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1. Introduction and the statement of the main results

This study examines the existence and uniqueness of the solutions to linear convection–diffusion
equations with integral boundary conditions, where the domain has numerous boundary com-
ponents and a positive parameter.

We first consider a domain with two boundary components for clarity. Define a smooth
bounded domain

Ωλ :=
{
λz : z ∈Ω :=Ωout

∖
Ωin

}
(1)

which is diffeomorphic to an annulus and expands as λ tends to infinity, where Ωin and Ωout

represent bounded simply-connected smooth domains in RN , N ≥ 2, such that 0 ∈ Ωin $ Ωout.
This study focuses primarily on the linear convection–diffusion equation

−∆uλ(x)+~a(x) ·∇uλ(x)+h(x)uλ(x) = 0, x ∈Ωλ, (2)

subject to the following integral-type boundary conditions for uλ:
uλ(x) = bi +

∫
Ωλ

gi(y)uλ(y)dy, x ∈ Γλ,i := {
λz : z ∈ ∂Ωin

}
,

uλ(x) = bo +
∫
Ωλ

go(y)uλ(y)dy, x ∈ Γλ,o := {
λz : z ∈ ∂Ωout

}
.

(3)

The boundary data of uλ on Γλ,i ∪ Γλ,o satisfies an implicit form with non-local dependence
on the unknown uλ in Ωλ. Here bi and bo are constants, which are independent of λ, gi, go ∈
C(RN \ {0};R), and the variable coefficients~a ∈ Cα(RN \ {0};RN ) and h ∈ Cα(RN \ {0};R) are Hölder
continuous with exponent α ∈ (0,1). Thus, the restrictions gi

∣∣
Ωλ

, go
∣∣
Ωλ

,~a
∣∣
Ωλ

and h
∣∣
Ωλ

are well
defined for anyλ> 0. The conditions of these functions will be assumed specifically in (4) and (7).

Previous research literature [4, 8, 13, 15], in which a one-dimensional (1D) case was numeri-
cally examined, inspired the equation that we are studying. We refer the readers to [5, 9] for the
details on the relevant qualitative and asymptotic analysis for solutions of singularly perturbed
models with different integral-type boundary conditions. Furthermore, several studies have in-
vestigated the uniqueness or multiplicity of the solutions to such non-local equations (e.g. see [3]
and its references). The primary approach is based on several fixed-point theorems, such as Kras-
nosel’skii’s fixed-point theorem, Schauder fixed-point theorem and the weakly contractive map-
ping theorem. Different from 1D models, for fixed λ > 0, studying the uniqueness or multiplic-
ity of the solutions of higher-dimensional equations such as (2)–(3) is a challenge in the analysis
because such equations do not have a variational structure.

Figure 1. The existence, uniqueness and multiplicity of solutions to equation (2)–(3) may
be affected by the domain Ωλ with respect to the parameter λ. In Theorem 3, we demon-
strate that there exist 0 < λ∗ < λ∗ such that equations (2)–(3) have a unique solution as
λ ∈ (0,λ∗)∪ (λ∗,∞). However, when λ ∈ [λ∗,λ∗] (the grey region), the equation may have
multiple solutions or no solution. (For clarity, we refer the reader to Example 1 and Propo-
sition 2.)

Ωλ with λ→ ∞ is an expanding domain, which is related to the mathematical problems for
convection–diffusion models in a reactor of macroscopic length scale (see, e.g. [12, 17]), where
the region for a chemical substance to diffuse across is significantly larger compared to that
of a reaction process [1, 18]. We focus on convection–diffusion equation (2) satisfying a weak
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convection effect or large reaction effect (cf. [16]). In the framework of our analysis, both effects
can be considered as the following mathematical settings:

|~a(x)|2 < 4h(x), x ∈RN \ {0}, and lim
λ→∞

λκmin
Ω

(
4h(λz)−|~a(λz)|2)> 0 for some κ ∈ (0,2). (4)

Equation (2)–(3) with assumption (4) fulfills some well-known convection–diffusion equa-
tions. In particular, (4) includes the case~a(x) ≡~0 and h(x) > 0, which arises in numerous ap-
plications such as the homogeneous chemical reactions. (4) is also a case when considering a
convection–diffusion equation (2) with a large reaction h(x). For example, minΩλ h is sufficiently

large so that maxΩλ |~a|
2 < 4minΩλ h. The latter assumption in (4) includes the case

min
Ω

(
4h(λz)−|~a(λz)|2)∼λ−κ̂ λÀ1−−−→ 0 for 0 < κ̂< κ,

where the region of κ is optimal in our analysis.
Under (4), equation (2) with the standard Dirichlet boundary conditions on ∂Ωλ has a unique

solution for any λ > 0. However, the situation becomes quite different for the non-local type
boundary condition (3). The issue about the range of λ for the uniqueness of (2)–(3) seems to
be a challenge. In a special case when Ωλ is an annulus, we provide an example to explain that
there existsλ=λ∗ > 0 such that equation (2)–(3) has infinitely numerous solutions or no solution.

Example 1. We consider the following equation in the domainAλ;2λ := {
x ∈R2 : λ< |x| < 2λ

}
, i.e.

the domainΩλ defined in (1) withΩin = {x : |x| < 1} andΩout = {x : |x| < 2} in R2:
−∆uλ(x)+ x

|x|2 ·∇uλ(x)+uλ(x) = 0, x ∈Aλ;2λ,

uλ(x) = bi +g

∫
Aλ;2λ

uλ(y)dy, for |x| =λ; uλ(x) = 0, for |x| = 2λ,
(5)

where g> 0 is a constant. We shall apply Fourier expansions to demonstrate that all solutions uλ
of (5) are radially symmetric. For x = r e

p−1θ with λ< r < 2λ and 0 ≤ θ < 2π, we let

uλ
(
r e

p−1θ
)
=1

2
u1,0(r )+

∞∑
k=1

(
u1,k (r )cos(kθ)+u2,k (r )sin(kθ)

)
,

where

u1,k (r ) := 1

π

∫ π

−π
uλ

(
r e

p−1θ
)

cos(kθ)dθ, u2,k (r ) := 1

π

∫ π

−π
uλ

(
r e

p−1θ
)

sin(kθ)dθ.

Then, one may check that for i = 1,2, and k ∈N, ui ,k satisfies the equation

u′′
i ,k (r )−

(
1+ k2

r 2

)
ui ,k (r ) = 0 in (λ,2λ), ui ,k (λ) = ui ,k (2λ) = 0.

Such an equation only has a trivial solution ui ,k (r ) ≡ 0, and we obtain that uλ(x) = 1
2 u1,0(|x|) is

radially symmetric. As a consequence, we can solve (5) and verify the non-existence, uniqueness
and multiplicity of the solutions uλ’s corresponding to bi and λ. More accurately, we completely
classify the solutions of (5) as follows:
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(i) When bi = 0 and λ∗ :=λ∗(g) > 0 satisfies1(
1+λ∗

2
− 1

4gπ

)
e2λ∗ −1

λ∗ −2(eλ
∗ −1) = 1, (6)

for any constant c∗, all uλ∗,c∗ (x) = c∗(e|x|−e4λ∗−|x|) are solutions of (5) with λ=λ∗.
(ii) When bi 6= 0 and λ=λ∗, (5) has no solution.

(iii) If λ> 0 and λ 6=λ∗, then for each bi ∈R, (5) has a unique solution.

Simple calculations can be employed to verify this result. We thus omit the details here. For
general cases, the issues of the non-existence, uniqueness, and multiplicity of solutions of (2)–(3)
become more complicated; see Proposition 2. What we shall point out is that the uniqueness of
solutions to (2)–(3) inΩλ defined by (1) exactly depends variously on λ, bi, and bo.

Additionally, to obtain a more detailed uniqueness result of (2)–(3) with large λ, for gi and go,
we made the following precise assumption:

lim
λ→∞

λN+ κ−2
2 max

z∈Ω

∣∣g (λz)
∣∣= 0,

lim
|z|→0

|z|N g (z) = 0,
for g = gi, go, (7)

where κ ∈ (0,2) has been defined in (4). Assumption (7) allows g to blow up at z = 0. An example

for (7) is g (z) = |z|−N+ 2−κ∗
2 with κ∗ ∈ (κ,2). Although (7) implies |∫Ωλ g (y)dy | =λN |∫Ω g (λz)dz|¿

λ
2−κ

2 as λ→∞, we emphasise that it also includes the case limλ→∞ |∫Ωλ g (y)dy | =∞.

1.1. The main result

We introduce the equations corresponding to (2) with the standard Dirichlet boundary condi-
tions before stating the main results. Let φλ be a solution of the equation{

−∆φλ(x)+~a(x) ·∇φλ(x)+h(x)φλ(x) = 0 in Ωλ,

φλ = 1 on Γλ,i, φλ = 0 on Γλ,o,
(8)

and let ψλ be a solution of the equation{
−∆ψλ(x)+~a(x) ·∇ψλ(x)+h(x)ψλ(x) = 0 in Ωλ,

ψλ = 0 on Γλ,i, ψλ = 1 on Γλ,o.
(9)

Note that Ωλ is a bounded smooth domain for each fixed λ > 0, and the constraints~a
∣∣
Ωλ

and
h
∣∣
Ωλ

are Hölder continuous with exponent α ∈ (0,1). As a consequence, by the standard elliptic
regularity theory (cf. [10, Theorem 6.14]), we obtain that the equations (8) and (9) have unique
solutions φλ,ψλ ∈ C2,α(Ωλ), where the uniqueness is trivially due to h

∣∣
Ωλ

> 0.
Let c1 and c2 be constants. Then, by the uniqueness of solutions of (8) and (9), the solution of

equation (2) with boundary conditions uλ = c1 on Γλ,i and uλ = c2 on Γλ,o is uniquely expressed
by uλ = c1φλ+ c2ψλ. Accordingly, for each solution uλ of (2)–(3) (if it exists), we have an implicit
representation for uλ given by

uλ(x) =
(
bi +

∫
Ωλ

gi(y)uλ(y)dy

)
φλ(x)+

(
bo +

∫
Ωλ

go(y)uλ(y)dy

)
ψλ(x), x ∈Ωλ. (10)

1Let

f (λ) =
(

1+λ
2

− 1

4gπ

)
e2λ−1

λ
−2

(
eλ−1

)
.

Since g> 0, we have

lim
λ→0+

f (λ) = 1− 1

2gπ
< 1 and lim

λ→∞
f (λ) =∞.

Along with the intermediate value theorem of continuous functions, we verify that (6) has a positive root λ∗ =λ∗(g).
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Here we perform an argument that is different from the fixed point approach. We will show that
the two non-local coefficients (depending on unknown uλ) in the right-hand side of (10) can be
explicitly expressed by φλ and ψλ. In Proposition 2, we establish a criterion of the existence and
uniqueness for (2)–(3).

Proposition 2. Let Ωλ be defined by (1). Assume that bi and bo are constants independent of λ,
gi, go ∈ C(RN \ {0};R) satisfy (7), and~a ∈ Cα(RN \ {0};RN ) and h ∈ Cα(RN \ {0};R) satisfy (4), where
α ∈ (0,1). Then we have the following:

(i) If λ satisfies det(I −Rλ) 6= 0, then (2)–(3) has a unique solution satisfying

uλ(x) = det
(
(I −Rλ)−1 Cψλ

)
φλ(x)+det

(
(I −Rλ)−1 Cφλ

)
ψλ(x), (11)

where

I =
[

1 0

0 1

]
, Rλ =


∫
Ωλ

gi(y)φλ(y)dy
∫
Ωλ

gi(y)ψλ(y)dy∫
Ωλ

go(y)φλ(y)dy
∫
Ωλ

go(y)ψλ(y)dy

 (12)

and

Cψλ =

bi −
∫
Ωλ

gi(y)ψλ(y)dy

bo 1−
∫
Ωλ

go(y)ψλ(y)dy

 , Cφλ =

 1−
∫
Ωλ

gi(y)φλ(y)dy bi

−
∫
Ωλ

go(y)φλ(y)dy bo

 . (13)

(ii) If λ, bi, and bo satisfy det(I −Rλ) = 0 and detCψλ = 0, then (2)–(3) has infinitely many
solutions.

(iii) If λ, bi, and bo satisfy det(I −Rλ) = 0 and detCψλ 6= 0, then (2)–(3) has no solution.

Having Proposition 2 at hand, we are in a position to state the main result.

Theorem 3. Under the same assumptions as in Proposition 2, there exist 0 < λ∗ < λ∗ such that
for each λ ∈ (0,λ∗) ∪ (λ∗,∞), we have det(I −Rλ) > 0, and (2)–(3) has a unique solution uλ
satisfying (11). Moreover, as λ À 1, there exist positive constants C∗ and M∗ independent of λ
such that

|uλ(x)| ≤ C∗ exp
(
−M∗λ− κ

2 dist(x,∂Ωλ)
)

, for all x ∈Ωλ. (14)

Figure 1 is a fundamental understanding of Theorem 3. In Section 3, we will prove Proposi-
tion 2 and Theorem 3.

Remark 4. (14) shows that for an interior point x ∈Ωλ satisfying

lim
λ→∞

dist
( x

λ
,∂Ω

)
> 0,

there holds limλ→∞ |uλ(x)| = 0 because for κ ∈ (0,2),

|uλ(x)| ≤ C∗ exp
(
−M∗λ− κ

2 dist(x,∂Ωλ)
)
=C∗ exp

(
−M∗λ1− κ

2 dist
( x

λ
,∂Ω

))
¿ 1.

Remark 5 (The H 1-capacity ofΩλ). Inspired by (11), which presents a linear combination of φλ
andψλ for solution uλ, the H 1-capacity ofΩλ is naturally considered since it is a relevant measure
of the “size” for Ωλ supporting Dirichlet boundary conditions (cf. [2, 14]). (Whereas notice the
boundary conditions of φλ and ψλ in (8) and (9).) Recall the H 1-capacity ofΩλ:

cap(Ωλ) = min

{∫
Ωλ

|∇U |2 dx : U ∈ H 1 (Ωλ) , U = 1 on Γλ,i, U = 0 on Γλ,o

}
, (15)

where the minimum is achieved when U is harmonic inΩλ. In particular,Ωλ has the property

cap(Ωλ) =λN−2cap(Ω).
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When N = 2, cap(Ωλ) is independent of λ. As a consequence, the effect of cap(Ωλ) on the
existence and uniqueness of the solutions of the equation (2)–(3) appears insignificant. However,
when N ≥ 3, Theorem 3 can be reinterpreted that there exist 0 < L∗ < L∗ depending primarily on
cap(Ω) and dimension N such that if cap(Ωλ) ∈ (0,L∗)∪(L∗,∞), the equation (2)–(3) has a unique
solution. ForΩλ replaced with the general domains, the domain capacity effect on the uniqueness
issue of (2)–(3) seems more subtle. The main difficulty, in our perspective, lies in obtaining the
refined estimates (with respect to λ) of the non-local terms in (3). The general theory for this
problem is highly nontrivial, which is a direction of our research in the future.

Theorem 3 focuses primarily on the uniqueness result of equation (2)–(3) in the annular-like
domainsΩλ defined by (1). We shall stress that the argument can straightforwardly be generalized
to the same equation as (2) in a bounded domain with several boundary components (see
Theorem 10 in Section 4).

1.2. An example contrasting to Theorem 3

In this section, we will emphasise that the property of the domain Ωλ plays a critical role in the
uniqueness result presented in Theorem 3.

Proposition 2 presents that the equation (2)–(3) has a unique solution if and only if I −Rλ is
invertible, where all elements in Rλ are associated with the integral-type boundary condition (3),
which involves the domain Ωλ. Note that the result of Proposition 2 still holds for general
expanding domains because the property of the domain Ωλ is not required in the proof (cf.
Section 3.1). We emphasise that Theorem 3 holds for the domainΩλ defined by (1), but it may not
hold for the general expanding domains. We would provide an example to show that Theorem 3
may not hold when the expanding domain has a fixed inner boundary that is independent of λ.

For a more detailed explanation, let us recall Example 1, where all domains Aλ;2λ = {x ∈ R2 :
λ < |x| < 2λ} have the H 1-capacity cap(Aλ;2λ) = 2π

ln2 , which is independent of λ > 0 (see (15)
and the footnote2). In this case, λ = λ∗ (see (6)) for the non-existence/non-uniqueness of the
solutions of equation (5) depends mainly on the coefficient g of the integral-type boundary
condition. In the following Example 6, we adopt the same equation as in Example 1, but the
domain Aλ;2λ is replaced by the annular domain A1;λ := {x ∈ R2 : 1 < |x| < λ} with an inner
boundary independent of λ. A difference between Aλ;2λ and A1;λ with λ varying comes from
the fact that cap(A1;λ) = 2π

lnλ depends on λ > 1. Because the inner boundary of A1;λ is fixed,
assumption (7) is not effective for g = gi on |x| = 1. This observation prompts us to consider the
boundary condition uλ = bi+

∫
A1;λ

gi(y)uλ(y) dy with a precise gi (see (17)) on the inner boundary
|x| = 1. We will show in Case 2 (II) of Example 6 that when bi = 0 (bi 6= 0, respectively), there exists

a strictly increasing sequence {λk }k ∈N with λk
k →∞−−−−→ ∞ such that the equation in the domain

A1;λk
has infinitely many solutions (no solution, respectively).

Example 6. Let N = 2. For λ> 1, we consider the equation
−∆uλ(x)+ x

|x|2 ·∇uλ(x)+uλ(x) = 0, x ∈A1;λ,

uλ(x) = bi +
∫
A1;λ

gi(y)uλ(y)dy, for |x| = 1; uλ(x) = 0, for |x| =λ,
(16)

2We refer the readers to [2] (see also, (15) with N = 2) for the H1-capacity of annular domains in R2. LetAR1 ;R2 := {x ∈
R2 : R1 < |x| < R2}. Then, the H1-capacity of AR1 ;R2 is cap(AR1 ;R2 ) = 2π

ln(R2/R1) which can be obtained when

U (x) = lnR2 − ln |x|
lnR2 − lnR1

, x ∈AR1 ;R2 .
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where

gi(y) =C0
e−|y |

|y | sin(|y |) (17)

obeys the assumption (7), and C0 is a constant.
We will apply Proposition 2 to equation (16) since its consequence still holds for equation (2)–

(3) when the domain Ωλ is replaced with A1;λ. First, one solves the corresponding equations (8)
and (9) with~a(x) = x

|x|2 and h(x) = 1:

φλ(x) = e−|x|−e−2λ+|x|

e−1 −e−2λ+1
, ψλ(x) = e|x|−e2−|x|

eλ−e2−λ . (18)

Next, we shall determine a constant C0 in (17) so that Proposition 2(ii) or (iii) occurs for “infinitely
many” λ. By (18), a simple calculation yields∫

A1;λ

gi(y)φλ(y) dy

= 2πC0

e−1 −e−2λ+1

∫ λ

1

(
e−r −e−2λ+r

)
e−r sinr dr

= 2πC0

e−1 −e−2λ+1

[
e−2

5
(2sin1+cos1)−e−2λ

(
cos1−cosλ+ 1

5
(2sinλ+cosλ)

)]
,

(19)

which implies

lim
λ→∞

∫
A1;λ

gi(y)φλ(y) dy = 2πC0

5e
(2sin1+cos1). (20)

On the other hand, by (12) withΩλ =A1;λ and go = 0, we have

det(I −Rλ) = 1−
∫
A1;λ

gi(y)φλ(y) dy. (21)

As a consequence, we have the following results:

(Case 1) If C0 6= 5e
2π(2sin1+cos1) , then by (20)–(21), we have det(I −Rλ) 6= 0 as λ À 1. Applying

Proposition 2(i) to this case, we verify that as λÀ 1, (16) has a unique solution.
(Case 2) If C0 = 5e

2π(2sin1+cos1) , then by (19) and (21), we obtain that (see the Appendix A):{
λ> 1 : det(I −Rλ) = 0

}= {
2kπ+1, (2k −1)π+2θ0 −1 : k ∈N}

:=S0, (22)

where θ0 = arcsin 2p
5
∈ (1, π2 ). Thus, by Proposition 2(i)–(iii) and (21)–(22), we have the following

results:

(I) If λ 6∈S0, then I −Rλ is invertible. Therefore, equation (16) has a unique solution.
(II) If λ ∈ S0, then for bi 6= 0, (16) has no solution; for bi = 0, (16) has infinitely many

solutions uλ = c∗φλ, where φλ is defined by (18) and c∗ ∈R is arbitrary.

The rest of this paper is structured as follows. In Section 2, we establish estimates of φλ
and ψλ in Ωλ for λ À 1, which is crucial for the proof of Theorem 3. In Section 3, we state
the proof of Proposition 2 and Theorem 3 and provide a remark for the uniqueness under an
approach of the maximum principle. Next, as a generalization of Theorem 3, in Section 4, we
consider equation (2) in an expanding domain with numerous boundary components. Under the
corresponding integral-type boundary conditions, we establish the uniqueness result which will
be introduced in Theorem 10. We make the concluding remarks and future problems in Section 5.
Finally, in the Appendix we state the proof of (22) for the sake of clarity and completeness.
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2. Preliminary estimates of φλ andψλ

In this section, we first establish the required estimates of φλ and ψλ for λÀ 1, where φλ and
ψλ are solutions of equations (8) and (9), respectively. Let (Φλ(z),Ψλ(z)) = (φλ(x),ψλ(x)) with
z =λ−1x ∈Ω. ThenΦλ(z) andΨλ(z) satisfy− 1

λ2∆zΦλ(z)+ 1

λ
~a(λz) ·∇zΦλ(z)+h(λz)Φλ(z) = 0 in Ω,

Φλ = 1 on ∂Ωin, Φλ = 0 on ∂Ωout,
(23)

and − 1

λ2∆zΨλ(z)+ 1

λ
~a(λz) ·∇zΨλ(z)+h(λz)Ψλ(z) = 0 in Ω,

Ψλ = 0 on ∂Ωin, Ψλ = 1 on ∂Ωout,
(24)

respectively. Since h > 0 (by (4)), the maximum principle implies 0 ≤Φλ,Ψλ ≤ 1 inΩ.
We first establish an interior estimate forΦλ. Multiplying both sides of the equation in (23) by

Φλ, one may check from (4) that, if λ > 0 is sufficiently large, there exists a positive constant M
independent of λ such that

1

λ2∆zΦ
2
λ =

2

λ2
|∇zΦλ|2 +

2

λ
~a(λz)Φλ ·∇zΦλ+2h(λz)Φ2

λ

≥2

(
h(λz)− |~a(λz)|2

4

)
Φ2
λ ≥λ−κM 2Φ2

λ,

i.e.,

∆zΦ
2
λ ≥λ2−κM 2Φ2

λ in Ω, (25)

where we notice λ2−κÀ 1 since 0 < κ< 2.
Let µ1 > 0 be the principal eigenvalue of −∆z in H 1

0 (Ω), and let ϕ1 be the corresponding
positive eigenfunction with ‖ϕ1‖L∞(Ω) = 1. Consider the following auxiliary function:

Vλ(z) := exp
(
−M1λ

1− κ
2 ϕ1(z)

)
in Ω. (26)

We will determine a positive constant M1 such that (26) is a superposition of (25). First, it is easy
to check that Vλ satisfies

∆zVλ =λ2−κ
(
M1λ

κ
2 −1µ1ϕ1 +M 2

1 |∇ϕ1|2
)
Vλ.

Since 0 < λ
κ
2 −1 ¿ 1, and |∇ϕ1| is bounded in Ω (cf. [10]), one can choose a suitable M1 > 0

such that ∆zVλ ≤ λ2−κM 2Vλ in Ω for sufficiently large λ. As a consequence, by combining this
differential inequality with (25), we arrive at

∆z
(
Φ2
λ−Vλ

)≥λ2−κM 2 (
Φ2
λ−Vλ

)
in Ω. (27)

Note also thatΦ2
λ
≤ 1 = Vλ on ∂Ω, i.e.

Φ2
λ−Vλ ≤ 0 on ∂Ω. (28)

Applying the standard comparison theorem to (27)–(28), we obtain

Φ2
λ(z) ≤ Vλ(z), for all z ∈Ω. (29)

Now we claim that there exists a positive constant M∗ independent of λ such that

Vλ(z) ≤ exp
(
−M∗λ1− κ

2 dist(z,∂Ω)
)

, for z ∈Ω. (30)

Since ∂Ω is smooth, the eigenfunction ϕ1 is both bounded above and below by strictly positive
multiples of dist(x,∂Ω) (see, e.g. [6, Section 3]). Here, for the sake of completeness, we offer an
alternative proof for a required lower bound of ϕ1 as follows. Since ϕ1 is smooth and strictly
positive inΩ and ϕ1 = 0 on ∂Ω, by the Hopf’s lemma, the outward normal derivative of ϕ1 on ∂Ω
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is strictly negative, implying that ϕ1(x) ≥ M2dist(x,∂Ω) in Ωd2 := {x ∈ Ω : dist(x,∂Ω) ≤ d2}, for a
small d2 > 0 and a positive constant M2 depending on d2,

‖ϕ1‖C2
(
Ωd2

) and min
∂Ω

∣∣∂~nϕ1
∣∣ .

As a consequence,

inf
z∈Ω

ϕ1(z)

dist(z,∂Ω)
≥ min
Ω\Ωd2

{
M2,

ϕ1

diam(Ω)

}
> 0.

Along with (26), we arrive at (30) with

M∗ = 1

2
M1 min

Ω\Ωd2

{
M2,

ϕ1

diam(Ω)

}
.

By (29) and (30), we have

0 ≤Φλ(z) ≤ exp
(
−M∗λ1− κ

2 dist(z,∂Ω)
)

, ∀ z ∈Ω.

That is,
0 ≤φλ(x) ≤ exp

(
−M∗λ− κ

2 dist(x,∂Ωλ)
)

, for all x ∈Ωλ. (31)

Similarly, by (4), (24) and the fact that 0 ≤ψλ ≤ 1 on the boundary, we also have

0 ≤ψλ(x) ≤ exp
(
−M∗λ− κ

2 dist(x,∂Ωλ)
)

, for all x ∈Ωλ. (32)

Estimates (31) and (32) play a crucial role in the proof of Theorem 3.

Remark 7. An alternative proof of (31) and (32) can be found in [11, Proposition 2]; see also [11,
(2.30)].

3. Proofs of the main results

3.1. Proof of Proposition 2

Proof. For the sake of simplicity, we let Bλ,i = bi +
∫
Ωλ

gi(y)uλ(y)dy and Bλ,o = bo + ∫
Ωλ

go(y)
uλ(y)dy . By (3) and (10), we have

Bλ,i = bi +
∫
Ωλ

gi(y)
(
Bλ,iφλ(y)+Bλ,oψλ(y)

)
dy,

Bλ,o = bo +
∫
Ωλ

go(y)
(
Bλ,iφλ(y)+Bλ,oψλ(y)

)
dy,

(33)

which is equivalent to

(I −Rλ)

[
Bλ,i

Bλ,o

]
=

[
bi

bo

]
, (34)

where I and Rλ have been defined by (12).
Accordingly, the existence, uniqueness, and multiplicity of the solutions to (2)–(3) are deter-

mined by that of (Bλ,i,Bλ,o) to (34). If det(I −Rλ) 6= 0, then by applying Cramer’s rule to (34), we
get a unique solution

Bλ,i = det
(
(I −Rλ)−1 Cψλ

)
, Bλ,o = det

(
(I −Rλ)−1 Cφλ

)
, (35)

where Cψλ and Cφλ have been defined by (13). Thus, det(I −Rλ) 6= 0 implies that (2)–(3) has
a unique solution uλ satisfying (11). This completes the proof of (i). Similarly, we can prove (ii)
and (iii) and complete the proof of Proposition 2. �

The following corollary is a direct application of Proposition 2.
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Corollary 8. Under the same assumptions as in Proposition 2, we assume that λ> 0 satisfies∫
Ωλ

(∣∣gi(y)
∣∣+ ∣∣go(y)

∣∣)dy ≤ 1. (36)

Then, det(I −Rλ) > 0. In particular, equation (2)–(3) has a unique solution uλ satisfying (11).

Proof. By (12), we have

det(I −Rλ) =
(
1−

∫
Ωλ

gi(y)φλ(y)dy

)(
1−

∫
Ωλ

go(y)ψλ(y)dy

)
−

∫
Ωλ

gi(y)ψλ(y)dy
∫
Ωλ

go(y)φλ(y)dy.
(37)

Let
∫
Ωλ

|gi(y)|dy = Aλ,i and
∫
Ωλ

|go(y)|dy = Aλ,o. Then, by (36), we have Aλ,i + Aλ,o ≤ 1. Because

0 ≤ φλ,ψλ ≤ 1, φλ 6≡ 1 and ψλ 6≡ 1 in Ωλ, we have
∫
Ωλ

|gi(y)|φλ(y)dy < Aλ,i,
∫
Ωλ

|gi(y)|ψλ(y)dy <
Aλ,i,

∫
Ωλ

|go(y)|φλ(y)dy < Aλ,o and
∫
Ωλ

|go(y)|ψλ(y)dy < Aλ,o. Thus, 1 − ∫
Ωλ

gi(y)φλ(y)dy >
1− Aλ,i ≥ 0 and 1−∫

Ωλ
go(y)ψλ(y)dy > 1− Aλ,o ≥ 0. Along with (37), we arrive at

det(I −Rλ) > (
1− Aλ,i

)(
1− Aλ,o

)− Aλ,i Aλ,o = 1− Aλ,i − Aλ,o ≥ 0,

implying that I −Rλ is invertible. Along with Proposition 2(i), we obtain the uniqueness of the
solution uλ of (2)–(3) when (36) holds. Therefore, the proof of Corollary 8 is complete. �

Finally, let us consider the case that gi and go are non-negative. Applying the technique of the
maximum principle, we have the following result.

Corollary 9. Under the same assumptions as in Proposition 2, we assume that both gi and go are
non-negative, and λ> 0 satisfies∫

Ωλ

gi(y)dy < 1 and
∫
Ωλ

go(y)dy < 1. (38)

Then, one of the following statements holds:

(S1) det(I −Rλ) 6= 0 and (2)–(3) has a unique solution;
(S2) det(I −Rλ) = 0 and (2)–(3) has no solution.

Proof. We fix λ > 0 satisfying (38). First, we prove that the equation (2)–(3) has at most one
solution. Suppose by contradiction that (2)–(3) has at least two distinct solutions U1 and U2. For
U :=U1 −U2, we have

−∆U (x)+~a(x) ·∇U (x)+h(x)U (x) = 0 in Ωλ, (39)

where U is subject to the integral-type boundary conditions
U (x) =

∫
Ωλ

gi(y)U (y)dy, x ∈ Γλ,i := {
λz : z ∈ ∂Ωin

}
,

U (x) =
∫
Ωλ

go(y)U (y)dy, x ∈ Γλ,o := {
λz : z ∈ ∂Ωout

}
.

(40)

To obtain a contradiction, we consider two situations without loss of generality.

(Case 1) U attains both its maximum and minimum values at the boundary points. Since gi and
go are both non-negative, by (38) and (40), one immediately obtains

max
Ωλ

U ≤ 0 ≤ min
Ωλ

U .

Hence, U ≡ 0, implying that U1 =U2, a contradiction.
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(Case 2) U attains its maximum value at an interior point xλ and its minimum value on the
boundary. Then, by (4) and (39), we have max

Ωλ
U =U (xλ) ≤ 0. On the other hand,

min
Ωλ

U ≥ 0

holds trivially due to (38). This also implies U1 =U2 and leads to a contradiction.

Hence, by (Case 1)–(Case 2), equations (2)–(3) has at most one solution. Furthermore, if λ > 0
satisfies det(I −Rλ) 6= 0, then by Proposition 2(i), equation (2)–(3) has a unique solution, i.e. (S1)
holds. If λ > 0 satisfies det(I −Rλ) = 0, then by Proposition 2(iii), there holds detCΨλ

6= 0,
and the equation (2)–(3) has no solution, i.e., (S2) holds. Therefore, the proof of Corollary 9 is
completed. �

3.2. Proof of Theorem 3

Proof. First, we show that there exists λ∗ > 0 such that det(I −Rλ) > 0 for λ ∈ (0,λ∗). Recall
Ω :=Ωout \Ωin. One can check that∫

Ωλ

(∣∣gi(y)
∣∣+ ∣∣go(y)

∣∣)dy =λN
∫
Ωout\Ωin

(∣∣gi(λz)
∣∣+ ∣∣go(λz)

∣∣)dz

≤ 1

(dist(0,∂Ωin))N

∫
Ωout\Ωin

|λz|N (∣∣gi(λz)
∣∣+ ∣∣go(λz)

∣∣)dz.
(41)

Here we have verified 0 < dist(0,∂Ωin) ≤ min
z∈Ωout\Ωin

|z| since 0 ∈Ωin. Note also that

lim
λ→0+

max
z∈Ωout\Ωin

|λz| = 0

sinceΩout \Ωin is a bounded domain. Thus, by (7) and (41), we have

lim
λ→0+

∫
Ωλ

(∣∣gi(y)
∣∣+ ∣∣go(y)

∣∣)dy = 0,

asserting that there exists λ∗ > 0 such that (36) holds for λ ∈ (0,λ∗). Then, by Corollary 8, we
obtain det(I −Rλ) > 0 for λ ∈ (0,λ∗).

On the other hand, by (31)–(32), one may check that, as λÀ 1,∣∣∣∣∫
Ωλ

gi(y)φλ(y)dy

∣∣∣∣≤max
Ωλ

∣∣gi
∣∣(∫

Ωλ

exp
(
−M∗λ− κ

2 dist(y,∂Ωλ)
)

dy

)
≤λN max

z∈Ω

∣∣gi(λz)
∣∣(∫

Ω
exp

(
−M∗λ1− κ

2 dist(z,∂Ω)
)

dz

)
.

(42)

Furthermore, we carefully deal with the last term of (42). In order to achieve a more refined
estimate, we set a constant τ ∈ (0,1− κ

2 ) independent of λ such that as λ> 0 is sufficiently large,
the subdomain

Ω∗
λ−τ := {

z ∈Ω : dist(z,∂Ω) >λ−τ}
is nonempty, and each interior point of Ω \Ω∗

λ−τ has a unique nearest point on ∂Ω. Note that
∂Ω∗

λ−τ is smooth and

max
z∈Ω∗

λ−τ
exp

(
−M∗λ1− κ

2 dist(z,∂Ω)
)
≤ exp

(
−M∗λ1− κ

2 −τ
)

.
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Utilizing the coarea formula (cf. [7, Theorems 3.10 and 3.14]), one may check that, as λÀ 1,∫
Ω

exp
(
−M∗λ1− κ

2 dist(z,∂Ω)
)

dz

=
∫ λ−τ

0
exp

(
−M∗λ1− κ

2 t
)
H N−1( {z ∈Ω : dist(z,∂Ωin) = t }

)
dt

+
∫ λ−τ

0
exp

(
−M∗λ1− κ

2 t
)
H N−1( {z ∈Ω : dist(z,∂Ωout) = t }

)
dt

+
∫
Ω∗
λ−τ

exp
(
−M∗λ1− κ

2 dist(z,∂Ω)
)

dz

≤2
(
H N−1 (∂Ωin)+H N−1 (∂Ωout)

)∫ λ−τ

0
exp

(
−M∗λ1− κ

2 t
)

dt

+H N (Ω)exp
(
−M∗λ1− κ

2 −τ
)

≤ 2λ
κ
2 −1

M∗
(
H N−1 (∂Ωin)+H N−1 (∂Ωout)

)+H N (Ω)exp
(
−M∗λ1− κ

2 −τ
)
≤C3λ

κ
2 −1,

(43)

where H d represents the d-dimensional Hausdorffmeasure on RN , and C3 is a positive constant
independent of λ. Since 0 <λ−τ¿ 1, in (43) we have used

exp
(
−M∗λ1− κ

2 −τ
)
¿λ

κ
2 −1

(as λÀ 1), and the fact that

H N−1 ({
z ∈Ω : dist

(
z,∂Ωin

)= t
})≤ 2H N−1 (∂Ωin)

and

H N−1 ({
z ∈Ω : dist

(
z,∂Ωout

)= t
})≤ 2H N−1 (∂Ωout)

as 0 < t ≤λ−τ¿ 1. Hence, by (7) and (42)–(43), one arrives at∣∣∣∣∫
Ωλ

gi(y)φλ(y)dy

∣∣∣∣≤C3λ
N+ κ−2

2 max
z∈Ω

∣∣gi(λz)
∣∣ λ→∞−−−−→ 0. (44)

Similarly, we can obtain∫
Ωλ

go(y)ψλ(y)dy,
∫
Ωλ

gi(y)ψλ(y)dy,
∫
Ωλ

go(y)φλ(y)dy
λ→∞−−−−→ 0. (45)

As a consequence, by (12)–(13), (37) and (44)–(45), we have

det(I −Rλ)
λ→∞−−−−→ 1, detCψλ

λ→∞−−−−→ bi, detCφλ
λ→∞−−−−→ bo. (46)

Therefore, by (33) and (46), there exists a sufficiently large number λ∗ such that det(I −Rλ) > 0
for λ ∈ (λ∗,∞). Consequently,

det(I −Rλ) > 0 as λ ∈ (0,λ∗)∪ (
λ∗,∞)

. (47)

By (47) and Proposition 2(i), we obtain the uniqueness of solutions to (2)–(3) with λ ∈ (0,λ∗)∪
(λ∗,∞).

It remains to prove (14). By (35) and (46), we have |Bλ,i|+|Bλ,o| ≤ 2(bi+bo) for sufficiently large
λ> 0. On the other hand, as λÀ 1, by (11) and (31)–(32), we arrive at an interior estimate of uλ:

|uλ(x)| ≤ ∣∣Bλ,i
∣∣φλ(x)+ ∣∣Bλ,o

∣∣ψλ(x) ≤ (∣∣Bλ,i
∣∣+ ∣∣Bλ,o

∣∣)exp
(
−M∗λ− κ

2 dist(x,∂Ωλ)
)

, ∀ x ∈Ωλ.

Therefore, we obtain (14) with C∗ = 2(bi +bo) and complete the proof of Theorem 3. �
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Figure 2. The dark grey region shows a domain D :=Ω0 \
⋃

1≤k ≤mΩk with many boundary
components Γ j ’s, where Γ j := ∂Ω j , j = 0,1, . . . ,m. Here, Ω0 and Ωk b Ω0 are bounded

smooth domains in RN , N ≥ 2, and all Ωk ’s are disjoint to each other. Furthermore, we
assume 0 ∉ D. The corresponding expanding domain is defined by Dλ := {λz : z ∈ D} with
m +1 boundary components Γλ, j ’s.

4. A uniqueness result in the expanding domain with many boundary components

Let Dλ be a bounded domain with m +1 smooth boundary components Γ j ’s, j = 0,1, . . . ,m. For
the definitions of Dλ and Γλ, j ’s, we refer the readers to the caption of Figure 2. Note that~a and h
are well-defined in Dλ since 0 6∈Dλ. It suffices to consider the equation

−∆vλ(x)+~a(x) ·∇vλ(x)+h(x)vλ(x) = 0 in Dλ, (48)

with the integral-type boundary conditions

vλ(x) = b j +
∫
Dλ

g j (y)vλ(y)dy, x ∈ Γλ, j := {
λz : z ∈ Γ j

}
, j = 0,1, . . . , m, (49)

where b j ∈ R and g j ∈ C(RN \ {0};R) are independent of λ. Here, we will focus primarily on the
uniqueness problem of (48)–(49).

Because there are m +1 boundary components Γλ, j ’s, for each η ∈ {0,1, . . . ,m}, let φλ,η be the
unique solution of the equation{

−∆φλ,η(x)+~a(x) ·∇φλ,η(x)+h(x)φλ,η(x) = 0 in Dλ,

φλ,η(x) = 1, x ∈ Γλ,η, φλ,η(x) = 0, x ∈ Γλ, j ( j 6= η).
(50)

Owing to (4), φλ,η1 and φλ,η2 are linearly independent (η1 6= η2). Hence, each solution vλ of (48)–
(49) (if it exists) is a linear combination of all φλ,η’s with the coefficients determined by (49).
Therefore, we can apply a similar argument as in the proofs of Proposition 2 and Theorem 3 to
arrive at the following result.

Theorem 10. Assume that b j ’s, j = 0,1, . . . , m, are constants independent of λ, h ∈ Cα(RN ;R)
and~a ∈ Cα(RN ;RN ) satisfying (4). Let g j ∈ C(RN ;R) satisfy (7) with g = g j . Then, there hold the
followings:

(i) Equation (48)–(49) has a unique solution if and only if λ> 0 satisfies

det(Im+1 −Gλ) 6= 0,
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where Im+1 is the (m +1)× (m +1) identity matrix, and

Gλ =
[
Gλ,i j

]
(m+1)×(m+1) with Gλ,i j =

∫
Dλ

gi−1(y)φλ, j−1(y)dy, i , j ∈ {1, . . . , m +1}.

(ii) There exist λ̃∗ and λ̃∗ with 0 < λ̃∗ < λ̃∗ such that for λ ∈ (0, λ̃∗)∪ (λ̃∗,∞), (48)–(49) has a
unique solution vλ satisfying

vλ(x) =
m∑
η=0

cηφλ,η(x),

where φλ,η is the unique solution of (50), and
c0

c1

...
cm

= (Im+1 −Gλ)−1


b0

b1

...
bm

 .

Proof. The proof of (i) follows the same argument as in the proof of Proposition 2(i). We omit the
detail here because of its simplicity.

Now we state the proof of (ii). Applying a similar argument as (31) to (50), we can establish the
following estimate for each φλ,η:

0 ≤φλ,η(x) ≤ exp
(
−M∗λ− κ

2 dist(x,∂Dλ)
)

, for all x ∈Dλ. (51)

Moreover, by (7) with g = gi−1 and (51) with η= j −1, we can use the same arguments as (42)–(43)
to obtain limλ→∞Gλ,i j = 0. As a consequence, we arrive at limλ→∞ det(Im+1 −Gλ) = 1. On the
other hand, since 0 ≤φλ,η ≤ 1 in Dλ and g j satisfies (7) with g = g j near z = 0, one can follow the
same argument as (41) to obtain limλ→0+Gλ,i j = 0 which implies limλ→0+ det(Im+1 −Rλ) = 1.

Consequently, there exist λ̃∗ and λ̃∗ with 0 < λ̃∗ < λ̃∗ such that for λ ∈ (0, λ̃∗) ∪ (λ̃∗,∞),
det(Im+1 − Rλ) 6= 0 holds. Along with (i), we obtain the uniqueness result of (48)–(49) and
complete the proof of Theorem 10. �

5. Concluding remarks and future plans

For equation (2)–(3) in the domainΩλ defined by (1), let us consider the set

S := {λ> 0 : det(I −Rλ) = 0} ,

where I and Rλ are defined by (12). Generally, S is non-empty because Example 1 is the case.
Proposition 2 provide a basic understanding that equation (2)–(3) has a unique solution (satis-
fying (11)) if and only if λ ∈ R>0 \S. Furthermore, Theorem 3 shows that under assumptions (4)
and (7),S is contained in a bounded interval [λ∗,λ∗]. For the general case when the domainΩλ is
replaced with a bounded smooth domainDλ with many boundary components, the correspond-
ing uniqueness result is stated by Theorem 10. To the best of our knowledge, these results may
contribute to the first understanding of the roles of domain size on the existence and uniqueness
of the equation (2)–(3).

We shall emphasise that for λs ∈S, (2)–(3) has infinitely many solutions if detCψλs
= 0, and

has no solution if detCψλs
6= 0 (cf. Proposition 2(ii)–(iii)). Therefore, examining the number of

elements in S plays a crucial role in the uniqueness of equation (2)–(3). Under assumptions (4)
and (7), we conjecture that S only has finitely many elements since Example 1 provides relevant
evidence on this conjecture. The rigorous proof is a great challenge.

On the other hand, even if we consider only the annular domain in Example 1, a closer
observation of equation (6) shows that λ∗ is influenced by the domain geometry. Thus, it is
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expected that for the domain Ω := Ωout \Ωin with non-constant boundary mean curvature, the
roots of equation det(I −Rλ) = 0 may depend on the geometries of Ωin and Ωout. A question
naturally arises at this point:

“How to identify the effect of the geometries of Ωin and Ωout on the roots of
det(I −Rλ) = 0 more precisely?”

Furthermore, as shown in Examples 1 and 6, it is expected that, for an equation in a bounded
domain with the integral-type boundary conditions, the relationship between the domain capac-
ity and the boundary condition may affect the uniqueness result of the solutions, which will be
our future research directions.

Appendix A. Proof of (22)

In this section, we state the proof of (22) for the sake of clarity. By (19) with C0 = 5e
2π(2sin1+cos1)

and (21), one may check via simple calculations that

det(I −Rλ) = − e−2λ+1

e−1 −e−2λ+1

[
1− 5

2sin1+cos1

(
cos1−cosλ+ 1

5
(2sinλ+cosλ)

)]
= − 2e−2λ+2 (sin1−2cos1− sinλ+2cosλ)(

1−e−2λ+2
)

(2sin1+cos1)

= − 4
p

5e−2λ+2(
1−e−2λ+2

)
(2sin1+cos1)

cos
1+λ−2θ0

2
sin

1−λ
2

, where θ0 = arcsin
2p
5

.

Here we employed some trigonometric identities to obtain (sin1 − 2cos1) − (sinλ− 2cosλ) =p
5(sin(1−θ0)−sin(λ−θ0)) = 2

p
5cos 1+λ−2θ0

2 sin 1−λ
2 . Note that λ> 1 and 4

p
5e−2λ+2

(1−e−2λ+2)(2sin1+cos1)
6= 0.

Thus, we have

det(I −Rλ) = 0 ⇐⇒ cos
1+λ−2θ0

2
sin

1−λ
2

= 0,

which immediately implies (22), as desired.
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