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Abstract
Several studies have attempted to estimate particulatematter (PM) concentrations using aerosol
optical depth (AOD), based onAODandPMrelationships. Owing to the limited availability of
nighttimeAODdata, PMestimation studies usingAODhave focused on daytime. Recently, the
Aerosol RoboticNetwork (AERONET) produced nighttimeAOD, called lunar AOD, providing an
opportunity to estimate nighttime PM.NighttimeAODmeasurements are particularly important as
they helpfill gaps in our understanding of aerosol variability and its impact on the atmosphere, as
there are significant variations in AODbetween day and night. In this study, the relationship between
lunar AODandPMwas investigated using data fromAERONET station,meteorological station, and
air pollution station in SeoulMetropolitan area fromMay 2016 toDecember 2019, and then PM
estimationmodel was developed covering both daytime and nighttime using random forestmachine
learning techniques.Wehave found the differences in the importance of variables affecting the AOD-
PM relationship between day and night from the random forestmodel. TheAOD-PM relationship in
the daytimewasmore affected by time-related variables, such as the day of the year among the
variables. The newmodel was developed using additional lunar AODdata to estimate continuous PM
concentrations. The results have shown that themodel based on lunar AODdata estimatedwell PM10

and PM2.5 with similar performance ofmodel using solar AOD. The results imply the possibility of
seamless near-surface PMconcentration data on a large scale once satellites produce nighttime
AODdata.

1. Introduction

Aerosols arefine solid or liquid particles suspended in the atmosphere. They affect climate change directly (e.g.,
scattering Sunlight) and indirectly (e.g., condensation nuclei) (Hansen et al 1997,Haywood andOlivier 2000,
Kaufman et al 2002, Change 2013,Masson-Delmotte et al 2021). Among aerosols, PM (particulatematter) is
commonly classified into PM10 (10μmor less) and PM2.5 (2.5μmor less) according to the optical diameter.
PM10 and PM2.5 are widely known to have negative effects on human health, such as premature death,
respiratory disease, heart disease, and cerebrovascular disease (Suwa et al 2002, Gauderman et al 2004, Franklin
et al 2007, Yue et al 2007, Zanobetti and Schwartz 2009, Apte et al 2015). Therefore, to prevent health and
socioeconomic damage, it is necessary to understand the precise spatial and temporal variations in PM
concentration, which rapidly change depending on emission, extinction, and advection over time and region.

Because the in situ air pollutionmeasurement is point-based, there are spatial limitations inmonitoring PM
concentrations. To overcome these limitations, studies have attempted to estimate PMon the ground using
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AOD retrieved from satellites with a high spatiotemporal resolution, where AOD represents the integral value of
the aerosol extinction coefficient for the atmospheric optical path from the top of the atmosphere to the surface.
These studies are based on the relationship betweenAODandPM (PM10, PM2.5), and concentrationsmeasured
asmass concentrations of air collected from the ground. Various statisticalmethods, such as the linear
regressionmodel (Wang andChristopher 2003), multiple linear regressionmodels (Liu et al 2005),
geographically weighted regressionmodels (Ma et al 2014, Bai et al 2016), and random forest (RF)models (Hu
et al 2017), have been employed to improvemodel performance.

The relationship betweenAODandPMconcentrations varies spatially and temporally. AOD is the integral
value of the aerosol extinction coefficient for the atmospheric optical path from the top of the atmosphere to the
surface, and the PMconcentration is the drymass concentration of particles of a specific sizemeasured at the
surface. Therefore, when humidity is high, theAOD increases owing to the hygroscopic growth of the aerosol;
however, the PMconcentration, which is the drymass concentration, is not affected. In addition, depending on
the direction and speed of thewind on the ground, the characteristics of the aerosol particles dominating the
ground surfacemay change or the PMconcentrationmay change. Therefore, the relationship betweenAODand
PMshows a strong linear or nonlinear relationship depending on the temperature, relative humidity, wind
direction, wind speed, and atmospheric boundary layer altitude.

TheAerosol RoboticNetwork (AERONET) is a ground-based aerosol observation network established by
theNational Aeronautics and Space Administration (NASA) tomonitor the Earth’s atmospheric aerosols
(Holben et al 1998). AERONETuses a spectrophotometer to retrieve AOD through polarization extinction. The
AERONETAODhas been used for satellite AODdata verification and calibration (Bibi et al 2015, Choi et al
2016, Bright andChristian 2019). AERONETproduces daytimeAOD, called solar AOD, using the Sun
algorithm. In addition, it produces nighttimeAOD, called lunar AOD, based on theMoon algorithmwith lunar
illuminancemeasurement (Berkoff et al 2011, Barreto et al 2013, 2016, Li et al 2016). The solar AODprovides
final definitive level 2 data, and the lunar AODprovides level 1.5 data. Although lunar AODprovides level 1.5
data, the data quality ismore reasonable than that of solar AODbased on four years of data (Perrone et al 2022).

Estimating PMusing satellite AODhas limitations in estimating the daily averaged PMconcentration
because satellite AODdata are unavailable at night. However, PMhas a general diurnal pattern, with peaks in the
morning and at night, although there are differences fromone place to another (Pérez et al 2010, Zhang and
Cao 2015, Li et al 2019). Global PM2.5 concentrations exhibit homogeneous diurnal pattern. The daily cycle of
PM2.5 is characterized by double peaks - amorning peak between 7:00 and 10:00 local solar time (LST), and a
nighttime peak between 21:00 and 23:00 LST, and aminimumconcentration in the afternoon between 15:00
and 17:00 LST (Manning et al 2018). Therefore, it is difficult to reflect the diurnal change in PMusing AOD
retrieved only during the daytime. The relationship betweenAODandPMconcentration varies both spatially
and temporally, and PMestimation using satellite AODhas limitations in estimating average daily PM
concentration because satellite AODdata is not available at nighttime.

The purpose of this study is to examine the feasibility of estimating PMat night using lunar AOD retrieved by
the AERONET. The study also aims to identify variables with a strong influence on the relationship between
AODandPMconcentrations, includingmeteorological factors and air pollutants.We examined the validity of
nighttime PMestimation using lunar AODand identify variables that affect theAOD-PM relationship between
daytime and nighttime.We assessed the feasibility of PMestimation of AODat night using lunar AOD retrieved
byAERONET for thefirst time. In addition, by usingmeteorological factors and air pollutants as variables in the
AOD-PMestimationmodel, variables with a strong influence on the AOD-PM relationship between day and
night were identified. Temperature, relative humidity, wind direction, wind speed, andmixed layer height were
used to considermeteorological factors, and ground observations of SO2,NO2, CO, andO3were used to
evaluate the influence of the surrounding air pollutants.

Seoul is themost densely populatedmetropolis in theKorean Peninsula and amajor city worldwide in terms
of population density and industrial infrastructure. For example, Seoul has a high population density of 16,080
individuals/km2 (https://data.seoul.go.kr/). The occurrence rate of PM in Seoul is high due to industrial and
transportation factors. As a result of PM2.5, an estimated 1488 excess deaths per year occur in Seoul, and the cost
of economic loss due to this death is estimated to beUSD130.79million per year (Lee et al 2021). Therefore, we
aimed to build a PMestimationmodel for Seoul.

The remainder of the sections are organized as follows: section 2 explains the data andmethods used, the
AOD-PMmodel constructionmethod, and pre-processing; section 3 presents the results, confirms the
difference in importance for each variable of the day andnight time, and validates the results of the AOD-PM
model and time series comparison of PMconcentrations estimated by the AOD-PMmodel; and section 4
summarizes the results and applicability of this study.
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2.Data andmethods

2.1.Data
In this study, daytime and nighttimeAOD-PMestimationmodels were developed using ground observation
data of Seoul fromMay 2016 toDecember 2019. To obtain AODdata, we used the solar and lunar AODdata
from the Yonsei AERONETObservatory (table 1). For solar AOD,we used level 2 500 nmAODdata retrieved
from theDirect SunAlgorithmVersion 3 (V3). For lunar AOD,we used level 1.5 500 nmAODdata retrieved
from the Provisional DirectMoonAlgorithmV3.When lunar illuminance is observed, the lunar AOD is
retrieved. TheAERONETV3AOD includes fully automatic cloud screening, instrument anomaly quality
controls, and a new polarized radiative transfer code, which replaces the scalar radiative transfer code of V2
(Giles et al 2019, Sinyuk et al 2020).

The Beer-Bouguer-Lambert law relates the attenuation of light to the concentration of amaterial through
which the light passes. In the context of AOD retrieval, the law states that the amount of Sunlight orMoonlight
that is absorbed or scattered by atmospheric aerosols depends on the concentration of aerosols along the path of
the light (Shaw 1976, Cachorro et al 1987).

V R eV 1m
0

2l l= t l- -( ) ( )· · ( )( )·

TheDirect Sun algorithm is based on (equation (1)) to calculate the total optical depth (τ)which is derived
frommeasurements of the raw instrument signal at a givenwavelength (V) and the signal that the photometer
would have at the top of the atmosphere (V0). The equation takes into account the Earth-Sun distance (R), the
optical airmass (m) that relates to the zenith angle of the Sun, and the τ of the atmosphere. TheAODcan be
obtained by subtracting the contribution to extinction by all other atmospheric components, such as Rayleigh
scattering and absorption by gases at the target’s wavelength.

TheDirectMoon algorithmusesmeasurements of direct lunar irradiance to retrieve AODand is based on
the lunar photometrymethod. Lunar photometry involvesmeasuring the reflected solar irradiance from the
Moon,which changes significantly with theMoon phase angle (MPA) and requires accurate knowledge of the
extraterrestrial lunar irradiance. TheDirectMoon algorithmuses the RIMOmodel (ROLO Implementation for
MoonObservation; Barreto et al 2019), which is based on the ROLO (RObotic LunarObservatory)model and
the SPICEToolkit (Acton 1996, Acton et al 2018), to compute the extraterrestrial lunar irradiance at various
wavelengths for each observation. The lunar irradiance values are then corrected using a Román et al (2020)
correction factor based onMPA andwavelength. TheAOD is calculated using the Beer-Bouguer-Lambert law
(Barreto et al 2013).
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Where the ‘a’ subscript stands for aerosol, ‘R’ for Rayleigh and ‘g’ for gases.Where theAOD (τa) is determined
from calibration coefficient (κ) for a specific effective wavelength, the corrected extraterrestrial lunar irradiance
(I0) at the samewavelength, and the photometer signal (V) at the effective wavelength. The optical airmasses (m)
are calculated using theKasten formula (Kasten andYoung 1989) and theMoon zenith angle (MZA) as input.
More details about themethodology of AODcalculation can be found inGonzález et al (2020). Giles et al (2019)
showed that the uncertainty of AERONETV3AODwas a+0.02 bias and 1σuncertainty of 0.02. AERONET
produces AODdata at irregular intervals approximately every 3 min; thus, AODdatawere converted to hourly
mean data. Ge et al (2011) andZhao et al (2012) emphasize that under certain conditions, i.e., high aerosol load
and large solar zenith angle (SZA), the AODcan be erroneous due to the forward scattering effect of aerosols. To
test the impact of the zenith angle, we divided the data into five categories based on the zenith angle (less than
65°, 65°–70°, 70°–75°, 75°–80°, and 80°–85°) and calculated the correlation coefficient (R value) betweenAOD
andPM for each category.We found that the correlation coefficient varied between 0.03 to 0.1 (figure 1),
suggesting that the zenith angle had a small effect on the AOD-PM relationship.While the zenith angle can have
a small impact on the AOD-PM relationship, it is not a significant source of discrepancy. The total number of
matched data is 5289 for solar AOD-PM10, 1785 for lunar AOD-PM10, 5212 for solar AOD-PM2.5, and 1765 for

Table 1. Site location (distance is the distance from theAERONET site to
each site).

Site Latitude (°N) Longitude (°E) Distance (km)

AERONET 37.56 126.93 0

KMA 37.57 126.97 2.84

AirKorea 37.58 126.94 1.39
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lunar AOD-PM2.5. Compared to datamatchedwith solar AOD, thematched datawith lunar AOD is about 33%.
In this study, to ensure data accuracy and avoid retrieval errors, only AODdatawith solar and lunar zenith angles
less than 75°were used.

Figure 1.AOD-PM relationship according to Zenith angle (ZA) classification. ZA is divided intofive categories: below 65°, 65°−70°,
70°−75°, 75°−80°, and 80°−85°. Correlation coefficient R(a) and number of dataN(b) of AOD-PMare shown by category.

Figure 2.Relationship between seasonal solar AOD (red circle), lunar AOD (blue circle) and PM10 (winter (DJF)(a), spring (MAM)(b),
summer (JJA)(c), and autumn (SON)(d)).
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Hourly in situ air pollutant data were obtained from theAirKoreawebsite (https://www.airkorea.or.kr/).
AirKorea is operated by theNational Institute of Environmental Research in SouthKorea. Air pollution data
from theAirKorea network comprised PM10 (μg/m

3), PM2.5 (μg/m
3), SO2 (ppm), NO2 (ppm), CO (ppm), and

O3 (ppm). SO2,NO2, CO, andO3 datawere used as input variables for the AOD-PMmodel, and the effects of air
pollutants on themodel were examined during the day andnighttime. PM10 and PM2.5 were used as dependent
variables when developing eachAOD-PMestimationmodel. The hourly air pollutant data from theAirKorea
networkwerematchedwith the hourly averaged AODvalues when theAERONETdatawere available. AirKorea
was selected as the closest AERONET site (table 1).

In this study,meteorological observation datawere used as input variables for the AOD-PMmodel to
investigate the differences betweenAODand day and night weather factors affecting the AOD-PMmodel. As
meteorological observation data, hourly observation data for temperature (T), relative humidity (RH), wind
direction (WD), andwind speed (WS)were obtained from theKoreaMeteorological Administration’s (KMA)
Automated SynopticObserving System.Mixing layer height (MLH) data retrieved using a ceilometer at Yonsei
University were used as the atmospheric boundary layer altitude data. The ceilometer we used had amaximum
detection height of 7.5 km and spatial resolution of 10m and 16 s, respectively, and theMLHwas retrieved from
the observed aerosol backscatter vertical profile by using the gradientmethod (Lee et al 2019). TheAirKorea and
KMA sites used for the analysis were 1.39 km and 2.84 km away from theAERONET site, respectively, and the
ceilometer for observingMLHand the AERONET site was located at Yonsei University (table 1).Meteorological
and air pollutants data were recorded every hour. Each data point wasmatchedwith AERONETAOD for each
hour. In addition, seasonal characteristics and daily fluctuationswere considered using the day of the year

Figure 3.Relationship between seasonal solar AOD (red circle), lunar AOD (blue circle) and PM2.5 (winter (DJF)(a), spring (MAM)
(b), summer (JJA)(c), and autumn (SON)(d)).
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Table 2. Statistics for the solar and lunar AODandPM10 relationship.

Solar AOD Lunar AOD

Mean (SD) Mean (SD)

N PM10 solar AOD Slope Intercept R N PM10 lunar AOD Slope Intercept R

Total 4350 45.47 (28.76) 0.4 (0.37) 30.83 33.12 0.39 1582 43.23 (24.42) 0.34 (0.28) 38.40 29.99 0.44

Winter (DJF) 814 49.93 (29.51) 0.27 (0.27) 44.19 38.14 0.4 373 43.39 (20.83) 0.24 (0.21) 56.32 29.78 0.57

Spring (MAM) 1209 61.16 (31.88) 0.46 (0.33) 40.23 42.7 0.42 372 59.42 (26.63) 0.41 (0.26) 39.99 43.1 0.39

Summar (JJA) 1219 37.28 (19.65) 0.56 (0.45) 25.9 22.68 0.59 352 33.58 (18.11) 0.46 (0.35) 32.56 18.61 0.63

Autumn (SON) 1108 34.07 (24.25) 0.26 (0.25) 40.15 23.8 0.41 485 37.69 (23.08) 0.29 (0.25) 45.93 24.25 0.49
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Table 3. Statistics for the solar and lunar AODandPM2.5 relationship.

Solar AOD Lunar AOD

Mean (SD) Mean (SD)

N PM2.5 solar AOD Slope Intercept R N PM2.5 lunar AOD Slope Intercept R

Total 4287 22.59 (16.58) 0.4 (0.37) 24.94 12.53 0.55 1565 23.19 (16.65) 0.35 (0.28) 33.25 11.71 0.56

Winter (DJF) 803 22.73 (15.75) 0.27 (0.27) 28.24 15.15 0.49 373 23.04 (14.21) 0.24 (0.21) 41.93 12.85 0.62

Spring (MAM) 1209 30.33 (20.31) 0.46 (0.33) 34.44 14.47 0.57 372 32.62 (20.81) 0.41 (0.26) 47.16 13.33 0.58

Summar (JJA) 1219 21.73 (13.4) 0.56 (0.45) 19.41 10.79 0.65 352 20.59 (13.1) 0.46 (0.35) 24.47 9.41 0.65

Autumn (SON) 1108 14.91 (11.21) 0.26 (0.25) 26.95 7.96 0.6 485 17.91 (13.84) 0.29 (0.25) 33.52 7.99 0.6
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(DOY) and observation time (hours) as input variables with the time properties of the AOD-PMestimation
model.

2.2.Model description
For the AOD-PMconcentration estimationmodel, an optimalmodel was developed using RF, which is one of
themost frequently usedmachine-learning techniques. RF is a classification technique that uses ameta-
learning-type decision tree to extend it tomultiple trees (Breiman 2001). It is an extension of the decision tree
algorithm and consists ofmultiple decision trees to enhance the accuracy and robustness of themodel. Each
decision tree comprising the RF consists of randomly selected training data and input variables. In this case, the
precision of the individual decision treesmay be lowered, but the accuracy and stability of the RF for performing
prediction by synthesizing them increases. RF has several advantages: first, the ensemble learning technique used
in RF helps to increase the accuracy of themodel. Second, usingmultiple decision trees in RFmakes the data
more robust against outliers and noise. Third, RF can handle high-dimensional data withmany input variables.
Lastly, the RF algorithmprovides ameasure of the importance of each input variable that can be used for feature
selection. Therefore, in this study, RFwas used to increase the accuracy of theAOD-PMmodel and to evaluate
the importance of various variables during the day and night.

Meteorological factors and air pollutants influence the relationship betweenAODandPMand its relative
importance changes at the timing of the day. First, the differences between the day and night of the input
variables were checked using a principal component analysis. The RF techniquewas used to calculate the
importance of variables used in themodel. To estimate the PMconcentration through the variable importance
calculated aftermodel construction using solar AODand lunar AOD,we checked for differences in the
importance of weather factors, air pollutants, andAOD for eachmodel.

Figure 4.Day and night PDF differences of relative humidity (a) andMLH (b). The red line represents daytime data distribution, the
blue line represents nighttime data distribution, and the dotted line represents themean.

Figure 5.Variable importance for PM10 (a, b) and PM2.5 (c, d)AMPTmodels with solar AODand lunar AOD.
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The purpose of this studywas to determinewhether there was a difference in the estimated performance of
the day and night AOD-PMmodels according toAOD,meteorological factors, air pollutants, and time variables
using the constructedmodel. Therefore, we used the followingfivemodels: amodel using only time variables
(i.e., Tmodel), amodel usingmeteorological factors and time variables (i.e.,MTmodel), amodel using AOD
and time variables (i.e., ATmodel), amodel using air pollutants and time variables (i.e., PTmodel), and amodel
usingAOD,meteorological factors, air pollutants, and time variables (i.e., AMPTmodel). In addition, the
applicability of nighttimeAODwas investigated in the estimation of PMconcentration using solar AODand
lunar AODat the Yonsei University site for approximately 3.5 years, fromMay 2016 toDecember 2019.

3. Results

3.1. AODandPMconcentration relationships
Wefirst examinedAOD-PMrelationship using correlation analysis such as linear regression equation, R value,
determination coefficient (R2), and rootmean square error (RMSE). In the comparison of the R value between
lunar AOD-PMand solar AOD-PM relationship shows slightly higher in lunar AOD-PM10 and similar R value
inAOD-PM2.5. The solar AOD-PM10 indicate an overall good correlation between them (R= 0.39). And the
lunar AOD-PM10 shows a better relationship than that (R= 0.44) (table 2). In the relationship betweenAOD
andPM2.5, both lunar AODand solar AOD shows good correlation of R value 0.56 and 0.55, respectively
(table 3).

During the study period, the averaged PM10 value used for solar AODanalysis was 45.47 μgm−3 with a
standard deviation (SD) of 28.76 μgm−3, and the average value of PM10matchedwith lunar AODwas 43.23 μg
m−3 with a SDof 24.42 μgm−3 (table 2). The difference in concentration of PM10 between day and night is not
large, and the concentration of PM2.5 is similar. However, as for AOD, solar AODappears to be∼0.06 higher
than lunar AOD.While the relationship betweenAODandPMvaries across seasons, the patterns of both solar
and lunar AODexhibit similarities across different seasons (figures 2 and 3). Thesefindings are in agreement
with Perrone et al (2022), which reported similar seasonal changes between solar and lunar AODwithout
significant differences. Our analysis revealed a consistent pattern of the lowest slope in the seasonal AOD-PM
regression equation during the summer season for both solar and lunar AOD, as presented in tables 2 and 3. This
finding alignswith the study byXie et al (2015), which investigated the seasonal relationship between satellite-
derivedAODandPM2.5. The authors reported a lower slope during thewarm season compared to the cold
season, whichwas attributed to the lower Planetary Boundary Layer and relative humidity during the cold
season.

The largest PM10 and PM2.5 concentration appears in spring, but themaximumvalues of AODpresents in
summer (tables 2, 3,figures 2, 3). The increase in PMconcentration in spring is presumed to be due to the
influence of fugitive dust includingAsian dust events (Choi et al 2014), and the relatively low concentration in
summer is due to frequent precipitation scavenging and less advection of polluted airmasses from thewest
(Ghim et al 2001, Ghim et al 2015). The seasonal trend of AODs differs from that of PMs, tending to increase in
the summer. Unlike PM, determined by the drymass of particles, AODs are significantly affected by liquidwater
contents of the airborne particles through the scattering and absorption of light. Consequently, the high
humidity levels during summer lead to higher AODvalues (Yang et al 2019).

AlthoughAODandPMexhibit seasonal characteristics due to the local source and sink, the relationship
between the two parameters appears consistent for both solar and lunar AOD. Thefinding underscores the
importance of incorporating a time variable that captures seasonal variations to improve theAOD-PM
estimationmodel performance.We have incorporated theDOY as an independent variable in themodel to
account for seasonal patterns and variations.

3.2. Importance of daytime andnighttime variables
Suspended aerosol particles in the atmosphere interact withmeteorological parameters, consequently affecting
the AOD-PMrelationship.Mostmeteorological parameters have a strong diurnal variation thus it needs to be
analyzed for the characteristics before developing PMestimationmodel using lunar and solar AOD that
represents night and daytime respectively. Among themanymeteorological variables, Temperature, RH and
MLH, exhibited statistically significant disparities. Figure 4 shows the PDFdifferences between day andnight
RHand theMLH (temperature is not shown since it has same pattern as RH). Both RH andMLH showed
significant differences in the day and night distributions. However, AOD andPM showed no significant
differences in daytime and nighttime distributions. During the daytime, the distribution of RHwas concentrated
on the low side (skewness>0), and at night, the distributionwas concentrated on the high side (skewness<0).
The daytime averagewas 43.39% and the nightly average was 58.47%. TheMLHhas a high elevation
distribution during the daytime (skewness<0) and an even distribution at various elevations at night
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(kurtosis<0); however, at night, it had a low-altitude skewed distribution (skewness> 0) and clustered peaks at
themean value (kurtosis> 0).MLH averages 934.04mduring the day and 192.08mat night. Differences in the
distribution of these variablesmay affect the relationship between day and night AOD-PM. LowRHduring the
day limits the hygroscopic growth of aerosols, leading to a linear relationship betweenAOD-PMand nighttime.
A lowMLHat nightmay improve the positive correlation of AOD-PMby allowing aerosol particles to
concentrate at the surface. The diurnal variation of PM2.5 concentrations is influenced by the depth of themixed
layer and the stability of the nocturnal boundary layer. In the afternoon, the deepmixed layer leads to dilution
and results in lower PM2.5 concentrations. However, a shallow and stable nocturnal boundary layer forms after
Sunset, hindering verticalmixing and allowing PM2.5 to accumulate near the surface, leading to higher
concentrations at night (Manning et al 2018).

The importance of the variables, according to the AMPTmodel, is shown infigure 5. AODhad the highest
importance in allmodels, indicating that solar and lunar AODare important variables when composing the
AOD-PMmodel. During the study period, the correlation coefficient between solar AODandPM10was 0.39,
and the correlation coefficient with PM2.5 was 0.55. The correlation coefficient between lunar AODandPM10

was 0.44, and that with PM2.5 was 0.56. The correlation coefficient between the lunar AODandPMwas higher
than that of the solar AOD.However, the importance of AODwas relatively higher in the daytime than in the
nighttimemodel because the other variables did not play a notable role. The nextmost important variable was

Figure 6. FromFebruary 24–26, 2018, (a) solar AODand lunarAODchange, (b)PMconcentration change estimated using solar AOD
and lunar AOD, and (c) changes in PMconcentrationwere observed. Red boxes represent times with observations from solar AOD,
and the blue boxes represent timeswith observations from lunarAOD.
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DOY,which showed high variable importance inmost of themodels. Because AODandPMexhibit seasonal
fluctuations in theKorean Peninsula, it is important to apply seasonal changes to themodel.

The difference between the nighttime and daytimemodels is that the importance of the time variable is
relatively low for the nighttimemodel because it has amore stable atmosphere than the daytimemodel. Next,
the importance of the variables, excludingAODandDOY,was low in the daytimemodel, but therewas a
difference in the nighttimemodel. In the PM10 nighttimemodel, temperature was the secondmost important
factor, followed byDOY, and relative humidity and air pollutants weremore important in the nighttime than in
the daytime. In the PM2.5 nighttimemodel, COhad the highest variable importance after AOD, and variable
importancewas in the order ofDOY,O3, temperature, andNO2. In the PM10model, the importance of variables
other thanAODwas higher at night than during day. Therefore, in the nighttimemodel, themodel estimation
performancewas improved by understanding the influence of each variable other thanAOD in the daytime
model.

3.3. Case study: PM concentration estimation
To assess the performance of the estimated PM,we have selected three distinctive cases having data both day and
nighttime over 72 h. Thefirst case was on February 24 to 26, 2018, characterized by increased PM levels during
the transition fromdaytime to nighttime (figure 6). Figure 6(a) shows the time series of AOD, and figure 6(b)
shows the time series of the PMestimates estimated using the AMPTmodels of solar AODand lunar AOD.

Figure 7. FromSeptember 27–29, 2018, (a) solar AODand lunar AODchange, (b)PMconcentration change estimated using solar
AODand lunar AOD, and (c) changes in PMconcentrationwere observed.
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Figure 6(c) shows the time series of PMobservations. On February 24, therewas one solar AODobservation at
13:00. If only the solar AODwas used, as shown in figure 6(c) red boxes, only one estimate was calculated. PM
concentration estimation can be supplementedwhen lunar AOD is used. Also infigure 6(b), the change in
estimated value shows a decreasing trend on February 25 and an increasing trend on February 26. The observed
values infigure 6(c) show the same trend as the estimated values over the same period. Thus, the estimated value
correlates with the change in the observed values during day and night. The R, R2, andRMSEof the observed and
estimated PM10 values during the case periodwere 0.69, 0.83, and 5.81 μgm

−3, respectively, and those of the
PM2.5 observed and estimated valueswere 0.77, 0.59, and 5.7 μgm−3, respectively. At 21:00 on February 24 and
9:00 on February 25, AODvalues were higher than those before and after that time (figure 6(a)). However,
regarding the observed change in PMconcentration, unlike AOD, no abrupt change in the concentrationwas
observed (figure 6(c)). In the estimated value, similar to the observed value, the change in PMconcentration did
not increase or decrease (figure 6(b)). TheAODand observed changes in the PMconcentration did notmatch at
21:00 on February 24 and 9:00 on February 25.However, because the estimated PMconcentrationwas estimated
by introducing AOD rather thanmeteorological factors, air pollutants, and time, itmight show a change similar
to the observed value.

The second one is a lowPMconcentration case on September 27–29, 2018 (figure 7). This is under calm and
stable autumnweather conditions, characterized by consistent wind speeds below 2m s−1 for 72 h.During the

Figure 8. FromDecember 17–19, 2018, (a) solar AODand lunar AODchange, (b)PMconcentration change estimated using solar
AODand lunar AOD, and (c) changes in PMconcentrationwere observed. The red line box is the periodwhen the lunar aod had a
rapid change, and the red dotted line box is the periodwhen the solar aod had a rapid change.
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three-day period, both PM10 (5–21 μgm−3) and PM2.5 (2–10 μg m−3)maintained low concentrations. The
estimated PMs showed consistently low concentrations for both PM10 andPM2.5. This case confirms that the
estimated PMconcentration also follows the trendwell during periods of lowPMconcentration.

The last case presents a rapid change of AODswithin 72 h.OnDecember 17–19, 2018, substantial
fluctuationswere observed in both solar and lunar AOD from0.17 to 0.52 and from0.28 to 0.52, respectively,
within a relatively short period (∼8 h). The rapid alteration period in solar AOD is identified by a box delineated
with a red dotted line, while lunar AOD is identified by a solid red box (figure 8). The analysis revealed that the
estimated PMconcentration trends were consistent with the observed PMvalues (figures 8(b) and (c)).

Figure 9.PM10(a, b) and PM2.5(c, d) validation results of AMPTmodels using solar AODand lunarAOD. A color fromblue to red
indicates that the data are concentrated in that area. The solid black line represents the regression line, and the dashed gray line
represents the 1:1 line.

Table 4.PM10 validation results for eachmodel of solar and lunar AOD.

AOD
Solar AOD Lunar AOD

Model T MT AT PT AMPT T MT AT PT AMPT

R 0.35 0.54 0.58 0.58 0.7 0.28 0.41 0.58 0.52 0.62

R2 0.12 0.29 0.34 0.33 0.49 0.08 0.16 0.33 0.27 0.39

RMSE 26.14 23.5 22.63 22.71 19.88 23.56 22.41 19.99 20.93 19.23

Slope 0.58 1.02 0.89 0.93 1.13 0.46 0.71 0.87 0.69 0.84

Intercept 15.7 −5.15 2.77 −3.7 −9.51 15.68 1.1 −2.63 0.66 −6.25
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Furthermore, during a period of rapid change in lunar AODbut observed PMhas a constant value (red solid line
box infigure 8), the estimated PMconcentration is close to the observed PMvalue. The results imply that factors
besides AODcan influence the estimation of PMconcentrations and suggest that the accuracy of PMestimation
models can be improved by considering additional variables.When the solar AOD rapidly decreased, the
estimated PMdecreased aswell. This trendwas similar to the observed PMconcentrations (red dashed line box
infigure 8). The results indicate that themodels developed in the studywell-estimate the actual PM
concentrations.

In the case inwhich PMconcentration changes during the day and at night, detecting the increase or
decrease in PMconcentration only by estimating the PMconcentration during the daytime is difficult. In this
case study, PMconcentration estimation using lunar AODhelped overcome the limitations of daytime PM
concentration estimation.

We identified significant differences inmeteorological factors, air pollutants, and time variables that
influenced the day and night AOD-PM relationships. PM concentration estimation through lunar AODcan
overcome the temporal constraints of the existing AOD-PMestimationmodel, and the resulting data will be
useful as basic data for theAOD-PMnocturnal estimationmodel andwill help explain the spatiotemporal
distribution of nighttime PM.

3.4. Validation of daytime andnighttimeAOD-PMestimationmodel
The comparison of AMPTmodel results and observed PMvalue shows that bothmodel constructed using solar
AOD (figures 9(a) and (c)) and lunar AOD (figures 9(b) and (d)) performedwell, although solar AOD-PMmodel
has slightly higher R value than lunar AOD-PMmodel. For each PM, the R values of the PM10 estimationmodel
(figures 9(a) and (b))were 0.7 and 0.62 for solar and lunar AOD, respectively. PM2.5 estimationmodels
(figures 9(c), (d)) showed a better performancewith R values of 0.8 and 0.71 for solar and lunar AOD,
respectively.

Tables 4 and 5 show the verification results of the AOD-PM10 andAOD-PM2.5model by variable
configuration - the Tmodel used time variables, theMTmodel used time variables andmeteorological factors,
the ATmodel used time variables andAOD, the PTmodel used air pollutants and time variables, and the AMPT
model used all variables. Regardless type of AOD andPM,ATmodel performs better than of T,MT, and PT
model. This implies that solar and lunar AODhave a significant effect on the PMestimationmodel than
parameters ofmeteorology and air pollution.

In addition, the time variable-onlymodel (T in tables 4 and 5) shows that daytimemodels have a higher R
value than nighttimemodels. The results indicate the daytimemodel wasmore affected by the time variable than
the nighttimemodel because the PMconcentration does not change significantly at night. The bestmodel
performancewas by the AMPTmodel, implying that allmeteorological factors, air pollutants, AOD, and time
variables are required for optimalmodel performance.

4.Discussion and conclusions

In this study, the applicability of lunar AOD in estimating PMconcentrations was investigated. The correlation
betweenAOD andPMconcentration varied depending on the season, with themaximumPMvalues are in
spring but AODs in summer. The different seasonal patterns and consequent correlation betweenAODandPM
concentration highlight the importance of considering seasonal variations in the AOD-PMestimationmodel. In
themodelDOYwas employed to reflect the seasonal component. Despite the different seasonal patterns of AOD
andPMconcentration, the relationship between the two parameters remained consistent for both solar and
lunar AOD, highlighting the importance of considering seasonal variations in the AOD-PMestimationmodel.
RH andMLHhas strong diurnal cycle and affectingAOD-PM relationship. During the day, PDFs of RHwas
skewed towards lower values but skewed higher at night. TheMLHhad a high elevation distribution during the

Table 5.PM2.5 validation results for eachmodel of solar and lunar AOD.

AOD
Solar AOD Lunar AOD

Model T MT AT PT AMPT T MT AT PT AMPT

R 0.34 0.58 0.68 0.67 0.8 0.1 0.42 0.65 0.52 0.71

R2 0.12 0.34 0.46 0.44 0.64 0.01 0.17 0.42 0.28 0.5

RMSE 17.58 15.25 13.71 13.95 11.25 18.63 17.02 14.2 15.93 13.24

Slope 0.95 1.65 1.39 1.41 1.64 0.29 1.26 1.31 0.92 1.28

Intercept 1.32 −14.66 −6.39 −9.72 −12.23 14.69 −9.63 −9.46 −5.62 −11.71
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day but located at lower altitudes at night, averagedMLHwas 934.04mand 192.08 respectively. Another time-
related parameter—observed hour—was included in themodel training to reflect diurnal patterns.

The study also revealed that solar and lunar AOD significantly influenced the estimation performance of the
model, and factors besides theAODs, such as time, air pollutants, andmeteorological parameters, can influence
PMconcentrations and consequently improve the accuracy of the estimationmodel. Themodel sensitivity tests
have shown that the time variables affected solar AODmodelsmore. Still, lunar AODmodels weremore affected
bymeteorological factors and air pollutants than solar AODmodels.

Model verification results suggested that both solar AOD-PMand lunar AOD-PMmodels estimated PM
concentrations well.When the PMconcentration substantially changes in a day, the solar AOD-PMmodel itself
cannot estimate the rapidly changing PM trend. The verification cases have revealed that the lunar AOD-MP
model can provide crucial information on the prompt PMvariation during nighttime.

In this study, anRFmodel was used to determine the importance of input variables. Regarding the variable
importance, AODwas the highest, but other variables were confirmed to correct the difference betweenAOD
andPM.RF has the advantage of extracting key variables that affect PMestimation.However, although
determining the extent towhich the variables affect the PMestimation is possible, this is difficult to explain.
Therefore, additional analysis is necessary to determine how each variable affects the PMestimation.

The novelty of this study is that it is the first to develop amodel for estimating nighttimeAOD-PMusing
lunar AOD. Studies estimating PMhave usedAOD retrieved during daytime (Nordio et al 2013,Hu et al 2014,
Xie et al 2015, Ghotbi et al 2016, You et al 2016, Lv et al 2017, Soni et al 2018, Park et al 2020). TheModerate
Resolution Imaging Spectroradiometer (MODIS)AODof the Terra andAqua polar-orbiting satellites retrieves
the AODonce per day according to each satellite’s path. TheGeostationaryOceanColor Imager (GOCI)AOD, a
geostationary orbit satellite, was retrieved eight times per day from09:00 to 16:00KST, limited to daytime. In
addition, theCloud-Aerosol Lidar withOrthogonal PolarizationAODof theCALIPSO satellite uses Lidar
measurements to retrieve AOD through polarization extinction; thus, AOD can be retrieved at night. However,
because of its temporal resolution of 16 d, there is a time constraint in PMestimation.

Previous studies have limitations because only daytime PMs can be estimated using AOD.However, because
continuousmonitoring of PMs is required even at night, research has been conducted to estimate PMat night by
observing satellite nighttime lights (Li et al 2015, Seo et al 2015,Wang et al 2016, Li et al 2017, Fu et al 2018, Ji et al
2018, Ji et al 2019, Park et al 2019,Wang et al 2021). However, because lunar illuminance affects night
illuminance, PMestimation studies using night illuminance have selected days with low lunar illuminance to
avoid the influence of theMoon on constructing and evaluating amodel. Therefore, PMs can only be estimated
on days with low lunar illuminance.

PMestimation at night using lunar AODcan supplement the limitations of PMestimation through
nighttime light and improve the understanding of daily fluctuations of PMs and changes in the relationship
between day and night AOD-PM. In addition, the literature overcomes the time constraints of the AOD-PM
daytime estimationmodel. Notably, research is underway to retrieve AODusing lunar illuminance at night
(Zhou et al 2021), which is useful as basic data for generating a nighttime PM spatialmap using the AOD-PM
nighttime estimationmodel. Therefore, the results of this studymay help to overcome the spatiotemporal
limitations of PMconcentrationmonitoring.

The current study has employed the AODdatawith a zenith angle range from0 to 75 degrees following
previous studies. Future studies need to investigate the effects of a larger zenith angle value on the AOD-PM
models. Another limitation of this study is that the correlation betweenAODandPMconcentrationwas
investigated at a single location (Seoul). Amore comprehensive study needs to be conducted inmultiple
locations to validate themodel’s accuracy and effectiveness under various environmental conditions. Themodel
sensitivity tests have been donewith limited variables, such as time,meteorological parameters, and air
pollutants. Other factors, such as land use and topography, affecting theAOD-PM relationship should also be
considered to enhance the accuracy of themodel. Also, we have utilized a singlemachine learningmodel (RF) in
this study.Many advancedmachine learning techniques have been developed as themethods became popular
tools in scientific analysis. In future studies, utilizingmultiplemachine learningmodelsmay improve the AOD-
PMmodel performance in addition to the lunar AODdata.
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