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Abstract: This study proposes a new integrated approach to the motion control of autonomous
vehicles, which differs from the conventional method of treating planning and tracking tasks as
separate or hierarchical components. By means of the proposed approach we can reduce the side
effects on the performance of autonomous vehicles under challenging driving circumstances. To this
end, our approach processes both of the aforementioned tasks asynchronously and simultaneously
utilizes a multi-threaded architecture to enhance control performance. Meanwhile, the behavior
planning feature is integrated into the path-tracking module. Then, a linear parameter-varying model
predictive control is deployed for trajectory tracking of autonomous vehicles and compared with the
linear model predictive control method. Finally, the control performance of the proposed approach
was evaluated through simulation trials on urban roads with placed obstacles. The outcomes revealed
that the suggested framework satisfies the processing rate and high-precision criteria, while safely
avoiding obstacles, indicating that it is a promising control strategy for real-world applications.

Keywords: safety autonomous driving; model predictive control; path tracking control; motion
decision

1. Introduction

With the rapid development of technology, the concepts of intelligent transportation
systems and autonomous vehicles (AVs) are gradually becoming familiar to the public.
The potential applications in AVs are being developed, tested, and commercialized glob-
ally [1,2]. Even though there have been successful implementations, it is quite obvious
that many challenges remain for the techniques applied to AVs. The development of au-
tonomous driving systems not only profoundly improves their operational accuracy and
efficiency but also ensures the safety of passengers and pedestrians. In order to deploy an
autonomous driving framework to improve the degree of AV autonomy, the general design
of an autonomous driving system for the AV requires consideration of several aspects, such
as sensor fusion, perception, decision making, and control [3,4]. In this work, the sensor
fusion and perception modules are assumed to be working satisfactorily, since the main
focus is on the development of planning and tracking control strategies for AVs.

In a fundamental context involving the appearance of obstacles on the road toward
a defined goal, path planning determines the optimal path of the vehicle, while avoiding
collisions. It can be further classified as global and local path planning with associated
planning methods. Then, path tracking and execution ensure the vehicle follows the
reference path with minimum errors. First of all, a global path is searched for and provided
to the local planner. Many search-based algorithms, such as D* method, A* method and
rapidly-exploring random trees, have been widely applied to motion planning, due to their
high-computational efficiency [5–10]. They incorporate well-selected motion primitives
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and heuristics to significantly improve the planning process. In addition, several curve-
based methods are employed to deal with limitations to smooth path generation, such as
the following: Bezier [11], Spline [12], polynomial [13], optimization [14], and generation-
selection [15].

In order to improve the maneuverability of the AV, a variety of local planning strate-
gies have been proposed [16–21]. In [20], scholars designated obstacles with repulsive
forces and obstacle-free areas with attractive forces by using potential field strategies.
Intrinsically, obstacle avoidance algorithms predict the future vehicle position by con-
sidering constraints [21]. Other efficient local planning approaches generate multiple
rollouts [22,23], i.e., running parallel to a reference path. Successively, these rollouts are
leveraged by sampling and optimization. It is worth noting that path planning and tracking
are essential to the operation, despite their functional and structural disparities. Thus,
assorted control strategies have been proposed to achieve path-planning and path-tracking
control. For example, the proportional-integral-radius and particle swarm optimization
controllers were employed in [24]. Further, some scholars are devoted to the research of
automatic cruise and automatic drive of engineering vehicles. More recent approaches
take pedestrian factors into account to find safe paths [25]. The study in [26] examined a
decision-making algorithm for executing the double lane change maneuver in dynamic
situations. Additionally, the study in [27,28] discussed the utility of deep reinforcement
learning on rough terrain vehicles. Nevertheless, it appeared to be ineffective for control
purposes of real vehicles.

Alternatively, to bridge the gap between research and reality in the autonomous
driving domain, various control strategies have been proposed to achieve accurate tracking
performance. The model predictive control (MPC) approach is considered one of the most
promising approaches, owing to its capability to systematically handle multiple constrained
optimization problems. To achieve a high-performance trajectory control, a nonlinear
MPC approach is employed for offline calculation of trajectory planning [29] and path
tracking [30]. Aiming to handle the uncertainty term, several integrated MPC techniques
are proposed to ensure tracking accuracy and smoothness, such as the MPC technique-
based integrated control strategy [31], the linear parameter-varying system-based MPC
technique (LPV–PMC) [32] and incorporating a gain-schedule robust control strategy [33].
In [34], the robust MPC approach with a finite time horizon was proposed. Recently, several
studies have considered the tasks of motion planning and control together [35,36]. The
target trajectory is obtained by the MPC technique in [35], and, meanwhile, an artificial
potential is deployed in [36], wherein the MPC technique incorporates proportional-integral-
derivative feedback to effectively follow the reference trajectory. Nonetheless, the presence
of obstacles on the target trajectory may endanger decision accuracy, as well as system
stability. Therefore, the deployment of an appropriate tracking controller is a crucial task.

Motivated by these developments, this paper develops an asynchronous framework
for motion planning and path-tracking control for AVs, which can run simultaneously
through multi-threading to improve the performance of the AV system. The proposed
strategy structure is carried out with lightweight design and safety design in motion
planning, and the initial state and kinematic models of the vehicle are considered. Moreover,
the suggested framework was tested in a simulated environment with several obstacles and
the results showed its effectiveness in smooth and quick responses. Meanwhile, the cost
changes were analyzed in the process of motion planning, and the path-tracking effects of
the adopted LPV–MPC and MPC control methods.

The remainder of the paper is organized as follows. Section 2 describes the proposed
approach, including the motion planning and path tracking-based LPV–MPC, which are
presented simultaneously. Then, the testing configurations are described in Section 3,
followed by a discussion of the simulation results. Finally, the conclusion is offered in
Section 4.
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2. Proposed Approach

This section provides the operational details of our proposed approach. Figure 1
illustrates the overall structure of the system and how this solution operates. The motion
planner consists of two parts: a global planner and a local planner. The primary focus of
this study was an improved local planning strategy. Specifically, it is divided into two main
periods: candidate path generation and expected path selection. The generated candidate
trajectory is smoothed before evaluation to decide the best path output. Then, it is supplied
as input to the path-tracking module. If a safe and smooth obstacle-free trajectory is selected,
the future pose state of the AV is then estimated utilizing the LPV model error. Finally,
to obtain the ideal control sequence, a quadratic programming scheme is deployed to solve
for the cost function. The MPC controller is then instructed to operate the vehicle using the
first component of the control sequence, which is the desired acceleration and speed.

Figure 1. Overall architecture of our AV self-driving scheme with corresponding equation numbers.

2.1. Local Planning
2.1.1. Candidate Trajectory Generation

The local trajectory planner algorithm creates roll-outs through a three-step process.
Firstly, a specific section of the global path is extracted, based on the current AV position
and maximum planning distance. A series of path points, pj(xj, yj), ∀j ∈ [0, n] corresponds

to each candidate’s path with its direction θj =
yj+1−yj
xj+1−xj

. After sampling, there is a total

number of candidate paths of (s + 1), among which the nominal path is the (s/2)th path.
Next, the newly sampled perpendicular points are calculated from the global path.

For the jth path point pij(xij, yij), ∀i ∈ [0, s] of the ith candidate path, we obtain

xij = xi − d cos(tan−1(θj) + π/2),

yij = yj − d sin(tan−1(θj) + π/2).
(1)

where

d =


dl = cos(tan−1(θij))(yij − yi)− sin(tan−1(θij))(xij − xi), for j = 0, 1, . . . , l,
dm = dl +

dn−dl
n−l (j− l), for j = l + 1, l + 2, . . . , m,

dn = h
(
i− s

2
)
, for j = m + 1, m + 2, . . . , n,

θij denotes the direction of the waypoint pij(xij, yij) on the candidate path, and h is the hor-
izontal spacing of the candidate paths. The algorithm used to generate roll-out trajectories
is shown in Algorithm A1.

It is noteworthy that the generated candidate paths (1) are not smooth at the junction of
the three stages, which significantly affects later tracking control tasks. Thus, it is necessary
to smooth each candidate to improve curvature before providing the path-tracking module,
which is conducive to smoother steering. To this end, a nonlinear iterative optimization
technique, namely the gradient descent method, is deployed to reject the disruption of
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roll-outs resulting from the sampling process, as seen in Algorithm A2. The smoothness
optimization objective function S is defined as follows:

F =
m

∑
i=0

{
(xi + xr

i )
2 + (yi + yr

i )
2
}

︸ ︷︷ ︸
Fd :deviation evaluation

+
m−1

∑
i=0

{
(xi−1 + xi+1 − 2xi)

2 + (yi−1 + yi+1 − 2yi)
2
}

︸ ︷︷ ︸
Fs :smoothness evaluation

(2)

where pr
i
(

xr
i , yr

i
)

is the original path point corresponding to the optimized discrete path
point, pi(xi, yi). The gradient of F is obtained by taking its partial derivative with respect
to xi and yi, respectively, in the following:

∂Fd
∂xi

= 2(xi − 2xr
i ),

∂Fd
∂yi

= 2(yi − 2yr
i ),

∂Fs

∂xi
= 2(xi−2 − 4xi−1 + 6xi − 4xi+1 + xi+2),

∂Fs

∂yi
= 2(yi−2 − 4yi−1 + 6yi − 4yi+1 + yi+2).

(3)

After the path points are optimized, a smooth candidate path is obtained, which is an
input into the desired path selector for evaluation, and the desired path is selected.

2.1.2. Desired Trajectory Selection

The optimal path selector is implemented to evaluate each trajectory, which minimizes
a linear combination of multiple cost functions among candidate paths to choose the best
possible trajectory. The total cost values are expressed as follows:

Jtotal = ωz

3

∑
z=0

Jiz

∑n
i=0 Jiz

(4)

where Jiz, z = {1, 2, 3} represent the priority cost, path-change cost, and safety cost,
respectively, and ωz are the cost weight coefficients corresponding to the above costs.

The priority cost is a measure of the attractiveness of the central path to the vehicle.
The central path, namely the nominal path, has the highest priority, and the priority cost
can be written as

Ji1 =
∣∣∣h(i− s

2

)∣∣∣. (5)

The path-changing cost refers to the cost required for the vehicle to switch from the
current path to each candidate path. The absolute value of the relative distance between
the current path, ic and each candidate path, i is used to measure the path-changing cost.
This cost term is represented as follows:

Ji2 = |h(i− ic)|. (6)

For the safety cost, we evaluate all the probabilities of a vehicle colliding with an
obstacle nearby. The size of the collision cost is represented by the sum of the absolute
values of the relative distances between the current path and the outline points of all
obstacles. In addition, although the obstacle detection function is not the primary focus of
this study, its depiction presents several trade-offs between accuracy and performance.

For any outline point pi(xi, yi) in the obstacle point set, let the closest path point on
the candidate path be piv(xiv, yiv), ∀v ∈ [0, N] with N being the number of obstacle contour



Electronics 2023, 12, 1566 5 of 14

points. According to (1), the offset distance div is the gap between the obstacle point and
the candidate path. For the ith candidate path, its safe cost Ji3 is

Ji3 =
N−1

∑
v=0
|div| (7)

where div = cos(tan−1(θiv)(yiv − yi)− sin(tan−1(θiv)(xiv − xi).
According to (4)–(7), it is possible to determine the cost of each valid candidate path

and then choose the one with the lowest cost as the final local path to be executed, thereby
completing the local obstacle avoidance path planning in one cycle.

2.2. Path-Tracking Approach

In order to represent the nominal LPV dynamics, Jacobian matrices are computed along
the nominal trajectory, which include the nonlinear dynamics as scheduling parameters [37].
The LPV model is capable of capturing nonlinear dynamics within a bounded region over
the prediction horizon. Thus, the tracking error of the LPV–MPC is constrained within a
small bound. By using the Euler method [32], the discrete-time version of the nonlinear
system can be described as follows:

x(k + 1) = x(k) + ∆t f (x(k), u(k)) (8)

where x = [vx, vy, ω, ω̇, xd, yd]
> ∈ Rp denotes the six-dimensional state vector; u(t) =

[δ, a]> ∈ Rq denotes the control input; ∆t and k denotes the step size and step index,
respectively. According to the Taylor series, (8) is expanded around the referenced point
(xr, ur) at ẋr = f (xr, ur), and we obtain:

x(k + 1) ≈ x(k) + ∆t[ f (xr, ur) + fx,r(x− xr) + fu,r(u− ur)] (9)

where fx,r and fu,r denote the Jacobians of x and u, respectively, assessed around the
referenced points (xr, ur). Then, (9) can be rewritten as follows:

xe(k + 1) = A(k)xe(k) + B(k)ue(k),

ye(k) = C(k)xe(k)
(10)

where xe(k) = x(k)− xr(k) and ue(k) = u(k)− ur(k) denote the tracking error and control
input at each time instant; the system matrices A ∈ Rp×p, B ∈ Rp×q and C ∈ Rn×p are
derived in Appendix B.

The fundamental idea of the LPV–MPC generates control command sequences to
track the nominal system states, which can be optimized to reduce tracking errors over a
finite horizon by previewing the scheduling parameter sequences. From (10), the predicted
outputs, ye(k + i|k), and the control inputs, ue(k + i|k), we have

ye(k + 1|k)
ye(k + 2|k)

...
ye(k + Ny|k)

 =


CA
CA2

...
CANy

x(k|k) +


CB

CAB + CB
...

∑
Ny
i=1 CAi−1B

ue(k− 1) + Ψ


ue(k)

ue(k + 1)
...

ue(k + Nc − 1)

 (11)

where Ψ =


CB 0 · · · 0

CAB + CB CB 0 0
...

...
. . .

...

∑
Ny
i=1 CAi−1B ∑

Ny−1
i=1 CAi−1B · · · ∑

Ny−Nc+1
i=1 CAi−1B

.
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At time instance k, the optimal input sequences of the control horizon are calculated
by solving the optimization problem as follows:

min
Ue

J(Ue, xe(k)) =
Ny−1

∑
i=0

(
‖Qye(k + 1|k)‖2 + ‖Rue(k + i|k)‖2

)
subj. to xe(k + i + 1|k) = A(k + i|k)xe(k + i|k) + B(k + 1|k)ue(k + i|k)

ye(k + i|k) = C(k + i|k)xe(k + i|k)
xe(k|k) = xe(k) = x0 − x∗0 , xe(k) ∈ δX,

ye(k|k) = ye(k) = y0 − x∗0 , ye(k) ∈ δY,

Ue = col
{

ue(k|k), . . . , ue(Ny − 1k|k)
}

, ue(i|k) ∈ U

(12)

where the cost function J(Ue, xe(k)) is chosen as a quadratic form; δU ∈ U and δX ∈ X
denote the constraints of control inputs and states, respectively; Nc and Ny denote the inputs
and outputs of the predictive horizon, respectively; Ue is the predicted input sequences;
ye(k + i|k) is the current predicted output at time k, ue(k + i|k) is the predicted input vector,
which can be defined as follows:

ue(ki|k) = u(k + i|k)− u(k + i− i|k) (13)

Q = Q′ ≥ 0, R = R′ > 0 are the weighting matrices of the predicted outputs and control
inputs, respectively.

The optimal control input vector is defined as

U∗e := U∗e (k), . . . , U∗e (k + Nu− 1) (14)

and the new inputs as

u(k + i|k) = u(k + i− 1|k) + ue(k + i|k) (15)

Then, the first element of the control inputs, u∗e (k), is taken as the current optimal
input and the resulting control law is derived as the following:

u∗(k) = u(k− 1) + u∗e (k). (16)

The system shifts the control variable to the next step and re-predicts the output of the
next step by solving the optimization problem (12) over a shifted horizon. It is based on
the state information at a new step and based on an updated linear model computed by
linearizing (10) and previous input. This cycle is repeated until the entire control process is
completed.

3. Simulation Validation
3.1. Environment Setup

The motion planning and path-tracking control strategies are evaluated by first finding
a global trajectory for the whole autonomous driving system and then executing the local
planner. To do so, a start and a target position (marked by blue and red arrows, respectively)
are set as input and then the road network map is extracted to find the shortest path
routing by the global planner, based on Dijkstra’s algorithm. The whole information of the
expected path can be provided to the local planner while complying with traffic regulations.
To establish testing scenarios, we comprehensively design a series of trials on the MORAI
simulator [35], and several obstacles are placed on the road to analyze and evaluate the
capability of the proposed control strategy in the local planner. Meantime, the obstacle
status is obtained by utilizing the published data from the simulator. For the control
design, the optimal control problem is solved every sampling period of 30 Hz to find the
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appropriate control actions. The prediction horizon and control horizon are chosen as
Ny = 20 and Nc = 10. The expected speed of the vehicle is set to 8 m/s. To guarantee

stability and smoothness, the limits U = ±
[

π
4 1.25

]> and X = ±
[
8 2 3 3 1 10

]>
bound the front steering angle and longitudinal acceleration of the vehicle. The elements
of the diagonal weighting matrices Q and R are set to 1.25 and 0.1, respectively. Groups
of comparative simulations were carried out with the following conditions: (1) In order
to sufficiently illustrate the effectiveness of the proposed method, trials using MPC and
LPV–MPC, respectively, were considered; (2) Simultaneously, a demonstration using a
global path as a reference with multiple placed obstacles was used to evaluate the control
accuracy and robustness.

3.2. Results

The global trajectory is found as the shortest path routing, while fulfilling traffic law
constraints, as illustrated in Figure 2, in which the vehicle starts to move at the coordinate
(0, 0). To evaluate the proposed control approach, the obstacles were placed at different
locations on the route with their coordinates being 1st obstacle (45, 0), 2nd obstacle (116, 25),
3rd obstacle (170, 60). The results of the comprehensive trial are depicted in Figure 3.
The gray dotted line is the reference path as the shortest global path, and the green line
and the purple dotted line are the output trajectories controlled by the proposed motion
planning combined with the MPC and LPV–MPC technique, respectively. Generally, it can
be seen that both approaches could basically overlap with the reference trajectory, but the
difference was more obvious at the locations where obstacles appeared, as shown in partial
enlargement.

Figure 2. The optimal shortest path of global planning with the internal map structure consisting of
center lines and nodes of the road network connections.

The series of obstacles are illustrated in Figure 4 with partial enlargement of the
visualization, respectively. The order of candidate paths is marked from right to left of the
car starting from 1st to 9th, where the light orange lines are the candidate paths, and the
red line is the selected optimal path. Correspondingly, the total cost and its respective
cost values of the optimal path during the comprehensive simulation are depicted in
Figure 5. In this figure, the dotted pink line is the priority cost with a constant coefficient
value for each individual path. The dotted green line is the path-changing cost and its
change indicates the number of lane-changing times of the vehicle. The dotted orange
line is the collision cost, which represents the safety of the candidate path, i.e., the main
influencing factor in motion planning. In detail, at t = 7–12 s the vehicle position was
(30, 0), the distance to the 1st obstacles was 15 m, the vehicle switched frame 5th path to 1st
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path to pass on the right side of the obs1st obstacle (Figure 4a,b) with the total cost of the
optimal path being between 0.35–0.5. In the meantime, the peaks of the collision cost and
the path-changing costs were up to 0.9 and 0.5, respectively. Next, when the position of the
vehicle was (114.5, 12) at t = 22–25 s, the optimal path switched from 5th path to 7th path.
The path-changing cost and the collision cost were in the same direction as the peak values
0.65 and 0.4, respectively. This meant that the vehicle passed on the left side of the 2nd
obstacle (Figure 4c,d) with a total cost of 0.65. At t = 28–34 s, the vehicle was at (160, 60),
passing through 3rd obstacle along 8th path (Figure 4e,f). Since this obstacle appeared
near the merge lane, the local planner adjusted to the left lane earlier than the expected
path, with the total cost varying from 0.02 to 0.55. Although there were some obstacles that
appeared to obstruct the target road, the above results indicate that the suggested approach
is capable of evaluating and handling risky situations safely and quickly.

Figure 3. Results of a comprehensive simulation using the proposed motion planning and path
tracking framework.

Figure 4. The response of the proposed approach at different positions of the obstacles; The simulation
scene (above) and the candidate and optimal paths (below) correspond to the 1st obstacle (a,b), the
2nd obstacle (c,d) and the 3rd obstacle (e,f), respectively.
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Figure 5. The costs of the optimal path.

In order to further demonstrate the efficacy of the suggested approach, Figure 6
indicates the cross-tracking error (CTE) of the MPC and LPV–MPC methods, respectively,
versus the optimal path (Figure 6a) and the velocity versus time (Figure 6b). The CTE is
defined here as the distance from the vehicle coordinate position versus the optimal path,
i.e., ye = vx sin θe + vy cos θe. The results in Figure 6a show that the CTE values had three
oscillations corresponding to three locations of obstacles, since the obstacles were avoided
considering the safety distance of the vehicle. Meanwhile, all candidate paths gradually
approached the reference trajectory from the position of the vehicle, which indicates that
the proposed motion planning approach considered the current positional state of the
vehicle. However, there were significant differences when integrating each path-tracking
approach. The peak error of the LPV–MPC approach was within 0.25 m at t = 8–14 s, while
the peak error of the MPC approach was slightly larger at 0.38 m at the same time. At t =
23 s, it was absolutely clear that the peak error of MPC was 0.7 m, and the corresponding
maximum error of LPV–MPC was still 0.28 m at this time. Similarly, the peak CTE of
the LPV–MPC approach was smaller than that of MPC at t = 32 s, and, in turn, 0.2 m
versus 0.5 m. During the remaining phase, the CTE was quite small, which meant that
it nearly coincided with the optimal path. On the other hand, as illustrated in Figure 6b,
the velocity-tracking performance of the proposed motion planning when combined with
the LPV–MPC approach was also better than that of MPC. It can be seen that, in the case of
a dynamic environment with obstacle avoidance, the LPV–MPC strategy could be suitably
evaluated under different conditions with high precision.

As shown in Figure 7, the control inputs of the front steering angle and the longitudinal
acceleration are displayed as time evolved, respectively. Although the LPV–MPC integrated
into the proposed motion planning approach with significantly smaller control effort,
the control performance was better than the MPC approach. Generally, the tracking
performances illustrated that both the LPV–MPC and MPC could effectively maintain the
position constraint in a reasonable range. In particular, compared with the MPC approach,
the LPV–MPC approach could not only improve the lateral tracking accuracy of the vehicle
but also speed up the longitudinal error convergence under initial conditions. As a result,
the proposed LPV–MPC method exhibited high accuracy and robustness in trajectory
tracking. Therefore, the AV using the LPV–MPC method could track the desired trajectory
completely. Figure 8 expresses the elapsed time when computing with a mean time of
0.6985 s and 0.0347 s for a prediction horizon of 20 steps of the MPC strategy and LPV–MPC
approach, respectively. It implies that computational time improvement was achieved
when using the LPV–MPC strategy. The several peaks could be due to the appearance
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of obstacles, causing the optimizer to deal with somewhat complicated and, hence, more
time-consuming situations.

Figure 6. Response performances with respect to integrating MPC and LPV–MPC methods, respec-
tively; (a) The cross-tracking errors versus the optimal path; (b) The longitudinal velocities versus the
target velocity.

Figure 7. The standard deviations of the optimal control signals when using MPC and LPV-MPC
path tracking methods, respectively, (a) The front steering angle; (b) The longitudinal acceleration.
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Figure 8. Computational effort comparison; (a,b) Elapsed time per iteration of the MPC strategy and
LPV–MPC approach, respectively.

4. Conclusions

In this paper, an integrated motion planning and control framework was proposed for
the AV. The path planner incorporates the path-following strategy to deliver a good balance
of fast decisions, safety, and accuracy by running both modules in parallel. The proposed
motion planning module, composed of a behavior selector, is developed for obstacle
avoidance, while generating parametric online reference paths. It satisfies the constraints
on the allowable curvature of a given AV, as well as different initial states. Depending
on the scene, the motion planner generates trajectories through intermediate safe spots
to avoid obstacles. Meanwhile, the LPV–MPC is simultaneously adopted in the path-
tracking module to improve path-tracking accuracy and compared with the MPC control.
The proposed method was evaluated in the MORAI simulator, in a scenario with several
bends and various obstacles. The simulation results demonstrated that the motion planner
is capable of handling these feasibility checks and risk evaluation situations safely and
quickly. Meantime, the robustness and accuracy of the path-tracking task are guaranteed by
the LPV–MPC approach with rather small peaks of the CTE within 0.28 m. It can generate
an appropriate velocity that varies smoothly, which is helpful to the vehicle’s stability of
control. All of these indicate that it is a promising control scheme for practical applications.

In future work, the proposed algorithm will be analyzed further and generalized in
a complex environment in the presence of other vehicles. The predictive ability in regard
to the tendency of obstacles to move will be developed to improve safety as well as offer
higher precision. Then, it will be applied in real-time platforms for a comprehensive
assessment of performance.
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Appendix A. Candidate Trajectory Generation and Smoothness Optimization

Algorithm A1: Candidate Trajectory Generation
Input: Pose, dmax, pm;
Output: pij(xij, yij);
Function: ExtractPath(Pose, dmax, pm)
iter ← FindClosestWaypoint(Pose, pm);
while d ≤ dmax do

pi(xi, yi)← pm(iter ++);
end
FixPathDensity(pi(xi, yi));
Return: pi(xi, yi)
Function: SampleTrajectories(Pose, pi(xi, yi), dl , dm, dn)
pi(xi, yi)← CreateList(dn);
for i = 0 : len(dn) do

pij(xij, yij)← AddCarTip(pi(xi, yi), dl);
disCenter = rollOutDensity ∗ (i− dn/2);
pij(xij, yij) = SampleRoll In(pi(xi, yi), disCenter, dm);
pij(xij, yij) = AddRollOut(pi(xi, yi), dn);

end
Return: pij(xij, yij)

Algorithm A2: Smoothness Optimization of Candidate Path
Input: pin, η1, η2, e, itermax;
Output: pout;
Function: GradientDescent(pin, η1, η2, ea, pin)
iter ← 0; e← 0;
while iter ≤ itermax and e ≥ ea do

ptemp ← pin;
pin ← pin − η1 DevCal(Fd) −η2 SmoCal(Fs);
e← CalPathError(ptemp, pin);
++ iter;

end
pout ← pin;
Return: pout

In Algorithm A2, the path to be optimized and the smoothed path are represented by
pin and pout respectively, the learning rate of the deviation item is η1, the learning rate of the
smooth item is η2, the allowable error is ea, and the maximum number of iterations is itermax,
the functions DevCal and SmoCal are presented in (2), and the function CalPathError is
provided by (3).
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Appendix B. Mathematical Model

Proof. According to [5,32], the linear parameter-varying matrices in (10) are obtained as

A =



A11 A12 0 A14 0 0
A21 A22 0 A24 0 0
A32 A32 0 1 0 0
A41 A42 0 A44 0 0
A51 A52 A53 0 0 0
A61 A62 A63 0 0 0

, B =



B11
B21
0

B41
0
0

 (A1)

with

A11 =
2C f δ(vy + l f ω̇)

mv2
x

, A12 = −
2C f δ

mvx
+ ω̇, A14 = vy −

2C f l f δ

mvx
,

A21 = −ω̇−
2C f + C f

mv2
x

, A22 =
2C f − 2Cr

mvx
, A24 =

2(c f l f + Crlr)
mvx

− vx,

A41 =
2Crlr(lr ˙ω− vy)

Izv2
x

, A42 =
2C f l f + 2Crlr

Izvx
, A44 =

2(C f l2
f − Crlr)

Izvx

A51 = cos ω, A52 = − sin ω, A53 = −vx sin ω− vy cos ω,

A61 = sin ω, A62 = cos ω, A63 = vx cos ω− vy sin ω,

B11 =
2C f
m

(2δ−
vy + l f ω̇

vx
), B21 =

2(C f s f − C f )

m
, B31 =

2l f (C f s f − C f )

Iz

(A2)

The following parameter values are utilized: l f = 0.52 m, lr = 0.63 m, m = 198 kg and
Iz = 275.8 kg·m2.
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