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ABSTRACT Iterative Learning Control (ILC) is known as a high-accuracy control strategy for repetitive
control missions of mechatronic systems. However, applying such learning controllers for robotic manip-
ulators to result in excellent control performances is now a challenge due to unstable behaviors coming
from nonlinearities, uncertainties and disturbances in the system dynamics. To tackle this challenge, in this
paper, we present a novel proportional-derivative iterative second-order neural-network learning control
(PDISN) method for motion-tracking control problems of robotic manipulators. The control framework
is structured from time- and iterative-base control layers. First of all, the total systematic dynamics are
concretely stabilized by a conventional Proportional-Derivative (PD) control signal in the time domain. The
control objective is then accomplished by using an intelligent ILC decision generated in the second layer to
compensate for other nonlinear uncertainties and external disturbances in the dynamics. The iterative signal is
flexibly composed from various information on the iterative axis. On one hand, the previous iterative control
signal is inherently reused in the current iteration but with an appropriate portion based on reliability of the
current control performance. On the other hand, the iterative-based modeling deviation remaining is treated
by a functional neural network that is specially activated by a second-order learning law and information
synthesized from the current and previous iterations. Stabilities of the time-based nonlinear subsystem
and overall system are rigorously analyzed using extended Lyapunov theories and high-order regression
series criteria. Effectiveness of the proposed controller was intensively verified by the extensive comparative
simulation results. Key advantages of the proposed control method are chattering-free, universal, adaptive,
and robust.

INDEX TERMS Iterative learning control, motion control, neural networks, robotic manipulators.

I. INTRODUCTION
Recently, robots play an indispensable role in industry and
day-life activities [1], [2], [3]. Furthermore, they can cowork
with humans to increase working efficiency [2], [4]. As a
result, such modern robots have to possess high control
accuracies, adaptation, robustness and reliability [1], [3].

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

However, unknown dynamical influences and complicated
working environments are barriers degrading outstanding
control performances [8], [9], [10], [11]. Proportional-
Integral-Derivative (PID) controllers have been mostly
equipped in industrial robots thanks to their simplicity in
implementation, strong robustness and acceptable control
performances [1], [5], [6], [7]. To deal with nonlinearities
and uncertainties in the system dynamics for higher con-
trol precision, model-based controllers have been studied
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using typical physical analyses such as Newton, Euler or
Lagrange methods, or decomposition principles [12], [13].
In practice, applicability of such conventional approaches is
limited for general robots. By utilizing universal approxi-
mation properties, neural-network-based control methods are
growingly employed in servo systems [14], [15], [16]. Direct
and indirect adaptation laws have been successfully adopted
to activate neural networks in automatic control systems [10],
[17]. The systematic behaviors could be well captured by
neural networks, and their results could be then employed
to compensate for unknown dynamics in control processes.
Such design could be applied to divergent types of neural
network such as Radial-basis function (RBF) networks [14],
[18], [19] or Fuzzy-hybrid-networks [20], [21]. Remark-
able control outcomes have been delivered by the intelli-
gent controllers. For repetitive tasks that frequently occur in
industrial activities, time-based neural-network-based control
approaches could be modified to result in higher control
accuracies [22], [23]. This demand was the key motivation
of ILC approaches [24], [25].

Nowadays, ILC becomes a famous control framework
for systems required repetitive missions. Its basic idea is
that an iterative control signal is computed based on errors
from previous trails to optimize working performance of
control systems. With simple design, it could demonstrate
superior performances thanks to an unique nature in effec-
tively dealing with repetitive disturbances such as grav-
ity and model uncertainties [26], [27]. In [29], a simple
ILC controller was successfully applied for a cable-driven
robot. However, it required another homing controller to
steer the initial control errors back to zero before the
ILC control signal went to operation, and the stability of
the closed-loop system was difficult to be maintained in
high-speed control regions. In fact, disturbances and dynam-
ical uncertainties in the system models are rarely repetitive
terms. In most robotic systems, both iteration-variant and
iteration-invariant disturbances exist on the iterative direc-
tion. External torques and internal state-dependent distur-
bances can be grouped into iterative-variant disturbances
while uncertain parameters such as link masses or external
loads can be considered as iteration-invariant disturbances.
To extensively deal with the iterative disturbances, a lot
of interesting ILC approaches have been developed. ILC
methods with robust learning filters, such as frequency or
time-frequency filters, were employed to isolate nonrepetitive
disturbances from the iterative loop. In [23], low-pass filters
were employed to treat model uncertainties at high frequen-
cies. In [34], a notch Q filter and a disturbance observer
were combined in the ILC to detach external vibration dis-
turbances at certain frequencies. In [35], a time-frequency
numerical Q filter was proposed to eliminate the iteration-
variant disturbances. In [36], a new robust Q-filter-based
ILC approach was adopted incorporated with a feedback
control signal to deal with both repetitive and nonrepetitive
perturbances.

Due to complicated working behaviors and multiple
dimensional characteristics, advanced ILC methods are
required for robotic applications. To effectively eliminate
iterative disturbances in general robotic dynamics, an adap-
tive iterative learning control (AILC) method was proposed
in [22] based on Lyapunov analyses. As reported in [37] and
[38], the AILC framework adopted an adaptive signal which
iteratively approximated and attenuated unknown distur-
bances and uncertainties in the system dynamics. However,
the algorithm was restricted on a need that the parameters
were assumed to be constants within each iteration [39], [40].
To increase flexibility of the AILC structure for robotic sys-
tems, in [30] and [62], new ILC approaches were studied in
which data-driven learning laws were adopted to compensate
for the systematic uncertainties and to accelerate convergence
rates. Unfortunately, since the data-driven ILC methods were
designed based on linear time-variant models, they were only
applied either to generate referenced joint velocities of gen-
eral robotic control systems or to control simple mechatronic
systems such as gantry robots that have joints in orthogonal
configurations and independent control structures. In [31]
and [32], other AILC remedies were employed for robotic
manipulators in which the optimal iterative control gains of
the conventional ILC were found by solving optimization
problems. However, the control plants were required to be
formatted in a linear time-variant forms and initial condi-
tions of the control errors had to set to be the same values.
They thus limit strong power of the new AILC for robotic
systems. Besides, ILC schemes were incorporated with a
time-based adaptive control rule to provide promising control
results [31], [41], [61]. Evaluation results reveal that the
good control results were obtained mainly from the achieve-
ment of the time-based control signals in low frequencies
and from the iterative-based structure in high frequencies.
However, stabilities of the closed-loop systems under oper-
ation of the time-based control signals need to be further
investigated [31], [61]. Several different research directions
of the ILC design have been attempted in which the learn-
ing information were collected in the current iteration [38],
[42], [43]. Excellent control results were published, but using
model-based learning laws hindered their wide-spread appli-
cability [41], [44]. As a trend, ILC research based on opera-
tion of neural networks for robotic systems has been noticed
in recent times. In [45], systematic disturbances in the current
iteration were estimated by a pulse-based neural network and
they were then fed to the control phase for improving the
control performance on the iteration axis. Initial resetting
problems and reliability of the neural ILC approach was
then treated by a new saturation neural network built up
from the present iteration [16]. From the above analyses,
it can be seen that iterative disturbances are state-, time-
and iterative-dependent factors [23], [41]. In [33], lumped
iterative disturbances were eliminated by PD discontinuous
iterative rules. Potential of the nonlinear ILC approach was
confirmed by verification results obtained, but its benefits
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were only valid in the same initial conditions of the iterative
control errors and in a class of iterative disturbances that were
proportional to joint velocities. Designing a simple iterative
control signal that can well suppress all of nonlinearities,
uncertainties and disturbances in the systematic dynamics for
outstanding control performances is really a very interesting
challenge.

To fill out this gap with a simple-yet-universal method,
in this paper, we propose a rigorous universal ILC approach
for robotic manipulators using a functional neural net-
work. The controller is structured by two control layers: a
time-based control layer and an iterative-based control layer.
Innovative design of the proposed controlmethod is presented
with the following contributions:

• A stabilization control signal for the manipulator is
designed based on a simple PD control error associated
with a concrete support Lyapunov theory.

• The control performance is then further enhanced by
a novel ILC framework in which the iterative control
signal is flexibly updated based on reliability of the
current control performance, and iterative disturbances
are eliminated by a neural network with an appropri-
ate learning procedure. The neural network is operated
based on both previous and current iterative information
under a special second-order adaptation rule.

• Stability and effectiveness of the closed-loop system are
carefully verified by Lyapunov constraints, regression
series criteria and intensive simulation discussions.

The proposed controller holds important characteristics:
initial-resetting treatment, model-free design, smooth control
signals, adaptation, robustness and high accuracies. Outline
of the paper is organized as follows. System dynamics are
briefly reviewed, and problem statements are then defined
in Section II. Detailed design of the controller and stability
analyses of the overall system are presented in Section III.
Effectiveness of the proposed control system is discussed in
Section IV. Conclusions are finally noted in Section V.
Throughout this paper, for simplicity, we adopt the fol-

lowing abbreviation: boldUpper-case, bold lower-case, italic
lower-case characters respectively denoteMatrix, vector and
scalar functions or variables; If a function is presented in both
lower-case and upper-case formations, the lower-case one
denotes elements of the upper-case one; The term (x = x ⌊•⌋)
denote a function of (•); (λ• = eig ⌊•⌋) is an eigen value of
matrix (•); (•̄ = max ⌊•⌋) and (• = min ⌊•⌋) are maximum
and minimum values of (•), respectively.

II. SYSTEM MODELING AND PROBLEM STATEMENTS
Dynamics of a general n-Degree-Of-Freedom (n-DOF) robot
are expressed using the following equation [9], [12], [13]:

M ⌊q⌋ q̈ = −C ⌊q, q̇⌋ q̇− g ⌊q⌋ +f ⌊q̇⌋ +τd + τ (1)

where q, q̇, τ ∈ ℜ
n are vectors of the joint position, angular

velocity, and the control torque, respectively, M ∈ ℜ
n×n

is the inertia-mass matrix, Cq̇, g, f , τd ∈ ℜ
n stand for the

Coriolis/Centripetal effect, the gravitational torque, frictional
torque, and external disturbances, respectively.
Remark 1: The dynamical robotic model (1) possesses the

following constraints [13], [46]:
Property 1: The term M ⌊q⌋ is a symmetric bounded

positive-definite matrix.
Property 2: The matrix C ⌊q, q̇⌋ is linear bounded with

respect to the second argument x1 ∈ ℜ
n, a given term x2 ∈

ℜ
n, and a positive constant 10 as follows:

C ⌊q,x1⌋ x2 = C ⌊q,x2⌋ x1
C ⌊q,x1 + x2⌋ = C ⌊q,x1⌋ + C ⌊q,x2⌋

C ⌊q,x1⌋ x2 ≤ 10 ∥x1∥ ∥x2∥

(2)

Property 3: The gravitational vector g ⌊q⌋ is bounded.
Property 4: The Coriolis/centripetal matrix C ⌊q, q̇⌋ and

the time derivative of the mass matrixM ⌊q⌋ satisfy the skew-
matrix constraint:

yT
(
Ṁ ⌊q⌋ − 2C ⌊q, q̇⌋

)
y =0 ∀y, q, q̇ ∈ ℜ

n (3)

Property 5: The frictional term f ⌊q̇⌋ can be linearized as

f (q̇) = −0q̇ (4)

where 0 is a bounded positive-definite matrix.
Assumption 1: The external disturbance (τd ) is bounded

[23], [47], [48].
Assumption 2: The reference profile (qd ) is a known,

repetitive, bounded and twice continuously differentiable
signal.
Assumption 3: The system states (q, q̇) are measurable.
Remark 2: Note that the external disturbance (τd ) denotes

unmodeled terms and projection of external forces/torques
acting to the robot body at any points on the system dynam-
ics [13]. We define a tracking control error composited
from the desired signal (qd ) and the system output (q). The
control mission here is to develop an intelligent nonlinear
controller to accomplish excellent tracking control precision.
Challenges of this work come from unknown unstable inter-
nal dynamical behaviors and complex external disturbances
affecting to the system during the operation process. How-
ever, one advantage of the control system is that it can run in
many iterations. Other advanced features of the controller are
adaptation and robustness.

III. PROPORTIONAL-DERIVATIVE ITERATIVE
SECOND-ORDER NEURAL-NETWORK LEARNING
CONTROLLER (PDISN)
In this section, the designing process of the proposed control
idea is presented with a simple PD control procedure and an
advanced ILC approach. Respective theoretical proof is also
provided to clarify effectiveness of the developed features.

The main control objective is mathematically synthesized
as follows:

e = q− qd (5)
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To realize the tracking control requirement, the final control
signal is simply selected as [38], [41]:

τ = τt + τi (6)

where τt and τi are time-based and iterative-base control
terms, respectively.

A. TIME-BASED PD CONTROL SIGNAL
In literature, various types of linear or nonlinear control
design were employed for high-precision control of the
manipulators [1], [17], [49]. Purpose of the time-based con-
trol signal is to stabilize internal/external dynamics of the
system (1) and force the control error (5) to be as small
as possible. In this mind, the time-domain control signal is
designed with a simplest control form using the following PD
structure:

τt = −KPte− KDt ė (7)

where KPt and KDt are diagonal positive-definite gain
matrices.

The control signal (7) has been widely used in indus-
trial and researching robots [5], [19], [50]. Stability of the
closed-loop PD robotic system is confirmed from previous
work [1] based on a linearizingmodel withmany assumptions
that might be weak in some cases. In the following statement,
complete novel proof is discussed based on a nonlinear Lya-
punov approach.
Lemma 1: For any bounded functions |u| ≤ ū, |v| ≤ v̄,

there always exist three positive constants (0 < ρu), (0 < ρv)
and (a > 1) complying with the following inequality:

2
√

ρuρv ≥ uρau + vρv (8)

Proof:
The inequality (8) is satisfied if the following conditions

hold: {
√

ρuρv ≥ ūρau
√

ρuρv ≥ v̄ρv
(9)

It can be easily seen that the proof of Lemma 1 is completed
by selecting the constants satisfying:

0 < ρv ≤ ū(−1/(a−1))v̄(−(2a−1)/(a−1))

0 < ρu ≤ (ū v̄)−1/(a−1)

0 < v̄2ρv ≤ ρu

(10)

⊓

Theorem 1: By applying the control signals (6)-(7) to the
robotic system (1) that possesses Properties (1)-(5) under
Assumption 1, the system output is bounded if the iterative
control signal τi is bounded.

Proof:
By noting Property 5 and the control laws (6)-(7), the

closed-loop system is expressed as follows:

Mq̈ = −Cq̇− g− 0q̇+τd − KDt (q̇− q̇d )

− KPt (q− qd ) + τi (11)

The following Lyapunov function is investigated

L = 0.5(q̇+ αt1q)TM (q̇+ αt1q)

+ 0.25αt2
(
q̇TMq̇+ qTKPtq+ 2αt3

)
×

(
q̇TMq̇+ qTKPtq

)
(12)

where αtj|j=1,2,3 are positive constants.
By invoking the dynamics (11), the time derivative of the

candidate function (12) is derived as in (13).

L̇ = 0.5(q̇+ αt1q)T Ṁ (q̇+ αt1q)

+ (q̇+ αt1q)TM (q̈+ αt1q̇)

+ αt2

(
q̇TMq̇+ qTKPtq+ αt3

)
×

(
0.5q̇T Ṁ q̇+ q̇TMq̈+ qTKPt q̇

)
= 0.5(q̇+ αt1q)T Ṁ (q̇+ αt1q)

+ (q̇+ αt1q)T (−Cq̇− g− 0q̇+τd ) + (q̇+ αt1q)T

× (−KDt (q̇− q̇d ) − KPt (q− qd ) + τi + αt1Mq̇)

+ αt2

(
q̇TMq̇+ qTKPtq+ αt3

)
×

(
0.5q̇T Ṁ q̇+ qTKPt q̇− q̇T (Cq̇+ g+ 0q̇)

)
+ αt2

(
q̇TMq̇+ qTKPtq+ αt3

)
×

(
q̇T (τd − KDt (q̇−q̇d )−KPt (q−qd )+τi)

)
(13)

Simplifying the dynamics (13) by usingProperties 1-4 results
in (14).

L̇ = (q̇+ αt1q)T (αt1Cq− g− 0q̇+τd − KDt (q̇− q̇d ))

+ (q̇+ αt1q)T (−KPt (q− qd ) + τi + αt1Mq̇)

+ αt2

(
q̇TMq̇+ qTKPtq+ αt3

) (
q̇T (−g− 0q̇+τd )

)
+ αt2

(
q̇TMq̇+ qTKPtq+ αt3

)
×

(
q̇T (−KDt (q̇− q̇d ) + KPtqd + τi)

)
≤ 10αt1∥q̇∥2 ∥q∥ + q̇T (−g+τd + KDt q̇d + KPtqd + τi)

− q̇TKPtq− q̇T (0+KDt −Mαt1) q̇+10α
2
t1∥q∥

2
∥q̇∥

+ αt1qT (−g+τd + KDt q̇d + KPtqd + τi)

− αt1qT (0 + KDt −Mαt1) q̇− αt1qTKPtq

+ αt2

(
q̇TMq̇+ qTKPtq+ αt3

) (
−q̇T (0 + KDt) q̇

)
+ αt2

(
q̇TMq̇+ qTKPtq+ αt3

)
×

(
q̇T (−g+τd + KDt q̇d + KPtqd + τi)

)
≤ 10αt1∥q̇∥2 ∥q∥ +

(
10α

2
t1 + αt21d λ̄KPt

)
∥q∥2 ∥q̇∥

−
(
λ(0+KDt−Mαt1) + αt2αt3λ(0+KDt )

)
∥q̇∥2

+ αt21d λ̄M∥q̇∥3 − αt1λKPt∥q∥
2

− αt2λMλ(0+KDt )∥q̇∥
4
− αt2λKPtλ(0+KDt )∥q∥

2
∥q̇∥2

+ λ̄KPt+αt1KDt+αt10−Mα2
t1

∥q̇∥ ∥q∥

+ ∥q̇∥ 1d (1 + αt2αt3) + αt1 ∥q∥ 1d (14)
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where 1d is an upper bound of the systematic perturbance:

1d = max ⌊∥−g+τd + KDt q̇d + KPtqd + τi∥⌋

The following conditions are obtained from the agreement of
Lemma 1:

2
√

αt2αt1 >
10α

2
t1 + αt21d λ̄KPt

λKPt

√
λ0+KDt

(15)

Based on the constraint (15), there always exist arbitrarily
small new constants (βtj|j=1..4) that simplify the inequality
(14) as follows:

L̇ ≤ −βt1∥q̇∥4 − βt2∥q∥2∥q̇∥2 − βt3∥q̇∥2 − βt4∥q∥2

+ ∥q̇∥ 1d (1 + αt2αt3) + αt1 ∥q∥ 1d

≤ −βt1∥q̇∥4 − ∥q̇∥ (βt3 ∥q̇∥ − 1d (1 + αt2αt3))

− βt2∥q∥2∥q̇∥2 − ∥q∥ (βt4 ∥q∥ − 1dαt1) (16)

Note that the term1d is bounded. The result (16) implies that
the system outputs (q, q̇) are bounded. Theorem 1 has thus
been proven. ⊓

Remark 3: Working under the time-based PD control law
(7), the closed-loop system is bounded stable with any
positive-definite control gains KDt and KPt . However, the
control accuracy needs to be further investigated.

Here, we define an indirect control objective:

ε = ė+ Kie (17)

whereKi = K−1
Dt KPt is a positive-definite control gainmatrix.

In previouswork, the new control objective (17) was normally
called as a sliding-mode manifold [18], [51], [52].

The dynamics (1) could be re-expressed in terms of the new
composited variable (17) in scope of an iterative axis:

Miε̇i = −Ciεi + τi − di (18)

where di is the lumped disturbance of the system in iteration
i, that includes the model deviation and external disturbances:

di = Mi (q̈d − Kiėi) + Ci (q̇d − Kiei) + gi − fi − τdi (19)

Note that under the virtue of the control rule (6)-(7), the
disturbance di is bounded. We can achieve the following
statement for the control accuracy of the closed-loop system.
Corollary 1: The steady-state control error of the

time-based control system in Theorem 1 approaches to the
following range:

ess = lim
t→∞

(
K−1
Pt (di − τi)

)
(20)

Its proof could be referred from previous work
[22], [38], [41]. ⊓

Remark 4: The control error could be reduced by select-
ing large control gain KPt . However, to reach outstanding
control outcomes, the uncertain nonlinearities and exter-
nal disturbances in the system model must be eliminated.
For this purpose, possible directions are adoption of robust
adaptive nonlinear controllers [17], [21], [48] or high-gain

observers [17], [53], [54]. Interestingly, the dynamical behav-
iors of the system would be recorded in the previous iteration
data [23], [34]. By properly exploiting such data, it could
result in surprising control achievement.

B. NEURAL ITERATIVE LEARNING CONTROL SIGNAL
In this subsection, an intelligent iterative-based control signal
is going to be developed for a high-accuracy tracking control
outcome using repetitive control behaviors and advantages of
the ILC technology.

Inspired but different from previous studies [41], [55], [56],
the iterative control rule is designed as

τi = Piτi−1 + ξi (21)

where Pi = diag ⌊pi⌋ is a diagonal matrix of inheritance
functions, and ξi is an excitation function.
As also reported in the past work, the iterative disturbance

di was assumed to be no change on the iterative direction, and
the iterative-based functions were chosen as{

Pi = Q ⌊εi⌋

ξi = Q ⌊εi⌋ h ⌊εi/εi−1⌋
(22)

in which, Q ⌊εi⌋ is normally a filter function that is used
to isolate unexpected disturbances from the iteration loop,
while h ⌊εi/εi−1⌋ could be simple functions or model-based
adaptation functions or neural network models of either the
previous or current iteration with time lifting [23], [35], [38],
[55]. With such design, the iterative control signal has tended
to completely believe either on the past control experiences
or only on current iteration. Much research in the human
society show that this action is not an appropriate choice
in complicated situations [57], [58]. Hence, in this paper,
a new intelligent ILC design is provided to deal with the
aforeanalyzed problem.

Note thatCorollary 1 implies that once the iterative control
signal τi approaches to the disturbance di, the control error
will converge to zero or as small as possible. Hence, it is worth
defining a new error:

ςi = τi − di (23)

By recalling the general control rule (21), variation of the new
error (23) on the iteration axis is expressed as

ςi = Piςi−1 + ξi − ϕi,i−1 (24)

where ϕi,i−1 is called as the iterative disturbance, that is
formulated as:

ϕi,i−1 = di − Pidi−1 (25)

The model (25) indicates that the new disturbance ϕi,i−1
contains both the present and past states on both the time and
iterative axes. It can be easily observed that the disturbance
di will approach to di−1 once ei approaches to ei−1. Based
on the aforementioned observation, the inheritance function
could be selected as

pi,k|k=1..n =
(
1 − e−γi,p1,k t

)
e−γi,p2,kε

2
i,k (26)

where γi,p1,k , γi,p2,k are preselected positive constants.
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FIGURE 1. Structure of the employed neural network.

To design the excitation function, we can begin with
approximating the new disturbance ϕi,i−1 as in (27) using uni-
versal approximation natures of neural networks [14], [17],
[59]:

ϕi,i−1,k|k=1..n = wTi,kri ⌊qi, q̇i, qi−1, q̇i−1, qd , q̇d ⌋ + ϖi,k

(27)

where wi,k ∈ ℜ
m is an optimal weight vector, ri ∈ ℜ

m is a
bounded regression vector, m is a selected length, and ϖi,k is
an approximation error. Structure of the network is illustrated
in Fig. 1.

Note that the excitation function ξi is employed to compen-
sate for the new disturbance ϕi,i−1. Therefore, it is designed
as

ξi,k|k=1..n = ŵTi,kri ⌊qi, q̇i, qi−1, q̇i−1, qd , q̇d ⌋ (28)

where ŵi,k is estimate of the vector wi,k .
By adopting the model (27) and the selection (28) to the

variation (24), we have

ςi,k|k=1..n = piςi−1,k + w̃Ti,kri − ϖi,k (29)

where w̃i,k = ŵi,k − wi,k is an estimation error.
The element-wise dynamics (29) reveal that the iterative

control outcome totally depends on the learning of the exci-
tation function. Thus, we design the following second-order
adaptation law:

ŵi,k|k=1..n = γi,w1,k ŵi−1,k + γi,w2,k ŵi−2,k

− βi,k
ri tanh

⌊
εi,k

⌋
1 + rTi ri

(30)

where βi,k|k=1..n are positive constants, and γi,w1,k|k=1..n,
γi,w2,k|k=1..n are learning rates.
So far, the novel ILC design seems to possess the

model-free and adaptive features required. Its robustness is
now discussed from the following investigations.

Lemma 2: For any bounded iterative disturbance that is
expressed in a linear combination as presented in (27), the
estimation error w̃i,k is bounded if the nonlinear learning rule
(30) is employed with the learning rates complying with the
constraint (31): 

0 < |γi,w1,k | < 1
0 ≤ |γi,w2,k | < 1
|γi,w1,k | + |γi,w2,k | < 1
γi,w2,k ≥ −0.25γ 2

i,w1,k

(31)

Proof:
Variation of the estimation error on the iterative axis is

described as in (32) by using the adaptation rule (30):

w̃i,k|k=1..n = γi,w1,k w̃i−1,k + γi,w2,k w̃i−2,k − wi,k
+ γi,w1,kwi−1,k + γi,w2,kwi−2,k

− βi,k
ri tanh

⌊
εi,k

⌋
1 + rTi ri

(32)

The condition (31) could result in new inequalities:
γi,w2,k < 1 + γi,w1,k

γi,w2,k < 1 − γi,w1,k

γi,w2,k ≥ −0.25γ 2
i,w1,k

(33)

Based on the constraints (31) and (33), it is always possible to
separate the learning rates (γi,w1,k , γi,w2,k ) into the following
interesting terms:

σi,w1,kσi,w2,k = γi,w2,k

σi,w1,k − σi,w2,k = γi,w1,k

σi,w1,k = 0.5(
√

γi,w1,k2 + 4γi,w2,k + γi,w1,k ) < 1
σi,w1,k = 0.5(

√
γi,w1,k2 + 4γi,w2,k − γi,w1,k ) < 1

(34)

We next define a new composited estimation error:

vi,k|k=1..n = w̃i,k + σi,w2,k w̃i−1,k (35)

The variation (32) could be shortened as

vi,k|k=1..n = σi,w1,kvi−1,k − wi,k + γi,w1,kwi−1,k

+ γi,w2,kwi−2,k − βi,k
ri tanh

⌊
εi,k

⌋
1 + rTi ri

(36)

By applying the triangle inequality [47], [56] to (36), the
following regression series constraint is resulted in∥∥vi,k|k=1..n

∥∥ ≤ |σi,w1,k |
∥∥vi−1,k

∥∥ + 2w̄i,k + βi,k

≤ . . . ≤ |σi,w1,k |
i ∥∥v0,k∥∥

+
(
2w̄i,k + βi,k

) 1 − |σi,w1,k |
i−1

1 − |σi,w1,k |
(37)

From (37) and Theorem 1, it can be seen that the intermediate
estimation error (vi,k|k=1..n) is bounded. Applying the same
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manner to the former estimation error (w̃i,k ) leads to∥∥w̃i,k|k=1..n
∥∥

≤ |σi,w2,k |
∥∥w̃i−1,k

∥∥ +
∥∥v0,k∥∥

+
(
2w̄i,k + βi,k

) 1 − |σi,w1,k |
i−1

1 − |σi,w1,k |

≤ . . . ≤ |σi,w2,k |
i ∥∥w̃0,k

∥∥ +
∥∥v0,k∥∥ 1 − |σi,w2,k |

i−1

1 − |σi,w2,k |

+
(
2w̄i,k + βi,k

) 1 − |σi,w1,k |
i−1

1 − |σi,w1,k |

1 − |σi,w2,k |
i−1

1 − |σi,w2,k |
(38)

This result indicates that the estimation error (w̃i,k ) is
bounded, and Lemma 2 has been thus proven. ⊓

Theorem 2: If the iterative disturbance (25) is bounded
and the iterative control signal is updated by the rules (21),
(26), (28), (30) and (31), variation of the iterative error (23)
is stable.

Proof:
By using (27)-(28), the variation (24) is simplified in an

element-wise form

ςi,k|k=1..n = pi,kςi−1,k + w̃Ti,kri − ϖi,k (39)

In cases of the non-zero indirect control objectives (εi,k ̸= 0),
the inheritance function is less than one (pi,k < 1). Using the
triangle inequality for the variation (39), one has

|ςi| ≤ ρ|ςi−1| + | ¯̃w
T
i,kri| + |ϖ̄i,k |

≤ . . . ≤ ρi|ςi−1| +
1 − ρi−1

1 − ρ
(| ¯̃w

T
i,kri| + |ϖ̄i,k |) (40)

where (pi,k ≤ ρ < 1) is an upper bounds of pi,k .
From the result of Lemma 2, the estimation error

(w̃i,k|k=1..n) is bounded, hence the iterative error ςi is
bounded. From (21), (26) and (28), or (23), the iterative
control signal (τi,k|k=1..n) is bounded as well.
In cases of the perfect indirect control error (εi,k = 0),

the inheritance function is equal to one (pi,k = 1). By noting
(28)-(30), the control law (21) could be rewritten as

τi,k|k=1..n = τi−1,k + γw1,k ŵTi−1,kri + γw2,k ŵTi−2,kri (41)

Applying the same triangle inequality, we have

|τi,k|k=1..n| ≤ |τi−1,k | +
(
|γw1,k | + |γw2,k |

)
ci0

≤ . . . ≤ |τ0(k)| +
1 −

(
|γw1,k | + |γw2,k |

)i
1 − |γw1,k | − |γw2,k |

ci0

(42)

where ci0 = max
⌊
|ŵi,k |

T
|ri|

⌋
denotes an upper bound of the

estimated iterative disturbance, τ0(k) is an iterative control
value at the last moment of the imperfect indirect control case.

From yield of Lemma 2 with the condition (31), at which
the upper bound of ¯̂wi−1,k is confirmed, and from the virtue
of the imperfect cases where τ0(k) is bounded, the inequality
(42) implies that the iterative control torque in the perfect case
is bounded. It leads the boundedness of the iterative error in
(23). The proof of Theorem 2 has thus been completed. ⊓

FIGURE 2. Block diagram of the proposed controller.

Remark 5: Overview of the proposed control approach is
illustrated in Fig. 2. The general robotic system (1) itself
is an unstable plant with complicated nonlinear uncertain
dynamics and affected by external disturbances [13], [34].
In the proposed control strategy, the PD control signal (7) is
first used to stabilize internal/external dynamics, and the new
neural ILC terms ((26), (28), and (30)) are then integrated to
provide expected control performances. In fact, to obtain an
excellent control error (5), one could employ various neural
networks [14], [15], [16], [17] to learn the disturbance (19)
using current states of the system (1). As presented in (27), the
regression vector of the iterative-based neural network con-
tains more states than that of the time-based neural networks.
Hence, by using the PDISN technique, one could utilize the
control experiences in the past to result in higher control
performances.
Remark 6: With the iterative-based control design, the

convergence of the control performance (24) is accomplished
in a spiral manner. In cases of the large indirect control
error (17), the inheritance function becomes small, and the
convergence process is mainly based on the learning of the
excitation process (28), (30). It means that in this case the con-
troller reduces the creditability of the past control experience
and mainly uses state information of two consecutive latest
iterations to generate the iterative control signal. As proven
in Lemma 2, the network could well learn the iterative dis-
turbance in several steps. The errors (23) as well as (17)
would then converge to a smaller bound. As a sequence, the
bound of the iterative disturbance (25) would be reduced
due to its special properties on the iteration axis [23], [44].
This fact makes the error (23) continuously smaller, even
though the inheritance function approaches to one. Note also
that in this situation, the excitation function ξi will become
smaller as well, and the controller has a good reason to
believe on the previous control experiences. Comparing to
almost previous studies [37], [38], [41] that completely put
the iterative control mission on one certain iteration (cur-
rent or past) shoulder, the proposed iterative method seems
more flexible in technical viewpoint and closely to human
thinking.
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FIGURE 3. Configuration of the simulation robot.

Remark 7: Initial resetting conditions are crucial issues
with conventional ILC techniques [38], [45].With the flexible
learning rules (21), (26), (28), (30) and proven by Lemma 2
and Theorem 2, the robustness of the closed-loop system
could be confirmed over such problems.
Remark 8: To approximate the iterative disturbance (25),

ones could employ many types of nonlinear neural networks
such as deep neural networks or large-size encoded two-
layer neural networks [9], [11], [66]. The deep networks
have been shown outstanding learning performances in a
wide variety of applications, but the learning processes are
commonly slow due to attrition of learning signals transferred
throughout many layers [63], [65]. They would be thus great
with offline-learning systems [62], [67]. On the other side,
in the functional two-layer networks, the first layer works
as a feature-extracting module, and the second layer is then
optimized by learning algorithms to result in desired approx-
imation precision [6], [10]. Thanks to the fast adaptation and
low computation, they are suitable for automatic intelligent
control systems that require online learning ability [9], [10],
[62], [63].
Remark 9: Under the approximation structure (27), (28) or

the graphical presentation in Fig. 1, if the regression vector
(ri) can be able to capture all features of the input signals
inside their working ranges, a larger length (m) of the vector
(ri) would result in a smaller bound of the approximation error
ϖi,k [63], [64]. A trade-off value of the length (m) to ensure a
good transient iterative performance and a proper volume of
the controller memory has to be considered carefully.
Remark 10: From (30), it can be seen that the learning

process of the neural network (27), (28) is activated by the
indirect control error (ε) in (17). As also reflected from (24),
once the error (ε) converges to zero, the iterative disturbance
(ϕi,i−1) converges to zero as well. At that time, if all ele-
ments of the regression vector (ri) are normalized in a range
of (0; 1], the estimation weight vectors ŵi,k|k=1..n tend to
converge to zero. The smallest possible absolute values of
the indirect control error (ε) and of all elements of the esti-
mation weight vectors (ŵi,k|k=1..n) can confim the working

FIGURE 4. Desired trajectories of the robot joints in the first simulation.

FIGURE 5. External disturbances affecting to the robot joints in the first
simulation.

effectiveness of the neural network designed and the new ILC
approach proposed.

IV. VERIFICATION RESULTS
In this section, the effectiveness of the proposed controller
is further discussed based on validation results achieved in a
simulation environment.

A. SETUP
To evaluate the control performances of the PDISN con-
troller, comparative simulations were carried out on a 2-DOF
robot [28], as sketched in Fig. 3. The robot dynamics were
derived from previous work [13], [16]:

M ⌊q⌋ =

[
m11 m2l22+l1l2m2 cos(q2)

m2l22+l1l2m2 cos(q2) m2l22

]
m11 = m2l22 + 2l1l2m2 cos(q2) + (m1 + m2)l21

C ⌊q, q̇⌋ q̇ =

[
−m2l1l2 sin(q2)q̇2 (q̇2 + 2q̇1)

m2l1l2 sin(q2)q̇21

]
g ⌊q⌋ =

[
m2l2g cos(q1 + q2)+(m1+m2) l1g cos(q1)

m2l2g cos(q1 + q2)

]
f ⌊q̇⌋ =

[
a1q̇1
a2q̇2

]
where q1,2 are joint positions, and mi, li|i=1,2 are masses and
lengths of the robot links, respectively. The system parame-
ters were selected to be l1 = 0.2, l2 = 0.3,m1 = 2,m2 =

0.5, a1 = a2 = 2.
In the simulations, the learning and control gains of the

proposed controller were chosen to be:
KPt = 30I2;KDt = 2I2; βi,1 = βi,2 = 2;
γi,p1,1 = γi,p1,2 = 20; γi,p2,1 = γi,p2,2 = 0.005;
γi,w1,1 = γi,w1,2 = 0.2; γi,w2,1 = γi,w2,2 = 0.01.
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FIGURE 6. Control errors of the investigating systems on the time axis
and the iteration axis in the first simulation.

The regression vector (ri) of the neural network was built
up from 729 neurons using logsig functions. To clearly vali-
date the advantages of the proposed ILC method, a conven-
tional PID controller [1], Time-basedNeural-Network (TNN)
controller [60], and Time-based Neural-Network Iterative
Learning (TNNIL) controller [41] were deployed to control
the same system in same working conditions. Parameters of
the PID controller were selected as follows:

KP = diag([250; 200]);KI = 3I2;KD = 50I2;

The TNN controller was resued from previous work [60] with
the following design:

eTNN = qd − q;
rTNN = ėTNN + 3TNN eTNN ;

τTNN = Kv,TNN rTNN
+Ŵ T

TNNφTNN ⌊eTNN , ėTNN , qd , q̇d , q̈d⌋ ;

˙̂W TNN = σTNNφTNN ⌊eTNN , ėTNN , qd , q̇d , q̈d⌋ rTTNN ;

FIGURE 7. Control errors of the proposed controller on the time axis and
the iteration axis in this first simulation.

FIGURE 8. Average absolute control errors of the proposed controller on
the iteration axis in the first simulation.

FIGURE 9. Average absolute values of the weight vectors learnt by the
proposed algorithm in the first simulation.

where φTNN ⌊eTNN , ėTNN , qd , q̇d , q̈d⌋ was a regression vec-
tor of logsig functions, other control and learning gains
were obtained by a manual method, as follows: 3TNN =

15I2;Kv,TNN = 2I2; σTNN = 100.
The TNNIL controller was extended from another previous

study [41]. Its detailed design was as

eIC = q− qd ;
zIC = ėIC + aICeIC ;

τIC = τf ,IC + τc,IC + τl,IC ;

τf ,IC = LICzIC ;

τl,i+1,IC =
i τl,i,IC + βICLICzi,IC ;

τc,IC = Ŵ T
ICφIC ⌊q, q̇, qd , q̇d , q̈d⌋ ;

˙̂W IC = σICφIC ⌊q, q̇, qd , q̇d , q̈d⌋ zTIC ;

Ŵi+1,IC ⌊0⌋ =
˙̂W i,IC ⌊T ⌋

where φIC ⌊q, q̇, qd , q̇d , q̈d⌋ was also a regression vector of
logsig functions, and T is the duration of each iteration. The
control and learning gains of the TNNIL controller were
chosen as: aIC = 15;LIC = 2I2; βIC = 0.5; σIC = 100.

B. SIMULATION RESULTS
In the first simulation, sinusoidal (q1d = sin(0.4π t)(rad))
and multi-step (q2d = ((1 − e−10t )/(1 + e−10t )) −

2e10(t−15)/(1 + e10(t−15))) signals, as shown in Fig. 4,
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FIGURE 10. Control signals of the proposed controller at the 20th

iteration in the first simulation.

FIGURE 11. External disturbances affecting to the robot joints in the
second simulation.

were selected as reference trajectories of joints 1 and 2,
respectively. The initial joint positions were chosen to be
0.2 (rad) and −0.15 (rad). External disturbances of the
system dynamics (1) were chosen as presented in Fig. 5.
The four controllers were applied to control the robot, and
their control results obtained in 20 iterations are plotted in
Figs. 6– 10.
As shown in Fig. 6, the well-tuned PID controller could

stabilize the system outputs in good control accuracies:
0.038 (rad) for the sinusoidal trajectory and 0.012 (rad) for the
step trajectory under the large external disturbances. The con-
trol accuracies could be increased by employing adaptation
natures of the neural networks to learn the system behaviors
on the time axis. As seen in Fig. 6, the neural controllers
always delivered higher control performances than the PID
one. Control precision of the TNN approach was clearly
improved: the control errors at the first and second joints
were 0.0032 (rad) and 0.0012 (rad), respectively. Further-
more, if the system operated in a repetitive fashion, iterative-
based control methods could be applied for higher control
efficiency. Fig. 6 also reveals that composition of a time-
based neural-network control signal and a conventional ILC
term in the TNNIL method could attenuate the perturbance
more effectively and yielded promising control results: after
20 iterations, the control errors at the first and second joints
were 0.0025 (rad) and 0.0009 (rad), respectively. In fact,
the enhancement of the control performance was just minor
by using the previous iterative learning control scheme in
this case. As an innovative step, in this paper, we propose
the new intelligent iterative high-order control framework
as clearly discussed in Section III. Its control effect has
been illustrated throughout the control outcomes obtained
and shown in Figs. 6 - 10. As depicted in Fig. 6, in the first
iteration, since the proposed control signal was just generated

FIGURE 12. Control errors of the investigating systems on the time axis
and the iteration axis in the second simulation.

by a poor PD control engine and the intelligent ILC was not
applied at all, the control performance of the designed control
approach looked even worse than that of the well-tuned PID
one. In the second iteration, at which the new ILC frame-
work had been gone into operation, the control performances
seemed to be improved, but still not higher than those of
the others, especially at the second joint that was suffered
by the harsh external disturbance. However, learnability of
the proposed control approach for this robotic system could
be observed as comparing data of the two iterations. After
completing 20 iterations of working, the PDISN controller
surprisingly delivered the best control results under the severe
working condition: the control errors at the first and second
joints reached to 5.4 × 10−6 (rad) and 2.1 × 10−6 (rad),
respectively. The learning ability of the PDISNmethod can be
observed more clearly by different forms of the control errors
presented in Figs. 7 and 8. The data indicate that the PDISN
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FIGURE 13. Control errors of the proposed controller on the time axis
and the iteration axis in this second simulation.

FIGURE 14. Average absolute control errors of the proposed controller on
the iteration axis in the second simulation.

FIGURE 15. Average absolute values of the weight vectors learnt by the
proposed algorithm in the second simulation.

FIGURE 16. Control signals of the proposed controller at the 50th

iteration in the second simulation.

technique worked well with the robotic system in various
conditions regardless of starting from a weak-performance
level. Fig. 9 presents the average absolute values of the neural
weight vectors ( ŵi,1 and ŵi,2) learnt by the proposed control
algorithm on the iteration axis. The convergence of these
average values to zero satisfies the discussions in Remark 10.
In addition, the control signals shown in Fig. 10 indicate that
the proposed iterative learning method could convincingly
record information of both internal and external disturbances,
and then compensate for them in the control phase to result
in the excellent control performances with smooth control
behaviors.

In the second simulation, the controllers were challenged
in more draconic working conditions in which the desired

FIGURE 17. The desired end-effector trajectory of the robot in the third
simulation.

FIGURE 18. External disturbances affecting to the robot joints in the third
simulation.

profiles were changed to be (q1d = sin(4π t)(rad) and q2d =

sin(6π t)(rad)), and the external disturbances affecting to the
system were also reselected as shown in Fig. 11. After
applying the same controllers to the system with the same
initial joint values, new simulation results are presented in
Figs. 12-16.

In the new operation conditions, as seen in Fig. 12, the
PID and TNN controllers still maintained their robustness
with acceptable control errors: 0.095 (rad) for the PID one
and 0.07 (rad) for the TNN one at joint 1, for instance.
The data in Fig. 12 confirm the learning effectiveness of
the TNNIL method: for example, the control accuracy after
50 iterations increased to 0.04 (rad) at joint 1, and the
same behaviors could be seen in the control outcome of
the joint 2. Even though supported by a strong time-based
neural network control signal, the simulation results how-
ever reveal that the nonlinearities, uncertainties and distur-
bances were not completely terminated using the previous
ILC one. We believe that such problems could be efficiently
dealt with by the PDISN controller thanks to the proper
neural-network-based design (21), (26), (28), (30) and (31).
As demonstrated in detail in Fig. 12 or in summarization
modes in Figs. 13 and 14, the control performance of the
proposed controller was improved from iteration to iteration:
after 50 iterations, the steady-state control errors of joint 1 and
2 reached to good values of 0.00036 (rad) and 0.00015 (rad),
respectively. Once the good control errors were released, all
elements of the estimation weight vectors ( ŵi,1 and ŵi,2)
were converged to zero as shown in Fig. 15 or as discussed
in Remark 10. Furthermore, as illustrated in Fig. 16, control
torques generated by the proposed method were still smooth
through many iterations.

To verify the controllers with practical challenges, in the
third simulation, the end-effector of the robot was controlled
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FIGURE 19. The desired trajectories of the robot joints in the third
simulation.

FIGURE 20. Control errors of the investigating systems on the time axis
and the iteration axis in the third simulation.

FIGURE 21. Control errors of the proposed controller on the time axis
and the iteration axis in this third simulation.

to follow a certain trajectory, as depicted in Fig. 17, under
very complicated disturbances, as shown in Fig. 18, that

FIGURE 22. Average absolute control errors of the proposed controller on
the iteration axis in the third simulation.

FIGURE 23. Control signals of the proposed controller at the 100th

iteration in the third simulation.

FIGURE 24. Responses of the proposed controllers in task-space view
from iterations in the third simulation.

FIGURE 25. Average absolute values of the weight vectors learnt by the
proposed algorithm in the third simulation.

seriously affected to joint motions. By applying proper
inverse kinematics [13], the corresponding desired trajecto-
ries of the joint angles are plotted in Fig. 19. In this test, the
initial values of the joint positions of the proposed controllers
were set to be different for each iterations: q1,ini ⌊i⌋ = 0.2 +

0.2sin(i); q2,ini ⌊i⌋ = −0.15 + 0.2cos(i).
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After applying the same controllers to the system in the
same testing conditions, the obtained results are presented in
Figs. 20 - 25. The data shown in Fig. 20 once again strongly
confirm the effectiveness and reliability of the proposed
control algorithm in various working conditions. Although
heavily affected by the sturdy external disturbances and the
inconsistently initial joint positions, the control accuracies
of the PDISN controller increased iteration-by-iteration to
outstanding levels: as observed in Figs. 20 - 22, after 100th
iteration, the control errors of joints 1 and 2 were about
1.2 × 10−7 (rad) and 10−7 (rad), respectively. Meanwhile,
the best values of other comparative controllers in this test,
as depicted in Fig. 20, were 0.02 (rad) and 0.006 (rad) for
joints 1 and 2, respectively. By comparing Figs. 18 and 23,
it can be seen that the proposed control algorithm could
learn well the internal/external disturbances. The learning
results were then adopted to eliminate the system dynamics
in the control phase to result in the excellent tracking control
outcomes, as shown in the joint-space view in Figs. 20 - 22,
and, as demonstrated in the task-space view in Fig. 24.
Fig. 25 reveals that all elements of the weight vectors also
well approached to zero but containing few vibrations. These
variations were generated by the proposed controller in the
transient time of each iteration to compensate for difference
of the initial values of the joints. It means that the initial
resetting problem facing in many classical ILC approaches
was effectively treated by the PDISN one. Note that to achieve
high control performances using this control approach, users
do not need a complicated time-based control signals to sup-
port the iterative learning process. Hence, outperformances
of the proposed controllers over the previous ones in terms of
high precision, free initial conditions, robustness, adaptation
and smooth control behaviors, can be confirmed throughout
these validation results.

V. CONCLUSION
An efficient intelligent ILC method has been proposed for
motion control of robotic manipulators. The controller is
supported by a simple PD control signal in the time domain.
The control performance is then enhanced by a learning
control signal designed in the iteration domain. To cope with
initial resetting problems as well as efficiently eliminate the
time-iterative-based disturbances, the iterative signal is built
up by a flexible inheritance term and an appropriate neural
excitation structure. A special second-order learning law is
derived for operation of the iterative network. Stability of the
whole controller is thoroughly proven using Lyapunov-based
analyses and regression series criteria. Effectiveness and
reliability of the proposed control approach were care-
fully validated by intensive comparative simulation results.
In the near future, the proposed controller will be improved
with a structural learning algorithm to optimize computa-
tional time and be verified on real-time robotic manipula-
tors. In practical operation, the desired joint trajectories are
selected complying with the inertial nature of the verifying
robot.
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