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Abstract

Several studies have attempted to estimate particulate matter (PM) concentrations using aerosol
optical depth (AOD), based on AOD and PM relationships. Owing to the limited availability of
nighttime AOD data, PM estimation studies using AOD have focused on daytime. Recently, the
Aerosol Robotic Network (AERONET) produced nighttime AOD, called lunar AOD, providing an
opportunity to estimate nighttime PM. Nighttime AOD measurements are particularly important as
they help fill gaps in our understanding of aerosol variability and its impact on the atmosphere, as
there are significant variations in AOD between day and night. In this study, the relationship between
lunar AOD and PM was investigated using data from AERONET station, meteorological station, and
air pollution station in Seoul Metropolitan area from May 2016 to December 2019, and then PM
estimation model was developed covering both daytime and nighttime using random forest machine
learning techniques. We have found the differences in the importance of variables affecting the AOD-
PM relationship between day and night from the random forest model. The AOD-PM relationship in
the daytime was more affected by time-related variables, such as the day of the year among the
variables. The new model was developed using additional lunar AOD data to estimate continuous PM
concentrations. The results have shown that the model based on lunar AOD data estimated well PM,,
and PM, 5 with similar performance of model using solar AOD. The results imply the possibility of
seamless near-surface PM concentration data on a large scale once satellites produce nighttime

AOD data.

1. Introduction

Aerosols are fine solid or liquid particles suspended in the atmosphere. They affect climate change directly (e.g.,
scattering Sunlight) and indirectly (e.g., condensation nuclei) (Hansen et al 1997, Haywood and Olivier 2000,
Kaufman et al 2002, Change 2013, Masson-Delmotte et al 2021). Among aerosols, PM (particulate matter) is
commonly classified into PM;, (10 pum or less) and PM, 5 (2.5 pm or less) according to the optical diameter.
PM,qand PM, 5 are widely known to have negative effects on human health, such as premature death,
respiratory disease, heart disease, and cerebrovascular disease (Suwa et al 2002, Gauderman et al 2004, Franklin
etal 2007, Yue et al 2007, Zanobetti and Schwartz 2009, Apte et al 2015). Therefore, to prevent health and
socioeconomic damage, it is necessary to understand the precise spatial and temporal variations in PM
concentration, which rapidly change depending on emission, extinction, and advection over time and region.
Because the in situ air pollution measurement is point-based, there are spatial limitations in monitoring PM
concentrations. To overcome these limitations, studies have attempted to estimate PM on the ground using
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AOD retrieved from satellites with a high spatiotemporal resolution, where AOD represents the integral value of
the aerosol extinction coefficient for the atmospheric optical path from the top of the atmosphere to the surface.
These studies are based on the relationship between AOD and PM (PM, o, PM; 5), and concentrations measured
as mass concentrations of air collected from the ground. Various statistical methods, such as the linear
regression model (Wang and Christopher 2003), multiple linear regression models (Liu et al 2005),
geographically weighted regression models (Ma et al 2014, Bai et al 2016), and random forest (RF) models (Hu
etal 2017), have been employed to improve model performance.

The relationship between AOD and PM concentrations varies spatially and temporally. AOD is the integral
value of the aerosol extinction coefficient for the atmospheric optical path from the top of the atmosphere to the
surface, and the PM concentration is the dry mass concentration of particles of a specific size measured at the
surface. Therefore, when humidity is high, the AOD increases owing to the hygroscopic growth of the aerosol;
however, the PM concentration, which is the dry mass concentration, is not affected. In addition, depending on
the direction and speed of the wind on the ground, the characteristics of the aerosol particles dominating the
ground surface may change or the PM concentration may change. Therefore, the relationship between AOD and
PM shows a strong linear or nonlinear relationship depending on the temperature, relative humidity, wind
direction, wind speed, and atmospheric boundary layer altitude.

The Aerosol Robotic Network (AERONET) is a ground-based aerosol observation network established by
the National Aeronautics and Space Administration (NASA) to monitor the Earth’s atmospheric aerosols
(Holben et al 1998). AERONET uses a spectrophotometer to retrieve AOD through polarization extinction. The
AERONET AOD has been used for satellite AOD data verification and calibration (Bibi et al 2015, Choi et al
2016, Bright and Christian 2019). AERONET produces daytime AOD, called solar AOD, using the Sun
algorithm. In addition, it produces nighttime AOD, called lunar AOD, based on the Moon algorithm with lunar
illuminance measurement (Berkoff efal 2011, Barreto et al 2013, 2016, Li et al 2016). The solar AOD provides
final definitive level 2 data, and the lunar AOD provides level 1.5 data. Although lunar AOD provides level 1.5
data, the data quality is more reasonable than that of solar AOD based on four years of data (Perrone et al 2022).

Estimating PM using satellite AOD has limitations in estimating the daily averaged PM concentration
because satellite AOD data are unavailable at night. However, PM has a general diurnal pattern, with peaks in the
morning and at night, although there are differences from one place to another (Pérez et al 2010, Zhang and
Cao 2015, Lietal2019). Global PM2.5 concentrations exhibit homogeneous diurnal pattern. The daily cycle of
PM2.5is characterized by double peaks - a morning peak between 7:00 and 10:00 local solar time (LST), and a
nighttime peak between 21:00 and 23:00 LST, and a minimum concentration in the afternoon between 15:00
and 17:00 LST (Manning et al 2018). Therefore, it is difficult to reflect the diurnal change in PM using AOD
retrieved only during the daytime. The relationship between AOD and PM concentration varies both spatially
and temporally, and PM estimation using satellite AOD has limitations in estimating average daily PM
concentration because satellite AOD data is not available at nighttime.

The purpose of this study is to examine the feasibility of estimating PM at night using lunar AOD retrieved by
the AERONET. The study also aims to identify variables with a strong influence on the relationship between
AOD and PM concentrations, including meteorological factors and air pollutants. We examined the validity of
nighttime PM estimation using lunar AOD and identify variables that affect the AOD-PM relationship between
daytime and nighttime. We assessed the feasibility of PM estimation of AOD at night using lunar AOD retrieved
by AERONET for the first time. In addition, by using meteorological factors and air pollutants as variables in the
AOD-PM estimation model, variables with a strong influence on the AOD-PM relationship between day and
night were identified. Temperature, relative humidity, wind direction, wind speed, and mixed layer height were
used to consider meteorological factors, and ground observations of SO,, NO,, CO, and O; were used to
evaluate the influence of the surrounding air pollutants.

Seoul is the most densely populated metropolis in the Korean Peninsula and a major city worldwide in terms
of population density and industrial infrastructure. For example, Seoul has a high population density of 16,080
individuals/km? (https://data.seoul.go.kr/). The occurrence rate of PM in Seoul is high due to industrial and
transportation factors. As a result of PM2.5, an estimated 1488 excess deaths per year occur in Seoul, and the cost
of economic loss due to this death is estimated to be USD 130.79 million per year (Lee et al 2021). Therefore, we
aimed to build a PM estimation model for Seoul.

The remainder of the sections are organized as follows: section 2 explains the data and methods used, the
AOD-PM model construction method, and pre-processing; section 3 presents the results, confirms the
difference in importance for each variable of the day and night time, and validates the results of the AOD-PM
model and time series comparison of PM concentrations estimated by the AOD-PM model; and section 4
summarizes the results and applicability of this study.
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Table 1. Site location (distance is the distance from the AERONET site to

each site).

Site Latitude (°N) Longitude (°E) Distance (km)
AERONET 37.56 126.93 0
KMA 37.57 126.97 2.84
AirKorea 37.58 126.94 1.39

2.Data and methods

2.1.Data

In this study, daytime and nighttime AOD-PM estimation models were developed using ground observation
data of Seoul from May 2016 to December 2019. To obtain AOD data, we used the solar and lunar AOD data
from the Yonsei AERONET Observatory (table 1). For solar AOD, we used level 2 500 nm AOD data retrieved
from the Direct Sun Algorithm Version 3 (V3). For lunar AOD, we used level 1.5 500 nm AOD data retrieved
from the Provisional Direct Moon Algorithm V3. When lunar illuminance is observed, the lunar AOD is
retrieved. The AERONET V3 AOD includes fully automatic cloud screening, instrument anomaly quality
controls, and a new polarized radiative transfer code, which replaces the scalar radiative transfer code of V2
(Giles etal 2019, Sinyuk et al 2020).

The Beer-Bouguer-Lambert law relates the attenuation of light to the concentration of a material through
which the light passes. In the context of AOD retrieval, the law states that the amount of Sunlight or Moonlight
thatis absorbed or scattered by atmospheric aerosols depends on the concentration of aerosols along the path of
the light (Shaw 1976, Cachorro et al 1987).

V(A) = Vy(A\)-R2.e=7Nm N

The Direct Sun algorithm is based on (equation (1)) to calculate the total optical depth (7) which is derived
from measurements of the raw instrument signal at a given wavelength (V) and the signal that the photometer
would have at the top of the atmosphere (V). The equation takes into account the Earth-Sun distance (R), the
optical air mass (m) that relates to the zenith angle of the Sun, and the T of the atmosphere. The AOD can be
obtained by subtracting the contribution to extinction by all other atmospheric components, such as Rayleigh
scattering and absorption by gases at the target’s wavelength.

The Direct Moon algorithm uses measurements of direct lunar irradiance to retrieve AOD and is based on
the lunar photometry method. Lunar photometry involves measuring the reflected solar irradiance from the
Moon, which changes significantly with the Moon phase angle (MPA) and requires accurate knowledge of the
extraterrestrial lunar irradiance. The Direct Moon algorithm uses the RIMO model (ROLO Implementation for
Moon Observation; Barreto et al 2019), which is based on the ROLO (RObotic Lunar Observatory) model and
the SPICE Toolkit (Acton 1996, Acton et al 2018), to compute the extraterrestrial lunar irradiance at various
wavelengths for each observation. The lunar irradiance values are then corrected using a Romén et al (2020)
correction factor based on MPA and wavelength. The AOD is calculated using the Beer-Bouguer-Lambert law
(Barreto etal 2013).

VY

In[k(N)] — ln[m] — Tg(A)mg — TR(N)-mp

Ta(A) = (@)

Mg

Where the ‘@’ subscript stands for aerosol, ‘R’ for Rayleigh and ‘g’ for gases. Where the AOD (7,) is determined
from calibration coefficient (k) for a specific effective wavelength, the corrected extraterrestrial lunar irradiance
(Ip) at the same wavelength, and the photometer signal (V) at the effective wavelength. The optical air masses (m)
are calculated using the Kasten formula (Kasten and Young 1989) and the Moon zenith angle (MZA) as input.
More details about the methodology of AOD calculation can be found in Gonzdlez et al (2020). Giles et al (2019)
showed that the uncertainty of AERONET V3 AOD was a +0.02 bias and 1o uncertainty of 0.02. AERONET
produces AOD data at irregular intervals approximately every 3 min; thus, AOD data were converted to hourly
mean data. Ge etal (2011) and Zhao et al (2012) emphasize that under certain conditions, i.e., high aerosol load
and large solar zenith angle (SZA), the AOD can be erroneous due to the forward scattering effect of aerosols. To
test the impact of the zenith angle, we divided the data into five categories based on the zenith angle (less than
65°,65°-70°, 70°-75°, 75°-80°, and 80°-85°) and calculated the correlation coefficient (R value) between AOD
and PM for each category. We found that the correlation coefficient varied between 0.03 to 0.1 (figure 1),
suggesting that the zenith angle had a small effect on the AOD-PM relationship. While the zenith angle can have
asmall impact on the AOD-PM relationship, it is not a significant source of discrepancy. The total number of
matched data is 5289 for solar AOD-PM,, 1785 for lunar AOD-PM,, 5212 for solar AOD-PM, 5, and 1765 for

3
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Figure 1. AOD-PM relationship according to Zenith angle (ZA) classification. ZA is divided into five categories: below 65°, 65°—70°,
70°—75°,75°—80°, and 80°—85°. Correlation coefficient R(a) and number of data N(b) of AOD-PM are shown by category.
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Figure 2. Relationship between seasonal solar AOD (red circle), lunar AOD (blue circle) and PM;, (winter (DJF)(a), spring (MAM)(b),
summer (JJA)(c), and autumn (SON)(d)).

lunar AOD-PM, 5. Compared to data matched with solar AOD, the matched data with lunar AOD is about 33%.
In this study, to ensure data accuracy and avoid retrieval errors, only AOD data with solar and lunar zenith angles
less than 75° were used.
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Figure 3. Relationship between seasonal solar AOD (red circle), lunar AOD (blue circle) and PM, 5 (winter (DJF)(a), spring (MAM)
(b), summer (JJA)(c), and autumn (SON)(d)).

Hourly in situ air pollutant data were obtained from the AirKorea website (https://www.airkorea.or.kr/).
AirKorea is operated by the National Institute of Environmental Research in South Korea. Air pollution data
from the AirKorea network comprised PM, (ug/ m?), PM, 5 (ng/ m?), SO, (ppm), NO, (ppm), CO (ppm), and
O; (ppm). SO,, NO,, CO, and O3 data were used as input variables for the AOD-PM model, and the effects of air
pollutants on the model were examined during the day and nighttime. PM, 3 and PM,, 5 were used as dependent
variables when developing each AOD-PM estimation model. The hourly air pollutant data from the AirKorea
network were matched with the hourly averaged AOD values when the AERONET data were available. AirKorea
was selected as the closest AERONET site (table 1).

In this study, meteorological observation data were used as input variables for the AOD-PM model to
investigate the differences between AOD and day and night weather factors affecting the AOD-PM model. As
meteorological observation data, hourly observation data for temperature (T), relative humidity (RH), wind
direction (WD), and wind speed (WS) were obtained from the Korea Meteorological Administration’s (KMA)
Automated Synoptic Observing System. Mixing layer height (MLH) data retrieved using a ceilometer at Yonsei
University were used as the atmospheric boundary layer altitude data. The ceilometer we used had a maximum
detection height of 7.5 km and spatial resolution of 10 m and 16 s, respectively, and the MLH was retrieved from
the observed aerosol backscatter vertical profile by using the gradient method (Lee et al 2019). The AirKorea and
KMA sites used for the analysis were 1.39 km and 2.84 km away from the AERONET site, respectively, and the
ceilometer for observing MLH and the AERONET site was located at Yonsei University (table 1). Meteorological
and air pollutants data were recorded every hour. Each data point was matched with AERONET AOD for each
hour. In addition, seasonal characteristics and daily fluctuations were considered using the day of the year
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Table 2. Statistics for the solar and lunar AOD and PM; relationship.

Solar AOD Lunar AOD
Mean (SD) Mean (SD)
N PM,, solar AOD Slope Intercept R N PM;, lunar AOD Slope Intercept R
Total 4350 45.47 (28.76) 0.4 (0.37) 30.83 33.12 0.39 1582 43.23(24.42) 0.34(0.28) 38.40 29.99 0.44
Winter (DJF) 814 49.93 (29.51) 0.27 (0.27) 44.19 38.14 0.4 373 43.39(20.83) 0.24(0.21) 56.32 29.78 0.57
Spring (MAM) 1209 61.16(31.88) 0.46(0.33) 40.23 42.7 0.42 372 59.42(26.63) 0.41(0.26) 39.99 43.1 0.39
Summar (JJA) 1219 37.28 (19.65) 0.56 (0.45) 259 22.68 0.59 352 33.58 (18.11) 0.46 (0.35) 32.56 18.61 0.63
Autumn (SON) 1108 34.07 (24.25) 0.26 (0.25) 40.15 23.8 0.41 485 37.69(23.08) 0.29(0.25) 45.93 24.25 0.49
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Table 3. Statistics for the solar and lunar AOD and PM, s relationship.

Solar AOD Lunar AOD
Mean (SD) Mean (SD)
N PM, 5 solar AOD Slope Intercept R N PM, 5 lunar AOD Slope Intercept R
Total 4287 22.59 (16.58) 0.4 (0.37) 24.94 12.53 0.55 1565 23.19(16.65) 0.35(0.28) 33.25 11.71 0.56
Winter (DJF) 803 22.73 (15.75) 0.27 (0.27) 28.24 15.15 0.49 373 23.04 (14.21) 0.24(0.21) 41.93 12.85 0.62
Spring (MAM) 1209 30.33(20.31) 0.46(0.33) 34.44 14.47 0.57 372 32.62(20.81) 0.41(0.26) 47.16 13.33 0.58
Summar (JJA) 1219 21.73(13.4) 0.56 (0.45) 19.41 10.79 0.65 352 20.59(13.1) 0.46 (0.35) 24.47 9.41 0.65
Autumn (SON) 1108 14.91(11.21) 0.26 (0.25) 26.95 7.96 0.6 485 17.91 (13.84) 0.29(0.25) 33.52 7.99 0.6
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Figure 5. Variable importance for PM;, (a, b) and PM, 5 (c, d) AMPT models with solar AOD and lunar AOD.

(DOY) and observation time (hours) as input variables with the time properties of the AOD-PM estimation
model.

2.2.Model description

For the AOD-PM concentration estimation model, an optimal model was developed using RF, which is one of
the most frequently used machine-learning techniques. RF is a classification technique that uses a meta-
learning-type decision tree to extend it to multiple trees (Breiman 2001). It is an extension of the decision tree
algorithm and consists of multiple decision trees to enhance the accuracy and robustness of the model. Each
decision tree comprising the RF consists of randomly selected training data and input variables. In this case, the
precision of the individual decision trees may be lowered, but the accuracy and stability of the RF for performing
prediction by synthesizing them increases. RF has several advantages: first, the ensemble learning technique used
in RF helps to increase the accuracy of the model. Second, using multiple decision trees in RF makes the data
more robust against outliers and noise. Third, RF can handle high-dimensional data with many input variables.
Lastly, the RF algorithm provides a measure of the importance of each input variable that can be used for feature
selection. Therefore, in this study, RF was used to increase the accuracy of the AOD-PM model and to evaluate
the importance of various variables during the day and night.

Meteorological factors and air pollutants influence the relationship between AOD and PM and its relative
importance changes at the timing of the day. First, the differences between the day and night of the input
variables were checked using a principal component analysis. The RF technique was used to calculate the
importance of variables used in the model. To estimate the PM concentration through the variable importance
calculated after model construction using solar AOD and lunar AOD, we checked for differences in the
importance of weather factors, air pollutants, and AOD for each model.
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The purpose of this study was to determine whether there was a difference in the estimated performance of
the day and night AOD-PM models according to AOD, meteorological factors, air pollutants, and time variables
using the constructed model. Therefore, we used the following five models: a model using only time variables
(i.e., T model), a model using meteorological factors and time variables (i.e., MT model), a model using AOD
and time variables (i.e., AT model), a model using air pollutants and time variables (i.e., PT model), and a model
using AOD, meteorological factors, air pollutants, and time variables (i.e., AMPT model). In addition, the
applicability of nighttime AOD was investigated in the estimation of PM concentration using solar AOD and
lunar AOD at the Yonsei University site for approximately 3.5 years, from May 2016 to December 2019.

3. Results

3.1. AOD and PM concentration relationships

We first examined AOD-PM relationship using correlation analysis such as linear regression equation, R value,
determination coefficient (R?), and root mean square error (RMSE). In the comparison of the R value between
lunar AOD-PM and solar AOD-PM relationship shows slightly higher in lunar AOD-PM,, and similar R value
in AOD-PM, s. The solar AOD-PM; indicate an overall good correlation between them (R = 0.39). And the
lunar AOD-PM, shows a better relationship than that (R = 0.44) (table 2). In the relationship between AOD
and PM, 5, both lunar AOD and solar AOD shows good correlation of R value 0.56 and 0.55, respectively

(table 3).

During the study period, the averaged PM, , value used for solar AOD analysis was 45.47 ugm™ > witha
standard deviation (SD) of 28.76 ug m >, and the average value of PM, matched with lunar AOD was 43.23 g
m > with a SD of 24.42 ug m ™ (table 2). The difference in concentration of PM between day and night is not
large, and the concentration of PM, 5 is similar. However, as for AOD, solar AOD appears to be ~0.06 higher
than lunar AOD. While the relationship between AOD and PM varies across seasons, the patterns of both solar
and lunar AOD exhibit similarities across different seasons (figures 2 and 3). These findings are in agreement
with Perrone et al (2022), which reported similar seasonal changes between solar and lunar AOD without
significant differences. Our analysis revealed a consistent pattern of the lowest slope in the seasonal AOD-PM
regression equation during the summer season for both solar and lunar AOD, as presented in tables 2 and 3. This
finding aligns with the study by Xie et al (2015), which investigated the seasonal relationship between satellite-
derived AOD and PM2.5. The authors reported a lower slope during the warm season compared to the cold
season, which was attributed to the lower Planetary Boundary Layer and relative humidity during the cold
season.

Thelargest PM,,and PM, 5 concentration appears in spring, but the maximum values of AOD presents in
summer (tables 2, 3, figures 2, 3). The increase in PM concentration in spring is presumed to be due to the
influence of fugitive dust including Asian dust events (Choi et al 2014), and the relatively low concentration in
summer is due to frequent precipitation scavenging and less advection of polluted air masses from the west
(Ghim eral 2001, Ghim et al 2015). The seasonal trend of AODs differs from that of PMs, tending to increase in
the summer. Unlike PM, determined by the dry mass of particles, AODs are significantly affected by liquid water
contents of the airborne particles through the scattering and absorption of light. Consequently, the high
humidity levels during summer lead to higher AOD values (Yang et al 2019).

Although AOD and PM exhibit seasonal characteristics due to the local source and sink, the relationship
between the two parameters appears consistent for both solar and lunar AOD. The finding underscores the
importance of incorporating a time variable that captures seasonal variations to improve the AOD-PM
estimation model performance. We have incorporated the DOY as an independent variable in the model to
account for seasonal patterns and variations.

3.2.Importance of daytime and nighttime variables

Suspended aerosol particles in the atmosphere interact with meteorological parameters, consequently affecting
the AOD-PM relationship. Most meteorological parameters have a strong diurnal variation thus it needs to be
analyzed for the characteristics before developing PM estimation model using lunar and solar AOD that
represents night and daytime respectively. Among the many meteorological variables, Temperature, RH and
MLH, exhibited statistically significant disparities. Figure 4 shows the PDF differences between day and night
RH and the MLH (temperature is not shown since it has same pattern as RH). Both RH and MLH showed
significant differences in the day and night distributions. However, AOD and PM showed no significant
differences in daytime and nighttime distributions. During the daytime, the distribution of RH was concentrated
on the low side (skewness >0), and at night, the distribution was concentrated on the high side (skewness <0).
The daytime average was 43.39% and the nightly average was 58.47%. The MLH has a high elevation
distribution during the daytime (skewness <0) and an even distribution at various elevations at night
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Figure 6. From February 24-26, 2018, (a) solar AOD and lunar AOD change, (b)PM concentration change estimated using solar AOD
and lunar AOD, and (c) changes in PM concentration were observed. Red boxes represent times with observations from solar AOD,
and the blue boxes represent times with observations from lunar AOD.

(kurtosis <0); however, at night, it had a low-altitude skewed distribution (skewness > 0) and clustered peaks at
the mean value (kurtosis > 0). MLH averages 934.04 m during the day and 192.08 m at night. Differences in the
distribution of these variables may affect the relationship between day and night AOD-PM. Low RH during the
day limits the hygroscopic growth of aerosols, leading to a linear relationship between AOD-PM and nighttime.
Alow MLH at night may improve the positive correlation of AOD-PM by allowing aerosol particles to
concentrate at the surface. The diurnal variation of PM, 5 concentrations is influenced by the depth of the mixed
layer and the stability of the nocturnal boundary layer. In the afternoon, the deep mixed layer leads to dilution
and results in lower PM, 5 concentrations. However, a shallow and stable nocturnal boundary layer forms after
Sunset, hindering vertical mixing and allowing PM, 5 to accumulate near the surface, leading to higher
concentrations at night (Manning et al 2018).

The importance of the variables, according to the AMPT model, is shown in figure 5. AOD had the highest
importance in all models, indicating that solar and lunar AOD are important variables when composing the
AOD-PM model. During the study period, the correlation coefficient between solar AOD and PM; was 0.39,
and the correlation coefficient with PM, 5 was 0.55. The correlation coefficient between lunar AOD and PM,,
was 0.44, and that with PM, 5 was 0.56. The correlation coefficient between the lunar AOD and PM was higher
than that of the solar AOD. However, the importance of AOD was relatively higher in the daytime than in the
nighttime model because the other variables did not play a notable role. The next most important variable was
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Figure 7. From September 27-29, 2018, (a) solar AOD and lunar AOD change, (b)PM concentration change estimated using solar
AOD and lunar AOD, and (c) changes in PM concentration were observed.

DQY, which showed high variable importance in most of the models. Because AOD and PM exhibit seasonal
fluctuations in the Korean Peninsula, it is important to apply seasonal changes to the model.

The difference between the nighttime and daytime models is that the importance of the time variable is
relatively low for the nighttime model because it has a more stable atmosphere than the daytime model. Next,
the importance of the variables, excluding AOD and DOY, was low in the daytime model, but there was a
difference in the nighttime model. In the PM, nighttime model, temperature was the second most important
factor, followed by DOY, and relative humidity and air pollutants were more important in the nighttime than in
the daytime. In the PM, s nighttime model, CO had the highest variable importance after AOD, and variable
importance was in the order of DOY, O3, temperature, and NO,. In the PM o model, the importance of variables
other than AOD was higher at night than during day. Therefore, in the nighttime model, the model estimation
performance was improved by understanding the influence of each variable other than AOD in the daytime
model.

3.3. Case study: PM concentration estimation

To assess the performance of the estimated PM, we have selected three distinctive cases having data both day and
nighttime over 72 h. The first case was on February 24 to 26, 2018, characterized by increased PM levels during
the transition from daytime to nighttime (figure 6). Figure 6(a) shows the time series of AOD, and figure 6(b)
shows the time series of the PM estimates estimated using the AMPT models of solar AOD and lunar AOD.
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Figure 8. From December 17-19, 2018, (a) solar AOD and lunar AOD change, (b)PM concentration change estimated using solar
AOD and lunar AOD, and (c) changes in PM concentration were observed. The red line box is the period when the lunar aod had a
rapid change, and the red dotted line box is the period when the solar aod had a rapid change.

Figure 6(c) shows the time series of PM observations. On February 24, there was one solar AOD observation at
13:00. If only the solar AOD was used, as shown in figure 6(c) red boxes, only one estimate was calculated. PM
concentration estimation can be supplemented when lunar AOD is used. Also in figure 6(b), the change in
estimated value shows a decreasing trend on February 25 and an increasing trend on February 26. The observed
values in figure 6(c) show the same trend as the estimated values over the same period. Thus, the estimated value
correlates with the change in the observed values during day and night. The R, R?, and RMSE of the observed and
estimated PM o values during the case period were 0.69, 0.83,and 5.81 ug m>, respectively, and those of the
PM, s observed and estimated values were 0.77,0.59,and 5.7 g m >, respectively. At 21:00 on February 24 and
9:00 on February 25, AOD values were higher than those before and after that time (figure 6(a)). However,
regarding the observed change in PM concentration, unlike AOD, no abrupt change in the concentration was
observed (figure 6(c)). In the estimated value, similar to the observed value, the change in PM concentration did
notincrease or decrease (figure 6(b)). The AOD and observed changes in the PM concentration did not match at
21:00 on February 24 and 9:00 on February 25. However, because the estimated PM concentration was estimated
by introducing AOD rather than meteorological factors, air pollutants, and time, it might show a change similar
to the observed value.

The second one is alow PM concentration case on September 27-29, 2018 (figure 7). This is under calm and
stable autumn weather conditions, characterized by consistent wind speeds below 2 m s ' for 72 h. During the
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Table 4. PM, 4 validation results for each model of solar and lunar AOD.

Solar AOD Lunar AOD

AOD

Model T MT AT PT AMPT T MT AT PT AMPT
R 0.35 0.54 0.58 0.58 0.7 0.28 0.41 0.58 0.52 0.62
R? 0.12 0.29 0.34 0.33 0.49 0.08 0.16 0.33 0.27 0.39
RMSE 26.14 23.5 22.63 22.71 19.88 23.56 22.41 19.99 20.93 19.23
Slope 0.58 1.02 0.89 0.93 1.13 0.46 0.71 0.87 0.69 0.84
Intercept 15.7 —5.15 2.77 —3.7 —9.51 15.68 1.1 —2.63 0.66 —6.25

three-day period, both PM10 (5-21 ugm ™) and PM2.5 (2-10 pg m ) maintained low concentrations. The
estimated PMs showed consistently low concentrations for both PM10 and PM2.5. This case confirms that the
estimated PM concentration also follows the trend well during periods of low PM concentration.

The last case presents a rapid change of AODs within 72 h. On December 17-19, 2018, substantial
fluctuations were observed in both solar and lunar AOD from 0.17 to 0.52 and from 0.28 to 0.52, respectively,
within a relatively short period (~8 h). The rapid alteration period in solar AOD is identified by a box delineated
with ared dotted line, while lunar AOD is identified by a solid red box (figure 8). The analysis revealed that the
estimated PM concentration trends were consistent with the observed PM values (figures 8(b) and (c)).
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Table 5. PM, 5 validation results for each model of solar and lunar AOD.

Solar AOD Lunar AOD
AOD
Model T MT AT PT AMPT T MT AT PT AMPT
R 0.34 0.58 0.68 0.67 0.8 0.1 0.42 0.65 0.52 0.71
R? 0.12 0.34 0.46 0.44 0.64 0.01 0.17 0.42 0.28 0.5
RMSE 17.58 15.25 13.71 13.95 11.25 18.63 17.02 14.2 15.93 13.24
Slope 0.95 1.65 1.39 1.41 1.64 0.29 1.26 1.31 0.92 1.28
Intercept 1.32 —14.66 —6.39 —9.72 —12.23 14.69 —9.63 —9.46 —5.62 —11.71

Furthermore, during a period of rapid change in lunar AOD but observed PM has a constant value (red solid line
box in figure 8), the estimated PM concentration is close to the observed PM value. The results imply that factors
besides AOD can influence the estimation of PM concentrations and suggest that the accuracy of PM estimation
models can be improved by considering additional variables. When the solar AOD rapidly decreased, the
estimated PM decreased as well. This trend was similar to the observed PM concentrations (red dashed line box
in figure 8). The results indicate that the models developed in the study well-estimate the actual PM
concentrations.

In the case in which PM concentration changes during the day and at night, detecting the increase or
decrease in PM concentration only by estimating the PM concentration during the daytime is difficult. In this
case study, PM concentration estimation using lunar AOD helped overcome the limitations of daytime PM
concentration estimation.

We identified significant differences in meteorological factors, air pollutants, and time variables that
influenced the day and night AOD-PM relationships. PM concentration estimation through lunar AOD can
overcome the temporal constraints of the existing AOD-PM estimation model, and the resulting data will be
useful as basic data for the AOD-PM nocturnal estimation model and will help explain the spatiotemporal
distribution of nighttime PM.

3.4. Validation of daytime and nighttime AOD-PM estimation model

The comparison of AMPT model results and observed PM value shows that both model constructed using solar
AOD (figures 9(a) and (c)) and lunar AOD (figures 9(b) and (d)) performed well, although solar AOD-PM model
has slightly higher R value than lunar AOD-PM model. For each PM, the R values of the PM;, estimation model
(figures 9(a) and (b)) were 0.7 and 0.62 for solar and lunar AOD, respectively. PM, 5 estimation models

(figures 9(c), (d)) showed a better performance with R values 0of 0.8 and 0.71 for solar and lunar AOD,
respectively.

Tables 4 and 5 show the verification results of the AOD-PM;, and AOD-PM, s model by variable
configuration - the T model used time variables, the MT model used time variables and meteorological factors,
the AT model used time variables and AOD, the PT model used air pollutants and time variables, and the AMPT
model used all variables. Regardless type of AOD and PM, AT model performs better than of T, MT, and PT
model. This implies that solar and lunar AOD have a significant effect on the PM estimation model than
parameters of meteorology and air pollution.

In addition, the time variable-only model (T in tables 4 and 5) shows that daytime models have a higher R
value than nighttime models. The results indicate the daytime model was more affected by the time variable than
the nighttime model because the PM concentration does not change significantly at night. The best model
performance was by the AMPT model, implying that all meteorological factors, air pollutants, AOD, and time
variables are required for optimal model performance.

4, Discussion and conclusions

In this study, the applicability of lunar AOD in estimating PM concentrations was investigated. The correlation
between AOD and PM concentration varied depending on the season, with the maximum PM values are in
spring but AODs in summer. The different seasonal patterns and consequent correlation between AOD and PM
concentration highlight the importance of considering seasonal variations in the AOD-PM estimation model. In
the model DOY was employed to reflect the seasonal component. Despite the different seasonal patterns of AOD
and PM concentration, the relationship between the two parameters remained consistent for both solar and
lunar AOD, highlighting the importance of considering seasonal variations in the AOD-PM estimation model.
RH and MLH has strong diurnal cycle and affecting AOD-PM relationship. During the day, PDFs of RH was
skewed towards lower values but skewed higher at night. The MLH had a high elevation distribution during the
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day but located at lower altitudes at night, averaged MLH was 934.04 m and 192.08 respectively. Another time-
related parameter—observed hour—was included in the model training to reflect diurnal patterns.

The study also revealed that solar and lunar AOD significantly influenced the estimation performance of the
model, and factors besides the AODs, such as time, air pollutants, and meteorological parameters, can influence
PM concentrations and consequently improve the accuracy of the estimation model. The model sensitivity tests
have shown that the time variables affected solar AOD models more. Still, lunar AOD models were more affected
by meteorological factors and air pollutants than solar AOD models.

Model verification results suggested that both solar AOD-PM and lunar AOD-PM models estimated PM
concentrations well. When the PM concentration substantially changes in a day, the solar AOD-PM model itself
cannot estimate the rapidly changing PM trend. The verification cases have revealed that the lunar AOD-MP
model can provide crucial information on the prompt PM variation during nighttime.

In this study, an RF model was used to determine the importance of input variables. Regarding the variable
importance, AOD was the highest, but other variables were confirmed to correct the difference between AOD
and PM. RF has the advantage of extracting key variables that affect PM estimation. However, although
determining the extent to which the variables affect the PM estimation is possible, this is difficult to explain.
Therefore, additional analysis is necessary to determine how each variable affects the PM estimation.

The novelty of this study is that it is the first to develop a model for estimating nighttime AOD-PM using
lunar AOD. Studies estimating PM have used AOD retrieved during daytime (Nordio ez al 2013, Hu et al 2014,
Xieetal 2015, Ghotbietal 2016, You etal 2016, Lvetal 2017, Soni et al 2018, Park et al 2020). The Moderate
Resolution Imaging Spectroradiometer (MODIS) AOD of the Terra and Aqua polar-orbiting satellites retrieves
the AOD once per day according to each satellite’s path. The Geostationary Ocean Color Imager (GOCI) AOD, a
geostationary orbit satellite, was retrieved eight times per day from 09:00 to 16:00 KST, limited to daytime. In
addition, the Cloud-Aerosol Lidar with Orthogonal Polarization AOD of the CALIPSO satellite uses Lidar
measurements to retrieve AOD through polarization extinction; thus, AOD can be retrieved at night. However,
because of its temporal resolution of 16 d, there is a time constraint in PM estimation.

Previous studies have limitations because only daytime PMs can be estimated using AOD. However, because
continuous monitoring of PMs is required even at night, research has been conducted to estimate PM at night by
observing satellite nighttime lights (Li et al 2015, Seo et al 2015, Wang et al 2016, Liet al 2017, Fu et al 2018, Jiet al
2018, Jietal 2019, Park et al 2019, Wang et al 2021). However, because lunar illuminance affects night
illuminance, PM estimation studies using night illuminance have selected days with low lunar illuminance to
avoid the influence of the Moon on constructing and evaluating a model. Therefore, PMs can only be estimated
on days with low lunar illuminance.

PM estimation at night using lunar AOD can supplement the limitations of PM estimation through
nighttime light and improve the understanding of daily fluctuations of PMs and changes in the relationship
between day and night AOD-PM. In addition, the literature overcomes the time constraints of the AOD-PM
daytime estimation model. Notably, research is underway to retrieve AOD using lunar illuminance at night
(Zhou et al 2021), which is useful as basic data for generating a nighttime PM spatial map using the AOD-PM
nighttime estimation model. Therefore, the results of this study may help to overcome the spatiotemporal
limitations of PM concentration monitoring.

The current study has employed the AOD data with a zenith angle range from 0 to 75 degrees following
previous studies. Future studies need to investigate the effects of a larger zenith angle value on the AOD-PM
models. Another limitation of this study is that the correlation between AOD and PM concentration was
investigated at a single location (Seoul). A more comprehensive study needs to be conducted in multiple
locations to validate the model’s accuracy and effectiveness under various environmental conditions. The model
sensitivity tests have been done with limited variables, such as time, meteorological parameters, and air
pollutants. Other factors, such as land use and topography, affecting the AOD-PM relationship should also be
considered to enhance the accuracy of the model. Also, we have utilized a single machine learning model (RF) in
this study. Many advanced machine learning techniques have been developed as the methods became popular
tools in scientific analysis. In future studies, utilizing multiple machine learning models may improve the AOD-
PM model performance in addition to the lunar AOD data.
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