)) after subtracting the
grand mean (Y+-) as Y;; = Y;» + Y+; — Y=+, and then
implemented two-way ANOVA on the full GCM-
RCM members. Concisely, our main findings remain
unaffected by the number of samples or the method
details, supporting our results based on the revised
two-way ANOVA.

3. Results

3.1. Model evaluations

The spatial patterns of the boreal summer (June—
July—August (JJA)) mean precipitation, summer
monsoon duration, and area for the current period
are displayed in figure 1. Note that we only use JJA
to evaluate spatial patterns and subregional averages
of boreal summer monsoon precipitation over East
Asia. When examining monsoon duration and area,
we consider all months covering May—September
(table S2). Compared to the observations (figures 1(a)
and (d)), RCM_MME (figures 1(c) and (f)) shows
a similar magnitude of mean precipitation, rainy
season length, and coverage over ECN and NCN.
However, it overestimates the precipitation amount
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and monsoon duration over SCN and southeast-
ern Japan (figure S1(c)) and underestimates them
over KOR and southern Japan. RCM_MME shows
better performance than GCM_MME with reduced
wet biases (figures 1(b) and (c)), but bias patterns of
RCM_MME are very similar to those of GCM_MME,
suggesting the important influence of the GCM
boundary conditions. Statistically significant inter-
simulation relationships are found between JJA mean
EAS precipitation amount and monsoon duration
and area (figures 1(g) and (h)), and between mon-
soon duration and area (figure 1(i)). This relationship
implies that the bias in summer mean precipitation
is closely related to the performance in spatiotem-
poral monsoon characteristics and also that these
rainy season characteristics are mutually connected.
In the observations, area of about 29.0 x 10° km?
experiences a summer monsoon during 56 d on aver-
age over EAS. Whereas GCMs tend to overestimate
precipitation and summer monsoon duration and
area, the majority of RCMs are distributed around
the observed values, leading to better performance
in RCM_MME but also manifesting large inter-RCM
spreads.

GCM and RCM skills for summer precipitation,
monsoon duration, and monsoon area are evalu-
ated over EAS and five subregions (figure 2). As
shown in figure 1, RCM_MME performs better than
GCM_MME but with larger intersimulation spreads.
In the observations, the longest monsoon duration
(91 d) occurs in JPN, starting from 11 June to 10
September, and the shortest (24 d) is seen in both
NCN and ECN, starting from 14 July to 7 August
and from 1 to 25 July, respectively (table S2). The
monsoon area is the largest in SCN, covering a large
portion (45.5%) of EAS, while NCN has the smal-
lest contribution (4.8%). When checking the relation-
ship between JJA precipitation and monsoon area and
duration, most of the subregions show strong inter-
simulation relations (r = 0.51, statistically significant
at 5% level). A weaker relation is found for monsoon
duration in JPN, and this is because the monsoon
onset or retreat dates are positioned far beyond JJA
(figure S1). The RCMs show improved performance
for summer monsoon characteristics over SCN and
JPN compared to the GCMs, which show overestim-
ation and underestimation, respectively. This added
value of RCMs in summer monsoon simulations is
consistent with the improved monsoon duration over
SCN and JPN compared to GCMs (figures 1(e) and
(f)). The largest inter-RCM spread in monsoon dur-
ation occurs over SCN and ECN, where individual
RCMs simulate diverse climatology patterns and only
a few RCMs can realistically capture the observations
(figure S2).

The intersimulation spreads of the RCMs are
much larger than those of the GCMs (figures 1, 2,
and S1). As described in section 2.3, the sources
of uncertainty are arithmetically decomposed by
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Figure 1. (a)—(c) Spatial distribution of boreal summer (June-July—August) mean precipitation (P, mm d~!) from observations
(OBS) and multimodel mean biases of driving GCMs (GCM_MME) and downscaled RCMs (RCM_MME) for the historical
period (1981-2005). (b) and (c) Dots indicate the intersimulation agreement in the sign of biases (100% for GCMs and > 80%
for RCM simulations). (d)—(f) Same as (a)—(c) but for the summer monsoon duration (DUR, days). MME results are shown for
grids where more than half of the simulations have DUR (at least 5 d). Five subregions in EAS are indicated in (a). (g)—(i)
Intersimulation scatter plots between P and DUR, P and summer monsoon area (AREA), and DUR and AREA over EAS. Each
capital letter (C, G, H, M, R, and W) represents the RCM type, and different colors indicate the type of driving GCMs. Results
from OBS (black circle) and GCM (colored circles) are displayed for comparison. The intersimulation correlation coefficients and
p-values are presented.

revised ANOVA (hereafter 4 x 6 RAW) and two-way
ANOVA based on the fully filled GCM x RCM mat-
rix (4 x 6 FULL). Figure S3 illustrates the decom-
posed means grouped by boundary GCMs or RCMs
and the portion of uncertainty from GCM, RCM,
and their interactions (residuals). Despite the dif-
ferences in methods and sample sizes, 4 x 6 RAW
(15 samples) and 4 x 6 FULL results (24 samples,
including nine reconstructed samples) show a larger
uncertainty originating from the choice of RCM than
GCM, suggesting that GCM biases in climatology can
be amplified by dynamical downscaling by different
RCMs in the present-day simulations. This supports
the conclusion of Kim et al (2020), who evaluated
mean precipitation results using a 3 GCM x 3 RCM
matrix.

3.2. Future projections and uncertainties

Changes in summer monsoon characteristics in the
late 21st century (2075-2099) are assessed over EAS
and subdomains under HE and LE scenarios relative

to the current climate (1981-2005). The RCM_MME
results (figure 3) show the future increases in sum-
mer mean precipitation (LE: 0.32 mm d~!, HE:
0.74 mm d~'), monsoon duration (LE: 8 d, HE:
20 d), and monsoon area (LE: 4.2 x 10° km?,
HE: 7.7 x 10° km?). The LE and HE projections
remain comparable during the early (2025-2049) and
mid-21st century (2050-2074), implying that global
warming mitigation effects (HE minus LE) are only
noticeable in the late 21st century. This also indic-
ates the inevitable global warming impact in the near-
term future, despite a sharp reduction in greenhouse
gas emissions, consistent with previous studies (Boer
and Arora 2013, O’Neill et al 2016).

There are large uncertainties in RCM projec-
tions with different signs of changes in some cases
(figures 3(c), (f), and (i)). The intersimulation spread
(1o, defined as noise, N) is larger than the MME val-
ues (defined as signal, S) for monsoon precipitation,
duration, and area in most cases, representing that the
signal-to-noise ratio (S/N) is less than unity. The S/N
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Figure 2. Domain averaged results of (a)—(f) boreal summer mean precipitation (P, mm d~!), (g)—(I) monsoon rainy season
duration (DUR, days), and (m)—(r) monsoon area (AREA, 10° km?) over East Asia (EAS), southern China (SCN), eastern China
(ECN), northern China (NCN), Korea (KOR), and Japan (JPN). Different colors are applied for observations (OBS; black), GCM
(purple), and RCM (cyan), respectively. Error bars indicate intersimulation spread based on one standard deviation (+10).
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Figure 3. Spatial distributions of future changes from RCM_MME in (a) and (b) summer mean precipitation (P, mm d '), (d)
and (e) monsoon rainy season duration (DUR, days), and (g) and (h) fraction (%) of RCM simulations projecting monsoon area
expansion (AREA) in the late 21st century (2075-2099) under low emission (LE) and high emission (HE) scenarios. Dots in (a)
and (b) indicate the intersimulation agreement in the sign of changes (> 80% RCM simulations). For DUR, grids that are
classified as monsoon by more than half of RCM runs are considered. East Asia (EAS) averaged changes in (c) P (mm d 1), (f)
DUR (days), and aggregated changes in (i) AREA (x 10° km?) for 2025-2049, 2050-2074, and 2075-2099. Color bars represent
MME values for LE (green) and HE (red) and error bars indicate intersimulation spreads (£10).
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Figure 4. (a) and (d) Future changes in monsoon duration and area over five subregions under LE (green) and HE (red)
scenarios. Bars indicate MME results and error bars represent inter-RCM spreads (+=10). (b) and (e) Projection uncertainties for
monsoon duration and area: total sum of squares (SSt; bars) and SSgem + SSrem (stars), and (c) and (f) relative contribution

of duration change becomes larger than unity under
HE in the late 21st century only while area exhib-
its significant change (S/N > 1) in both HE (1.24)
and LE (1.11). This implies that additional green-
house gas emissions will shift the probability of mon-
soon duration and area in most RCM simulations,
resulting in a robust temporal and spatial expan-
sion of summer monsoon season. Results from indi-
vidual RCM runs are provided in figures S4 and S5
for monsoon duration and area, respectively. RCMs
forced by UKE generally predict a longer duration and
broader area expansion than RCMs forced by MPI,
suggesting the important role of GCM boundary
forcings.

The relative contribution of GCM and RCM dif-
ferences to future projection uncertainties are quan-
tified for EAS and five subregions using ANOVA.
Figure S6 illustrates the quantified means from dif-
ferent variables of GCM (G1-G4) and RCM (R1-R6)
and relative contributions to the total uncertainties
of multiple RCM simulations for EAS. It can be
seen that the G4 (UKE) group has the largest mean
while the G3 (MPI) group has the smallest mean.
In contrast, RCM groups show smaller differences,
indicating that RCMs project similar changes in EAS
mean monsoon duration and area when forced by
the same GCM. Accordingly, the critical source of
uncertainties is found to be the type of GCM for
both changes in monsoon duration and area. The size
of GCM contributions is larger for monsoon dur-
ation (explaining 63%—83%) than area (explaining
44%-71%), whereas differences between HE and LE
results are not large. Figure 4 shows subregional res-
ults for the changes in monsoon duration and area,
RCM simulation uncertainties (SSt), and the relative
contribution of GCM and RCM (SSgcm and SSgrem)

to the total uncertainties (equation 4). RCM_MME
projects the lengthening of the monsoon rainy sea-
son and the expansion of the monsoon area in the
late 21st century over all five subregions with stronger
S in HE than in LE (figures 4(a) and (d)). Warming
mitigation (HE minus LE) exerts different regional
impacts on monsoon characteristics, having larger
changes for China (SCN, ECN, and NCN) than KOR
and JPN. However, the S/N is smaller than one in
many regions for both duration and area, indicating
large uncertainties which become stronger in HE than
in LE (figures 4(b) and (e)). Quantified uncertain-
ties show that SSt is largely explained by the sum of
SSgem and SSpeym in most regions, although GCM—
RCM interactions remain considerable in some cases
(e.g. duration of ECN, NCN, and KOR under LE).
The relative contributions of GCM differences to the
total projection uncertainties are found to be stronger
than RCM contributions, which is more clearly seen
in the HE results (figures 4(c) and (f)). This is con-
sistent with the EAS case (figure S6). GCM differences
explain more than half of the total projection uncer-
tainties over the coastal subregions (SCN, KOR, and
JPN), while the other inland regions (ECN and NCN)
exhibit similar or even slightly larger contributions
from RCM differences. This contrast suggests that
coastal regions tend to be affected more by GCM dif-
ferences (through prescribed sea surface temperat-
ures) than regions located more inland with com-
plex terrain, where RCM differences in physics and
dynamics will exert impacts comparable to GCM dif-
ferences (Im et al 2008, Li et al 2016, Park et al 2019,
2020, Coppola et al 2021).

We have further checked the influence of GCM
differences on RCM projection spread using intersim-
ulation correlation, following Nishant and Sherwood
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(2021). Statistically significant intersimulation cor-
relation coefficients are obtained for both monsoon
duration (r = 0.81) and area (r = 0.68; figure S7),
indicating the important role of GCMs in determin-
ing inter-RCM spreads. This supports our ANOVA-
based results and also the findings by Nishant and
Sherwood (2021), who analyzed mean and extreme
precipitation over Australia. Based on the equilibrium
climate sensitivity (ECS) values provided by Meehl
et al (2020), RCMs forced by a GCM with high sens-
itivity (UKE, ECS = 5.3) predict more increases in
monsoon duration and area than those forced by
GCMs with low sensitivity (MPI and GFD, ECS = 3.6
and 2.4, respectively). These are well linked with cor-
responding global warming projections (GFD: 2.6 °C,
HG2: 4.2 °C, MPI: 3.5 °C, and UKE: 6.1 °C, respect-
ively, in the late 21st century) under HE. Consider-
ing that the forcing difference between SSP and RCP
is unlikely to be large for HE or LE (O’Neill et al
2016, Wang et al 2021), our results highlight that the
choice of GCM with different climate sensitivity is
more important than the difference between scen-
arios (Giorgi and Raffaele 2022).

4. Summary and discussion

This study examines future changes in summer mon-
soon duration and area over Fast Asia using 15
RCM simulations participating in CORDEX-East
Asia Phase II experiments, where six RCMs are forced
by four GCMs in a multi-GCM/multi-RCM frame-
work. Evaluation results of RCM simulations show
that, on average, RCMs exhibit better performance in
simulating mean summer precipitation and monsoon
duration and area over East Asia than GCMs. How-
ever, individual RCM simulations show large ranges
of biases, which are found to be mainly due to RCM
differences rather than GCM differences according to
the ANOVA results, consistent with previous stud-
ies based on summer precipitation (Kim et al 2020).
Future projections based on 15 RCM runs indicate
that monsoon duration and area will increase in the
future, more strongly under HE scenarios than LE
scenarios. The spatiotemporal growth of monsoon
precipitation is robust only in the late 21st century
(multimodel mean signals being larger than inter-
model standard deviation), while near-term and mid-
term projections remain uncertain. Regional ana-
lysis shows that the global warming mitigation effect
(HE minus LE) becomes discernible more strongly in
China in the late 21st century (SCN, ECN, and NCN).
The ANOVA results show that GCM differences
majorly explain the RCM projection uncertainty for
the coastal subregions (SCN, KOR, and JPN). For
the other inland subregions (ECN and NCN), GCMs
and RCMs exhibit comparable contributions to the
total uncertainties, depending on the variables and
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scenarios. The results remain similar when repeat-
ing ANOVA using a fully filled GCM x RCM matrix.
Significant intersimulation correlations between four
GCMs and 15 RCM runs also support the important
role of GCM differences in shaping RCM projections
of monsoon characteristics.

Our results are largely consistent with previous
studies that analyzed multi-RCM projection uncer-
tainties in precipitation over Japan (Suzuki-Parker
et al 2018) and Europe (Christensen and Kjellstrom
2020). Our findings illustrate the importance of cli-
mate sensitivity in driving GCMs when producing
fine-scale outputs with multiple RCMs. As many
GCM studies have found in mean precipitation pro-
jections (Zhou et al 2020), the broader ranges of driv-
ing GCMs need to be considered to assess the plaus-
ible range of uncertainties in future monsoon beha-
viors. Further investigation based on an improved
GCM x RCM matrix with no missing elements and
an increased number of GCMs is warranted to reaf-
firm our findings.

Nevertheless, caveats remain due to the lack of
air—sea interactions (Cha et al 2016, Jin and Stan 2019,
Torres et al 2019) and land-use change (Ge et al 2019,
Hu et al 2019), and the possible influence of anthro-
pogenic aerosols (Zhao et al 2019, Shonk et al 2020,
Ryu et al 2022). In addition, the present study focuses
on the monsoon rainy season defined based on pre-
cipitation only, but some studies analyzed the sum-
mer monsoon season with regard to atmospheric cir-
culations (e.g. Sabeerali ef al 2018, Maharana et al
2019). Although their projections remain inconsist-
ent, this indicates the important role of dynam-
ical changes as well as thermodynamic changes (e.g.
Endo and Kioth 2014, Lee et al 2018). All these
factors are known to affect regional precipitation
over East Asia and their individual and combined
impacts on future East Asian monsoon characterist-
ics need to be examined based on improved RCM
simulations.
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