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Abstract: In an intelligent multi-target tracking (MTT) system, the tracking filter cannot track multi-
targets significantly through occlusion in a low-altitude airspace. The most challenging issues are
the target deformation, target occlusion and targets being concealed by the presence of background
clutter. Thus, the true tracks that follow the desired targets are often lost due to the occlusion of
uncertain measurements detected by a sensor, such as a motion capture (mocap) sensor. In addition,
sensor measurement noise, process noise and clutter measurements degrade the system performance.
To avoid track loss, we use the Markov-chain-two (MC2) model that allows the propagation of
target existence through the occlusion region. We utilized the MC2 model in linear multi-target
tracking based on the integrated probabilistic data association (LMIPDA) and proposed a modified
integrated algorithm referred to here as LMIPDA-MC2. We consider a three-dimensional surveillance
for tracking occluded targets, such as unmanned aerial vehicles (UAVs) and other autonomous
vehicles at low altitude in clutters. We compared the results of the proposed method with existing
Markov-chain model based algorithms using Monte Carlo simulations and practical experiments. We
also provide track retention and false-track discrimination (FTD) statistics to explain the significance
of the LMIPDA-MC2 algorithm.

Keywords: detection; data association; false-track discrimination (FTD); multi-target tracking (MTT);
Markov chain model 2 (MC2); probability of target existence (PTE); autonomous vehicle; UAV

1. Introduction

Multi-target tracking (MTT) is one of the most important problems due to the coa-
lescence nature of the measurements received by a moving-target sensor, such as radar.
These uncertain measurements with the coalescence problem result in inaccurate target-
state estimates [1]. The MTT system has been widely used in vehicle tracking [2], intel-
ligent transportation systems [3], missile manufacturing [4] and video surveillance [5].
Target identification and behavior analysis becomes more difficult due to occlusion and
background-clutter interference in tracking scenes as well as uncertain target motion [6].

Motion capture (mocap) systems have been used in state-of-art technology that utilizes
infrared cameras to record the motion of targets in the real-time scenes [7]. The target,
such as an unmanned aerial vehicle (UAV), reflects the infrared signals emitted by mocap,
which measures the position of the UAV. However, mocap often fails to detect a UAV in the
occluded region.
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In addition, the MTT system does not know any sort of a priori information regarding
unknown objects. Thus, it is always difficult to identify and detect the desired UAV target
in the presence of other nuisance objects, such as target thermal noise, birds, clouds and
terrain reflection. These unknown random objects generate clutter measurements. The
majority of target-associated measurements are concealed due to measurement occlusion
in the cluttered airspace surveillance. Thus, MTT faces severe difficulties in determining
the target’s trajectory and behavior due to low target-detection probabilities PD in such
an environment.

In the cluttered surveillance region, each sensor measurement is either a target or
clutter detection. The tracking filter utilizes all available sensor measurements for track
initialization and updates, which results in both the true tracks, which follow the target’s
trajectories and the false tracks, which follow the clutter measurements. The tracking system
begins with the initialization of tentative tracks that are usually false tracks, and then a
suitable tracking filter is utilized to update the tracks based on the sensor measurements.

Consequently, the tracking filter determines the probability of target existence (PTE)
based on the measurements collected up to and including current scan k to evaluate the
track-quality measure, which is an important tracking parameter to discriminate between
true and false tracks. This technical approach is known as false-track discrimination
(FTD) [8]. The FTD attempts to confirm the true tracks using the updated PTE based on
the current scan measurements and ultimately terminates the false tracks. The tracking
filter system uses the data association algorithms, such as [9–18], to associate the correct
measurements to tracks based on the data (measurement) association probabilities. The
algorithms described in [9–12] are used for single target tracking (STT), whereas the [13–18]
are designed for MTT algorithms. However, only [11,12,16–18] provide PTE as a track-
quality measure for FTD evaluation.

The concept of PTE was first developed using a conventional approach known as
integrated probabilistic data association filter (IPDA) in [11]. In addition, IPDA provides
an approximated Gaussian a posteriori probability density function (PDF) of the target-
state estimate; hence, it is also known as a single-scan data-association method. However,
integrated track splitting filter (ITS) [12] and multiple-hypothesis tracker [15] are referred
to as multi-scan data-association methods because they produce an exponentially growing
number of track components and a posteriori measurement PDFs. As a result, both [12]
and [15] are computationally complex methods.

The MTT filters use the joint data-association-based methods, such as joint PDA [13,14],
joint IPDA [16,17] and joint ITS [18], where the technical term “joint” implies that the
same measurements are assigned to tracks. The joint measurements are grouped in the
form of cluster tracks. The joint event has no clue about the target measurement. If
the measurement is detected from the target, then it may change the feasibility of the
detected measurement outcome from other targets or clutter. As a result, these joint data-
association methods produce increasing number of feasible joint event hypotheses, which
are allocated to tracks globally. These MTT algorithms enumerate all joint measurement to
track association hypotheses and compute their measurement probabilities at each scan.
Therefore, these joint integrated methods separate the joint measurements in the shape of
clusters, compromising severe computational complexity due to the increasing number
of clusters. In [16–19], the authors utilized cluster-control techniques in order to limit the
computational complexities; however, this effects the estimation performance. We also
investigated such methods for MTT but their computations exceed the feasible memory
of software.

The intractable computational complexities of the joint data-association-based algo-
rithms are overcome by the linear multi-target (LM) tracking approach, such as LM based
on IPDA (LMIPDA) [20–23]. LMIPDA updates a current track by assuming the detected
measurement being followed by other tracks as a modified clutter. Thus, LMIPDA avoids
the interference of other target tracks (or modified clutters), which allows the tracking
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system to ignore the complete process of joint data association. As a consequence of this
method, its computational complexity is almost similar to that of the STT methods.

In this research work, we integrate Markov chain two (MC2) and LMIPDA to develop
a new robust approach (referred as LMIPDA-MC2) for MTT in the occluded environment.
The target existence is a random event—if it is detected, then its PTE is maintained and
propagated in each scan using the Markov chain one (MC1) or two (MC2) model. The MC1
is used for the non-occlusion case [11], and MC2 is used for tracking occluded targets [24].
The integrated algorithms, such as IPDA, ITS, joint IPDA, joint ITS and LMIPDA, utilize
the MC1 model for propagation of the track PTE. The concept of MC2 was motivated in
the [11]; however, the authors used its application in [24–26].

The IPDA based on MC2 model was developed in [24,25]. In [26], the authors utilized
the MC2 model in the ITS algorithm for tracking through occlusions. In this conventional
method, the authors demonstrated that both IPDA and ITS based on MC1 cannot track
targets in occluded scans, and all their tracks become lost. However, ITS-MC2 improved
the track retention and FTD at the cost of computational complexities. In [27], the authors
utilized the MC2 model in ITS filter [12] for image target tracking in occluding scenarios.

To the best of knowledge, the LMIPDA algorithm is not experienced yet for the oc-
cluded targets. This motivated us to investigate the LMIPDA integrated with MC2 for MTT
in occluded and high cluttered environments. We modified the propagation and estimation
formulas for track initialization and updated them based on the PTE using the MC2 model.
We utilized the Monte Carlo simulations to compare the proposed LMIPDA-MC2 method
with the LMIPDA-MC1 [20–23], IPDA-MC1 [11] and IPDA-MC2 [24,25] algorithms.

Although, ITS-MC2 is also an example of tracking through occlusions [26,27], it be-
longs to the class of multi-scan data-association methods. Here, we only investigated
single-scan data-association-based methods because they are feasibly applicable for track-
ing systems at low computational complexity. In addition, we applied the position mea-
surement data produced by a mocap camera to the LMIPDA-MC2 and LMIPDA-MC1
methods for tracking multiple unmanned autonomous vehicles at low altitude in the
three-dimensional surveillance region.

In the next section, we discuss the tracking problems and Markov-chain and sensor
models. The method of LMIPDA-MC2 is developed in Section 3. The practical implemen-
tations, including false-track discrimination (FTD) are discussed in Section 4. Finally, we
analyze the method using both Monte Carlo simulations and real-time experiments as
illustrated in Section 5 followed by our conclusions in Section 6.

2. Problem Discussion

A sensor with infinite resolutions returns measurements detected from various isolated
objects, where each measurement is either originated by a true target or a clutter [26]. We
assumed the point targets so that each target creates one or zero measurements per each
sensor scan. We also assumed a non-homogeneous Poisson spatial process [28] to generate
the clutter measurements. Under these assumptions, the target being followed by a track is
not known, and its existence is random. Therefore, we consider the Markov-chain models
to update the target existence as well as its detectability as discussed in Section 2.1. A
sensor collects the measurements from different objects, including the desired targets as
discussed in Section 2.2.

2.1. Markov-Chain Model of Target Existence

We denote the target as well as the track by τ. The propagation of the target existence
is modeled by Markov-chain-one (MC1) and -two (MC2) as discussed in [11,24,26,27]. The
MC1 consists of two state hypotheses: the first is the probability that the target may exists
(denoted by P{χτ

k}), and the second hypothesis is the probability that the target may not
exist (represented by χτ

k ). Once the target existence occurs, then it remains detectable in
each scan. However, the probability of τth target existence (PTE) P{χτ

k} is detected with a
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low probability of target detection, Pτ
D. The conventional IPDA algorithm uses the MC1

propagation equation to propagate the PTE from scan k− 1 to scan k, such as:

P
{

χτ
k
}
= π1

1,1P
{

χτ
k−1

}
+ π1

2,1

(
1− P

{
χτ

k−1

})
,

P
{

χτ
k
}
= 1− P

{
χτ

k
}
= π1

1,2P
{

χτ
k−1

}
+ π1

2,2

(
1− P

{
χτ

k−1

})
,

(1)

where π1
.,. represents the state transition probability. Unlike the MC1 model, the MC2 model

has three hypotheses of the target state [24,26,27]. The first state hypotheses is a probability
that the target exists and is detectable as represented by P{χτ,d

k }; the second state is a event
probability P{χτ,n

k } that the target exists but it is temporarily undetectable due to occlusion,
multi-path fading or target-shadowing; and the third state hypotheses is a probability that
the target does not not exist P{χτ

k} (or P{1− χτ
k}) in scan k. The first two state hypotheses

are mutually exclusive events and are represented in terms of probabilities conditioned on
the measurements collected by sensor in the current scan k. Thus, we have:

P{χτ
k} = P

{
χτ,d

k

}
+ P

{
χτ,n

k
}

(2)

The event χτ,d
k has the known Pτ

D, whereas the event χτ,n
k has Pτ

D = 0. The MC2
propagates these probabilities by using the following expressions:

P
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(3)

where π2
.,. denotes the coefficients of the Markov chain, which define the time updates of

each state. These coefficients must be normalized so that:

π2
1,1 + π2

1,2 + π2
1,3 = π2

2,1 + π2
2,2 + π2

2,3 = π2
3,1 + π2

3,2 + π2
3,3 = 1. (4)

As consequence of the Markov coefficients, π2
3,1 and π2

3,2 treat the target’s non-existence
event P{1− χτ

k} as a target-birth in the track-initialization procedure, and therefore it
should not be a part of the track update; otherwise, a false track, which constitutes
P{1− χτ

k} becomes a true track. Thus, to avoid this misinterpretation in P{1− χτ
k}, we

assumed that π2
3,1 = π2

3,2 = 0 and π2
3,3 = 1. The remaining Markov coefficients must be

initiated with a track-initialization process by using [8]:

π2
a,a = P

{
χτ

k | χτ
k−1
}
u 1−

∆Tk,k−1

Tavg
, a = 1, 2, 3 (5)

where ∆Tk,k−1 represents the time difference between scans k− 1 and k, and Tavg represents
the average propagation time period of the target existence. Thus, π2

a,a updates the target
state existence in scan k, provided that it existed in scan k− 1.

We assumed a three-dimensional coordinate system to track the target trajectory state
xτ

k , which consists of a six-dimensional state vector defined by xτ
k = [x, y, ẋ, ẏ, ẍ, ÿ]t (where

the superscript t indicates a transpose of matrix).The tracking system uses the following
state propagation equation to update the target state from scan k− 1 to scan k:

xτ
k = Fk−1xτ

k−1 + vk−1, (6)
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where Fk−1 represents the state propagation matrix, and vk−1 is the Gaussian white-noise
of the target model with a zero mean and a known covariance Qk−1.

2.2. Sensor Measurement Model

The sensor model collects a random number of uncertain measurements that originate
from random objects, including the desired target. The accumulative set of measurements
received by a sensor in scan k is denoted by Zk. The target measurement in the current scan
k is obtained using the following position equation:

zτ
k = Hkxτ

k + wk, (7)

where zτ
k is the three-dimensional position vector, Hk = [I3×3, 03×3] (where I3×3 and

03×3 represent the identity and zeros matrices, respectively) denotes the measurement
matrix, and wk represents the Gaussian random variable of sensor model with zero mean
measurement noise and a known covariance Rk.

The Poisson process [28] generates a non-homogeneous distribution of clutter mea-
surements parameterized by its density, which is a function of coordinate measurements
in the surveillance space, which is defined by ρτ

k,i ≡ ρ(Zk,i) (where i denotes the index of
measurements).

3. Integration of LMIPDA and MC2 (LMIPDA-MC2)

The proposed algorithm integrates the LMIPDA with MC2 (LMIPDA-MC2) to deal
with occlusion situation in a cluttered surveillance environment. Due to the uncertain
sensor measurements, the track remains tentative until the track update, which is based
on the measurements collected up to (and including) scan k. We applied the two-point
measurement difference formula [8], which uses each pair of measurements accompanied
by two subsequent scans {Zk} = {Zk, Zk−1} to initialize a track. Each track is described
by its initial PTEs P{χτ,d

k−1 | Zk−1} and P{χτ,n
k−1 | Zk−1}. The track calculates the updated

probability density function (PDF) of the state measurement x̂τ
k−1|k−1 and its measurement

error covariance P̂τ
k−1|k−1 by using the following expressions:

x̂τ
k−1|k−1 =

[
zτ

k(
zτ

k − zτ
k−1

)
/T

]
,

P̂τ
k−1|k−1 =

[
Rk Rk/T

Rt
k/T (Rk + Rk−1)/T2

]
,

(8)

where the hat accent indicates an estimate, and T denotes the sampling time. The predefined
initial PTEs P{χτ,d

k−1 | Zk−1} and P{χτ,n
k−1 | Zk−1} are conditioned on the initial measurement

set Zk−1 and on scan k− 1. These initial PTEs are propagated to the next scan k based on
the MC2 model by using Equation (3). Thus, Equation (3) becomes:

P
{

χτ,d
k |Zk−1

}
= π2

1,1P
{

χτ,d
k−1|Zk−1

}
+ π2

2,1P
{

χτ,n
k−1|Zk−1

}
+ π2

3,1

(
1− P

{
χτ

k−1|Zk−1

})
,

P
{

χτ,n
k |Zk−1

}
= π2

1,2P
{

χτ,d
k−1|Zk−1

}
+ π2

2,2P
{

χτ,n
k−1|Zk−1

}
+ π2

3,2

(
1− P

{
χτ

k−1|Zk−1

})
.

(9)

The track recursion starts from scan k− 1 using the updated state PDF and its covari-
ance obtained from Equation (8) as well as the predicted PTEs obtained from Equation (9).
LMIPDA-MC2 utilizes the Kalman filter prediction formula [29] to predict the state estimate
accompanied by its covariance in the current scan k, such as:

x̄τ
k|k−1 = Fkx̂τ

k−1|k−1

P̄τ
k|k−1 = FkP̂τ

k−1|k−1Ft
k + Qk

, (10)
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where a bar accent indicates a prediction. The predicted position measurement z̄τ
k,i (where i

indicates the ith measurement) is selected from a set of measurements Zk, which were used
to develop the validation gate using the measurement-validation selection criterion [11]:(

Zk,i −Hkx̄τ
k|k−1

)t
(Sk)

−1
(

Zk,i −Hkx̄τ
k|k−1

)
≤ α, (11)

where α is the measurement-selection threshold, and Sk = HkP̄τ
k|k−1Ht

k + Rk is the covari-
ance of the measurement innovation. The probability that the detected measurement is a
target measurement falling in the validation gate is known as the gating probability [8],
Pτ

G = 1 − e−0.5α. The measurement validation threshold limit is determined from the
gating-probability formula. In this method, the size of the validation gate is selected as
α = 13.5, which corresponds to Pτ

G = 0.99. Thus, the volume of the validation gate Uk in
scan k is determined by a priori PDF of the predicted measurement conditioned on Zk−1,
that is p(z̄τ

k | Zk−1) falling in the gate. This is defined by:

zτ
k =

⋃
i

zτ
k,i, i ∈ Uk , (12)

with the corresponding measurement likelihood [11] expressed as:

lτ
k,i =

1√
2πSk

e−0.5
(

z̄τ
k,i−Hk x̄τ

k|k−1

)t
S−1

k

(
z̄τ

k,i−Hk x̄τ
k|k−1

)
. (13)

The weighted probability Pτ
k,i that the validated measurement z̄τ

k,i with respect to track
τ is originated by a τth target measurement zτ

k is obtained by using the following [20]:

Pτ
k,i = Pτ

DPτ
GP{χτ,d

k | Zk−1}
lτ
k,i/ρτ

k,i
mk
∑

i=1
lτ
k,i/ρτ

k,i

, (14)

where mk denotes the number of validated measurements. These a priori probabilities of
the predicted measurements are mutually exclusive events so that only one measurement
is a target detection in scan k. Note that, if there is no measurement selection i = 0 from
Equation (11), then lτ

k,i = 0, and thus Pτ
k,i = 0. In addition, the a priori probability that the

predicted measurement is not followed by neighbored track σ in the coordinate of the τth
track is defined by [20]:

Pτ
k,i = ∏

σ∈∆

(
1− Pσ

k,i

)
, (15)

where ∆ denotes the set of tracks excluding τth track, which is in the update process, and σ
belongs to ∆. LMIPDA-MC2 assumes the predicted measurements followed by a track σ
as modified clutter (or fake target) measurement because it is actually detected by the τth
track. Consequently, the clutter measurement density ρτ

k,i is updated by a modified clutter
measurement that is calculated by [20]:

µτ
k,i = ρτ

k,i +
σ=τn

∑
σ=1
σ 6=τ

lσ
k,iP

σ
k,i(

1− Pσ
k,i

) , (16)

where τn indicates the number of tracks, and µτ
k,i denotes the updated clutter measurement

density calculated in the coordinate of z̄τ
k,i with respect to the τth track.

Equation (16) is used to obtain the track-likelihood ratio and data-association probabil-
ities [24] of the predicted measurements z̄τ

k,i by using Equations (17) and (18), respectively.

λτ
k,i = 1− Pτ

DPτ
G + Pτ

DPτ
G

mk

∑
i=1

lτ
k,i

µτ
k,i

, (17)
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and

βτ
k,i =

Pτ
DPτ

G
lτ
k,i

µτ
k,i

P
{

χτ,d
k | Zk−1

}
λτ

k,iP
{

χτ,d
k | Zk−1

}
+ P

{
χτ,n

k | Zk−1
} . (18)

If the predicted measurement being tracked in current scan k is not originated by a
target, then the data association probability with respect to i = 0 becomes [24]:

βτ
k,0 =

1− Pτ
DPτ

GP
{

χτ,d
k | Zk−1

}
+ P

{
χτ,n

k | Zk−1
}

λτ
k,0P

{
χτ,d

k | Zk−1

}
+ P

{
χτ,n

k | Zk−1
} , (19)

where λτ
k,0 = 1− Pτ

DPτ
G.

LMIPDA-MC2 obtains target-state estimates with respect to the τth track by using the
Kalman-filter-update formula [29] as expressed in the following equations:

x̂τ
k|k,i = x̄τ

k|k−1 + Kk

(
z̄τ

k,i −Hkx̄τ
k|k−1

)
P̂τ

k|k,i = P̄τ
k|k−1 −KkHkP̄τ

k|k−1

, (20)

where Kk = P̄τ
k|k−1Ht

kS−1
k is known as the Kalman gain in scan k. These target-state

estimates corresponding to the validated measurements z̄τ
k,i are approximated by one

Gaussian mean and covariance using the following equations:

x̂τ
k|k =

mk

∑
i=1

βτ
k,ix̂

τ
k|k,i, (21)

and

P̂τ
k|k =

mk

∑
i=1

βτ
k,i

(
P̂τ

k|k,i + x̂τ
k|k,i

(
x̂τ

k|k,i

)t
)
− x̂τ

k|k

(
x̂τ

k|k

)t
. (22)

Similarly, each updated target-state estimate is retrieved in the next scan k+ 1 to obtain
the predicted state estimate x̄τ

k|k−1 and its covariance P̄τ
k|k−1 conditioned on the Zk−1 by

using the prediction Equation (10).
LMIPDA-MC2 evaluates the track quality based on the total updated PTE using

Equation (2), which is the sum of the following two updated probabilistic events condi-
tioned on the measurement set Zk in the current scan k:

P
{

χτ,d
k |Zk

}
=

λτ
k,i P
{

χτ,d
k |Zk−1

}
1−
(

1−λτ
k,i

)
P
{

χτ,d
k |Zk−1

} ,

P
{

χτ,n
k |Zk

}
=

P{χτ,n
k |Zk−1}

1−
(

1−λτ
k,i

)
P
{

χτ,d
k |Zk−1

} ,

(23)

so that the total updated probability of occluded target existence becomes [24]:

P{χτ
k |Zk} = P

{
χτ,d

k |Zk

}
+ P

{
χτ,n

k |Zk
}

(24)

The proposed LMIPDA-MC2 method recursively iterates from Equation (8) to
Equation (24) to obtain target-state estimates with respect to the τth track in each scan k.
Equation (24) is used to evaluate the FTD, which is an important parameter in multi-target
tracking. This method is illustrated using a flowchart in Figure 1, which also shows the
procedure of multi-target state statistics evaluation as depicted in the dotted-lined box. The
procedure of the algorithm’s statistics calculation is also described in the next section.
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Figure 1. The flowchart of the LMIPDA-MC2 method [30].

4. False-Track Discrimination (FTD)

In general, the track is tentative;therefore, it is necessary to evaluate the nature of a
track. We used PTE to determine the track quality, which is required for FTD. We assumed
the predefined confirmation and termination thresholds to evaluate the track quality. A
track attains the confirmed status if its updated PTE value surpasses the confirmation
threshold (as indicated by γct in Figure 1). However, a track terminates its status if its
updated PTE value becomes lower than the termination threshold. Therefore, the track-PTE
is recursively updated and propagated in each scan k using Equations (9) and (24).

A track could be lost and concealed due to the occlusion of an uncertain target and clut-
ter measurements leading it to track unknown measurements in the surveillance airspace.
To identify the confirmed track status in the occlusion situation, the LMIPDA-MC2 utilizes
the chi-squared statistic evaluation criteria [8,31], which is given by:(

x̂τ
k|k − xτ

k

)T(
Pτ

1|1

)−1(
x̂τ

k|k − xτ
k

)
< η , (25)

where Pτ
1|1 represents the covariance matrix of sensor measurement noise, and η indicates

the minimum distance threshold between the estimated track state x̂τ
k|k and the desired

target state xτ
k . Thus, a track is referred to as a confirmed true track (CTT) if its minimum

normalized distance squared (MNDS) value (x̂τ
k|k − xτ

k ) is within the threshold limit ≤ 20;
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otherwise, it becomes a confirmed false track (CFT) as depicted in the dotted-line box in
Figure 1. This threshold value is a designer’s choice that depends on the target model
as well as the complexities in the tracking system. We applied Equation (25) using each
confirmed track state estimate (obtained in Equation (21)) and each desired target state
(expressed by Equation (6)) in each scan k.

In the occlusion situation, it is also difficult to identify the target’s identity, even if we
have obtained the CTT. Some of the CTTs follow the same target, which tends to mislead
the identities of the tracks as well as targets. Therefore, the LMIPD-MC2 exploits the
bidding method using the auction algorithm [30] as indicated in Figure 1. The MNDS
parameter obtains the weighted benefit score with respect to each CTT, which raises the bid
for asynchronous CTTs. Therefore, the benefit score of each CTT is compared so that the
winning bid with the highest benefit score is obtained for a asynchronous CTT. As result,
the number of CTTs becomes equal to the number of targets in each scan k.

5. Illustrative Simulation and Experimental Results

We analyzed the statistics of the proposed LMIPDA-MC2 method using Monte Carlo
simulations and real-time experiments for tracking multi-targets in occlusions at low-
altitude airspace. In the following subsections, we compare the analytical results of
LMIPDA-MC2 and existing reference methods using both simulations and experiments.

5.1. Monte Carlo Simulation Results

In the simulation scenario, we considered the two-dimensional occluded surveil-
lance environment, which is 450 m wide and 600 m long. The multi-targets are mov-
ing at low-altitude airspace through the clutters with a heavy measurement density of
ρk,i = 1× 10−4 m−2 as shown in Figure 2. In this occluded surveillance area, a sensor gen-
erates the measurements corrupted by white noise with a known covariance Rk = 25I2×2
(where I2×2 represents the identity matrix). The average number of clutters per each scan
is 45. In addition, the target dynamic model produces the process noise, q = 0.75 m2/s4,
which further corrupts the target state, which has a probability of detection of Pτ

D = 0.9.
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Reference Trajectory

Figure 2. Multi-target tracking in occlusion and clutter.

Under the circumstances described above, we compare the MTT performance of the
proposed LMIPDA-MC2 method with the LMIPDA-MC1, IPDA-MC2 and IPDA-MC1
algorithms in terms of the estimation accuracies, track retention and track-quality measure
of FTD. These algorithms were simulated for 200 Monte Carlo simulation runs with 36 scans
per run. The sampling time in each scan was assumed to be T = 1 s. Approximately, 63, 600
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(318 per run) tracks were initialized by each algorithm. These tracks were initialized using
the following two-scan velocity formula [8]:

Vk,i =

√
(Xk−1,i −Xk,i)

2 + (Yk−1,i − Yk,i)
2

T
≤ Vmax, (26)

where Vmax denotes the target’s maximum velocity, which equals 25 m/s, Xk−1,i, Xk,i, Yk−1,i,
and Yk,i denotes the ith measurement in the coordinates of two successive scan’s measure-
ment sets, Zk = {Zk−1, Zk}. A track is initialized when the resultant ith measurement
velocity Vk,i satisfies Equation (26).

The two-dimensional initial position vectors of targets 1, 2 and 3 are [50; 200], [100; 350]
and [100; 50], respectively, as shown in Figure 2. These closely moving targets in the
occlusion certainly crossed near the coordinate points at approximately [335; 200]m in scans
19 and 20; in which, Targets 2 and 3 met in scan k = 19 at the same position with only
3 m difference in their altitude. The information about the initial positions of targets is
supplied to the LMIPDA-MC2 algorithm but their dynamic motion is not known. The
information about the two-dimensional velocity vector of the target state is obtained by
using Equation (26) in the track-initialization process. Therefore, the target’s identities are
untagged, and their measurements are randomly merged with the background clutters.
Thus, the proposed filter uses a series of position measurements observed over time using
Equation (7), including statistical noise and other measurement inaccuracies to produce
estimates of unknown state variables that tend to be more accurate and realistic scenarios.

In the surveillance space, the occlusion occurred in scans k = 19 to k = 23. In the
occlusion situation, Figure 2 also illustrates the effective tracking results of the proposed
LMIPDA-MC2 algorithm. We assumed a nearly constant velocity model for target state
propagation with the following propagation matrices [8]:

Fk−1 =

[
I2×2 TI2×2
02×2 I2×2

]
, (27)

Qk−1 = q

 0.25T4I2×2 0.5T3I2×2

0.5T3I2×2 T2I2×2

, (28)

where 02×2 is the 2 × 2 zeros matrix. The proposed LMIPDA-MC2 and the reference
method IPDA-MC2 utilize the MC2 model for track maintenance and update the process
in each scan k using a three-state target-existence transition matrix [24,25] as expressed in
Equation (29). However, the IPDA-MC1 [11] and LMIPDA-MC1 [20,21] algorithms utilize
the dynamics of the target existence event using a two state MC1 model with a target
transition probability matrix as expressed in Equation (30).

π =

0.98 0.02 0.02
0.02 0.98 0.02

0 0 1

, (29)

π =

[
0.98 0.02

0 1

]
(30)

Each track was initialized with a lowest PTE of 0.01, and its track quality PTE was
evaluated by varying the track confirmation threshold in response to obtain almost the
same number of CFTs (≈3). Each confirmed track state was consistently confirmed unless
the track’s PTE reached the lowest track-termination threshold of 0.005.

The technical parameters discussed above were applied to IPDA-MC1, IPDA-MC2,
LMIPDA-MC1 and LMIPDA-MC2 for a fair comparison analysis. Figure 3 shows the results
of FTD in terms of number of CTTs with respect to all targets. The targets are moving in
occluded scans k = 19 to k = 23 as shown in Figure 2. In these occluded scans, the track
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retention of IPDA-MC1 and IPDA-MC2 is quite weak because of undetectable targets, so
that both methods lose almost 70% of the number of CTTs in scan k = 20 as depicted in
Figure 3. We can see that standard LMIPDA has a slower response to FTD because it uses
the MC1 model for track PTE propagation in occlusion. The LMIPDA-MC1 method also
reduces track retention in these occluded scans and then, from scan k = 23, it improves
the track PTE for FTD as depicted in Figure 3. Therefore, there is a high chance of track
loss if we use the MC1 model for PTE propagation in the occlusion. The FTD results of
LMIPDA-MC1 and LMIPDA-MC2 have similar trends of track confirmation near the end
scans. However, LMIPDA-MC2 quickly and accurately builds up the track-quality measure
of PTE. Thus, the number of CTTs in LMIPDA-MC2 is the highest in each scan k as shown
in Figure 3.
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Figure 3. Number of confirmed true tracks (CTTs) out of 200 runs.

We verified the FTD results again using Monte Carlo simulation for 1000 runs as
shown in Figure 4. The simulation parameters and surveillance scenario is the same as
before. We can see that the reference methods have slower rates of track confirmation. Both
the IPDA-MC1 and IPDA-MC2 algorithms lost almost 50% CTT. This track lost is due to
the measurement occlusion. The standard LMIPDA method, which uses the MC1 model
lost few of its confirmed tracks near the occluded scans k = 19 to k = 23. However, after
occlusion scan k = 22, the tracking response of LMIPDA improved well as compared to
IPDA-type filters. In comparison to the reference methods, the proposed LMIPDA-MC2
significantly improved the FTD performance. Thus, the purpose of the LMIPDA-MC2 is
useful and feasible in the application of multi-target-tracking systems.

The position-estimation error of the targets (τ = 1, 2, 3) is calculated using the root
mean square error (RMSE) process with respect to each CTT as illustrated in Figure 5a–c.
The RMSE statistics were accumulated for only 200 simulation runs since the analytical
results remained the same. Both LMIPDA-MC1 and LMIPDA-MC2 had similar trends
of RMSE statistics; however, the RMSEs of both IPDA-MC1 and IPDA-MC2 were higher
specifically at the occluded scans k = 20 to k = 22 as depicted in Figure 5. This shows that
the growth of track PTE is slow in case of both IPDA-MC1 and IPDA-MC2 in the occluded
and cluttered environment. The RMSE statistics of the algorithms converged at the final
scan because they used the same measurement set collected in scan k = 36 to conclude
the simulations.
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Figure 4. Number of confirmed true tracks (CTTs) out of 1000 runs.

5 10 15 20 25 30 35

Time [s]

0

2

4

6

8

10

12

T
a
rg

e
t 
1
: 
R

M
S

E
 [
m

]

IPDA-MC1

IPDA-MC2

LMIPDA-MC1

LMIPDA-MC2

(a)

5 10 15 20 25 30 35

Time [s]

0

2

4

6

8

10

12

14

16

T
a
rg

e
t 
2
: 
R

M
S

E
 [
m

]

IPDA-MC1

IPDA-MC2

LMIPDA-MC1

LMIPDA-MC2

(b)
Figure 5. Cont.



Drones 2023, 7, 241 13 of 19

5 10 15 20 25 30 35

Time [s]

0

1

2

3

4

5

6

7

8

9

10

T
a
rg

e
t 
3
: 
R

M
S

E
 [
m

]

IPDA-MC1

IPDA-MC2

LMIPDA-MC1

LMIPDA-MC2

(c)

Figure 5. Root mean square errors (RMSEs). (a) RMSE of Target 1. (b) RMSE of Target 2. (c) RMSE of
Target 3.

We evaluated the CTT retention statistics of the algorithms accounting 200 runs of
simulations as detailed in Table 1. A unique identity index was assigned to each initialized
track. We checked the identity of CTT before and after the intersection coordinate point of
the multi-targets in order to find the following analytical results:

• Case: to obtain the total number of confirmed track pursuing the original τth target in
scan k = 13.

• Okay: to obtain the total number of CTTs that still retain the original τth target in scan
k = 28.

• Switched: to obtain the total number of CTTs that switched the original target to some
other CTT and now pursue a different target in scan k = 28.

• Lost: to obtain the total number of CTTs that were lost in scan k = 28 because they
were either terminated or they became CFTs.

• End: to obtain the total number of CTTs at the end scan k = 36.
• Execution time [s]: the average execution time per run.

Table 1. Target-track-retention statistics of the algorithms.

Algorithm Case Okay Switched Lost End time [s]

IPDA-MC1 517 449 38 30 574 0.3
IPDA-MC2 513 422 56 35 561 0.4
LMIPDA-MC1 568 550 16 2 595 0.2
LMIPDA-MC2 600 598 2 0 599 0.5

As listed in Table 1, the LMIPDA-MC2 algorithm had the highest number of Case,
Okay and End and additionally, the lowest number of Switched and Lost when compared
to the other methods. In fact, the proposed method had 0 lost out of 200 runs. Table 1 also
details the average execution time per run of the algorithms. We utilized the MATLAB
R2020b software on the 11th Intel CoreTM i7-1165G7 (@ 2.80 GHz, 2.80 GHz) computer for
programming the algorithms.

5.2. Experimental Results

In the experimental scenario, we compared the statistical results of the proposed LMIPDA-
MC2 algorithm and the conventional LMIPDA-MC1 method in the three-dimensional oc-
cluded surveillance airspace. The set of position measurements used in this paper was
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originally published in [32] by the corresponding author of this paper. In the experiment,
we utilized the original position data to evaluate the proposed LMIPDA-MC2 method.
In [32], the surveillance area was assumed to be 3 m long along the x-axis and 4 m wide
along the y-axis as shown in Figure 6a. This region rendered three autonomous vehicles
(battery-operated vehicles) and a multi-rotor unmanned aerial vehicle (UAV) as shown in
Figure 6b and 6c, respectively. This type of MTT system consisted of the motion capture
(mocap) camera, UAV model, autonomous vehicle and a computer, which was used for
analyzing the statistical results of the tracking method as shown in Figure 6d.

(a)

(b)

(c)

(d)

Figure 6. Experimental platform: (a–c) are reprinted from Expert Systems with Applications, 177,
Myunggun Kim, Sufyan Ali Memon, et al., Dynamic based trajectory estimation and tracking in an
uncertain environment, Page No. 7, Copyright (2021), with permission from Elsevier. (a) Surveillance
region. (b) UAV. (c) Autonomous vehicle. (d) Experimental setup.

We utilized four OptiTrack Prime 13 mocap cameras in a three-dimensional surveil-
lance environment. The Motive 2.2 (a mocap software, which was installed in a computer)
was used to measure the position measurement of each target, which was simultaneously
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returned to the tracking algorithm in each scan. The communication between the mocap
camera and Motive was linked by a User Datagram Protocol (UDP) as depicted in Figure 6d.
The UAV is controlled by a RC (remote control) input, while autonomous vehicles can move
freely without user control. A UAV started from an initial position [−1.98,−1.34,−0.15]t,
and the other vehicles moved randomly in the three-dimensional surveillance area. There-
fore, the motion and the trajectory behavior of each target were not known to the algorithm.
The typical values of the experimental parameters are shown in Table 2.

Table 2. Experimental parameters.

Parameter Description Value

A Surveillance region [3, 4, 4]t m
Rk Measurement noise covariance 0.08I3×3
Number of scans Number of time steps 83
T Sampling time between scans 0.25 s
PD Detection probability 0.8
ρτ

k,i Clutter measurement density 5× 10−4 m−3

α Validation measurement-selection threshold 5

The proposed LMIPDA-MC2 was applied to the tracking system, which received the
measurements from the mocap system and estimated their measurements simultaneously
for tracking multi-targets in each scan. The target’s identities were untagged, and their
position measurements were returned by mocap markers, which were placed on each target.
We can see the mocap markers (silver colored) sticked in both autonomous vehicles and a
UAV as shown in Figure 6b and 6c, respectively.

The tracking performance of both methods were compared by estimating their trajectories
in occlusion situations as shown in Figure 7a,b. Both the LMIPDA-MC1 and LMIPDA-MC2
methods used the three-dimensional state propagation and process noise covariance matrices
in Equation (6) to compute the motion of each vehicle, including the UAV. These matrices
are same as expressed in Equations (27) and (28); however, the two-dimensional identity and
zeros matrices must be converted in to three-dimensional matrices.

The UAV and autonomous vehicles trajectories are depicted by dashed colored lines,
and their estimated trajectories are depicted by solid colored lines in Figure 7. We can see
that the proposed LMIPDA-MC2 estimated the target motion more precisely and accurately
without missing the target track. However, the LMIPDA-MC1 missed the target track at
many intervals due to occlusion at different areas of surveillance especially in the region of
[−1.85,−0.82]t m and [−0.42, 1.4]t m.
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Figure 7. Tracking and estimation of each target trajectory: The original position of all autonomous
vehicle (depicted by dashed colored lines) are reprinted from Expert Systems with Applications, 177,
Myunggun Kim, Sufyan Ali Memon, et al., Dynamic based trajectory estimation and tracking in an
uncertain environment, Page No. 8, Copyright (2021), with permission from Elsevier. (a) LMIPDA-
MC2. (b) LMIPDA-MC1.

Figure 8 shows the position estimation of a UAV and autonomous vehicles in the
x-, y- and z-axes using the proposed LMIPDA-MC2 method, whereas Figure 9 shows the
position-estimation results of LMIPDA-MC1 in the three-dimensional coordinate system.
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Figure 8. Position estimation of targets using LMIPDA−MC2. (a) UAV. (b) Autonomous vehicle 1.
(c) Autonomous vehicle 2. (d) Autonomous vehicle 3.
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It can be seen that the estimation accuracy in terms of position was significantly
improved by using the MC2 model in the LMIPDA algorithm as show in Figure 8. The pro-
posed method was also capable of tracking ground vehicles, which were moving randomly
resulting in occlusions in the surveillance region. In contrast, the conventional LMIPDA
(which is based on MC1) faced difficulties in detecting accurate position measurements of
each target as depicted in Figure 9.
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Figure 9. Position estimation of targets using LMIPDA−MC1. (a) UAV. (b) Autonomous vehicle 1.
(c) Autonomous vehicle 2. (d) Autonomous vehicle 3.

Therefore, the experimental results show the redundancy of the MC1 model for the
MTT system in an occlusion scenario. The RMSE of the estimated UAV trajectory based
on the proposed LMIPDA-MC2 method was only 0.02, whereas that of the LMIPDA-MC1
method was equal to 0.04. Thus, the proposed LMIPDA-MC2 method improved the
estimation accuracies, FTD and track retention as well as reduced the RMSE as compared
to the existing reference methods.

6. Conclusions

We utilized the Markov-chain two (MC2) model in the proposed linear multi-target
integrated probabilistic data association (LMIPDA-MC2) algorithm for tracking multi-
targets at low-altitude airspace in an occluded and cluttered environment. The FTD
performance of LMIPDA-MC2 improved the tracking of occluded targets and reduced
the estimation errors when compared to other methods. In the experiment, the proposed
method precisely tracked multiple moving vehicles at low altitude in occlusion, which
shows the necessity of MC2 in multi-target-tracking systems. In addition, the track retention
of the proposed method increased in each scan k.
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The set of position measurements was generated using the motion capture camera
in [32]. In this paper, we used only the position data to evaluate the LMIPDA-MC2 al-
gorithm. The proposed idea is applicable for an intelligent multi-target-tracking system
due to the capability of automatic track maintenance and propagation in occlusion. The
probability of target existence (PTE) is a track-quality measure, which was used for con-
firming the true track and terminating the false track and, thus, evaluating the false-track
discrimination (FTD).
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