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Abstract

Market impact cost is the most significant portion of implicit transaction costs that can
reduce the overall transaction cost, although it cannot be measured directly. In this paper,
we employed the state-of-the-art nonparametric machine learning models: neural networks,
Bayesian neural network, Gaussian process, and support vector regression, to predict mar-
ket impact cost accurately and to provide the predictive model that is versatile in the number
of variables. We collected a large amount of real single transaction data of US stock market
from Bloomberg Terminal and generated three independent input variables. As a result,
most nonparametric machine learning models outperformed a-state-of-the-art benchmark
parametric model such as |-star model in four error measures. Although these models
encounter certain difficulties in separating the permanent and temporary cost directly, non-
parametric machine learning models can be good alternatives in reducing transaction costs
by considerably improving in prediction performance.

Introduction

Transaction cost is one of the important factors that affect the investment performance and is
usually classified into two major categories: explicit costs and implicit costs. Explicit costs, also
called direct costs, are transaction costs that can be explicitly stated and measured. These costs
include commissions, transaction fees, and taxes. Implicit costs, or indirect costs, are costs that
cannot be measured directly but can be improvable by an appropriate trading strategy. They
include bid-ask spreads, time risk costs, and market impact costs.

Market impact cost, one of the implicit transaction costs, is the cost caused by the difference
between the price before the transaction and the actual price that the transaction is executed actu-
ally. During the last decade, many studies have been focused on analyzing market impact costs by
not only the academic researchers but also the practitioners because it is one of the main reducible
parts of the transaction cost. [1] and [2] fitted the impacts of single transactions to a concave

PLOS ONE | DOI:10.1371/journal.pone.0150243 February 29, 2016

1/13


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0150243&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.bloomberg.com/professional/
http://www.bloomberg.com/professional/
http://www.nrf.re.kr/nrf_eng_cms/)
http://www.nrf.re.kr/nrf_eng_cms/)

@’PLOS ‘ ONE

Predicting Market Impact Costs Using Nonparametric Machine Learning Models

study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

power-law function of the volume of the transaction. [3] used a logarithm function of the transac-
tion volume to estimate market impact costs. [4] exploited the hyperbolic tangent function for
the same task. [5] and [6] used a stochastic process of the asset price which includes a function of
the transaction size to explain market impacts. [7] estimated impact cost by using a linear regres-
sion with quantized transaction sizes. [8] analyzed the market impacts of the large institutional
orders in the US equity market and found that the permanent impact function has a concave
form with respect to the transaction size, in contrast to the previous results [5, 9] in which the per-
manent impact function had a linear form. The I-star model, a state-of-the-art parametric model,
described in [10] and [11] is a log-linear regression model that uses three inputs, transaction size,
volatility, and underlying trading rate. These inputs affected the estimated market impact costs
independently. [12] and [13] used more than 40 independent variables to fit the market impact
cost to simple linear regression function. However, those existing parametric approaches showed
the limitation in estimation and prediction performance because they assumed the fixed paramet-
ric or simple linear regression form of the market impact model. In addition, most of them cannot
employ the variables that are not originally included in the model thus a new model is always
required to predict the market impact with the different set of variables.

Recently, nonparametric machine learning models have been successfully applied to diverse
financial applications because of their abilities in fitting and predicting performances for com-
plex data sets. They include the stock price prediction [14-17] and its derivative markets [18—
20], credit and its derivative markets [21-23], fixed-income markets [24, 25], and foreign
exchange markets [26, 27].

In this paper, we introduce nonparametric machine learning approaches to estimate and
predict market impact costs more accurately than the existing parametric approaches. To our
knowledge, this is the first approach that applies several nonparametric learning models to ana-
lyze the market impact cost. The proposed nonparametric approach has two main advantages.
First, the nonparametric approaches usually fit the data better than does the parametric case.
Second, the nonparametric approaches are versatile in the number of input variables so the
general procedure does not change, whereas the number or kinds of input variables change
while the parametric approaches require the new parametric models in those cases. By simula-
tion, we analyzed the market impact costs of transactions of small-cap, mid-cap, and large-cap
stocks in US equity market both altogether and separately by selecting the same types of input
variables with I-star model [10, 11] and compared the results.

The remainder of the paper is organized as follows. In the next section, we briefly explain
the I-star model which is used as a parametric benchmark with three input variables. Then, we
describe how to use nonparametric regression models to construct market impact cost func-
tions. Data description and experimental procedures with the experimental results are pre-
sented in the following sections. Finally, we provide the summarized results, limitations, and
some directions for the future work in the discussion section.

Review of I-star model

In this section, we first briefly review I-star model [10, 11] which is a state-of-the-art bench-
mark parametric model. I-star model, which uses three input variables to describe the market
impact cost, is composed of two separated equations calculating I*, a theoretical instantaneous
cost, and MI, the market impact cost appeared in the real market, respectively. The equations
calculate them are given as follows:

I' =a, - Size® - Vol* (1)

MI = bI - POV + (1 —b,)I" (2)
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where Size, Vol, and POV are input variables and ay, a,, a3, a4, and b, are parameters to be
determined.

The first input variable of Egs (1) and (2) is Size, the normalized order size. Based on [11],
this variable is represented as Size = Q/ADV, where Q is the imbalance, the absolute value of
difference between buy order and sell order, and ADV is 30-day average daily volume. Thus
Size implies the magnitude of pressure from this order relative to the average daily volume.
The second input variable, Vol, is the volatility of the equity return and 30-day averaged volatil-
ity was used in [11]. The last input variable, POV, is an acronym for percentage of volume and
it reflects the market liquidity condition. [11] simply expressed POV = Q/(Q+V) where V is the
expected volume traded for the period of time that the imbalance order Q is executed. If the
market is liquid or the imbalance trade order Q is executed slowly, V becomes large and thus
POV becomes small. Small POV results in small MI value so the market impact cost will be
small when the market is liquid.

The market impact cost in Eq (2) comprises two components, temporary impact cost and
permanent impact cost which are the first and the last term in the right hand side of Eq (2)
respectively. Considering that Size and Vol are used to calculate the value of I*, they affect both
the temporary and permanent part of the market impact. However, the other input variable
POV only appears in the temporary impact part. This result implies that the smaller POV
incurs the smaller market impact cost when the other input variables are invariant. However,
this effect is temporarily and the permanent impact on the market is independent of the market
liquidity condition.

Several parameters should be estimated. These parameters can be determined with data sets,
including input variable values and market impact costs observed in the market, by general
parameter estimation techniques such as nonlinear optimization and grid search.

Nonparametric regression models

In this research, four state-of-the-art nonparametric machine learning models are used to esti-
mate market impacts. As a preliminary, brief explanations of them are given as follows.

Neural networks

Neural networks [28] are nonparametric nonlinear regression models which can be fit to highly
nonlinear data distribution. Mimicking a human brain, a neural network model consists of lay-
ers that contains several nodes, conducting the same role with neurons in the human brain.
Each node in the layer takes output values of all nodes in the previous layer as input values, cal-
culates the output value, and provides the output value to all nodes in the next layer as one of
their input values. The most common way of output value calculation in the node is as follows:

y :f(zwig(‘xi)) (3)

where y is the output value of the node, x; represents input value from node i in the previous
layer, g(-) is an input transform function, w; represents weights for input values, and f{-) is an
activation function that makes the regression model nonlinear. The sigmoid functions, such as
logistic function, probit function, and hyperbolic tangent function, and a liner rectified func-
tion, for example, f(x) = max{0, x}, are usual selections for the activation function.

Finding optimal weights, w;, in Eq (3) is the main task of constructing the neural network
model. The most extensively used method for this optimization back-propagation algorithm
[29]. In back-propagation algorithm, the weights are modified, or the gradients are calculated,
backward from the last output layer to the first input layer by minimizing the sum of squared
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errors as usual. Similar to other nonparametric regression methods, the neural network efec-
tively finds the complex data distribution after optimizing weights. However, the relationship
between input values and output values is difficult to determine.

Bayesian neural networks

Bayesian neural network model, first proposed in [30], is a variant of the neural network
model, whose weights have prior distribution similar to other Bayesian models. Maximizing
the likelihood of this model is equivalent to minimizing the regularized error function,

E, . (w,X,y) = E(X,y) + 4 || w ||}, where w is the weight vector, {X, y} are data inputs and
outputs, E(-) is the error function, and || - || is a k-norm function. If the prior distribution has
a Laplace function or a Gaussian function, k has the value of 1 or 2, respectively. [31] proposed
the iterative process of optimizing the Bayesian features including Bayesian neural networks by
using Gauss-Newton approximation to compute the Hessian matrix of the objective error func-

tion E, .

Gaussian processes

Gaussian process regression [32, 33], a collection of random variables such that the distribution
of any finite selection of them follows the joint Gaussian distribution, can be fully determined
by the mean function and the covariance function which can be represented as follows:

m(x) = E[f(x)] (4)
k(x,x) = E[(f(x) = m(x))(f(x) — m(x))] (5)

where f(x) is the Gaussian process regression function and m(x) and k(x,x') are its mean and
covariance function respectively.

Suppose that the data set D = {(x;,y,)}, is given where the variance of the noise of the
output values is denoted by ¢”. Then, because the any finite joint distribution follows the multi-
variate Gaussian distribution described by Eqs (4) and (5), the likelihood of the Gaussian pro-
cess model can be calculated as follows:

1 g — 1 N
logP(y|D) = — §yT(K +0 1)y - 3 log det (K + ¢°I) — 3 log 27 (6)

wherey = [y, ..., yN]T and K is an NxN matrix whose ij’'th component is k(x;,X;). Training
Gaussian process means finding the hyperparameters in the mean and covariance functions
and the output noise variance o°; these values maximize the likelihood function in Eq (6). After
finding those hyperparameters, the prediction for the new input x* can be estimated as

y K+d1 k!
MEIC o
f k k

* ok

whelrej"k =f(x*), kew = k(x*, x*), and k, = (k(x;,x™), ..., k(xn,x*))T. For more details for
Gaussian processes, see [34].

Support vector regression

Support vector regression proposed in [35] is a simple regression with a basis function ¢(x)
whose inner product can be represented a kernel function, <¢(x), ¢(x') > = k(x,x') and an &-
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insensitive loss function, £(y,,y,) = max{0, |y, — y,| — €}, with some £ > 0. The value of
this loss function is zero if |y;—y,|<e thus it is called e-insensitive.

Assuming the regression form as f(x, w) = < w, ¢(x) > +b, the support vector regression
problem is defined to minimize the sum of errors with the regularization which minimizes
[|w]||? to reduce the complexity of the model as follows:

1 2 S + -
min || w*+ C;(fi +&) (8)
with the constraints
Yi _f(xiaw) < e+ é;r
f(xi?w)_yi < 8+é; (9)
LE >0

foralli=1,..., N. Applying Karush-Kuhn-Tucker conditions to the minimization problem
above results in the following dual problem:

max — 23 > (@ =)@ = o k(s x) =€ (o =) + D@ )y (10)

with the constraints 0 < o, o < Cforalli=1,..., N. Then, the solutions for the primal
problem are becomes

b= - D k()

i=1
forany k=1, ..., N. After solving the dual problem by using a quadratic programming solver,
the predictive value for a new input x* becomes

y = (o = )k(x,x) + b (11)

which can be represented without the basis function ¢(x) itself but only with its inner product

kernel function k(x, X/).

Data description and procedures

In this section, we describe the proposed procedure to calculate the market impact cost by
using nonparametric machine learning models with an example of single transaction data of
representative US stocks.

General procedures

First, we suggest the general procedure to find market impact costs by using nonparametric
regression models before the descriptions of the simulation conducted in the current paper.
The whole procedure is classified into three stages: data collection, data preprocessing, and cost
analysis. Fig 1 represents the summary of the whole procedure.

The main task at the first stage is data collection, which aims to gather necessary data. Col-
lecting non-traditional data outside the market such as news, reports, opinions, and any other
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Data Collection

daily volume, ...

market sentiment,
news, accounting,
investor type, ...

» Market variables:
transaction size, price,

= Nonmarket variables:

I:> Data Preprocessing I:>

» Data cleaning: .
outlier elimination,
missing value
imputation, ...

Cost Analysis

Model construction:
neural networks,
support vector
regression, Gaussian

. processes,
= [Feature creation:

”Orma't'zed 5'fze' | » Estimation and
ercentage or volume, . e
P 9 Prediction

moving averages, ...

Fig 1. Summary of the general procedure of nonparametric approach for market impact cost.

doi:10.1371/journal.pone.0150243.g001

variables than may affect price or liquidity can also be useful as well as the traditional market
variables because the nonparametric models do not require any restriction on the data and the
general procedure of analyzing market impact costs using them will not be changed.

The gathered data from the first stage are preprocessed to make input variables that are
used for learning process in the second stage. First, data cleaning processes such as outlier elim-
ination and missing value imputation are conducted. Then, the input variables that will be
used for the nonparametric models are derived from these cleaned data.

At the final stage, nonparametric models to estimate and predict market impact costs are
constructed using the input variables created in the previous stage. In addition, any other anal-
yses using the constructed model including testing statistical significance can be conducted at
this stage.

Data description

For simulating the proposed nonparametric approach, we gathered a single transaction data of
the stocks of US equity markets from Bloomberg Terminal for the period from 2014/06/02 to
2014/06/26. We selected 17 representative firms that have large market capitals among each of
S&P 500, S&P MidCap 400, and S&Ps SmallCap 600 indices. These indices are composed of
large cap, mid cap, and small cap firms respectively. The tickers of the selected firms are pre-
sented in Table 1.

The collected transactions data are classified into three data sets, large cap, mid cap, and
small cap by their capitals; another data set all cap includes all transactions regardless of the
market capital. For each size of capitals, the number of collected transactions are approximately
15 million, 2 million and 1 million for large cap, mid cap, and small cap, respectively. Thus the
all cap data set has approxiamtely 18 million transactions in total. The procedures in the fol-
lowing sections will be applied commonly to all of those data sets.

PLOS ONE | DOI:10.1371/journal.pone.0150243 February 29, 2016 6/13
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Table 1. Tickers of selected firms.

Large cap Mid cap Small cap
AAPL ADS FNGN
XOM AMG TDY

GOOGL GMCR WST
GOOG TSCO DAR
MSFT MHK WWW
JNJ LKQ TYL
WFC HFC TTC
GE HSIC CGNX
CVvX DDD QCOR
WMT PII CNC
JPM UA ENS
PG CHD MDSO
vz BEAV LHO
1BM XEC VSAT
PFE JBHT MMS
T TRMB VvDC
ORCL EQIX SF

A total of 17 firms with large market capitals among each of large, mid, and small cap indices by S&P are
chosen.

doi:10.1371/journal.pone.0150243.t001

Creating and bucketing input variables

We made three key input variables, Size, Vol, and POV, which are also used in I-star model [10,
11] and one output variable, the market impact cost. Considering that the I-star was originally
applied to the daily-aggregated transactions, we slightly modified the input variables suitable
for single high-frequent transactions. First, we define the market impact cost, denoted by

cost, as

cost = side - log (p,/p,) - 10" (12)

where side is 1 if a trade is a buy-initiated trade and -1 if a trade is a sell-initiated trade, p, is a
mid-price just before the trade, and p; is an executed price of the trade. Given that cost is multi-
plied by 10% the unit of cost becomes basis point (bp). The first input variable Size is the nor-
malized trade size as follows:

) v,

Size = ye: (13)
where ATV is the average trade volume of the previous day. In the original I-star model, the
imbalanced trade size is normalized by 30-day average daily volume because the trade size itself
is daily = aggregated. In our research, to apply the single transactions, we divide each trade size
by the one-day average of the single trades of the previous day. The second input variable Vol
is defined as the 30-day volatility, and this value is the same with the original I-star model
because volatility is the characteristic of each stock, unrelated to trade size or frequency. POV,
the percentage of volume, in [11] is defined as Q/V where Q is the daily imbalanced size and V'
is the total trade volume of that day. A single transaction may be affected by market liquidity
more locally rather than the liquidity of the whole day. Thus we define POV for single

PLOS ONE | DOI:10.1371/journal.pone.0150243 February 29, 2016 7/13
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transactions as

Vt
POV = Vet (14)
where V,(-1, 1) is the total traded volume from 7 minutes before the trade to T minutes after
the trade. Based on the previous study [7], we expected that the single transaction affects and is
affected by the market within approximately 15 minutes and thus we decided that 7 equals 15.

After creating input variables, we made three dimensional bins of input variables and
bucketed the transactions into them. For each bin, Size has values of multiples of 0.01, i.e.
0,0.01,0.02,. . ., and Vol has values of multiple of 0.05. POV has the values of multiples of
0.0002 for the large cap data set and multiples of 0.001 for the other types of data sets. Each
transaction was bucketed to the bin with the nearest value. For example, a transaction from
mid cap data set with the input variables (Size, Vol, POV) = (0.0137,0.022,0.0038) was put to
the bin with the values (Size, Vol, POV) = (0.01,0.02,0.004). The output, cost, of each bin is
defined by the average cost of transactions belonging to the bin.

Finally, we selected bins containing enough number of transactions. The criterion number
will be different for data sets. We selected the bins containing more than 20, 30, 60, 100 trans-
actions; the number of survived bins are 2931, 3356, 5706, 5119 for small cap, mid cap, large
cap, and all cap, respectively.

Analyzing market impact costs

With respect to the bins of transactions to be used for the nonparametric machine learning
models, we set 70% of survived bins as the training set and the remaining 30% as the test set for
each data set. To find appropriate parameter sets of nonparametric models, we used 10-fold
cross validation for the training set. After finding the parameter set, each model was retrained
for the entire training set with the chosen parameter set and applied to the test set. As a
parametric benchmark, we used I-star model with the same data sets. As described in Section,
I-star model also requires finding certain parameters. We found the parameters for I-star
model by grid search and 10-fold cross validation of the training set and applied it to the test
set as the same with the nonparametric models. Finally, we applied Wilcoxon signed-rank test
between each nonparametric model and the parametric benchmark for each capital size group
to find whether the difference in performance between a nonparametric model and the bench-
mark is significant.

Results
Predicting market impact costs

First, we applied the nonparametric machine learning models and the benchmark parametric
model, I-star model, to the selected bins of each data set. To estimate the errors of the model,
we used four different measures, mean absolute error (MAE), relative MAE (RMAE), root
mean squared error (RMS), and relative RMS (RRMS). The summarized results are shown in
Tables 2-5. NN, BNN, SVR, GP, and I-star refer to neural network, Bayesian neural network,
support vector regression, Gaussian process, and I-star model, respectively.

From Tables 2-5, all the nonparametric machine learning approaches fit the data distribu-
tion better than does the parametric benchmark with the same input features and instances, as
expected. Secondly, the compared nonparametric machine learning models indicated different
performances. For example, Bayesian neural networks reduced the errors from 7.27% to
43.00% relative to I-star model but support vector regression reduced the errors just from
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Table 2. Test errors of the nonparametric models and the parametric benchmark models for small cap data set.

Methods MAE RMAE RMS RRMS
NN 0.9445 (0.9910) 0.3006 (0.3175) 1.4945 (1.5305) 0.4535 (0.4990)
BNN 0.9310 (1.0025) 0.3023 (0.3204) 1.4559 (1.5286) 0.4502 (0.4820)
GP 0.8794 (0.8701) 0.2854 (0.2716) 1.4945 (1.3950) 0.4442 (0.4060)
SVR 1.0121 (1.0333) 0.3352 (0.3373) 1.5783 (1.5762) 0.5090 (0.5340)
I-star 1.0396 (1.0446) 0.3410 (0.3408) 1.5701 (1.5891) 0.5097 (0.5476)

Cross validation errors are also displayed in the parentheses. The best model for each error measure is boldfaced.

doi:10.1371/journal.pone.0150243.1002

Table 3. Test errors of the nonparametric models and the parametric benchmark models for mid cap data set.

Methods MAE RMAE RMS RRMS
NN 0.5266 (0.5254) 0.2831 (0.2932) 0.7851 (0.7542) 0.4184 (0.4381)
BNN 0.5405 (0.5186) 0.2914 (0.2889) 0.7892 (0.7423) 0.4188 (0.4338)
GP 0.5517 (0.5178) 0.2802 (0.2778) 0.8311 (0.7597) 0.3907 (0.4144)
SVR 0.6202 (0.3251) 0.3268 (0.3251) 0.8914 (0.8358) 0.4672 (0.4746)
I-star 0.6540 (0.6226) 0.3453 (0.3424) 0.9373 (0.8730) 0.4972 (0.5080)

Cross validation errors are also displayed in the parentheses. The best model for each error measure is boldfaced.

doi:10.1371/journal.pone.0150243.t003

Table 4. Test errors of the nonparametric models and the parametric benchmark models for large cap data set.

Methods MAE RMAE RMS RRMS
NN 0.1287 (0.1283) 0.1515 (0.1506) 0.1732 (0.1738) 0.2051 (0.2054)
BNN 0.1267 (0.1280) 0.1502 (0.1505) 0.1712 (0.1735) 0.2066 (0.2061)
GP 0.1338 (0.1377) 0.1583 (0.1621) 0.1802 (0.1878) 0.2172 (0.2123)
SVR 0.1872 (0.1896) 0.2267 (0.2300) 0.2466 (0.2459) 0.3085 (0.3112)
I-star 0.2203 (0.2229) 0.2635 (0.2661) 0.2823 (0.2823) 0.3484 (0.3503)

Cross validation errors are also displayed in the parentheses. The best model for each error measure is boldfaced.

doi:10.1371/journal.pone.0150243.1004

-0.005% to 15.03%. This phenomenon is more clarified by Fig 2 which represented the errors
in the tables above.

In summary, we find that the three nonparametric models, neural network, Bayesian neural
network, and Gaussian process, shows much better performances than the parametric

Table 5. Test errors of the nonparametric models and the parametric benchmark models for all cap data set.

Methods MAE RMAE RMS RRMS
NN 0.4096 (0.3746) 0.4096 (0.2173) 0.7557 (0.6388) 0.3507 (0.3210)
BNN 0.3789 (0.3683) 0.2182 (0.2170) 0.6667 (0.6251) 0.3192 (0.3292)
GP 0.4327 (0.4059) 0.2586 (0.2519) 0.7383 (0.6598) 0.3601 (0.3576)
SVR 0.4488 (0.4256) 0.2766 (0.2710) 0.7485 (0.6840) 0.3933 (0.3964)
|-star 0.4747 (0.4517) 0.2989 (0.2931) 0.7784 (0.7029) 0.4163 (0.4149)
Cross validation errors are also displayed in the parentheses. The best model for each error measure is boldfaced.
doi:10.1371/journal.pone.0150243.1005
PLOS ONE | DOI:10.1371/journal.pone.0150243 February 29, 2016 9/13
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Fig 2. Test errors of the nonparametric machine learning models and the parametric benchmark. (a) small cap data set (b) mid cap data set (c) large
cap data set (d) all cap data set.

doi:10.1371/journal.pone.0150243.9002

benchmark while support vector regression model performs slightly better than the benchmark
and worse than the other nonparametric models in general. In some measures such as RMS,
support vector regression performs slightly worse than the benchmark model for small cap data
set.

To validate the proposed approach, in addition, we applied the Wilcoxon signed-rank test
to each pair of the instance-wise test errors of one nonparametric model and the benchmark
parametric model for each error measure. The p-values obtained by normal approximation of
the Wilcoxon signed-rank test and all of them were smaller than 0.05, which is usually consid-
ered as a critical value of the statistical significance. Even though the averaged RMS of SVR
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prediction is larger than the benchmark, the predicted performance of SVR was judged signifi-
cantly better than the parametric benchmark by the Wilcoxon signed-rank test.

Discussion

In this study, we introduced the nonparametric approaches to estimate and predict market
impact costs and applied them to US stock markets with the three input variables used in I-star
model, the parametric benchmark. This study has several features. First, four state-of-the-art
nonparametric machine learning models including NN, BNN, GP, and SVR have been applied
to the task of analyzing market impact cost, whereas the previous studies were focused on only
parametric models. The nonparametric machine learning approaches have advantages in both
prediction performance and versatility in the number of input variables. Second, the data set
used in this study was highly extensive. A total 17 firms were selected from each indices of
large, mid, and small cap firms, while the previous studies mostly focused on the large cap
firms. The total amount of transactions used in this study exceeded 18 million. Finally, the
market impact prediction in this paper used independent variables from single transactions.
Thus, this prediction has the advantages to be applied to technological high-frequency trades
compared with previous studies that analyzed only large trades.

As aresult of the experiments performed in this study, the performances of nonparametric
machine learning models mostly overwhelmed the benchmark model with the same input vari-
ables for all kinds of firm sizes and all error measures. In particular, BNN, NN, and GP showed
noticeably better performances, whereas SVR sometimes performed worse than or comparably
to the benchmark model. The statistical significance of the predictive powers of nonparametric
approaches was also validated by applying the Wilcoxon signed rank test to the test error.

However, one of the limitations of the nonparametric machine learning approaches is that
they cannot directly separate the market impact cost into permanent and temporary cost,
whereas some parametric models can. Considering that the total, or instantaneous impact pri-
marily affects the price at which the transaction occurs, an indirect way to analyze the perma-
nent or temporary portion of it using nonparametric models can be helpful in analyzing
market characteristics. In addition, though the nonparametric models usually performed better
than did the parametric benchmark with the same input variables, the magnitude of perfor-
mance difference can be changed if the period or the selected firms vary.

This study implies possibilities to be extended on some points. First, the nonparametric
machine learning models has the advantage over parametric models in that the input variables
can be added freely without any limitations. Thus, studies related to the nonmarket variables
affecting the market impact can be easily incorporated into nonparametric models rather than
parametric ones which are formed with a priori fixed input variables. Next, several parametric
models explain the market impact cost. However, they are difficult to compare because their
input variables are varied, as is their number. In such cases, a nonparametric machine learning
model with the same inputs as the parametric models can provide a performance benchmark.
Finally, developing hybrid models of nonparametric and parametric ones that comprise the
permanent and temporary portions of the market impact cost as well as that maintain the
extendability and the performance level remains a future research topic related to this study.
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