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Abstract: Emerging contaminants (ECs) usually refer to pesticides, polycyclic aromatic hydrocarbons
(PAHs), dioxins, personal care products, cosmetics, and medications. Due to the strong demand and
quick growth of these businesses, the ECs have continuously been found in alarming amounts in
groundwater, surface water, and wastewater. These ECs provide a significant non-esthetic threat to
the ecosystem as a whole and can cause significant non-esthetic contamination when released into the
aquatic environment. The conventional wastewater treatment techniques such as activated sludge,
membrane filtration, coagulation, adsorption, and ozonation showed ECs removal performance
to a certain extent. In turn, numerous emerging advanced oxidation processes (AOPs), especially
activated persulfate oxidation, have garnered a huge amount attention due to their outstanding
performance in the remediation of ECs. This article presents a systematic and critical review of electro,
sono and thermal activation of persulfate for the treatment of ECs. The effect of key parameters
such as electrode materials, solution pH, persulfate concentration, current density, and temperature
on electro, sono- and thermal-activated degradation of ECs was discussed. The possible reaction
mechanism of ECs degradation was also elucidated in detail. It was closed with a note on the situation
now and the future course of electro, sono and thermal activation in ECs degradation applications.
Experiments performed in recent studies show that with the aid of persulfate in electro activation, the
removal efficiency of chemical oxygen demand can be achieved up to 72.8%. Persulfate activated by
sono shows 100% removal efficiency of 1,1,1-trichloroethane and sulfamethoxazole. While for thermal
activation of persulfate, 100% removal efficiency of carbamazepine, atrazine and sulfamethazine was
achieved. All these vital shreds of evidence are substantial enough to picture the negative impact of
ECs on the environment.

Keywords: wastewater treatment; emerging contaminants; persulfate oxidation; elector degradation;
ultrasonication

1. Introduction

One of the most crucial resources for maintaining life on Earth is water. The aquatic en-
vironment is polluted by a variety of activities, including farming, industry, the production
of cosmetics and other goods, the operation of healthcare facilities, etc. Such human-made
activities exacerbate the issue of freshwater supply that exists today [1,2]. Personal care
products, pharmaceuticals, pesticides, artificial sweeteners, endocrine-disrupting chemicals,
etc., have been progressively identified in the aqueous bodies over the past decade [3].

These chemicals are collectively categorized as emerging contaminants (ECs) because
there are not yet any comprehensive recommendations or toxicological evidence surround-
ing them. Previously, most of these pollutants were incorrectly classified as toxins with
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potential environmental risks, unidentified and even unknown [4]. These harmful com-
pounds are universal and might enter the water stream via numerous wastewater streams
through agricultural runoff, hospital wastewater, industrial wastewater stream, wastewater
treatment plants effluents, etc. [5,6]. Figure 1 illustrates a few key sources and the high
concerns of ECs.
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The concentrations of these ECs in the aqueous environment depend on the water
consumption, usage pattern, sewer conditions, catchment properties (e.g., population
density, land use) and environment persistence [7,8]. Although the concentration of the
ECs is relatively lower (ranging from ng/L to µg/L), discharging it directly into water
bodies can cause a substantial detrimental impact on environmental sustainability and
human health [9]. Recent reports revealed that the unregulated discharge of ECs into
the aqueous environment can lead to a huge risk to the whole ecosystem [10,11]. The
absence of stringent legislation and insufficient toxicological data on these ECs causing
the pollution remains unregulated. However, the development of temporary aqueous
guidelines is developed as an awareness. Additionally, a list of contaminants along with
their permitted discharge levels have been published by the US Environmental Protection
Agency, the European Union, and the World Health Organization (USEPA) organizations,
and numerous other international regulatory authorities. All these new legislations showed
the importance of treating these ECs before discharging into the environment.

Among various wastewater treatment techniques, advanced oxidation processes
(AOPs) demonstrate effective ECs elimination, and the mechanisms involved mostly de-
pend on the production of hydroxyl radicals (•OH) [12]. Additionally, with redox potential
of 2.8 V, •OH radical is a non-selective powerful oxidant that can both partially mineralize
and damage the structure of organic molecules [13]. In comparison with the •OH radi-
cals, sulfate radicals (SO4

−) may own equal or even higher redox potential (2.5–3.1 V). In
addition, it also has a higher selectivity as well as longer half-life than •OH radicals in
some situations [14]. A radical precursor for instance potassium persulfate (K2S2O8) needs
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activation to produce SO4
•− radicals. Persulfate (PDS) has the [O3S-O-O-SO3]2− chemical

structure. The essence of PDS activation is to break the –O–O– bond and produce SO4
•−

radicals. The degradation of ECs without the activation of PDS is possible. However, the
oxidation potential of PDS−generated anion is around three times (3X) lower than the
SO4

•− radicals [15,16]. PDS activation resulted in the SO4
•− radicals generation, which

accelerates the degradation of ECs compounds. Sonolytic (ultrasonic), electrocatalytic and
thermal (high temperature) are among the most prominent persulfate activation techniques.

Wang and Zhou, et al. [17], reported that the addition of S2O8
2− anions and the

increase of ultrasonic power could favorably stimulate the degradation of carbamazepine
in an aqueous solution due to the production of the SO4

•− radicals from the decomposition
of S2O8

2− activated by ultrasounds. Lee et al. [18] added that the persulfate activation
by sono using a mechanical mixing system is a cost-effective technique and a promising
strategy to degrade ibuprofen or other residual organic pollutants in wastewater.

According to Acero et al. [19], persulfate ion (PS, SO4
2−) is the most widely used

oxidant for the production of SO4
•− as it is generally stable under typical wastewater

treatment conditions and it can be activated by inducing heat or thermal activation. They
stated that the ECs degradation using direct UV photolysis or dark PS alone was almost
the same. However, upon the addition of PS, the photodegradation efficiency significantly
increased due to the generation of SO4

•− and •OH. Chekem et al. [20] stated that ECs in
water can be effectively degraded under advanced oxidation reactions.

On the other hand, in electrochemically-activated persulfate (EC/PS) systems, the
generation of SO4

•− and •OH by the activation of persulfate is due to the production of
ferrous ions (Fe2+) from iron electrodes [20]. Miao et al. [21] reported that BDD electro-
activated persulfate technology possess the advantages of low energy consumption and
high efficiency in a wide pH range and concluded that the technology is appropriate for
practical refractory wastewater treatment.

In the ever-growing number of published papers on persulfate activation and appli-
cations in recent years, sulfate radical-based advanced oxidation processes (AOPs) have
been widely investigated [22]. Kang et al. [23], investigated the activation of persulfate in
sulfachloropyridazine removal and obtained results in oxidation efficiency and efficient
adsorption capacity.

In recent years, Wang et al. [24] has compiled studies on metal organic frameworks-
based materials catalysts for catalytical removal of ECs in the perspective of Fenton-like and
photo-Fenton systems. Persulfate activation by biochar-based materials has been discussed
widely due to its ability to remove the organic contaminant and pharmaceutical pollutants
through adsorption and persulfate-based AOPs [25,26]. However, there is no recent review
combining electro-, thermal- and sono-activated persulfate in the degradation of ECs. Thus,
this review focuses on the recent 10 years of published work on the degrading performance
of ECs using various persulfate activation methods including electro, thermal and sono
activations. Effectiveness, limitations, and future perspective are analyzed and highlighted.

2. ECs Treatment Technologies

There are currently many technologies available for the elimination of ECs, which can
be broadly separated into conventional, advanced, and natural attenuation procedures [27].
The easy and inexpensive biological natural attenuation mechanisms include dilution,
volatilization, photolysis, sorption, and biodegradation. Barbosa et al. [28], showed that
ECs accumulations were accelerated during the sorption process, which makes processes
such as volatilization less successful because suspended particles interfere with the re-
moval efficiency.

Conventional treatment methods that effectively remove ECs include ozonation, mem-
brane filtering, and activated carbon-mediated adsorption [29]. Despite this, Rizzo et al. [30]
disapprove and assert that oxidation byproducts may be produced as a result of ozonation,
in addition to the fact that adsorption by activated carbon is ineffective at killing bacteria.
The study also suggests that because membrane filtration requires a lot of energy to run,
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concentrate disposal can be difficult. In the recent decades, a number of cutting-edge
treatment technologies, including AOPs, artificial wetlands, bioelectrical systems, and
enzymatic treatment, have been presented [27].

AOPs can be categorized as chemical, photochemical, electrochemical, sonochemical
and hydrochemical processes, depending on how the HO• are generated, or as homoge-
neous and heterogeneous process it depends on the quantity of phases involved during
the transport and reaction of species [31]. Technologies on AOPs such as Fenton oxidation,
ozonation, photocatalysis and persulfate oxidation are well-known to be effective treatment
approaches for ECs [32].

The conventional Fenton process utilizes the “Fenton’s reagent”, a mixture of Fe2+

and H2O2 that yields HO• and Fe3+ as reaction products. This reagent is environmentally
compatible and low toxicity with the oxidant H2O2, which self-decomposition leads to
non-toxic products (H2O and O2). However, the regeneration of Fe2+ under darkness in
the conventional Fenton process is very slow [33].

Ozonation take place at both the gas-liquid interface and in the bulk liquid, depending
on the concentration of the reactants given that the influence of O3 as disinfection and oxi-
dant has been applied for the purification of drinking water [34]. The conversion of organic
substances by ozonation is a result from decomposition of O3 at neutral and alkaline pH
which occurs by either reaction with less selective HO• or reaction with molecular O3 [31].
The limited rate of dissolved organic carbon mineralization and consequent accumulation
of toxic oxidation by-products include nitrosamines, bromate and formaldehyde due to the
incomplete oxidation of the targeted compounds and from reaction with the water matrix
constituents has become the main drawback of the ozonation process [35].

Huang et al. [36] introduced an engineered catalyst of self-doped iron/carbon nanocom-
posite derived from waste toner product to degrade persistent organic pollutants. The
fabricated nanocomposite as a heterogeneous catalyst by facile carbonization consists of
Fe3O4, polymers and carbon black. The catalytic mechanism of the fabricated engineered
catalyst consists of radical and non-radical pathways and has favorable environmental and
energy metrics compared to other reported catalyst.

Heterogeneous photocatalysis is based on the application of wide band-gap semi-
conductors, which produce conduction band electrons and valence band holes, under
irradiation with light energy (hν) equal to or higher than the semiconductor band-gap
energy [31]. The study added that in the last decades the most common photocatalyst
has been TiO2 favorably to its relatively high photoactivity, high mineralization efficiency,
low cost and toxicity, high photochemical stability and suitable band-gap energy in either
bulk or supported on a substrate. However, even this process has major shortcomings,
including a relatively high rate of electron-hole pairs recombination which reduces the
available charges for redox reactions and limited absorption of natural sunlight.

Activated persulfates are at the top of the list containing advanced treatment processes
investigated against ECs removal in the recent years [30], due to their strong oxidative
capabilities and wide pH tolerance [37]. Unlike the conventional AOPs in which hydroxyl
radicals (OH•) serve as the main oxidant, persulfate-based AOPs utilize highly reactive
sulfate radical to degrade organic contaminant [38]. Not just that, sulfate radical has
greater redox potential (2.60~3.10 V vs. NHE) and longer half-time (30~40 µs) compared to
hydroxyl radical (1.90~2.70 V vs. NHE and ~20 ns) [39].

Therefore, activated persulfate oxidation treatment technologies will be the center of
focus for this review study. PDS directly reacts with the organic contaminants at a low
reaction rate, albeit a strong oxidizer, thus a relevant activation is essential to generate a
strong oxidizer [14].

Devi et al. [40] listed the vital parameters of different approaches adopted for persulfate
activation based on in situ chemical oxidation, which were alkali, transition metals, thermal,
radiation, and activated carbon. Given of all the aforementioned methods of activation,
only the sono, thermal and electro activation methods of persulfate will be discussed as
shown in Figure 2.
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3. Persulfate Oxidation Process

There are two main precursors including peroxymonosulfate (PMS, HSO5
−) and

peroxydisulfate or PDS (S2O8
2−) that are used in producing sulfate radicals in aqueous

medium [41]. It is a well reported fact that the PDS salt is further stable, ecologically
friendly, and cheaper compared to PMS salt, being favorably used in sulfate radical-based
AOPs [42]. Hence, PDS will be the key focus of discussion in the current review. PDS has
high stability, and it is a colorless or white crystal. It has a solubility of 730 g L−1 making it
easily dissolved in water and its solution pH lies in the acidic range.

Sodium PDS (Na2S2O8) and potassium PDS (K2S2O8) are the most frequent PDS types
employed. Moreover, persulfate is known as a strong oxidizing reagent (E0 = 2.01 V, SHE)
that is close to ozone (E0 = 2.07 V, SHE) and it is moderately steady at room temperature [21].
The oxidizing ability of SO4

•− radical is greater than •OH radical in both neutral and
alkaline environments. Moreover, SO4

•− has a longer half-life and it can react with organic
matters much easier in bulk solution [43]. In order to obtain optimum performance of PDS,
it needs to be activated under specific external conditions such as thermal, ultraviolet light,
transition metal, ultrasound, heat and electricity to produce sulfate radicals [40].

3.1. Electrochemically Activated Persulfate

PDS is a strong oxidant that has a redox potential in the range of 2.5–3.1 V and
will generate SO4

•− radical by electrochemical activation, which is stronger than •OH
radical [44]. According to Yu et al. [45], due to its great efficiency, the electrochemically-
activated PDS method has been given consideration as a viable solution for water treatment.
It has garnered increased attention since, in contrast to other common activators including
heat, photo, metal, chelated metal, quinone, phenols, and hydrogen peroxide activated
PDS, it is less expensive, non-toxic, and extremely effective. Iron ion (Fe2+), termed as
the coactivator, has been intensively discussed in relation to electrochemically-activated
PDS with iron as the sacrificial anode. However, iron indication on the anode and cathode
was not necessary for PDS activation [46]. PDS can be created electrochemically in a
sulfate-containing solution by the oxidation of SO4

2− (Equation (1)) or it can be introduced
externally to the system, which is electrochemically cleaved by the reaction with an electron
to form SO4

•− (Equation (2)) due to the peroxide bond (−O–O−) of PDS [47]. According
to Zhang et al. [48], in a commercial setting, PDS is often made by electrolyzing sulfuric
acid/sulfuric solution (>2 mol L−1) at low temperature and high current density, which
is ≥500 mA cm−2 with a Ti-based platinum electrode (Ti/Pt) or a polished Pt electrode
as the anode. At pH < 7, •OH and sulfate radicals contribute equally to reactions with
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sulfate radical being the dominants reactive and the reaction of sulfate radical with water
(Equation (3)) will generate a secondary radical, i.e., •OH radical, which will enhance the
removal efficiency in pollution [49].

2SO4
2− → S2O8

2− + 2e− (1)

S2O8
2− + e− → SO4

•− + SO4
2− (2)

SO4
2− + H2O→ SO4

2− + •HO + H+ (3)

A diagram of the primary electrochemical reactions involved in the generation and
activation of PDS is shown in Figure 3. Given that PDS may be produced electrochemically
from sulphate ions, it has been proposed that PDS can be renewed at the anode following the
conclusion of sulphate radical reactions with water, organics, etc., allowing for a constant
source of sulphate radicals [49]. The summary of prior research findings for persulfate
electrochemical activation is summarized in Table 1.

Separations 2023, 10, x FOR PEER REVIEW 6 of 18 
 

 

including heat, photo, metal, chelated metal, quinone, phenols, and hydrogen peroxide 
activated PDS, it is less expensive, non-toxic, and extremely effective. Iron ion (Fe2+), 
termed as the coactivator, has been intensively discussed in relation to electrochemical-
ly-activated PDS with iron as the sacrificial anode. However, iron indication on the an-
ode and cathode was not necessary for PDS activation [46]. PDS can be created electro-
chemically in a sulfate-containing solution by the oxidation of SO42− (Equation (1)) or it 
can be introduced externally to the system, which is electrochemically cleaved by the re-
action with an electron to form SO4•− (Equation (2)) due to the peroxide bond (−O–O−) of 
PDS [47]. According to Zhang et al. [48], in a commercial setting, PDS is often made by 
electrolyzing sulfuric acid/sulfuric solution (>2 mol L−1) at low temperature and high 
current density, which is ≥500 mA cm−2 with a Ti-based platinum electrode (Ti/Pt) or a 
polished Pt electrode as the anode. At pH < 7, •OH and sulfate radicals contribute equal-
ly to reactions with sulfate radical being the dominants reactive and the reaction of sul-
fate radical with water (Equation (3)) will generate a secondary radical, i.e., •OH radical, 
which will enhance the removal efficiency in pollution [49]. 

2SO42−     →     S2O82− + 2e− (1)

S2O82− + e−     →       SO4•− + SO42− (2)

SO42− + H2O      →      SO42− + •HO + H+ (3)

A diagram of the primary electrochemical reactions involved in the generation and 
activation of PDS is shown in Figure 3. Given that PDS may be produced electrochemi-
cally from sulphate ions, it has been proposed that PDS can be renewed at the anode fol-
lowing the conclusion of sulphate radical reactions with water, organics, etc., allowing 
for a constant source of sulphate radicals [49]. The summary of prior research findings 
for persulfate electrochemical activation is summarized in Table 1. 

 
Figure 3. Scheme of the main reactions involved in the persulfate electrochemical production and 
activation (modified based on [47]). 

  

Figure 3. Scheme of the main reactions involved in the persulfate electrochemical production and
activation (modified based on [47]).

Table 1. Summary of research results previously reported for persulfate electrochemical activation.

Type of
Effluent Anode/Cathode PS Added Applied

Current
Electrolysis
Time/Min pH Pollutant Removal (%) Reference

Landfill
Leachate Al/Al 0.88 g/L 44.66 mA cm−2 68.30 4.00 COD 45.70 [50]

Landfill
Leachate Fe/Fe

PS/COD
Ratio 2.50
PS/COD
Ratio 1.90

1.80 A
2.10 A 35.90 6.40 COD 84.20 [51]

Landfill
Leachate Fe/Fe PDS/COD

Ratio 1.72 1.26 A 34.80 5.00 COD 72.60 [44]

Stock solution Fe/Fe 0.50 mM 30 mA 15.00 7.00 Diuron >77 [45]

Stock solution BDD/Stainless
steel 0.02 M 1.70 mA/cm2 30.00 4.40 Malachite

Green (MG) >95 [21]

Stock solution Pt/Pt 12.60 mM 13.33 mA/cm2 240.00 4.42
Tetracycline

Hydrochloride
(TCH)

81.10 [52]

Landfill
Leachate

BDD/BDD
1.00 mM 5.00 mA/cm−2 10.00 NA Bisphenol A 85.00

[46]Dimension
Stable Anode

(DSA)
60.00
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Table 1. Cont.

Type of
Effluent Anode/Cathode PS Added Applied

Current
Electrolysis
Time/Min pH Pollutant Removal (%) Reference

Paper industry
wastewater

Fe PDS/COD
Ratio 1.25 4.14 A 5.00 6.00

COD
53.50 [51]

Al PDS/COD
Ratio 0.50 4.25 25.00 7.25 72.80

3.2. Thermally Activated Persulfate

The PDS can be activated successfully using heat [13]. Recent research has demon-
strated that PDS can be triggered at room temperature (22 ◦C), although with poor benzoic
acid elimination efficiency [53]. Additionally, thermally-activated PDS has been inves-
tigated for the elimination of organic pollutions and is regarded as a greener source of
sulphate radicals than other activation technologies [54]. The O-O bond fission in the PDS
structure is the primary mechanism of PDS activation. According to estimates, O-bond O’s
energy ranges from 140 to 213.3 kJ/mol. When heat is activated, the energy from a high
temperature (>50 ◦C) can result in the O-O bond breaking, releasing sulphate radicals as
shown in Equation (4).

S2O8
2− + heat→ 2SO4

•− (4)

According to the Equation (5), sulphate radicals swiftly converted into •OH radicals
during the heat process, as shown by the fact that •OH radicals are the predominant
radicals during the heat activation of the PDS process [55].

SO4
•− + H2O→ SO4

2− + HO• + H+ (5)

Additionally, a rise in temperature might hasten side reactions, e.g., the recombination
of sulphate radicals or •OH radicals, which can improve the effectiveness of impurities
being removed [56]. Ji et al. [57] stated that thermally activation of PDS has the ability to
increase the solubility of organic contaminants, enhancing the reaction rates and treatment
efficiency. Jorfi et al. [58] investigated the efficiency of thermally activated PDS towards
the treatment of a recalcitrant high total dissolved solid (TDS) petrochemical wastewater.
The study has successfully proven that thermally-activated persulfate can be a practical
remedy used for treatment as it has obtained 94.3% and 82.8% removal efficiency for
COD and TOC, respectively. Sakulthaew et al. [59], reported a successful treatment of
17β-estradiol (E2), which is most frequently found in animal farm wastewater. E2 can
be treated by UV/heat-activation PDS. Only 35 ◦C was required to completely remove
the E2 and activate a high PDS concentration (>100 mg/L). The experimental setup for
the UV/heat-activated persulfate oxidation of E2 is shown in Figure 4. The summary of
persulfate thermal activation for emerging pollutant degradation is shown in Table 2.
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Sulfachloropyridazine 1.00 µM 140.00 µM 40.00 3.00 1.10 85.00 [65] 
Azole Fungicide Flucona-

zole 
10.00 mg L−1 20.00 mM 60.00 3.00 4.00 87.00 [66] 

Benzene,toluene, ethylben-
zene,xylenes (BTEX) 

0.10 mM 20.00 mM 50.00 3.50 6.00 >90.00 [67] 

Sulfamethoxazole 40.00 µM 2.40 mM 60.00 7.00 2.00 >80.00 [68] 
Sulfanilic Acid 50.00 mg/L 20.00 mmol/L 60.00 7.00 4.00 57.40 [69] 

3.3. Sono Activated Persulfate 
Studies have demonstrated that using oxidants such as persulfate in conjunction 

with ultrasonic and UV radiation increased the efficacy of oxidation processes [70,71]. 
The production of radical hydroxyl and oxygen by ultrasound is caused by the devel-
opment of cavities during the cavitation phenomena in the solution. Ultrasound is any 
wave with frequency greater than that of human hearing (20–40 kHz). The benefits of ul-
trasound include its absence of generation of intermediate pollutants, generation of free 
radicals, and activation of the persulfate ion, among other benefits. Due to the break-
down of persulfate ions, ultrasonic vibrations produce sulphate radicals with an oxida-
tion power of 2.56 V (Equation (6)) [72]. 

S2O82− + US      →         2SO4•− (6)

A key element in defining the activation of PDS is quantum yield. The quantum 
yields are significantly influenced by the UV wavelength. Quantum yields of sulphate 
radicals in the UV spectrum between 248 and 351 nm decreased with increasing UV 
wavelength [14]. At 248 nm and 253.7 nm, the maximum quantum yield was around 1.4. 
The typical radiation wavelength for persulfate is 254 nm. Two processes may be impli-

Figure 4. Experimental setup for the UV/heat activated PDS oxidation (adopted and modified from
Sakulthaew et al. [59].
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Table 2. Thermal activation of persulfate for degradation of ECs.

Pollutant Pollutant
Concentration

Oxidant
Concentration

Temperature
(◦C) pH Reaction Time

(h)
Degradation

(%) References

Acid orange 7 20.00 mg L−1 0.57 PS 80.00 6.50 3.00 99.00 [60]
Antipyrine 0.0265 mM 0.125 mM PS 60.00 4.50 2.00 73.00 [61]

Carbamazepine 0.04 mM 1.00 mM PS 70.00 5.10 2.00 ~100.00 [62]
Chloramphenicol 0.20 mM 16.00 mM PS 70.00 5.40 2.70 96.30 [63]

Atrazine 0.05 mM 1.00 mM PS 60.00 7.00 2.00 100.00 [57]
Sulfamethazine 0.03 mM 2.00 mM PS 60.00 7.00 6.00 100.00 [64]

Sulfachloropyridazine 1.00 µM 140.00 µM 40.00 3.00 1.10 85.00 [65]
Azole Fungicide

Fluconazole 10.00 mg L−1 20.00 mM 60.00 3.00 4.00 87.00 [66]

Benzene, toluene,
ethylbenzene,

xylenes (BTEX)
0.10 mM 20.00 mM 50.00 3.50 6.00 >90.00 [67]

Sulfamethoxazole 40.00 µM 2.40 mM 60.00 7.00 2.00 >80.00 [68]
Sulfanilic Acid 50.00 mg/L 20.00 mmol/L 60.00 7.00 4.00 57.40 [69]

3.3. Sono Activated Persulfate

Studies have demonstrated that using oxidants such as persulfate in conjunction with
ultrasonic and UV radiation increased the efficacy of oxidation processes [70,71]. The
production of radical hydroxyl and oxygen by ultrasound is caused by the development
of cavities during the cavitation phenomena in the solution. Ultrasound is any wave with
frequency greater than that of human hearing (20–40 kHz). The benefits of ultrasound
include its absence of generation of intermediate pollutants, generation of free radicals, and
activation of the persulfate ion, among other benefits. Due to the breakdown of persulfate
ions, ultrasonic vibrations produce sulphate radicals with an oxidation power of 2.56 V
(Equation (6)) [72].

S2O8
2− + US→ 2SO4

•− (6)

A key element in defining the activation of PDS is quantum yield. The quantum yields
are significantly influenced by the UV wavelength. Quantum yields of sulphate radicals in
the UV spectrum between 248 and 351 nm decreased with increasing UV wavelength [14].
At 248 nm and 253.7 nm, the maximum quantum yield was around 1.4. The typical
radiation wavelength for persulfate is 254 nm. Two processes may be implicated in the
activation of PDS by UV light. One is the fission of the O-O bond by UV radiation input, as
shown in the Equation (7).

S2O8
2− → 2SO4

•− (7)

As shown in Equations (8) and (9) by the water molecule’s ability to create an electron
when exposed to ultraviolet light, persulfate is activated (9).

H2O→ H• + HO• (8)

S2O8
2− + H• → SO4

•− + SO4
2− + H (9)

According to Ferkous et al. [73], treating water with ultrasound can produce HO•
while producing other reactive oxygen species as HO2

•, H• or O2
•−. They added that PDS

triggered with ultrasound mostly produces •OH and SO4
•−, enhancing the performance of

organic compound breakdown. An examination on the degradation of a diclofenac (DCF)
utilizing ultrasonicated persulfate anions was conducted by Monteagudo et al. [74] and the
study successfully removed 95% of the DCF. In Figure 5 the experimental setup used in the
investigation is schematically illustrated. Table 3 displays the ultraviolet and ultrasound
activated persulfate for the degradation of ECs.
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Table 3. Ultraviolet and ultrasound activated persulfate for the degradation of ECs.

[Ultraviolet Activated Persulfate]

Pollutant Pollutant
Concentration

Oxidant
Concentration Wavelength (nm) pH Reaction

Time (h)
Degradation

(%) References

Perfluorooctanoic
Acid 0.15 mM 15.00 mM PS 254.00 7.10 8.00 >80.00 [75]

2-methylisoborneol 0.238 µM 10.00 µM PS 254.00 7.00 0.14 >90.00 [76]
Sulfamethoxazole 20.00 µM 1.00 mM PS 254.00 8.00 2.00 100.00 [66]

Sucralose 0.126 mM 3.78 mM PMS 254.00 7.00 1.00 >95.00 (TOC) [77]

[Ultrasonic activated persulfate]

Pollutant Pollutant
concentration

Oxidant
concentration Frequency (kHz) pH Reaction

time (h)
Degradation

(%) References

1,1,1-trichloroethane 50.00 mg L−1 0.94 mM 400.00 (bath) 6.90 2.00 100.00 [78]
Carbamazepine 0.025 mmol/L 1.00 mmol/L 40.00 (bath) 5.00 2.00 89.40 [17]

Naphthol 5.00 mg L−1 9.00 mg L−1

PDS
585.00 (probe) 6.00 0.33 >90.00 [73]

Azorubine 20.00 mg L−1 4.00 mM PDS 40.00 (bath) 3.50 1.00 66.54 [79]
COD 720.00 mg/L 500.00 mg/L 130.00 3.00 1.00 74.50 [80]

Diclofenac 5.00 mg/L 120.00 mg/L

1. 3.50 W/cm2

acoustic intensity
2. 30 ◦C

temperature
6.00 4.00 95.00 [74]

Ibuprofen 24.00 µm 0.80 mM 35 4.90 1.00 Tap–90.40
River–85.30 [18]

Carbamazepine 2.50 mmol/L 5.00 mmol/L

(1) 200.00 W
ultrasonic power

(2) 50 ◦C
temperature

5.00 2.00 89.40 [17]
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4. Important Factors Affecting the Electro, Sono and Thermal Activated Persulfate

To achieve the optimum performance of each of the activation methods, important
factors such as pH, reaction time, PDS concentration, current density and electrode material
need to be taken into consideration.

4.1. Electrochemically Activated PDS

Numerous electrode materials such as Ti/RuO2-IrO2, Pt, Fe and BDD have been pre-
pared and work as electrochemical-activated PDS for ECs degradation [81]. Zhi et al. [82]
reported that significant interest has been shown in the electrochemical activation of per-
sulfate using a sacrificial iron electrode due to the anodic oxidation reaction, where iron
electrode forms Fe2+ to activate PDS. This method uses less energy while improving the
usage of ferrous and persulfate ions. Different anode/cathode pairings can improve the effi-
ciency of persulfate electrochemical activation. Matzek et al. [83], stated that a combination
of Pt/Gr, BDD/Pt and BDD/Gr in a single cell rotating disk electrode system resulted into
the reaction of PDS activation, the BDD/Gr anode exhibited higher performance than that
of the BDD/Pt. According to Matzek and Carter [49], a crucial component of the electro-
activated persulfate is current density, which is regulated easily by the operator. According
to Frontistis et al. [84], who made a further addition, the electrochemical oxidation reaction
is not kinetically constrained by the mass transport of the organic pollutant onto the anode,
hence the main way to speed up the reaction rate is to increase the current density. The
degradation of pollutants may critically also be affected by the pH of the electro activated
PDS even in various circumstances, where the pH value is below the value needed for
activating alkalis [82].

According to Chen et al. [81], utilizing electrochemically activated PDS to remove
2,4-dichlorophenol resulted in a greater persulfate production in acidic solutions. Using
ferrous ions as the homogeneous catalyst, electro-activated PDS is being investigated at
various level of pH from 3.0 to 11.0. It was found that found that the diuron elimination rate
changed from 0.154 to 0.008 min−1. At a pH of 2.5, FeOH2+ and Fe (OH)3 predominated
over Fe2+, and that their production decreased the concentration of free Fe2+ and hence the
activation of SO4

•−.
According to Song et al. [13], the concentration of persulfate used directly correlates

with the effectiveness of contaminants being removed. The study also revealed that, while
PDS alone was unable to efficiently degrade carbamazepine, electrochemical activation of
PDS at Ti/Pt anode increased carbamazepine degradation upon an increase in PDS rate
from 1 mmol/L to 5 mmol/L. Matzek and Carter [49] reported that based on the analyte
and persulfate concentration, the pace at which activated persulfate degraded organic
chemicals adhered to second order kinetics. The effect of temperature on electrochemically
activated persulfate should not be neglected as the temperature rose, the PDS output and
current efficiency fell [48]. According to the study, the rationale for this conclusion is that
under the circumstances of thermal augmentation (≥40 ◦C), S2O8

2− may homogenize and
disintegrate into SO4

•− with significant heat activation-induced oxidation (Equation (4)),
leading to a reduction in PDS concentration.

4.2. Thermally Activated PDS

It was reported by Chekem et al. [20] that as the temperature of the treated solution
rises, the removal rate of the pollutants becomes significant as well. The study also suggests
that temperature affects the heat activation-induced oxidation of PDS to produce free radical
species. However, it does not prove that the removal efficiency increases with temperature.
According to Wang et al. [85], there is an ideal temperature for the degradation of PAH since
the effectiveness of PAH degradation reduced at activation temperatures higher than 60 ◦C.
A study by Bashir et al. [4] also reported that the elimination of color by thermally-activated
persulfate oxidation shows the biggest changes, increasing from 40% at 25 ◦C to 80% at
60 ◦C and then increasing to 100% at 80 ◦C.
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It should be mentioned that pH has an impact on the conversion of sulphate radicals
to •OH radicals at a specific temperature. According to Chekem et al. [20], SO4

•− was the
main radical at pH 7, SO4

•− and •OH radicals were both present at pH = 9, and •OH was
the dominant radical at pH = 12; according to their research, Jorfi et al. [58] stated that
quick change of SO4

•− to •OH radicals attributed to the experimental conditions and the
acidic pH favored the most COD removal efficiency of 87%, 86.67% and 86.02% for pH 3,
4 and 5, respectively. Park et al. [86], asserted that through acid catalysis, more sulphate
radicals could be produced under acidic conditions. The presence of oxidant effectuates
the significant reduction of pollutant, hence promoting the degradation of pollutants in
the solution, as increasing oxidant concentration is constructive to organic removal, which
compliments the available sulfate radicals for oxidation [20]. Ahmadi et al. [87] supported
this finding which demonstrates how important and influential persulfate concentration is
for thermally-activated persulfate since it directly affects the equilibrium of the sulphate
radicals. A higher persulfate concentration leads to the diffusion of more sulphate radicals,
functioning as a scavenger that effectively breaks down the contaminants [88].

4.3. Sono Activated PDS

Temperature plays a crucial role in the oxidation process because it influences the
activation energy and the behavior of the pollutants. The rate constants at 10, 25, and
40 ◦C were 3.63 × 10−2 min−1 (R2 = 0.99), 5.86 × 10−2 min−1 (R2 = 0.99), and 7.8 × 10−2

min−1 (R2 = 0.98), respectively. According to Lee et al. [18], the rate constant increases
with temperature. The physical and chemical characteristics of a solution, which affect
the oxidation kinetic constant, are also influenced by pH in addition to temperature [18].
The pH value could be lowered in accordance with Equations (10) and (11) to promote the
formation of sulphate radicals from persulfate anion [74].

S2O8
2− + H+ → HS2O8

− (10)

HS2O8
− + e− → SO4

•−+ SO4
2− + H+ (11)

An investigation by Monteagudo et al. [74] on sono-activated persulfate oxidation of
diclofenac stated that the maximal concentration of •OH and SO4

2− achieved at pH 3 were
higher than those at pH 8 under similar conditions. The finding was further confirmed in
another study of the sono−activated PDS process for the remediation of dairy wastewater
by Hossein et al. [80]; they show that the highest removal COD efficiency was achieved
in acidic pH (pH 3) and the removal percentage of organic matter for the same time were
62.9% and 68.3%, respectively. Because persulfate ions are one of the oxidants that directly
form sulphate radical to breakdown organic compounds and indirectly react with hydroxyl
ions and water molecules, persulfate concentration is one of the most crucial parameters in
the degradation of pollutants [80]. They claimed that the early phases of the procedure saw
an increase in organic matter degradation due to an increase in persulfate concentration
and reaction time. The process efficiency was reduced, nonetheless, due to an excessive
rise of persulfate ions. This is due to the fact that extra S2O8

2− anions in solution act as
radical scavengers and impede the effectiveness of removal while also increasing the risk
of radicals annihilating themselves [17].

Ultrasound intensity or amplitude is another effective parameter in sono-activated
PDS processes. Higher ultrasonic amplitudes led to the formation of extra radicals, and
sonication might unintentionally have a significant mechanical impact on a homogeneous
system, enhancing the mass transfer reaction in solution [74]. An increase in DCF removal
from 88% to 98% was recoded after a 240 min reaction with the intensification of acoustic
intensity from 2.5 to 4.5 W/cm. According to Wang et al. [17], who implemented this
theory, there are two factors that contribute to the improved elimination effectiveness with
upgraded ultrasonic power: (1) augmented ultrasonic power caused further cavitation
bubbles, which provided additional energy to produced radical, resulting in a higher rate
of radical generation; and (2) mass transfer resistances could be removed because of the



Separations 2023, 10, 154 12 of 18

turbulent flow produced by ultrasonic irradiation. Other than that, a single ultraviolet
ray can efficiently break down some organic contaminants, but it had a limited ability to
remove other organic contaminants. Nitrosodimethylamine, for instance, is susceptible to
direct photolysis [89]. As a result, UV photolysis is easily able to break it down. The use of
UV-activated PS was severely hampered by the ultraviolet’s low penetration of the water
and viability in the subsurface [74]. Table 4 summarizes the important factor affecting the
PDS activation method.

Table 4. Summarization of the important factor affecting the persulfate activation method.

Influencing Factor Electrochemically-Activated
Persulfate

Thermally-Activated
Persulfate Sono-Activated Persulfate

Electrode Material

• Example of electrode
material being use in the
industry: Ti/RuO2-IrO2,
Pt, Fe, Al, carbon and BDD

• Electrochemical activation
of persulfate with
sacrificial iron electrode
has attracted huge
attention due to the anodic
oxidation reaction where
iron electrode forms Fe2+

to activates PDS
• This process demands

lower energy yet improves
the utilization of persulfate
and ferrous ions

• Various anode/cathode
combination can
contribute to the
effectiveness of
electrochemical activation
of persulfates, e.g.,
combinations of Pt/Gr,
BDD/Pt and BDD/Gr

No electrode involved No electrode involved

Current
Density/amplitude

• Easy-controlled properties
by operators

• The reaction rate can be
accelerated if the current
density is kinetically
restricted by the mass
transport of the organic
pollutant onto the surface
of the anode

No current
density/amplitude involved

• Higher ultrasonic
amplitudes produced high
generation of radicals

• The turbulent flow
achieved with ultrasonic
irradiation eliminating the
mass transfer resistances

pH
Formation of persulfate was
higher in acid solution than in
alkaline solution

• Rapid conversion of SO4
•

to OH• attributed at
basic condition

• Acidic pH favored the
most COD
removal efficiency

• More sulfate radicals could
be generated through acid
catalyzation in
acidic condition

• pH determines the
physical and chemical
properties of a solution
which affect the oxidation
kinetic constant

• The generation of sulfate
radicals from persulfate
anion could be increased
by decreasing the
pH value
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Table 4. Cont.

Influencing Factor Electrochemically-Activated
Persulfate

Thermally-Activated
Persulfate Sono-Activated Persulfate

Persulfate Concentration
Reaction rates are directly
proportional to the
concentration of persulfate

• Persulfate concentration is
vital and influential factor
for thermally activated
persulfate due to its direct
impact on the sulfate
radical equilibrium.

• Higher concentration of
persulfate causes extra
sulfate radicals’ diffusion,
thus acting as a scavenger
that was effective in
decomposing
the pollutants

• Excessive increase in
persulfate ions resulted in
reduction in the efficiency
of the process

• Excess S2O8
2− anions in

solution act as
radical scavenger

Temperature
PDS output and current
efficiency decreased with the
increase of temperature

• Thermal activation of
persulfate for generation
of free radical species is
temperature dependent

• The degradation efficiency
is dependable to the
temperature, but not
necessarily the increment
of temperature leads to
higher degradation
efficiency as optimum
temperature needs to
be addressed

• Temperature affects the
activation energy and
pollutant behavior

• The rate constant increase
with the temperature

5. Limitation and Future Perspective of Persulfate Activation by Electro, Sono
and Thermal

In the study literature, AOPs are portrayed as effective at degrading ECs. There is,
nevertheless, a sizable knowledge vacuum in relation to their industrialization or process
scalability. Only a small number of studies have been conducted on this issue [90]. Despite
being the top list studies for ECs removal in recent years, the application of AOPs at full
scale is yet to be discovered [30], leaving a space for future research. Another limitation
for this technique is the electricity or energy consumption during the operation in a larger
scale, which is mostly a case in industrial settings [91]. This is a future perspective that can
be investigated for researchers to consider the feasibility of incorporating economical and
renewable resources.

Moreover, similar to the treatment of any pollutants, the main issue is surrounding
the power supply, or the energy needed to operate the overall process, which is directly
proportional to the cost of operation [92,93]. Chekem et al. [20] stated that the energy bal-
ance optimization and process competitiveness for treating micropollutants in wastewater
will be the next critical step. Considering transforming energy source from a solar system
can be adaptable. However, the initial investment should give the treatment plant operator
a cause to ponder. The starting concentration of organic compounds strongly influences
the PDS concentration needed [92], showing that the PDS concentration needed to degrade
organic compounds varies depending on the kind and initial concentration of the organic
compounds. Thus, real wastewater presents a significant difficulty for treatment [94,95],
and it is important to establish the best PDS concentration [14]. The excessive addition
of persulfate in electro-activated persulfate processes leads to a significant concentration,
which will cause problems in the treated effluent, albeit its ability for a persulfate regen-
eration [47]. The sulfate concentration in the treated effluents must comply to the quality
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standard to accomplish proper industrial requirement discharge. Hence, the dosage of PDS
required for the effective treatment of the effluent must be well understood.

This creates another restriction for application optimization because different con-
taminants require different reaction rates of activated persulfate degradation [82]. Matzek
and Carter [49] claimed that by better understanding the second order reaction rates with
reference to analyte and persulfate, the optimization of persulfate utilization in certain
systems is conceivable. This opens a knowledge gap to exclusively study PDS activation
for the degradation of specific pollutants.

Single treatment technology applications in achieving significant ECs removal can be
challenging. Therefore, as suggested by [27], using an integrated system to opt the limitation
of the individual treatment technologies can be bridged, and it could be broadened up as a
potential alternative in the future for efficient ECs removal from the environment.

6. Conclusions

Recently, with the emergence of new contaminants, effective wastewater treatment has
become highly important. PDS-based AOPs, especially, electro, sono and thermal activation
have been successful for various types of ECs contaminates. This paper provides an
inclusive collection of evaluations on the application of PDS activation methodology (sono,
thermal and electro) for ECs degradation covering its mechanisms, efficiency, limitation,
and future perspectives. The important factor affecting each of the methods is discussed and
compared with each other to bring out the comprehensive understanding, not only on the
importance but as also on the dependency between the factors. Plus, the currently existed
limitations and future directions were also critically reviewed. It can be concluded that
with the aid of PDS, the degradation of pollutants can be improved up to 100%. However,
different fragments of pollutants need different reaction rates of activated persulfate due
to the variance in application optimization. This provides a gap of knowledge for future
researchers to explore. Other than that, larger scale applications have fewer approaches,
which could be because of the consumption of high-power supply which contributes to
the high cost of operation, however, this can be slowly avoided by comprehending the
potential uses of solar power systems.
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