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Inductive ensemble clustering using kernel
support matching

S. Park, J. Hah and J. Lee✉

A novel inductive ensemble clustering method is proposed. In the pro-
posed method, kernel support matching is applied to a co-association
matrix that aggregates arbitrary basic partitions in order to detect clus-
ters of complicated shape. It also has the advantage of naturally detect-
ing the number of clusters and assigning clusters for out-of-sample
data. In the proposed method, a new similarity is learned from
various clustering results of the basic partition, and a kernel support
function capable of clustering learning data and test data is constructed.
Experimental results demonstrated that the proposed method is effec-
tive with respect to clustering quality and has the robustness to
induce clusters of out-of-sample data.

Introduction: Dividing data into non-convex clusters of the same type is
very difficult in unsupervised learning and is susceptible to noise
inherent in original data. Also since the necessity to protect confidential
personal information is increasing, access to raw data becomes imposs-
ible, and only basic partitioning results reporting the relation between
objects can be obtained. To solve these problems, recent ensemble clus-
tering, also called consensus clustering, attracts increasing attention as it
combines basic partitions and provides robust clustering results by cap-
turing clusters of more complex shapes [1–6]. However, most of the
existing ensemble clustering methods need to pre-fix the number of
anticipated clusters and cannot perform inductive reasoning on
out-of-sample data.

In order to deal with these problems, we propose a new inductive
ensemble clustering algorithm using basic partitions and dissimilar-
ity between objects instead of original data. The proposed method
utilises and refines a co-association matrix (rCM) that combines
the several basic partitions from the k-means algorithm as in [5].
With kernel support matching, this approach approximates support
for data distribution described by the rCM. The method then finds
the representative points of each cluster and cluster out-of-sample
data by analysing the phase characteristics of the constructed
support.

Consensus ensemble: In this Letter, we aggregate the clustering results
using co-association matrix (CM), whose elements represent the number
of co-occurrences in basic partitions. Let X = {o1, o2, ..., on} be the set
of n observations (or objects). Suppose that we have p clustering results
from the base partitions P1, ..., Pp where Pk :X 7! {1, 2, ..., bk} is the
partition function. The original CM, C [ Rn×n, is defined as

Ci,j = 1

p

∑p
k=1

d(Pk (oi), Pk (oj)), d(a, b) = 1 if a = b
0 if a = b

{
.

This CM can be regarded as a similarity matrix or a kernel matrix,
but it gives the same weight for all pairs in the same cluster. In
[3], Zhong et al. differentiated the weights depending on the dis-
tances of the pairs. We generalise these weights so as to enable to
use any dissimilarity measure instead of the distances of the original
data. They specified the weight directly from a dissimilarity measure
DS(oi, oj):

wi,j(k) =
1− DS(oi, oj)

Lki,j
if Pk (oi) = Pk (oj)

0 if Pk (oi) = Pk (oj)

⎧⎨
⎩ , (1)

where Lki,j is the maximum dissimilarity of two points in the same
cluster with oi and oj for the partition k. From this weight, the
rCM, C̃i,j , is

C̃i,j = 1

p

∑p
k=1

wi,j(k). (2)

Proposed method: Our work is motivated from the drawbacks of most
consensus clustering methods that suffer from choosing the number of
clusters and assigning cluster labels for new data points. We propose
a new clustering ensemble framework using support vector domain
description in [7]. First, an rCM is calculated from the results of basic
partitions. Then with a non-linear transformation F from the input

space to some high-dimensional space, we find the smallest enclosing
sphere of radius R with soft constraints:

‖F(oj)− a‖2 ≤ R2 + jj, jj ≥ 0, ∀j, (3)

where a is the centre and jj are some slack variables. In order to solve
(3), its dual problem is obtained as

max
bj

∑
j

bj −
∑
i,j

bibjC̃i,j

s.t. 0 ≤ bj ≤ C,
∑
j

bj = 1, ∀j.
(4)

where the inner products of F(oi) ·F(oj) are replaced with an rCM
value C̃i,j. By solving (4), the following trained kernel support function
can be can be used for estimating support of a data distribution:

R2(o∗) = ‖F(o∗)− a‖2

= 1− 2
∑
j[SV

bjC̃∗,j +
∑
i,j[SV

bibjC̃i,j ,
(5)

Here, those optimal points corresponding to the optimal objective value
R̂2 with 0 , bj , C are called support vectors (SVs), those points with
bj = C are called bounded SVs (BSVs), and SV is an index set of SVs
and BSVs. The level set LR2 (R̂2) = {o∗:R2(o∗) ≤ R̂2} divides the dataset
into a number of connected components from which the number of clus-
ters is naturally determined. It also captures arbitrary clusters by provid-
ing a new similarity relationship between given data points aggregated
from the primary basic partitions. To assign the cluster labels of training
objects oj, however, we need to evaluate R2(o∗) at any object o∗. Since
the information of C̃∗,j is not available, it is not possible to apply the
support-based clustering methods as in [6, 8–10] directly to ensemble
clustering.

To overcome this problem, we propose a kernel support matching
method for inductive ensemble clustering. Our method starts from the
metric representations of the data objects. Otherwise, we can apply
any available non-metric multi-dimensional scaling method or its exten-
sions to transform the data object oj to its metric representation xj [ Rd .
We next approximate the support function R2 with the following kernel
support function of the form:

f̃ (x) = 1− 2
∑
j

b′
jk(xj, x)+

∑
i,j[SV

bibjC̃i,j, (6)

Here k( · , · ) is a kernel function and we have used in this Letter the
Gaussian radial basis function (rbf) kernel given by
k(xi, xj) = k(‖xi − xj‖) = e−q‖xi−xj‖2 . To this end, we first fit the rbf
kernel q to preserve the kernel similarity with that of rCM for each
pair of (xi, xj). Specifically, we use the least-squares method to find q
that minimises the replace the Gram matrix minq ‖K − C̃‖ where C̃ is
the Gram matrix of the rCM with C̃i,j and K is the kernel matrix with
Ki,j = k(xi, xj). The new kernel makes it possible to get the similarity
between a given data object and a new data object. With this fitted
kernel, we then approximate the kernel support function of (6) to that
of (5) by calibrating the coefficients of the second term in (6) to solve

min
b

∑
i[SV

∑
j[SV

(bjC̃i,j − b′
jKi,j)

( )2

, (7)

Finally, we locate the stable equilibrium vectors (SEVs) of the dynami-
cal system associated with this matched kernel support f̃ as in [9]. The
SEVs in the same connected component of the level set
Lf̃ (R̂

2) = {x:f̃ (x) ≤ R̂2} will be assigned to the same cluster label.
When the system is applied to, each data object converges to one of
the SEVs and the same cluster label will be assigned to it.

One of the salient features of this method is inductive clustering. Any
unknown new data object belongs to one of the SEV basins and can be
assigned to the same cluster label of the corresponding SEV. This lab-
elling process can be expedited by adopting the fast phase as in [10].
With this procedure, the entire data sample space can be divided into
several cluster regions, allowing for inductive clustering processing.
The procedure of the proposed method (IECS) can be summarised as
follows:

(i) (co-association) Perform clustering with p basic partitions, and get
the rCM using (2).
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(ii) (fitting the kernel parameter) Optimise (4) with the rCM, and fit a
kernel parameter (q in an rbf kernel) via the least-squares method.
(iii) (kernel support matching) Obtain the kernel support (6) matching
to that of (5) by solving (7).
(iv) (cluster labelling) Locate the SEVs of the dynamical system associ-
ated with (6) and assign the same labels to the SEVs belonging to the
same connected component of the level set Lf̃ .
(v) (inductive clustering) Assign to each data object (given training data
or unknown test data) the same cluster label of its corresponding SEV.

Experiments: To evaluate the performance of the proposed method, we
used a number of real-word datasets from the UCI repository [11]. The
detailed descriptions of datasets are given in Table 1. K-means algor-
ithm, one of the widely-used clustering algorithms, is used to generate
the basic partitions. We set a dissimilarity measure to a distance
between data. We compared the proposed method with state-of-the
arts ensemble clustering methods such as cluster-based similarity parti-
tioning algorithm (CSPA), hyper-graph partitioning algorithm (HGPA),
meta-clustering algorithm (MCLA), and spectral clustering of the rCM
(SPC) [1, 3, 5]. We obtained 100 basic partitions where the number of
clusters ranges from the true cluster number ktrue to

		
n

√
since the com-

pared methods need to set the number of final clusters before the exper-
iments whereas our method does not.

Table 1: Descriptions of the datasets

Datasets Clusters (ktrue) Instances (n) Dimensions (d )

Orange 9 140 2

Two circles 2 300 2

Iris (UCI) 3 150 4

Glass (UCI) 6 214 9

Zoo (UCI) 7 101 16

|WPBC (UCI) 2 198 32

Satimage (UCI) 6 6435 36

In our experiments, we implemented our algorithm in MATLAB and
adopted the adjusted Rand index (ARI) as the cluster evaluation
measure [11]. The higher the ARI is, the better a quality of clustering
is. Table 2 reports the clustering performance results of the compared
methods. For each dataset, the first row reports the ARI of the com-
pared method when the true cluster number is known (the best result
is underlined) and the second row when it is not known (the best
result is bold typed). Our proposed method outperformed the other
ensemble clustering algorithms in most cases, and it had comparable
performances to MCLA with true cluster number is given a priori in
Zoo and Smimage datasets. The results show that our method performs
very well in real-world problems when the number of true clusters is
unknown. Fig. 1 shows a typical example that IECS can detect non-
convex shaped clusters well compared with the other ensemble algor-
ithm even though the basic partitions can only address convex shaped
data.
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Fig. 1 K-means and ensemble clustering results for two circles data. Left
four graphs are basic partitions from k-means, top right is result of IECS,
and bottom right is result of SPC

In order to verify whether IECS can perform inductive clustering, we
used the dataset consisting of five Gaussians with 1000 instances. We
split the dataset into a training set and a test set and changed the ratio

between them to compare the results. Table 3 shows that IECS works
very well despite a small amount of training data.

Table 2: Performance comparisons in ensemble clustering’s by ARI
SPC (

		
n

√
) CSPA (

		
n

√
) HGPA (

		
n

√
) MCLA (

		
n

√
) IECS

Orange
0.5605 0.5969 0.6380 0.8549

0.8951
0.8026 0.5607 0.6741 0.8318

Two Circles
0 0 0 0.0021

0.6179
0.0912 0.0151 0.0167 0.0221

Iris
0.5923 0.6004 0.6530 0.5667

0.6949
0.3699 0.2067 0.2620 0.4454

Glass
0.1459 0.1726 0.1797 0.1663

0.2100
0.1566 0.1138 0.0937 0.1287

Zoo
0.5603 0.4430 0.4166 0.8135

0.7781
0.4348 0.3489 0.3653 0.6109

Smimage
0.5415 0.3716 0.3841 0.5774

0.5656
0.4140 0.3427 0.3414 0.4595

WPBC
0.0164 0.0136 0.0063 0.0110

0.0524
0 0.0011 0.0038 0

Table 3: Inductive performances of IECS changing the test ratio

Test ratio (%) 20 40 60 80 100

ARI 0.8925 0.9120 0.8881 0.8997 0.8533

Conclusion: In this Letter, we have presented a new clustering ensem-
ble algorithm. The method aggregates basic clustering results using
kernel support matching and automatically decides the effective
number of clusters. Experimental results show that the proposed
method not only effectively captures non-convex clusters but also
makes inductive clustering very well for out-of-sample data.
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